JP2009174677A - Vibration damping mechanism - Google Patents

Vibration damping mechanism Download PDF

Info

Publication number
JP2009174677A
JP2009174677A JP2008016212A JP2008016212A JP2009174677A JP 2009174677 A JP2009174677 A JP 2009174677A JP 2008016212 A JP2008016212 A JP 2008016212A JP 2008016212 A JP2008016212 A JP 2008016212A JP 2009174677 A JP2009174677 A JP 2009174677A
Authority
JP
Japan
Prior art keywords
plate material
vibration
damping mechanism
structures
mass damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008016212A
Other languages
Japanese (ja)
Other versions
JP5648821B2 (en
Inventor
Tetsuya Hanzawa
徹也 半澤
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2008016212A priority Critical patent/JP5648821B2/en
Publication of JP2009174677A publication Critical patent/JP2009174677A/en
Application granted granted Critical
Publication of JP5648821B2 publication Critical patent/JP5648821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective and proper damping mechanism that effectively dampens the vibration of various structures (floor and beam of a building for example) with a simple structure. <P>SOLUTION: This vibration damping mechanism A is provided between two structures (floors 1, 2) that are vibrated relatively in the directions of contacting or separating from each other and reduces the relative vibration in the direction of contacting or separating from each other that occurs to those structures, and is structured with a rotational inertia mass damper 3, which is connected to either one of the structures, and a plate material 4 as a spring element, which is connected in series to the mass damper and connected to the other structure. The center portion of the plate material is connected to the mass damper, and both end portions of the plate material to the other structure. The positions of the connection points of both end portions of the plate material are made variable, so that the rigidity of the plate material is adjusted by adjusting the distance between both connection points. As a damping element 14, a viscoelastic material is laminated integrally on the plate material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は各種構造物における振動を低減させるための制振機構、特にたとえば建物の床や梁等を制振対象としてその上下振動を低減させるために適用して好適な制振機構に関する。   The present invention relates to a vibration damping mechanism for reducing vibrations in various structures, and more particularly to a vibration damping mechanism suitably applied to reduce the vertical vibration of a building floor or beam as a vibration control target.

建物の床や梁では剛性の不足や外乱振動との共振によって居住者が不快感を感じる上下振動が生じる場合があるので、それに対する対策としてたとえば特許文献1に示されるようなTMD(チューンド・マス・ダンパー:動吸振器)を梁や床に対して設置することが提案されている。これは梁や床の振動に対して同調して振動する錘(付加質量)を設置することにより、その錘を大きく振動させることによって梁や床の上下方向の振動の低減を図るものである。
また、床や梁の上下振動対策を目的とするものではないが、特許文献2には免震対象物の水平振動を歯車列からなる伝達機構を介して回転質量体(回転錘)の回転運動に変換し、それにより生じる回転慣性質量を利用してTMDとして機能する免震装置についての開示がある。
特開平10−252253号公報 特開2007−10110号公報
The floors and beams of buildings may cause vertical vibrations that make the residents feel uncomfortable due to lack of rigidity or resonance with disturbance vibrations. For example, TMD (tuned mass It has been proposed to install dampers (dynamic dampers) on beams and floors. By installing a weight (additional mass) that vibrates in synchronism with the vibration of the beam or the floor, the vibration of the beam or the floor is reduced by greatly vibrating the weight.
Although not intended to prevent floor and beam vertical vibration, Patent Document 2 discloses that horizontal vibration of a seismic isolation object is applied to rotational motion of a rotating mass body (rotating weight) via a transmission mechanism composed of a gear train. There is a disclosure of a seismic isolation device that functions as a TMD utilizing the rotational inertial mass that results from the conversion.
JP-A-10-252253 JP 2007-10110 A

特許文献1に示されるような一般的なTMDは効果的に振動低減効果を得るために必要な錘の質量は1ton以上にもなることが通常であり、そのような大質量の錘を付加することは床や梁に対して大きな負担がかかるので好ましくない。また、大質量の錘を設置することはスペース確保の点でも困難な場合が多いことから複数の小質量の錘を分散配置することが一般的であり、したがって施工性や経済性の点でも問題がある。
また、特許文献2に示されるような回転慣性質量を利用する免震装置を上下制振装置として適用することも考えられ、その場合には回転質量体の所要質量は軽減できるが、従来のこの種の免震装置は複雑な歯車列による伝達機構を備えるものであるので装置全体が複雑に過ぎ、必然的に高価なものにならざるを得ず、広く普及するに至っていない。
In general TMD as disclosed in Patent Document 1, the mass of a weight necessary for effectively obtaining a vibration reduction effect is usually 1 ton or more, and such a mass with such a large mass is added. This is not preferable because it places a heavy burden on the floor and beams. In addition, since it is often difficult to install large mass weights in terms of securing space, it is common to disperse a plurality of small mass weights. Therefore, there are also problems in terms of workability and economy. There is.
In addition, it is conceivable to apply a seismic isolation device using rotational inertial mass as shown in Patent Document 2 as a vertical vibration damping device, in which case the required mass of the rotating mass body can be reduced, but this conventional Since a seismic isolation device of a kind is provided with a transmission mechanism using a complicated gear train, the entire device is too complicated and inevitably has to be expensive, and has not been widely spread.

上記事情に鑑み、本発明は各種構造物における振動を低減させるための制振機構、特に建物の床や梁の上下振動を簡単な機構で効果的に低減させることができる有効適切な制振機構を提供することを目的としている。   In view of the above circumstances, the present invention provides a vibration damping mechanism for reducing vibrations in various structures, in particular, an effective and appropriate vibration damping mechanism that can effectively reduce vertical vibrations of building floors and beams with a simple mechanism. It is intended to provide.

本発明は互いに離接する方向に相対振動する2つの構造体間に介装されて、それら構造体間に生じる離接方向の相対振動を低減させるための制振機構であって、前記2つの構造体のうちのいずれか一方の構造体に対して接続されて前記相対振動により作動する回転慣性質量ダンパーと、該回転慣性質量ダンパーに対して直列に接続されて前記2つの構造体のうちのいずれか他方の構造体に対して接続されているばね要素とにより構成され、前記ばね要素は板材により構成されてその中央部が前記回転慣性質量ダンパーに対して接続されているとともに、該板材の両端部が前記他方の構造体に対して接続されてなることを特徴とする。
本発明においては、前記他方の構造体に対する前記板材の両端部の接続点の位置を可変としておいて、両接続点間の距離の調整により該板材の剛性を可変とすることが好適である。また、前記板材に減衰要素としての粘弾性体を一体に積層することが好適である。
The present invention is a vibration damping mechanism that is interposed between two structures that vibrate relative to each other in a direction to be separated from each other, and that reduces relative vibration in the direction of separation that occurs between the structures. A rotary inertia mass damper connected to any one of the structures and operating by the relative vibration, and any of the two structures connected in series to the rotary inertia mass damper A spring element connected to the other structure, and the spring element is made of a plate material, the central part of which is connected to the rotary inertia mass damper, and both ends of the plate material The portion is connected to the other structure.
In the present invention, it is preferable that the position of the connection point at both ends of the plate member with respect to the other structure is variable, and the rigidity of the plate member is variable by adjusting the distance between the two connection points. In addition, it is preferable to integrally laminate a viscoelastic body as a damping element on the plate material.

本発明の制振機構は、回転慣性質量ダンパーとばね要素としての板材からなる付加振動系がTMDとして機能することにより優れた制振効果が得られることはもとより、小形軽量の回転慣性質量ダンパーと単なる板材とを単に直列に接続しただけの簡単な構成であって複雑高度な機構を必要とせず、したがって充分に安価に製作できるものであるし、制御対象の構造体に対してさしたる設置スペースも必要とせずに簡単安価に設置でき、特に建物の床や梁を対象としてその上下振動を低減するための機構として好適である。
特に、構造体に対する板材の両端部の接続点間の距離を調節する構成とすることにより、板材の剛性を容易に調整可能であってTMDとして機能させるための同調を容易にかつ高精度で行うことができる。
また、ばね要素としての板材に粘弾性体を一体に積層することにより、その板材に自ずと振動減衰性能を持たせることができる。
The vibration damping mechanism of the present invention has a small and lightweight rotary inertia mass damper as well as an excellent vibration damping effect obtained by the function of the additional vibration system composed of a rotary inertia mass damper and a plate material as a spring element as TMD. It is a simple configuration in which simple plate materials are simply connected in series and does not require complicated and sophisticated mechanisms. Therefore, it can be manufactured at a sufficiently low cost, and the installation space for the structure to be controlled is also large. It can be installed easily and inexpensively without necessity, and is particularly suitable as a mechanism for reducing vertical vibrations of building floors and beams.
In particular, by adopting a configuration that adjusts the distance between the connection points at both ends of the plate material with respect to the structure, the rigidity of the plate material can be easily adjusted and the tuning for functioning as a TMD can be performed easily and with high accuracy. be able to.
Further, by laminating a viscoelastic body integrally with a plate material as a spring element, the plate material can naturally have vibration damping performance.

本発明の一実施形態を図1〜図3を参照して説明する。本実施形態は建物の床を制振対象としてその上下振動を低減させるためのもので、図1において符号1は制振対象としての上階の床、2はその下階の床(あるいは梁ないし基礎)であり、本実施形態の制振機構Aはそれら上下の床1,2の間にTMD(チューンド・マス・ダンパー:動吸振器)として機能するように設置されるものである。   An embodiment of the present invention will be described with reference to FIGS. This embodiment is for reducing the vertical vibration of a building floor as a vibration control target. In FIG. 1, reference numeral 1 denotes a floor on the upper floor as a vibration control target, and 2 denotes a floor on the lower floor (or a beam or beam). The vibration damping mechanism A of this embodiment is installed between the upper and lower floors 1 and 2 so as to function as a TMD (tuned mass damper: dynamic vibration absorber).

本実施形態の制振機構Aは、ボールねじ機構を利用した公知の回転慣性質量ダンパー3と、それに直列に接続されたばね要素としての板材4から構成されているものであり、図示例の場合には回転慣性質量ダンパー3をパイプ材等からなるサポート5を介して下階の床2の上面に対して接続し、板材4を溝形鋼等からなるスペーサ6を介して上階の床1の下面に対して接続されて設置されている。   The vibration damping mechanism A of the present embodiment is composed of a known rotary inertia mass damper 3 using a ball screw mechanism and a plate member 4 as a spring element connected in series thereto, in the case of the illustrated example. The rotary inertia mass damper 3 is connected to the upper surface of the lower floor 2 via a support 5 made of pipe material or the like, and the plate 4 is connected to the upper floor 1 via a spacer 6 made of channel steel or the like. Connected to the bottom surface.

本実施形態における回転慣性質量ダンパー3は、一端(図示例では下端)が受具7により回転自在に支持されたボールねじ8と、ボールねじ8に螺着されたボールナット9と、ボールねじ8の他端(図示例では上端)に固定されたフライホイール10とにより構成されていて、ボールナット9がボールねじ8に対して上下動するとボールねじ8が回転(自転)せしめられてそれに固定されているフライホイール10がボールねじ8とともに回転し、それにより生じる回転慣性質量を制振力として利用する構成のものである。   The rotary inertia mass damper 3 according to the present embodiment has a ball screw 8 whose one end (lower end in the illustrated example) is rotatably supported by a receiver 7, a ball nut 9 screwed to the ball screw 8, and a ball screw 8. The flywheel 10 is fixed to the other end (upper end in the illustrated example). When the ball nut 9 moves up and down with respect to the ball screw 8, the ball screw 8 is rotated (rotated) and fixed thereto. The flywheel 10 is rotated together with the ball screw 8, and the rotational inertial mass generated thereby is used as a damping force.

本実施形態における板材4は、所定の剛性を有する鋼板等を板ばねとして機能させるもので、その中央部がボールナット9と治具プレート11との間に挟持される形態でボールナット9に対して(つまり回転慣性質量ダンパー3に対して)ボルト締結により接続され、板材4の両端部が上下の厚板12により挟持された形態で上記のスペーサ6の下部に接続されている。
なお、本実施形態におけるスペーサ6としては高剛性の溝形鋼が使用されていて、その要所には補強リブ13が溶接されており、その溝形鋼の上部フランジが上階の床1に対してアンカーにより固定され、下部フランジに上記の厚板12を介して板材4の両端部がボルト締結により接続されている。
The plate material 4 in the present embodiment functions a steel plate or the like having a predetermined rigidity as a plate spring, and a central portion thereof is sandwiched between the ball nut 9 and the jig plate 11 with respect to the ball nut 9. (That is, to the rotary inertia mass damper 3) by bolt fastening, and both ends of the plate member 4 are connected to the lower portion of the spacer 6 in a form sandwiched by the upper and lower thick plates 12.
In addition, highly rigid channel steel is used as the spacer 6 in this embodiment, the reinforcement rib 13 is welded to the important point, The upper flange of the channel steel is on the floor 1 of the upper floor. On the other hand, it is fixed by an anchor, and both end portions of the plate member 4 are connected to the lower flange via the thick plate 12 by bolt fastening.

上記構成の制振機構Aでは、上下の床1,2の間で上下方向の相対振動が生じた際には、その相対振動が板材4を介して回転慣性質量ダンパー3に伝達されて回転慣性質量ダンパー3が作動する。すなわち、上階の床1に対してスペーサ6を介して接続されている板材4が下階の床2に対して相対的に上下動し、それにより板材4に接続されているボールナット9がボールねじ8に対して相対的に上下動し、ボールねじ8が回転(自転)せしめられてフライホイール10が回転して大きな回転慣性質量が生じる。
したがって、この制振機構Aを構成している回転慣性質量ダンパー3と板材4とによる付加振動系の固有振動数を床1の固有振動数(あるいは制御対象振動数)に同調させることにより、この制振機構AがTMDとして機能し、しかもフライホイール10により生じる回転慣性質量はフライホイール10の実際の質量に対して格段に大きなものとなるから、フライホイール10が小形軽量のものであっても、大質量の錘による通常のTMDと同等ないしそれ以上の制振効果が得られる。
In the vibration damping mechanism A configured as described above, when a relative vibration in the vertical direction occurs between the upper and lower floors 1 and 2, the relative vibration is transmitted to the rotary inertia mass damper 3 via the plate member 4 to rotate the rotary inertia. The mass damper 3 is activated. That is, the plate member 4 connected to the upper floor 1 via the spacer 6 moves up and down relatively with respect to the lower floor 2 so that the ball nut 9 connected to the plate 4 is moved. The ball screw 8 moves up and down relatively with respect to the ball screw 8, and the ball screw 8 is rotated (spinned), so that the flywheel 10 rotates to generate a large rotational inertial mass.
Therefore, by synchronizing the natural frequency of the additional vibration system composed of the rotary inertia mass damper 3 and the plate material 4 constituting the vibration damping mechanism A with the natural frequency (or the control target frequency) of the floor 1, Since the damping mechanism A functions as a TMD and the rotational inertial mass generated by the flywheel 10 is much larger than the actual mass of the flywheel 10, even if the flywheel 10 is small and lightweight, A damping effect equivalent to or higher than that of ordinary TMD with a large mass weight can be obtained.

図2は本実施形態の制振機構の理論モデルを示すものであり、このモデルに基づき各諸元を以下のように設定した場合の制振効果についての解析結果を図3に示す。
制御対象の上階の床1の有効質量M=50t、上下の床1,2から構成される構造体の剛性K=50tf/cm、その1次固有振動数5Hz(1次固有角振動数ω=31.4rad/sec)とする。なお、ω =K/Mである。
フライホイール10としてPL36-97φを使用してその質量を2kgとした場合、回転慣性はIr=25.3kgcm2、ボールねじ8のリードをL=1cmとすると上下方向の見かけの慣性質量はm=25.3×4π2=1tとなり、したがって質量比はm/M=0.02である。
制振機構Aにおける板材4の剛性k=1tf/cm、したがって剛性比k/K=0.02とする。減衰要素14としてのダッシュポットの減衰係数c=5.8kgf/kineとし、ダンパー減衰h=c/(2mω)=0.09とする。
この場合、図3に示す解析結果から、制振機構Aのない場合には1次固有角振動数ωにおける応答倍率は50倍にもなっているのに対し、上記の制振機構Aの設置により応答倍率を10倍以下にまで激減(低減率84%)させることができる。
FIG. 2 shows a theoretical model of the vibration damping mechanism of the present embodiment, and FIG. 3 shows an analysis result of the vibration damping effect when each specification is set as follows based on this model.
The effective mass M of the upper floor 1 to be controlled is 50t, the stiffness K of the structure composed of the upper and lower floors 1 and 2 is 50tf / cm, its primary natural frequency 5Hz (primary natural angular frequency ω 0 = 31.4 rad / sec). Note that ω 0 2 = K / M.
When PL36-97φ is used as the flywheel 10 and its mass is set to 2 kg, when the rotational inertia is Ir = 25.3 kgcm 2 and the lead of the ball screw 8 is L = 1 cm, the apparent inertia mass in the vertical direction is m = 25.3. × 4π 2 = 1t, so the mass ratio is m / M = 0.02.
The rigidity k of the plate member 4 in the damping mechanism A is 1 tf / cm, and therefore the rigidity ratio k / K = 0.02. The damping coefficient of the dashpot as the damping element 14 is set to c = 5.8 kgf / kine, and the damper damping h = c / (2 mω 0 ) = 0.09.
In this case, the analysis result shown in FIG. 3 indicates that the response magnification at the primary natural angular frequency ω 0 is 50 times in the absence of the vibration damping mechanism A, whereas the vibration damping mechanism A By installing, the response magnification can be drastically reduced to 10 times or less (reduction rate 84%).

以上のように、本実施形態の制振機構はわずか2kg程度のフライホイール10を備えた小形軽量の回転慣性質量ダンパー3と単なる板材4とにより構成される極めて簡単な構成でありながら優れた制振効果が得られることはもとより、特許文献2に示されるような複雑な伝達機構を用いるものではないので充分に安価に製作できるものであるし、上下の床1,2に対して単なるパイプ材等からなるサポート5と単なる溝形鋼等からなるスペーサ6を介して設置するだけで良いからこれを設置するための作業も何ら面倒なく簡単に行うことができるし、さしたる設置スペースも必要としない。   As described above, the vibration damping mechanism according to the present embodiment has an extremely simple structure including the small and light rotary inertia mass damper 3 having the flywheel 10 of only about 2 kg and the simple plate material 4, but has excellent damping performance. Since it does not use a complicated transmission mechanism as shown in Patent Document 2 as well as being able to obtain a vibration effect, it can be manufactured at a sufficiently low cost, and is simply a pipe material for the upper and lower floors 1 and 2. Since it is only necessary to install the support 5 made of the like and the spacer 6 made of simple grooved steel etc., the work for installing it can be easily performed without any trouble, and no installation space is required. .

なお、本実施形態の制振機構AをTMDとして機能させるためにはその固有振動数を床1の固有振動数(あるいは制御対象振動数)に同調させる必要があり、そのためには板材4の素材や厚みを調整してその剛性kを適正に設定する必要があるが、板材4の剛性kの設定は床1に対する接続点の位置を変更することのみでも可能である。
すなわち、上記実施形態のように板材4をスペーサ6を介して床1に対して接続する場合、スペーサ6の下部に対する板材4の両端部の接続点を厚板12により挟持して両接続点間の距離を明確に規定しておき、そのうえで両側の厚板12を互いに離接する方向(板材4の長さ方向)に移動させて両接続点間の距離を調整することによっても板材の剛性kを調整することができる(当然に両接続点の距離を大きくするほど剛性kは小さくなり、両接続点の距離を小さくするほど剛性kは大きくなる)。
したがって、板材4の素材や板厚をそのつど厳密に設定するという面倒な調整が不要であり、単にスペーサ6に対する板材4の接続点の位置を調整するという極めて単純かつ簡単な操作のみでその剛性kを最適に設定することができ、したがってTMDとしての同調作業を容易にかつ高精度で行うことができるし、必要に応じてその変更や再設定も容易に行い得る。
In order for the vibration damping mechanism A of the present embodiment to function as TMD, it is necessary to synchronize its natural frequency with the natural frequency (or frequency to be controlled) of the floor 1, and for this purpose, the material of the plate material 4 The rigidity k needs to be set appropriately by adjusting the thickness, but the rigidity k of the plate member 4 can be set only by changing the position of the connection point with respect to the floor 1.
That is, when the plate member 4 is connected to the floor 1 via the spacer 6 as in the above embodiment, the connection points at both ends of the plate member 4 with respect to the lower portion of the spacer 6 are sandwiched by the thick plate 12 and between the two connection points. The thickness k of the plate is also adjusted by moving the thick plates 12 on both sides in the direction of separating and contacting each other (the length direction of the plate 4) and adjusting the distance between the two connection points. (Naturally, the rigidity k decreases as the distance between the two connection points increases, and the rigidity k increases as the distance between the two connection points decreases).
Therefore, the troublesome adjustment of setting the material and the plate thickness of the plate material 4 each time is not necessary, and the rigidity thereof is obtained only by an extremely simple and simple operation of simply adjusting the position of the connection point of the plate material 4 with respect to the spacer 6. k can be set optimally, and therefore, the tuning operation as TMD can be easily performed with high accuracy, and can be easily changed or reset as required.

また、板材4に対して適宜の減衰要素14(図2におけるダッシュポットに相当)を一体に組み込むことにより板材4自体の振動を効果的に減衰させることができる。その場合の構成例としては、図1に示しているように板材4に対して減衰要素14としての粘弾性体を一体に積層してそれを板材4と取り付けプレート15との間に挟み込んでおくことが考えられる。これによれば、板材4の上下振動が粘弾性体の粘弾性変形により効果的に減衰せしめられるし、減衰要素を設置するための格別のスペースを確保する必要もない。
なお、板材4の素材として制振鋼板を利用することによっても、板材4それ自体に減衰機能を持たせて同様の振動減衰効果が得られる。
Further, by incorporating an appropriate damping element 14 (corresponding to the dashpot in FIG. 2) into the plate member 4, vibration of the plate member 4 itself can be effectively damped. As a configuration example in that case, as shown in FIG. 1, a viscoelastic body as a damping element 14 is integrally laminated on the plate member 4 and is sandwiched between the plate member 4 and the mounting plate 15. It is possible. According to this, the vertical vibration of the plate member 4 is effectively damped by the viscoelastic deformation of the viscoelastic body, and it is not necessary to secure a special space for installing the damping element.
In addition, also by using a damping steel plate as a raw material of the plate member 4, the plate member 4 itself has a damping function, and the same vibration damping effect can be obtained.

以上、本発明の一実施形態について説明したが、上記実施形態はあくまで好適な一例に過ぎず、本発明は上記実施形態に限定されるものではない。
たとえば、上記実施形態では回転慣性質量ダンパー3を下階の床2に対して接続し、板材4を上階の床1に対して接続したが、全体の天地を逆にして、回転慣性質量ダンパー3を上階の床1に対して接続し、板材4を下階の床に対して接続しても同様である。
また、本発明は上記実施形態のように建物の床や梁等を対象としてその上下振動を低減させる目的で設置することが最適ではあるが、それに限定されるものでもなく、様々な構造物や構造体の様々な方向の振動を低減させる目的で広く適用可能である。たとえば、上記実施形態の制振機構をそのまま横向きにして両側の壁体間に設置すればそれら壁体の水平方向の相対振動を低減させることが可能である。また、本発明の制振機構を免震装置として適用して、上部構造体の全体を水平方向や上下方向の地震動に対して免震支持することも可能である。
As mentioned above, although one Embodiment of this invention was described, the said embodiment is only a suitable example to the last, and this invention is not limited to the said embodiment.
For example, in the above-described embodiment, the rotary inertia mass damper 3 is connected to the lower floor 2 and the plate member 4 is connected to the upper floor 1. The same applies when 3 is connected to the upper floor 1 and the plate 4 is connected to the lower floor.
In addition, the present invention is optimally installed for the purpose of reducing the vertical vibration of a building floor or beam as in the above embodiment, but is not limited thereto, and various structures and structures are not limited thereto. It can be widely applied for the purpose of reducing vibrations in various directions of the body. For example, if the vibration damping mechanism of the above embodiment is placed sideways as it is and installed between the walls on both sides, it is possible to reduce the horizontal relative vibrations of these walls. It is also possible to apply the vibration damping mechanism of the present invention as a seismic isolation device, and to support the entire upper structure against seismic motion in horizontal and vertical directions.

また、本発明の制振機構は回転慣性質量ダンパー3と板材4とを直列に接続してTMDとして機能するように設置すれば良いのであって、その限りにおいて各部の具体的な構成は様々に変更可能である。
たとえば回転慣性質量ダンパー3としては上記実施形態のようにボールねじ機構によるものが好適ではあるもののそれに限定されるものではなく、所望の回転慣性質量効果が得られるものであれば適宜の形式のものを任意に採用可能である。また、上記実施形態のように回転慣性質量ダンパー3をサポート5を介して設置することに限らず、たとえばサポート3を省略して回転慣性質量ダンパー3を構造体に対して直接接続することも考えられる。
板材4についても、制振機構A全体をTMDとして機能させるために所望の剛性を有する板ばねとして機能するものであれば良く、その限りにおいて板材4の形状や素材は任意であるし、板材4の中央部と両端部とをそれぞれ回転慣性質量ダンパー3と構造体に対して接続する構成とする限りにおいてそのための細部の具体的な構成は様々に変更可能であることは言うまでもない。たとえば上記実施形態では板材4の両端部をスペーサ6としての溝形鋼を介して構造体に対して接続したが、スペーサ6としての部材やその形態は所望の剛性を有するものであれば溝形鋼に限らず任意であるし、場合によってはスペーサ6も省略して板材4自体を構造体に対して直接接続するような形状とすることも考えられる。また、板材4の剛性を可変とするために様々な機構を付加することも考えられる。
Further, the vibration damping mechanism of the present invention may be installed so that the rotary inertia mass damper 3 and the plate material 4 are connected in series so as to function as a TMD. It can be changed.
For example, the rotary inertia mass damper 3 is preferably a ball screw mechanism as in the above embodiment, but is not limited thereto, and may be of an appropriate type as long as a desired rotary inertia mass effect can be obtained. Can be arbitrarily adopted. Further, the rotary inertia mass damper 3 is not limited to being installed via the support 5 as in the above-described embodiment. For example, the support 3 may be omitted and the rotary inertia mass damper 3 may be directly connected to the structure. It is done.
The plate material 4 may also be any material that functions as a leaf spring having a desired rigidity in order to cause the entire damping mechanism A to function as TMD. The shape and material of the plate material 4 are arbitrary as long as the plate material 4 is used. Needless to say, the specific configuration of the details thereof can be variously changed as long as the central portion and the both end portions thereof are connected to the rotary inertia mass damper 3 and the structure, respectively. For example, in the above-described embodiment, both ends of the plate member 4 are connected to the structure through the grooved steel as the spacer 6, but the member as the spacer 6 and the shape thereof are grooved as long as they have a desired rigidity. It is not limited to steel, and it is optional. In some cases, the spacer 6 may be omitted and the plate 4 itself may be directly connected to the structure. It is also conceivable to add various mechanisms to make the rigidity of the plate member 4 variable.

本発明の実施形態である制振機構の概略構成図である。It is a schematic block diagram of the damping mechanism which is embodiment of this invention. 同、原理モデルである。This is the principle model. 同、制振効果についての解析結果を示す図である。It is a figure which shows the analysis result about a damping effect similarly.

符号の説明Explanation of symbols

A 制振機構
1,2 床(構造体)
3 回転慣性質量ダンパー
4 板材(ばね要素)
5 サポート
6 スペーサ
7 受具
8 ボールねじ
9 ボールナット
10 フライホイール
11 治具プレート
12 厚板
13 補強リブ
14 減衰要素
15 取付プレート
A Damping mechanism 1, 2 Floor (structure)
3 Rotating inertia mass damper 4 Plate material (spring element)
5 Support 6 Spacer 7 Receiving Tool 8 Ball Screw 9 Ball Nut 10 Flywheel 11 Jig Plate 12 Thick Plate 13 Reinforcement Rib 14 Attenuation Element 15 Mounting Plate

Claims (3)

互いに離接する方向に相対振動する2つの構造体間に介装されて、それら構造体間に生じる離接方向の相対振動を低減させるための制振機構であって、
前記2つの構造体のうちのいずれか一方の構造体に対して接続されて前記相対振動により作動する回転慣性質量ダンパーと、該回転慣性質量ダンパーに対して直列に接続されて前記2つの構造体のうちのいずれか他方の構造体に対して接続されているばね要素とにより構成され、
前記ばね要素は板材により構成されてその中央部が前記回転慣性質量ダンパーに対して接続されているとともに、該板材の両端部が前記他方の構造体に対して接続されてなることを特徴とする制振機構。
A vibration damping mechanism that is interposed between two structures that vibrate relative to each other in a direction to be separated from each other, and that reduces relative vibration in the direction of separation between the structures,
A rotary inertia mass damper connected to one of the two structures and operated by the relative vibration, and the two structures connected in series to the rotary inertia mass damper A spring element connected to one of the other structures,
The spring element is made of a plate material, and a central portion thereof is connected to the rotary inertia mass damper, and both end portions of the plate material are connected to the other structure. Damping mechanism.
請求項1記載の制振機構であって、
前記他方の構造体に対する前記板材の両端部の接続点の位置が可変とされていて、両接続点間の距離の調整により該板材の剛性が可変とされてなることを特徴とする制振機構。
The vibration damping mechanism according to claim 1,
The position of the connection point at both ends of the plate member with respect to the other structure is variable, and the rigidity of the plate member is variable by adjusting the distance between the two connection points. .
請求項1または2記載の制振機構であって、
前記板材に減衰要素としての粘弾性体が一体に積層されてなることを特徴とする制振機構。
The vibration damping mechanism according to claim 1 or 2,
A vibration damping mechanism, wherein a viscoelastic body as a damping element is integrally laminated on the plate material.
JP2008016212A 2008-01-28 2008-01-28 Vibration control mechanism Active JP5648821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016212A JP5648821B2 (en) 2008-01-28 2008-01-28 Vibration control mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016212A JP5648821B2 (en) 2008-01-28 2008-01-28 Vibration control mechanism

Publications (2)

Publication Number Publication Date
JP2009174677A true JP2009174677A (en) 2009-08-06
JP5648821B2 JP5648821B2 (en) 2015-01-07

Family

ID=41029968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016212A Active JP5648821B2 (en) 2008-01-28 2008-01-28 Vibration control mechanism

Country Status (1)

Country Link
JP (1) JP5648821B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122345A (en) * 2009-12-10 2011-06-23 Shimizu Corp Floor damping system
JP2011236968A (en) * 2010-05-10 2011-11-24 Shimizu Corp Seismic isolation structure
JP2012036612A (en) * 2010-08-05 2012-02-23 Shimizu Corp Three-dimensional base isolation system
JP2013170615A (en) * 2012-02-20 2013-09-02 Shimizu Corp Vibration reducing structure
JP2014101678A (en) * 2012-11-20 2014-06-05 Shimizu Corp Vertical vibration control structure
CN105002996A (en) * 2015-07-10 2015-10-28 同济大学 Serially connected viscosity mass damping device
CN114232829A (en) * 2021-11-26 2022-03-25 沈阳建筑大学 TMD control system based on rotational inertia virtual translation inertial mass

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392850A (en) * 1986-10-03 1988-04-23 Ishikawajima Harima Heavy Ind Co Ltd Vibration isolator
JPH05196090A (en) * 1992-01-20 1993-08-06 Ohbayashi Corp Damping device
JPH06307120A (en) * 1993-04-23 1994-11-01 Sekisui Chem Co Ltd Dynamic vibration absorber for building
JPH0842632A (en) * 1994-07-27 1996-02-16 Bridgestone Corp Base isolation structural body
JPH09177875A (en) * 1995-12-27 1997-07-11 Atsushi Okumura Vibration shut-off connection mechanism
JP2000120766A (en) * 1998-10-13 2000-04-25 Canon Inc Hybrid active vibration isolation device
JP2001336570A (en) * 2000-05-31 2001-12-07 Thk Co Ltd Damping device
JP2003120748A (en) * 2001-08-03 2003-04-23 Tokkyokiki Corp Vibration control unit and vibration control body
JP2004028125A (en) * 2002-06-21 2004-01-29 Tokai Rubber Ind Ltd Dynamic damper
JP2004044748A (en) * 2002-07-15 2004-02-12 Mitsubishi Heavy Ind Ltd Vertical base-isolating device
JP2007032633A (en) * 2005-07-25 2007-02-08 Mitsubishi Heavy Ind Ltd Vibration isolation device, and vibration isolation frame and vibration isolation carriage provided therewith

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392850A (en) * 1986-10-03 1988-04-23 Ishikawajima Harima Heavy Ind Co Ltd Vibration isolator
JPH05196090A (en) * 1992-01-20 1993-08-06 Ohbayashi Corp Damping device
JPH06307120A (en) * 1993-04-23 1994-11-01 Sekisui Chem Co Ltd Dynamic vibration absorber for building
JPH0842632A (en) * 1994-07-27 1996-02-16 Bridgestone Corp Base isolation structural body
JPH09177875A (en) * 1995-12-27 1997-07-11 Atsushi Okumura Vibration shut-off connection mechanism
JP2000120766A (en) * 1998-10-13 2000-04-25 Canon Inc Hybrid active vibration isolation device
JP2001336570A (en) * 2000-05-31 2001-12-07 Thk Co Ltd Damping device
JP2003120748A (en) * 2001-08-03 2003-04-23 Tokkyokiki Corp Vibration control unit and vibration control body
JP2004028125A (en) * 2002-06-21 2004-01-29 Tokai Rubber Ind Ltd Dynamic damper
JP2004044748A (en) * 2002-07-15 2004-02-12 Mitsubishi Heavy Ind Ltd Vertical base-isolating device
JP2007032633A (en) * 2005-07-25 2007-02-08 Mitsubishi Heavy Ind Ltd Vibration isolation device, and vibration isolation frame and vibration isolation carriage provided therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122345A (en) * 2009-12-10 2011-06-23 Shimizu Corp Floor damping system
JP2011236968A (en) * 2010-05-10 2011-11-24 Shimizu Corp Seismic isolation structure
JP2012036612A (en) * 2010-08-05 2012-02-23 Shimizu Corp Three-dimensional base isolation system
JP2013170615A (en) * 2012-02-20 2013-09-02 Shimizu Corp Vibration reducing structure
JP2014101678A (en) * 2012-11-20 2014-06-05 Shimizu Corp Vertical vibration control structure
CN105002996A (en) * 2015-07-10 2015-10-28 同济大学 Serially connected viscosity mass damping device
CN105002996B (en) * 2015-07-10 2017-05-24 同济大学 Serially connected viscosity mass damping device
CN114232829A (en) * 2021-11-26 2022-03-25 沈阳建筑大学 TMD control system based on rotational inertia virtual translation inertial mass

Also Published As

Publication number Publication date
JP5648821B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648821B2 (en) Vibration control mechanism
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
JP2008115552A (en) Vibration-reducing mechanism, and method for setting its specifications
JP2008101769A (en) Vibration reducing mechanism and its specification setting method
JP5189213B1 (en) Vibration control device
JP5516934B2 (en) Vibration control mechanism
JP5725331B2 (en) Beam vibration reduction mechanism
JP4741877B2 (en) Building outer wall mounting structure
JP6694672B2 (en) Vibration control device and building equipped with the same
JP2009007916A (en) Vibration damping structure and its specification setting method
JP2008163727A (en) Vibration reducing mechanism and method for setting specifications thereof
JP5146770B2 (en) Damping structure and its specification method
JP2013177744A (en) Seismically isolated structure
JP4761347B2 (en) Building vibration control system.
JP2009155801A (en) Vibration control structure
JP6726381B2 (en) Installation structure of rotary mass damper
KR102142154B1 (en) Vibration absorbing device
JP3835145B2 (en) Vibration control device
JP6456774B2 (en) Vibration control structure
JP2010255324A (en) Vibration control structure for building
JP2016151278A (en) Vibration control device
JP4239903B2 (en) Vibration reduction device for building structures
JPH10252253A (en) Floor vibration control system
JP6098866B2 (en) Vertical vibration control structure
JP2689652B2 (en) Damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5648821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150