JP2003056204A - Coupling vibration control device utilizing rotational inertia force - Google Patents

Coupling vibration control device utilizing rotational inertia force

Info

Publication number
JP2003056204A
JP2003056204A JP2001245374A JP2001245374A JP2003056204A JP 2003056204 A JP2003056204 A JP 2003056204A JP 2001245374 A JP2001245374 A JP 2001245374A JP 2001245374 A JP2001245374 A JP 2001245374A JP 2003056204 A JP2003056204 A JP 2003056204A
Authority
JP
Japan
Prior art keywords
buildings
mass body
building
ball screw
inertia force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001245374A
Other languages
Japanese (ja)
Other versions
JP4843881B2 (en
Inventor
Mitsuru Kageyama
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001245374A priority Critical patent/JP4843881B2/en
Publication of JP2003056204A publication Critical patent/JP2003056204A/en
Application granted granted Critical
Publication of JP4843881B2 publication Critical patent/JP4843881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coupling vibration control device utilizing rotational inertia force which can be installed without occupying a wide space in an installing part of a house top part or the like and large rotational inertia force can be obtained. SOLUTION: A ball screw mechanism 14 arranged between two juxtaposed buildings 10 and 12 and taking out a relative displacement amount between both the buildings as a rotational amount of an output side member and a rotational mass body 20 for integrated on the output side member of the ball screw mechanism 14 and arranged between both the buildings are provided, and the rotational inertia force of the rotational mass body is made reaction force to obtain attenuation force. For instance, the output side member of the ball screw mechanism 14 is made a nut member 16 supported rotatably through a bearing member 22 in one building 10, the bearing member 22 can be rotated with a support shaft 26 in the horizontal direction, and a screw shaft member 18 of an input side screwed with and inserted in the nut member 16 is made an input side member. The base end of the screw shaft member 18 is rotatably supported with a support shaft 36 in the horizontal direction while regulating rotation around a shaft in the other building 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、並立する2つの建
物間、または2重構造形式の内,外建物間に生じる水平
方向変位を質量体の回転運動に変換して、その回転慣性
力によって建物を制振するようにした回転慣性力を利用
した連結制振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converts a horizontal displacement generated between two buildings standing side by side or between inner and outer buildings of a double structure type into a rotary motion of a mass body, and the rotary inertia force of the mass body converts the horizontal displacement. The present invention relates to a coupled vibration damping device that utilizes a rotational inertial force for damping a building.

【0002】[0002]

【従来の技術】高層建物を制振するためには曲げ変形を
制御することが必要となり、この曲げ変形を効率的に制
御するには建物頂部に水平力を付与する方法が考えられ
る。つまり、この場合は付与した水平力に建物高さを乗
じた制御モーメント力を発生することができるため、大
きな制御力を効率良く得ることができる。この種の制振
方法としてはTMDやAMDが知られるが、これらの装
置では付加質量の振幅を装置の許容ストローク以下に抑
えるためには過大な付加質量が必要となり、その実現に
著しい困難性が伴うことになる。
2. Description of the Related Art In order to control a high-rise building, it is necessary to control bending deformation, and in order to efficiently control this bending deformation, a method of applying a horizontal force to the building top can be considered. That is, in this case, a control moment force obtained by multiplying the applied horizontal force by the building height can be generated, so that a large control force can be efficiently obtained. TMD and AMD are known as damping methods of this kind, but in these devices, an excessive additional mass is required in order to keep the amplitude of the additional mass below the allowable stroke of the device, and it is extremely difficult to realize it. Will be accompanied.

【0003】そこで、例えば特開2001−20560
号公報に開示されるように、2つの建物間に、両建物間
の相対変位量を軸方向の移動量として取り出すラック軸
を設けると共に、このラック軸に噛合するピニオンをい
ずれか一方の建物に回転自在に支持し、このピニオンに
その回転中心周りにフライホイールや錘などの付加質量
体を取り付けて、両建物間の相対変位によりピニオンと
共に付加質量体を回転させ、この質量体の回転慣性反力
により減衰力を得て建物を制振するようにした、回転慣
性力を利用した連結制振装置が提案されている。
Therefore, for example, Japanese Patent Laid-Open No. 2001-20560
As disclosed in the publication, a rack shaft for extracting the relative displacement amount between the two buildings as an axial movement amount is provided between two buildings, and a pinion meshing with the rack shaft is provided in one of the buildings. It is rotatably supported, and an additional mass body such as a flywheel or a weight is attached to this pinion around its rotation center, and the additional mass body is rotated together with the pinion due to the relative displacement between the two buildings. There has been proposed a coupled vibration damping device that utilizes a rotational inertial force to obtain a damping force by force to damp a building.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、付加質
量体を取り付けたピニオンをラック軸によって回転させ
るようにした、上記従来の回転慣性力を利用した上記制
振装置では、ピニオンの回転軸はラック軸に対して直交
し、付加質量体はラック軸に平行な面内を回転すること
になる。このため、制振装置の重量増加を抑制しつつ回
転慣性力の増大を図るべく、フライホイールや錘などの
付加質量体の回転半径を大きくすると、屋上部等その設
置部に広いスペースを確保しなければならないという課
題があった。 また、上記回転慣性力を大きくするに
は、両建物の相対変位に伴うラック軸の移動量を増幅し
てピニオンの回転量に変換して伝えれば良く、その増幅
率はラック軸の単位長さ当たりの歯数とピニオンの歯数
との関係で定まるものの、ピニオンには付加質量を取り
付けて支える関係上、その大きさはあまり小さくするこ
とはできず、よって大きな増幅率を得るにも限界があっ
た。そこで、付加質量体を取り付けたピニオンを複数ラ
ック軸に噛合させて設けることも考えられるが、そうす
ると、設置部の占有スペースが更に増大すると云った問
題が生じてしまう。
However, in the above-described conventional vibration damping device utilizing the rotary inertia force, in which the pinion having the additional mass body attached is rotated by the rack shaft, the rotation shaft of the pinion is the rack shaft. And the additional mass will rotate in a plane parallel to the rack axis. Therefore, if the radius of gyration of the additional mass body such as the flywheel or weight is increased in order to increase the rotational inertial force while suppressing the increase in the weight of the vibration control device, a large space is secured for the installation part such as the rooftop. There was a problem that we had to do. Further, in order to increase the rotational inertial force, it is sufficient to amplify the amount of movement of the rack axis due to the relative displacement of both buildings and convert it to the amount of rotation of the pinion and transmit it. The amplification factor is the unit length of the rack axis. Although it is determined by the relationship between the number of teeth per contact and the number of teeth of the pinion, the size cannot be reduced so much because the additional mass is attached to and supported by the pinion, so there is a limit to obtaining a large amplification factor. there were. Therefore, it is conceivable to provide a plurality of pinions with additional mass bodies engaged with the rack shafts, but this causes a problem that the space occupied by the installation portion further increases.

【0005】本発明はかかる従来の課題に鑑みて成され
たものであり、その目的は、屋上部等の設置部に広いス
ペースを占有することなく据え付けることができ、しか
も十分に大きな回転慣性力が得られる回転慣性力を利用
した連結制振装置を提供することにある。
The present invention has been made in view of the above conventional problems, and an object thereof is to be able to install it without occupying a wide space in an installation part such as a rooftop and to have a sufficiently large rotational inertia force. It is an object of the present invention to provide a coupled vibration damping device that utilizes the rotational inertial force.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成するた
めに本発明の回転慣性力を利用した連結制振装置は、並
立する2つの建物間、または2重構造形式の内,外建物
間に配置され、両建物間の相対変位量を出力側部材の回
転量として取り出すボールネジ機構と、該ボールネジ機
構の出力側部材に一体化されて両建物間に配置された回
転質量体とを備え、該回転質量体の回転慣性力により減
衰力を得ることを特徴とする。
In order to achieve such an object, a coupled vibration damping device utilizing a rotary inertia force of the present invention is provided between two buildings standing in parallel, or between an inner building and an outer building of a double structure type. A ball screw mechanism that is arranged and takes out a relative displacement amount between the two buildings as a rotation amount of the output side member; and a rotating mass body that is integrated with the output side member of the ball screw mechanism and that is arranged between the two buildings. It is characterized in that the damping force is obtained by the rotational inertial force of the rotating mass body.

【0007】ここで、上記ボールネジ機構の出力側部材
は、一方の建物に軸受け部材を介して回転自在に支持さ
れたナット部材となし、該ナット部材に螺合挿通される
入力側のネジ軸部材を入力側部材となして当該ネジ軸部
材の基端部を他方の建物に軸周りの回転を規制して支持
させた構成となし得る。
Here, the output side member of the ball screw mechanism is a nut member rotatably supported in one building through a bearing member, and an input side screw shaft member threadably inserted into the nut member. Can be used as the input side member, and the base end portion of the screw shaft member can be configured to be supported by the other building while restricting rotation around the axis.

【0008】あるいは、上記ボールネジ機構の出力側部
材は、ネジ軸部材となし、該ネジ軸部材の中間部に前記
回転質量体を一体化させて設けるとともに、該ネジ軸部
材の両端部に相互に逆ネジに形成したネジ部を、入力側
部材として両建物に設けたナット部材に螺合挿通させる
構成ともなし得る。
Alternatively, the output side member of the ball screw mechanism is a screw shaft member, the rotary mass body is integrally provided at an intermediate portion of the screw shaft member, and both ends of the screw shaft member are mutually provided. The threaded portion formed as a reverse screw may be threadedly inserted into a nut member provided in both buildings as an input side member.

【0009】また、前記回転質量体は径方向に移動自在
な付加質量体と、該付加質量体を径方向の任意の位置に
固定調節可能な回転半径調節機構とを有する構成となす
のが望ましい。
Further, it is preferable that the rotary mass body has a structure in which an additional mass body movable in the radial direction and a turning radius adjusting mechanism capable of fixing and adjusting the additional mass body at an arbitrary position in the radial direction. .

【0010】さらに、前記両建物間にはダンパを設ける
ことが望ましい。
Further, it is desirable to provide a damper between the two buildings.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態を添付図
面を参照して詳細に説明する。図1は本発明に係る回転
慣性力を利用した連結制振装置の概念図であり、図2〜
図4はその具体的な一実施形態を示すもので、図2は側
面図、図3は平面図、図4は図2中のIV-IV線部の矢視
図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a conceptual diagram of a linked vibration damping device utilizing a rotary inertia force according to the present invention, and FIG.
FIG. 4 shows a specific embodiment thereof, FIG. 2 is a side view, FIG. 3 is a plan view, and FIG. 4 is a view taken along the line IV-IV in FIG.

【0012】本発明の連結制振装置の基本構造は、並立
する2つの建物10,12間、または2重構造形式の
内,外建物10A,12A(図6参照)間に配置され、
両建物間の水平方向の相対変位量を出力側部材の回転量
として取り出すボールネジ機構14と、このボールネジ
機構14の出力側部材の回転軸周りに一体的に取り付け
られた付加質量体20とを備え、質量体の回転慣性力に
より減衰力を得る構成となっている。
The basic structure of the coupled vibration damping device of the present invention is arranged between two buildings 10 and 12 standing in parallel, or between inner and outer buildings 10A and 12A (see FIG. 6) of a double structure type,
A ball screw mechanism 14 for extracting the relative displacement amount in the horizontal direction between both buildings as the rotation amount of the output side member, and an additional mass body 20 integrally attached around the rotation axis of the output side member of the ball screw mechanism 14 are provided. The damping force is obtained by the rotational inertial force of the mass body.

【0013】即ち、本実施形態の連結制振装置は、近接
して並立される第1建物10と第2建物12との屋上間
に、変位伝達手段としてのボールネジ機構14が配置さ
れることにより構成される。このボールネジ機構14
は、ナット部材16と、このナット部材16に螺合挿通
されるネジ軸部材18と、当該螺合部間に介在してその
ナット部材16に形成された通路を通って循環され続け
る無数のボール(図示せず)とからなる一般的なもので
なり、本実施形態では、ナット部材16が一方の建物1
0に軸受け部材22を介して回転自在に支持されて出力
側部材として設定されている一方、ネジ軸部材18がそ
の基端部を他方の第2建物12にその軸芯周りの回転を
規制されて支持されて入力側部材として設定されてい
る。
That is, in the coupled vibration damping device of the present embodiment, the ball screw mechanism 14 as a displacement transmitting means is arranged between the rooftops of the first building 10 and the second building 12 which are juxtaposed in close proximity to each other. Composed. This ball screw mechanism 14
Is a nut member 16, a screw shaft member 18 threadedly inserted into the nut member 16, and a myriad of balls that continue to circulate through a passage formed in the nut member 16 interposed between the threaded portions. (Not shown), and in this embodiment, the nut member 16 is one building 1
0 is rotatably supported via the bearing member 22 and is set as an output side member, while the screw shaft member 18 has its base end portion restricted to the other second building 12 from rotating about its axis. Is supported and set as an input side member.

【0014】つまり、前記軸受け部材22は軸受け部2
2aとこの軸受け部22aに一体の基台部22bとを有
し、この基台部22bが第1建物10の屋上部上面に敷
設された滑動板24上に載置されて設けられている。こ
の滑動板24部にはこれを貫通して上方に突出する支軸
26が屋上部に一体的に立設固定されており、基台部2
2bに形成された軸孔22cが当該支軸26に嵌合され
て、軸受け部材22は当該支軸26を中心にして滑動板
24上を揺動自在になっている。また、軸受け部22は
軸受け孔22dの軸芯が他方の第2建物12を指向され
て水平に設けられており、この軸受け孔22dにベアリ
ング(図示せず)を介してボールネジ機構14のナット
部材16が回転自在に軸支されている。
That is, the bearing member 22 is the bearing portion 2
2a and a base 22b that is integral with the bearing 22a. The base 22b is mounted on a sliding plate 24 laid on the upper surface of the roof of the first building 10. A support shaft 26, which penetrates through the sliding plate 24 and projects upward, is integrally erected and fixed to the rooftop at the sliding plate 24 portion.
A shaft hole 22c formed in 2b is fitted into the support shaft 26, so that the bearing member 22 can swing on the slide plate 24 about the support shaft 26. Further, the bearing portion 22 is provided horizontally such that the shaft center of the bearing hole 22d is directed to the other second building 12, and the nut member of the ball screw mechanism 14 is provided in the bearing hole 22d via a bearing (not shown). 16 is rotatably supported.

【0015】ナット部材16はその両端が軸受け部材2
2から突出し、その両突出端にはフランジ部16a,1
6bが拡径形成されていて、当該フランジ部16a,1
6bが軸受け部材22の両端面に当接して軸方向への移
動が規制されている。そして、このナット部材16の第
2建物側のフランジ部16bは第1建物10の側壁面1
0aよりも側方に突出し、そのフランジ部16bの端面
には付加質量体20として円盤状のフライホイール28
が同軸に、その中心部にネジ軸部材18の挿通孔28a
を有して固設されている。さらに、このフライホイール
28の外周面には、径方向外方に放射状に延びる複数の
錘取り付け用ボルト30が立設されており、その各錘取
り付け用ボルト30には付加質量体20としての錘32
が螺合されて、ダブルナット(図示省略)により回転半
径方向の任意の位置にて固定調節可能に取り付けられて
いる。
Both ends of the nut member 16 are bearing members 2
2 and the flange portions 16a, 1
6b is formed to have an enlarged diameter, and the flange portions 16a, 1
6b abuts on both end surfaces of the bearing member 22 to restrict movement in the axial direction. The flange portion 16b of the nut member 16 on the second building side is the side wall surface 1 of the first building 10.
0a, and a disk-shaped flywheel 28 as an additional mass body 20 on the end surface of the flange portion 16b thereof.
Is coaxial with the insertion hole 28a of the screw shaft member 18 at the center thereof.
Has been fixed. Further, on the outer peripheral surface of the flywheel 28, a plurality of weight attachment bolts 30 radially extending outward in the radial direction are provided upright, and each weight attachment bolt 30 has a weight as an additional mass body 20. 32
Are screwed together and fixedly and adjustablely attached by a double nut (not shown) at any position in the radial direction of rotation.

【0016】ボールナット機構14のネジ軸部材18
は、その一端側に形成されたネジ部18aが上記ナット
部材16に螺合挿通される一方、その他端側の基端部に
は軸孔34aを上方に向けたスリーブ34が一体的に設
けられていて、このスリーブ34が第2建物12の屋上
部に立設された支軸36に嵌合されて回動可能に支持さ
れている。
The screw shaft member 18 of the ball nut mechanism 14
The threaded portion 18a formed at one end thereof is threadably inserted into the nut member 16, while the sleeve 34 having the shaft hole 34a directed upward is integrally provided at the base end portion on the other end side. The sleeve 34 is fitted to a support shaft 36 standing on the roof of the second building 12 and rotatably supported.

【0017】即ち、ナット部材16に一体化されて取り
付けられるフライホイール28と錘取付ボルト30と錘
32との付加質量体20は第1建物10と第2建物12
との間に配置されてネジ軸部材18の軸芯を回転中心に
して回転作動されるようになっており、また錘32と錘
取り付け用ボルト30とのネジ機構が当該錘32の回転
半径rを調節する回転半径調節機構38となっている。
That is, the additional mass body 20 of the flywheel 28, the weight mounting bolt 30, and the weight 32 integrally mounted on the nut member 16 is the first building 10 and the second building 12.
And a screw mechanism of the weight 32 and the weight mounting bolt 30 is arranged so as to rotate about the axis of the screw shaft member 18 as a rotation center. Is a turning radius adjusting mechanism 38 for adjusting.

【0018】また、本実施形態では第1建物10と第2
建物12との間には、ダンパー40が、その両端を両建
物10,12に対してピン結合されて回動自在に取り付
けられている。ここで図示例では、ダンパー40には油
圧式のものを採用しているが、摩擦式などの他の形式の
ものを採用することもできる。
In this embodiment, the first building 10 and the second building 10
A damper 40 is rotatably attached between the building 12 and both ends of the damper 40 by being pin-connected to the both buildings 10, 12. Here, in the illustrated example, the damper 40 is a hydraulic type, but another type such as a friction type may be used.

【0019】以上の構成により本実施形態の連結制振装
置にあっては、地震や風により振動が発生し、並立する
第1,第2建物10,12間に相対変位が発生すると、
ボールネジ機構14のナット部材16を支持している軸
受け部材22と、ネジ軸部材18の基端部のスリーブ3
4とが、両建物10,12の相対変位方向に習って水平
方向に回動する。そして、軸受け部材22を回動自在に
支持する第1建物10側の支軸26と、ネジ軸部材18
を回動自在に支持する第2建物12側の支軸36との間
に生じる相対変位(つまり両支軸26,36間の距離変
化)がボールネジ機構14のナット部材16とネジ軸部
材18との螺合部にその軸方向に沿って直線的に作用
し、その結果、当該ナット部材16がその螺合部のネジ
ピッチに相応した増幅率の回転量及び回転速度で回転さ
れ、このナット部材16に一体に設けられた付加質量体
20のフライホイール28や錘32等も共に一体的に回
転する。
In the coupled vibration damping device of the present embodiment having the above-mentioned configuration, when vibration is generated by an earthquake or wind and relative displacement is generated between the first and second buildings 10 and 12 standing in parallel,
The bearing member 22 supporting the nut member 16 of the ball screw mechanism 14 and the sleeve 3 at the base end of the screw shaft member 18.
4 rotates in the horizontal direction, following the relative displacement direction of both buildings 10, 12. Then, the spindle 26 on the first building 10 side that rotatably supports the bearing member 22, and the screw shaft member 18
The relative displacement (that is, the change in distance between the two support shafts 26, 36) that occurs between the support shaft 36 on the second building 12 side that rotatably supports the nut member 16 and the screw shaft member 18 of the ball screw mechanism 14. Linearly acting on the threaded portion of the nut member 16 along its axial direction, and as a result, the nut member 16 is rotated at the amplification amount and the rotation speed corresponding to the thread pitch of the threaded portion. The flywheel 28, the weight 32, and the like of the additional mass body 20 that are integrally provided in the same also rotate together.

【0020】従って、上記ナット部材16とフライホイ
ール28と錘取り付け用ボルト30と錘32とからなる
回転質量体は、第1,第2建物10,12の相対変位に
伴って回転慣性力を発生し、この回転慣性力を反力とな
して第1,第2建物10,12を制振することができ
る。この際、相対変位荷重に対しては、主にネジ軸部材
18がその強度の大きな軸方向の圧縮力としてこれを受
けるため、両建物10,12間の大きな相対変位量にも
十分に対応することができ、大地震等により過大な相対
変位が両建物10,12間に発生した場合にも、十分に
制振機能を確保することができる。
Therefore, the rotary mass body composed of the nut member 16, the flywheel 28, the weight mounting bolt 30 and the weight 32 generates a rotary inertia force with the relative displacement of the first and second buildings 10 and 12. However, the rotational inertial force can be used as a reaction force to suppress the first and second buildings 10 and 12. At this time, since the screw shaft member 18 mainly receives the relative displacement load as a compressive force in the axial direction having a large strength, the screw shaft member 18 can sufficiently cope with a large relative displacement amount between the two buildings 10 and 12. Therefore, even if an excessive relative displacement occurs between the buildings 10 and 12 due to a large earthquake or the like, the vibration damping function can be sufficiently ensured.

【0021】また、公知のように上記回転慣性力は、ナ
ット部材16と付加質量体20のフライホイール28や
錘32等からなる回転質量体の総質量は一定であって
も、その回転速度ωや付加質量体の錘32の質量及びそ
の回転半径rによって異なったものとなり、その回転慣
性力の大きさは回転半径rの2乗に比例し、回転速度ω
に比例したものとなるが、両建物10,12の相対変位
に伴うネジ軸部材18の往復直進運動をナット部材16
の往復揺動回転運動に変換するボールネジ機構14のネ
ジピッチ(増幅率)、並びに付加質量体である錘32の
回転半径r及び質量をそれぞれ適宜に設定することで、
所望の回転慣性力(即ち減衰力)を容易に得ることがで
きる。
Further, as is well known, the rotational inertia force causes the rotational speed ω even if the total mass of the rotary mass body including the nut member 16 and the flywheel 28 of the additional mass body 20 and the weight 32 is constant. And the mass of the weight 32 of the additional mass and its rotation radius r, the magnitude of the rotational inertial force is proportional to the square of the rotation radius r, and the rotation speed ω
However, the reciprocating linear motion of the screw shaft member 18 due to the relative displacement of the two buildings 10 and 12 is proportional to the nut member 16
By appropriately setting the screw pitch (amplification factor) of the ball screw mechanism 14 for converting into the reciprocating swing rotary motion of, and the turning radius r and the mass of the weight 32 which is the additional mass body,
A desired rotational inertia force (that is, damping force) can be easily obtained.

【0022】さらに、付加質量のフライホイール28及
び錘32はナット部材16の端面に取り付けられて第1
建物10の側壁面10aから側方に突出して離間してい
て、ネジ軸部材18の軸芯周りに両建物10,12間の
空間で鉛直面内を回転させられるので、並立した両建物
10,12が近接していてそれらの間の空間が狭い場合
であっても、これらフライホイール28と錘32等から
なる付加質量体20を容易に当該空間内に設置可能で、
錘32の回転半径rも可及的に大きくして、重量の増加
を抑えつつ回転慣性力の増大が図れる。しかも、当該付
加質量体20が屋上部のスペースを広く占有することが
なく、もって設置性に優れる。
Furthermore, the flywheel 28 and the weight 32 of the additional mass are attached to the end surface of the nut member 16 to make the first
The side walls 10a of the building 10 are laterally projected and spaced apart, and can be rotated in the vertical plane in the space between the buildings 10 and 12 about the axis of the screw shaft member 18, so that the two buildings 10 that are in parallel are Even if 12 are close to each other and the space between them is narrow, the additional mass body 20 including the flywheel 28 and the weight 32 can be easily installed in the space.
The rotation radius r of the weight 32 can also be increased as much as possible to increase the rotational inertial force while suppressing the increase in weight. In addition, the additional mass body 20 does not occupy a large space on the rooftop, and thus the installability is excellent.

【0023】加えて、錘32の回転半径rの調整機構3
8を備えた本実施形態では、その設置後にあっても随時
その回転半径rを調節して、発生させる回転慣性力の調
整を行うことができ、制振装置としての減衰力特性をよ
り適したものに簡易に調整し得る。
In addition, the adjusting mechanism 3 for the turning radius r of the weight 32
In the present embodiment having No. 8, the rotational radius r can be adjusted at any time even after the installation, so that the rotational inertial force to be generated can be adjusted, and the damping force characteristic as the vibration damping device is more suitable. You can easily adjust to things.

【0024】更に、本実施形態では振動入力方向に設け
られたダンパー40により、第1,第2建物10,12
の振動減衰をより促進することができるが、このダンパ
ー28は必ずしも必要とはしない。
Further, in the present embodiment, the damper 40 provided in the vibration input direction allows the first and second buildings 10, 12 to be installed.
However, the damper 28 is not always necessary.

【0025】図5は他の実施形態を示す側面図である。
この実施形態の連結制振装置では、ボールネジ機構14
のネジ軸部材18を出力側部材となし、ナット部材16
を入力側部材となしている。即ち、ネジ軸部材18の軸
方向中間部には、そのほぼ中央にフライホイール28が
一体化されて設けられ、このフライホイール28の外周
面には前述の実施形態と同様に錘取付ボルト30に螺合
されて回転半径rを調節可能な複数の錘32が取り付け
られている。ネジ軸部材18の両端にはそれぞれ螺旋方
向が逆向きに形成されたネジ部18a,18bが設けら
れていて、これらのネジ部18a,18bは両建物1
0,12の屋上部に互いに対向して設けられたナット部
材16,16にそれぞれ螺合挿通されている。各ナット
部材16,16は軸受け部材22にそのフランジ部16
a,16bがボルトなどで固設されて、回転を規制され
て一体化されて設けられており、その軸受け部材22は
やはり前述の実施形態と同様に屋上部の上面に敷設され
た滑り板24上に載置されて、支軸26,26により水
平方向に回動自在に支持されている。
FIG. 5 is a side view showing another embodiment.
In the coupled vibration damping device of this embodiment, the ball screw mechanism 14
The screw shaft member 18 of is used as the output side member, and the nut member 16
Is the input side member. That is, a flywheel 28 is integrally provided at substantially the center of the axially intermediate portion of the screw shaft member 18, and the weight mounting bolt 30 is attached to the outer peripheral surface of the flywheel 28 as in the above-described embodiment. A plurality of weights 32 that are screwed together and whose turning radius r can be adjusted are attached. The screw shaft member 18 is provided at both ends with screw portions 18a and 18b formed in opposite spiral directions, and these screw portions 18a and 18b are provided in both buildings 1.
The nut members 16 and 16 provided on the rooftops of Nos. 0 and 12 facing each other are screwed and inserted. Each of the nut members 16 and 16 includes a bearing member 22 and a flange portion 16 thereof.
The a and 16b are fixedly installed by bolts or the like, and their rotation is regulated so as to be integrated. The bearing member 22 of the a and 16b is also the sliding plate 24 laid on the upper surface of the roof as in the above-described embodiment. It is mounted on and is supported by the support shafts 26, 26 so as to be rotatable in the horizontal direction.

【0026】当該構成によれば、両建物10,12間に
生じた水平方向の相対変位は、ボールネジ機構14の入
力側部材であって相互に逆ネジに形成された2つのナッ
ト部材16,16とこれに螺合した出力側部材であるネ
ジ軸部材18両端のネジ部18a,18bとの螺合部に
作用し、当該ネジ軸部材18を付加質量20のフライホ
イール28や錘32等と共に回転させる。
According to this structure, the relative displacement in the horizontal direction generated between the buildings 10 and 12 is the input side member of the ball screw mechanism 14 and the two nut members 16 and 16 formed in mutually reverse threads. And the screw shaft member 18, which is an output side member screwed to the screw shaft member 18, acts on the screw parts 18a and 18b at both ends, and rotates the screw shaft member 18 together with the flywheel 28 and the weight 32 of the additional mass 20. Let

【0027】この場合にあっても、付加質量体20は2
つの建物10,12間の空間にて、ネジ軸部材18の軸
芯周りに鉛直面内で回転されるから、両建物10,12
が近接していて両建物10,12間の空間が狭くても、
それら回転作動される付加質量体20のフライホイール
28や錘32等を容易に当該空間に配置できる等、前記
実施形態と全く同様の作用効果が得られる。
Even in this case, the additional mass body 20 is 2
In the space between the two buildings 10 and 12, since they are rotated in the vertical plane around the axis of the screw shaft member 18, both buildings 10 and 12
Are close to each other and the space between both buildings 10 and 12 is narrow,
The flywheel 28, the weight 32, and the like of the additional mass body 20 that is rotationally operated can be easily arranged in the space, and the same operational effects as the above-described embodiment can be obtained.

【0028】なお、前記各実施形態の連結制振装置は、
並立する2つの第1,第2建物10,12間に設けて両
建物10,12を制振する場合を開示したが、これに限
ることなく図6に示すように2重構造形式の内,外建物
10A,12A間に連結制振装置を設けて、これら内,
外建物10A,12Aを制振する機能を発揮させること
ができる。
The linked vibration damping device of each of the above-mentioned embodiments is
Although the case where the two buildings 10 and 12 are provided between the two first and second buildings 10 and 12 which are juxtaposed to each other to suppress the vibration is disclosed, the present invention is not limited to this, and as shown in FIG. A connection damping device is installed between the outer buildings 10A and 12A,
The function of damping the outer buildings 10A and 12A can be exerted.

【0029】また、前記各実施形態では並立する2つの
第1,第2建物10(10A),12(12A)の屋上
部を連結制振装置で繋いで制振する場合を例示したが、
本発明はこれに限らず、例えば図7に示すように、連結
制振装置は高層建物10Bの中間階部分と低層建物12
Bの屋上部とを繋いで設けるようにしても良い。あるい
は、高層建物同士を中間階等の適宜な複数の階にて連結
制振装置で繋ぐようにしても良い。
Further, in each of the above-mentioned embodiments, the case where the roof tops of the two first and second buildings 10 (10A) and 12 (12A) standing side by side are connected by the connection damping device to suppress the vibration is exemplified.
The present invention is not limited to this, and for example, as shown in FIG. 7, the coupled vibration damping device includes an intermediate floor portion of a high-rise building 10B and a low-rise building 12B.
The rooftop of B may be connected and provided. Alternatively, high-rise buildings may be connected to each other by connecting vibration damping devices at appropriate floors such as an intermediate floor.

【0030】さらに、前記各実施形態では、ナット部材
16の軸受け部材22及びネジ軸部材18をそれぞれ建
物10,12に対して水平方向に回動自在に取り付けて
いるが、ナット部材16あるいはネジ軸部材18の少な
くともいずれか一方は、これを支持する建物に一体的に
固設し、他方をリニアベアリング等を用いて両建物に生
じる水平方向の相対変位のうち、ネジ軸部材に対して直
交する方向への相対移動を許容するようにして建物に支
持するようにしても良い。
Further, in each of the above embodiments, the bearing member 22 and the screw shaft member 18 of the nut member 16 are rotatably attached to the buildings 10 and 12 in the horizontal direction, respectively. At least one of the members 18 is integrally fixed to a building that supports the member 18, and the other is orthogonal to the screw shaft member in the horizontal relative displacement generated in both buildings by using a linear bearing or the like. The building may be supported by allowing relative movement in the directions.

【0031】[0031]

【発明の効果】以上説明したように本発明に係る回転慣
性力を利用した連結制振装置にあっては、地震や風等に
よって並立する2つの建物間、または2重構造形式の
内,外建物間に振動による相対変位が発生すると、この
相対変位をボールネジ機構によって、そのナット部材あ
るいはネジ軸部材を出力部材とした回転変位に変換して
取り出し、この出力部材をこれに一体的に取り付けた付
加質量体と共に回転させて回転慣性力を発生させ、この
回転慣性力を制振のための反力にして減衰力を得ること
ができる。
INDUSTRIAL APPLICABILITY As described above, in the coupled vibration damping device utilizing the rotational inertia force according to the present invention, between two buildings standing in parallel due to an earthquake or wind, or inside or outside of a double structure type. When a relative displacement due to vibration occurs between buildings, this relative displacement is converted by a ball screw mechanism into a rotational displacement using the nut member or screw shaft member as an output member, and this output member is integrally attached to this. A rotating inertial force is generated by rotating together with the additional mass body, and this rotating inertial force can be used as a reaction force for damping to obtain a damping force.

【0032】付加質量体は2つの建物間の空間内でネジ
軸部材の軸芯周りに鉛直面内で回転されるから、両建物
が近接していてそれらの間の空間が狭くても、回転作動
される付加質量体のフライホイールや錘を容易に当該空
間内に配置でき、建物内部や屋上部などにスペースを占
有せず、設置性に極めて優れる。
Since the additional mass body is rotated in the vertical plane around the axis of the screw shaft member in the space between the two buildings, even if the two buildings are close to each other and the space between them is narrow, the additional mass body rotates. The flywheel and weight of the added mass body to be operated can be easily arranged in the space, and the space is not occupied inside the building or the rooftop, and the installation is extremely excellent.

【0033】制振のための反力となす回転慣性力は、ボ
ールネジ機構のネジピッチ(増幅率)、並びに付加質量
体である錘の回転半径をそれぞれ適宜に設定すること
で、容易に所望の大きさにして得ることができ、しか
も、錘の回転半径の調整機構を備えれば、その設置後に
あっても随時その回転半径を調節して発生させる回転慣
性力の調整を行うことができ、制振装置としての減衰力
特性をより適したものに簡易に調整し得る。
The rotational inertia force, which is the reaction force for damping, is easily set to a desired value by appropriately setting the screw pitch (amplification factor) of the ball screw mechanism and the radius of gyration of the weight as the additional mass body. In addition, if a mechanism for adjusting the radius of gyration of the weight is provided, it is possible to adjust the radius of gyration and adjust the rotational inertia force at any time even after the installation of the weight. The damping force characteristic of the vibration device can be easily adjusted to a more suitable one.

【0034】更に、振動入力方向にダンパーを設けるこ
とにより、第1,第2建物の振動減衰をより促進するこ
とができる
Further, by providing a damper in the vibration input direction, vibration damping of the first and second buildings can be further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る回転慣性力を利用した連結制振装
置の概念図である。
FIG. 1 is a conceptual diagram of a coupled vibration damping device using a rotary inertia force according to the present invention.

【図2】本発明に係る回転慣性力を利用した連結制振装
置の具体的な一実施形態を示す側面図である。
FIG. 2 is a side view showing a specific embodiment of a coupled vibration damping device utilizing a rotary inertia force according to the present invention.

【図3】図2に示す実施形態の平面図である。FIG. 3 is a plan view of the embodiment shown in FIG.

【図4】図2中のIV-IV線部の矢視図である。FIG. 4 is a view taken along the line IV-IV in FIG.

【図5】本発明の連結制振装置の他の実施形態を示す平
面図である。
FIG. 5 is a plan view showing another embodiment of the coupled vibration damping device of the present invention.

【図6】本発明の連結制振装置が適用される建物構造の
他の実施形態を示す概略平面図である。
FIG. 6 is a schematic plan view showing another embodiment of a building structure to which the coupled vibration damping device of the present invention is applied.

【図7】本発明に係る連結制振装置を、高層建物と低層
建物との間に適用した場合の概念図である
FIG. 7 is a conceptual diagram when the coupled vibration damping device according to the present invention is applied between a high-rise building and a low-rise building.

【符号の説明】[Explanation of symbols]

10 第1建物 10A 内建物 10B 高層建物 12 第2建物 12A 外建物 12B 低層建物 14 ボールナット機構 16 ナット部材 18 ネジ軸部材 18a,18b ネジ部 20 付加質量体(回転質量体) 28 フライホイール 30 錘取り付け用ボルト 32 錘 38 回転半径調節機構 40 ダンパー 10 First Building 10A building 10B high-rise building 12 Second Building 12A outside building 12B low-rise building 14 Ball nut mechanism 16 Nut member 18 Screw shaft member 18a, 18b screw part 20 Additional mass body (rotating mass body) 28 flywheel 30 Weight mounting bolt 32 weights 38 Turning radius adjustment mechanism 40 damper

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F16H 25/24 F16H 25/24 A G Z ─────────────────────────────────────────────────── ───Continued from the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F16H 25/24 F16H 25/24 A G Z

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 並立する2つの建物間、または2重構造
形式の内,外建物間に配置され、両建物間の相対変位量
を出力側部材の回転量として取り出すボールネジ機構
と、該ボールネジ機構の出力側部材に一体化されて両建
物間に配置された回転質量体とを備え、該回転質量体の
回転慣性力により減衰力を得ることを特徴とする回転慣
性力を利用した連結制振装置。
1. A ball screw mechanism arranged between two buildings standing in parallel, or between an inner building and an outer building of a double structure type, for extracting a relative displacement amount between the two buildings as a rotation amount of an output side member, and the ball screw mechanism. And a rotating mass body that is integrated between the output side members of the rotating mass body and disposed between the two buildings, and a damping force is obtained by the rotating inertia force of the rotating mass body. apparatus.
【請求項2】 上記ボールネジ機構の出力側部材が一方
の建物に軸受け部材を介して回転自在に支持されたナッ
ト部材でなり、該ナット部材に螺合挿通される入力側の
ネジ軸部材はその基端部が他方の建物に軸周りの回転を
規制されて支持されていることを特徴とする請求項1記
載の回転慣性力を利用した連結制振装置。
2. The output side member of the ball screw mechanism is a nut member rotatably supported in one building via a bearing member, and the input side screw shaft member screwed into the nut member is The coupled vibration damping device using rotary inertia force according to claim 1, wherein the base end portion is supported by the other building while being restricted from rotating about its axis.
【請求項3】 上記ボールネジ機構の出力側部材がネジ
軸部材でなり、該ネジ軸部材の中間部に前記回転質量体
が一体化されて設けられ、該ネジ軸部材の両端部に相互
に逆ネジに形成されたネジ部が両建物に設けられたナッ
ト部材に螺合挿通されていることを特徴とする請求項1
記載の回転慣性力を利用した連結制振装置。
3. The output side member of the ball screw mechanism is a screw shaft member, the rotary mass body is integrally provided at an intermediate portion of the screw shaft member, and the opposite ends are opposite to each other. The screw portion formed on the screw is threadedly inserted into a nut member provided in both buildings.
A vibration damping device utilizing the described rotational inertial force.
【請求項4】 前記回転質量体が径方向に移動自在な付
加質量体と、該付加質量体を径方向の任意の位置に固定
調節可能な回転半径調節機構とを有することを特徴とす
る請求項1〜3のいずれかに記載の回転慣性力を利用し
た連結制振装置。
4. The rotating mass body includes an additional mass body that is movable in the radial direction and a turning radius adjusting mechanism that can adjust the additional mass body to an arbitrary radial position. Item 10. A linked vibration damping device utilizing the rotational inertial force according to any one of items 1 to 3.
【請求項5】 前記両建物間にダンパを設けたことを特
徴とする請求項1〜4のいずれかに記載の回転慣性力を
利用した連結制振装置。
5. The vibration damping device utilizing rotary inertia force according to claim 1, wherein a damper is provided between the two buildings.
JP2001245374A 2001-08-13 2001-08-13 Coupling damping device using rotary inertia force Expired - Fee Related JP4843881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245374A JP4843881B2 (en) 2001-08-13 2001-08-13 Coupling damping device using rotary inertia force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245374A JP4843881B2 (en) 2001-08-13 2001-08-13 Coupling damping device using rotary inertia force

Publications (2)

Publication Number Publication Date
JP2003056204A true JP2003056204A (en) 2003-02-26
JP4843881B2 JP4843881B2 (en) 2011-12-21

Family

ID=19075137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245374A Expired - Fee Related JP4843881B2 (en) 2001-08-13 2001-08-13 Coupling damping device using rotary inertia force

Country Status (1)

Country Link
JP (1) JP4843881B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800020A1 (en) * 2004-09-15 2007-06-27 TuTech Innovation GmbH Device for damping vibrations in a building
JP2010019347A (en) * 2008-07-10 2010-01-28 Shimizu Corp Inertial mass damper
JP2010107017A (en) * 2008-10-31 2010-05-13 Nsk Ltd Vibration control device and assembling structure thereof
JP2010203192A (en) * 2009-03-05 2010-09-16 Shimizu Corp Connected seismic control structure
JP2015081464A (en) * 2013-10-23 2015-04-27 清水建設株式会社 Vibration control structure
CN107345432A (en) * 2017-07-26 2017-11-14 哈尔滨工业大学 A kind of tuned mass damper and damping device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087592A (en) * 1998-09-14 2000-03-28 Kajima Corp Small-stroke vibration isolation device
JP2001020560A (en) * 1999-07-02 2001-01-23 Ohbayashi Corp Connected vibration control structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087592A (en) * 1998-09-14 2000-03-28 Kajima Corp Small-stroke vibration isolation device
JP2001020560A (en) * 1999-07-02 2001-01-23 Ohbayashi Corp Connected vibration control structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1800020A1 (en) * 2004-09-15 2007-06-27 TuTech Innovation GmbH Device for damping vibrations in a building
JP2010019347A (en) * 2008-07-10 2010-01-28 Shimizu Corp Inertial mass damper
JP2010107017A (en) * 2008-10-31 2010-05-13 Nsk Ltd Vibration control device and assembling structure thereof
JP2010203192A (en) * 2009-03-05 2010-09-16 Shimizu Corp Connected seismic control structure
JP2015081464A (en) * 2013-10-23 2015-04-27 清水建設株式会社 Vibration control structure
CN107345432A (en) * 2017-07-26 2017-11-14 哈尔滨工业大学 A kind of tuned mass damper and damping device
CN107345432B (en) * 2017-07-26 2023-03-17 哈尔滨工业大学 Tuned mass damper and damping device

Also Published As

Publication number Publication date
JP4843881B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4842503B2 (en) Friction damper for damping structure motion
WO2017073420A1 (en) Rotary inertia mass damper
CN103874812B (en) Passive damper
JP5079661B2 (en) Damping device and its built-in structure
JP5861883B2 (en) Rotating inertia mass damper and brace damper and brace frame
JP2011069104A (en) Seismic control device and seismic control structure
JP2003056204A (en) Coupling vibration control device utilizing rotational inertia force
JP5516934B2 (en) Vibration control mechanism
JP2012007451A (en) Vibration control device, steel tower and structure
JP5601825B2 (en) Damper and seismic isolation mechanism
JP2009174677A (en) Vibration damping mechanism
JP4843882B2 (en) Vibration control device using inertia force installed between building layers
JP4115078B2 (en) Seismic isolation device with damping mechanism
JP2011236632A (en) Seismic control structure
JP7170461B2 (en) Vibration control damper and vibration control device
JP5555393B2 (en) Seismic isolation mechanism
JP4745308B2 (en) Seismic isolation device with damping mechanism
JP2001074093A (en) Base isolation device
JP2009155801A (en) Vibration control structure
JPH04363478A (en) Vibration damping device for structure
CN112814191A (en) Inertial volume type multidirectional tuning energy-absorbing vibration-damping device
JP2000087592A (en) Small-stroke vibration isolation device
JP2000145879A (en) Damping device
JP2017214721A (en) Axial length variable device, vibration control device, and vibration control system
JP3954019B2 (en) Friction damper

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees