JP2001074093A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JP2001074093A
JP2001074093A JP25211199A JP25211199A JP2001074093A JP 2001074093 A JP2001074093 A JP 2001074093A JP 25211199 A JP25211199 A JP 25211199A JP 25211199 A JP25211199 A JP 25211199A JP 2001074093 A JP2001074093 A JP 2001074093A
Authority
JP
Japan
Prior art keywords
gal
seismic isolation
isolation device
acceleration
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25211199A
Other languages
Japanese (ja)
Inventor
Ikuko Sashita
郁子 指田
Masahide Seki
雅英 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP25211199A priority Critical patent/JP2001074093A/en
Publication of JP2001074093A publication Critical patent/JP2001074093A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid oscillation of a structure due to strong wind and to effectively perform a base isolation function when an earthquake occurs. SOLUTION: A rolling support body 4 to absorb vibrational energy by relatively displacing by the vibrational energy generated in the horizontal direction is furnished between a building 2 and a ground 3, and this rolling support body is constituted of a support member 6 fixed on the building and to support it by projecting a ball bearing 5 downward free to roll and a pan member 8 fixed on the ground and on an upper surface of which a conical recessed part 7 to support the ball bearing free to roll is formed. An inclined surface of the recessed part of this pan member 8 is rectilinear, and inclination θ of the relative rectilinear inclined surface is found and formed by a previously decided computing element α<=g(sinθ.cosθ+μcos2θ)<=β (wherein, acceleration of earthquake motion α=8 gal, β=140 gal, gravity acceleration g=980 gal. Additionally, μis a friction coefficient of the rolling support body.).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は免震装置に係り、
特に木造建物の他、精密機器等の比較的軽量の構造物を
支持する免震装置に関する。
The present invention relates to a seismic isolation device,
In particular, the present invention relates to a seismic isolation device that supports relatively lightweight structures such as precision equipment in addition to wooden buildings.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
から、戸建て住宅等の比較的軽量な構造物を免震するた
めに、種々の免震装置が提案されている。
2. Description of the Related Art Conventionally, various seismic isolation devices have been proposed for seismic isolation of relatively lightweight structures such as detached houses.

【0003】例えば特開平9−221935号公報に開
示された免震装置は図2に示すように、地上構造物21
と地盤22との間に介装され、地震動に対し地上構造物
21の応答を抑制する免震手段23と、地上構造物21
および地盤22間に介装されたダンパー装置24とを設
けて、上記地上構造物21に作用する風速が設定値を超
えた場合には、コントローラ25によって減衰力を高め
るようにダンパー装置24を制御するものである。
[0003] For example, a seismic isolation device disclosed in Japanese Patent Application Laid-Open No. 9-221935 is shown in FIG.
Seismic isolation means 23 interposed between the ground structure 21 and the ground structure 22 to suppress the response of the ground structure 21 to the seismic motion.
And a damper device 24 interposed between the ground 22 and the controller 25 controls the damper device 24 to increase the damping force when the wind speed acting on the above-mentioned ground structure 21 exceeds a set value. Is what you do.

【0004】このような免震装置20によれば、地上構
造物21が風に煽られて揺動するのを、コントローラ2
5によって制御されるダンパー装置24で回避できると
共に、地震発生時には免震手段23によって効果的に免
震機能を果たすことができる。
According to the seismic isolation device 20 described above, the ground structure 21 is swung by the wind and swung by the controller 2.
5 can be avoided by the damper device 24 controlled by the control unit 5, and the seismic isolation means 23 can effectively perform the seismic isolation function when an earthquake occurs.

【0005】しかしながら、電気信号等により電気・油
圧等を自動的に制御するので、設備費や維持費等のコス
トが上がる難点があった。また、停電等により制御不能
に陥る難点があった。
However, since electric and hydraulic pressures are automatically controlled by an electric signal or the like, there has been a problem that costs such as facility costs and maintenance costs are increased. In addition, there was a problem that control was lost due to a power failure or the like.

【0006】また、図3に示すように、上部構造物31
と基礎部32との間に介在され、基礎部32に対して上
部構造物31を水平方向に滑動可能に支承する滑り支承
33と、基礎部32に対して上部構造物31を水平方向
に転動可能に支承する転がり支承34とを備え、転がり
支承34が転動自在な球体35と、この球体35を転動
自在に載置するための凹曲面36が上面に形成された受
皿37とから成る免震装置30が知られている。
[0006] Further, as shown in FIG.
A slide bearing 33 interposed between the base member 32 and the base member 32 to slidably support the upper structure 31 in the horizontal direction; A rolling bearing 34 movably supported is provided. The rolling bearing 34 includes a rollable spherical body 35 and a receiving plate 37 having a concave curved surface 36 formed on the upper surface thereof for rollingly mounting the spherical body 35. A seismic isolation device 30 is known.

【0007】このような免震装置30によれば、転がり
支承34によって免震周期を長周期化させると共に、滑
り支承33によって振動を減衰させることができる。
According to the seismic isolation device 30, the rolling bearing 34 can extend the seismic isolation cycle, and the sliding bearing 33 can attenuate the vibration.

【0008】しかしながら、上部構造物31が軽いと図
4に示すように、風荷重より降伏荷重が小さくなること
があり、この風荷重に対して装置の滑り始め荷重、即
ち、降伏荷重(=上部構造物重量×摩擦係数)を上げよ
うとする場合には、上部構造物101を重くしなければ
ならないので、コストが上がる難点があった。
However, if the upper structure 31 is light, as shown in FIG. 4, the yield load may be smaller than the wind load. When trying to increase (structure weight × friction coefficient), the upper structure 101 has to be heavier, so that there has been a problem that the cost increases.

【0009】さらに、図5に示すように、水平方向に発
生する振動エネルギによって大きく相対変位して当該水
平方向の振動エネルギを吸収する転がり支承体44と、
当該水平方向の振動エネルギが所定値未満では展延性に
富んだ状態で弾塑性変形し且つ所定値以上では塑性破壊
する弾塑性体46を有するトリガー機構45とを備え、
上部構造物42および地盤43間に並列に介装されてい
る免震装置41が知られている。
Further, as shown in FIG. 5, a rolling bearing body 44 that is relatively displaced by vibration energy generated in the horizontal direction and absorbs the vibration energy in the horizontal direction,
A trigger mechanism 45 having an elasto-plastic body 46 that undergoes elasto-plastic deformation in a state of being rich in extensibility when the horizontal vibration energy is less than a predetermined value and plastically breaks down when the vibration energy is equal to or more than a predetermined value,
There is known a seismic isolation device 41 interposed between an upper structure 42 and a ground 43 in parallel.

【0010】このような免震装置41によれば、強風や
小地震時にはトリガー機構45の弾塑性体46の高い初
期剛性により上部構造物42の揺れを抑制させ、中地震
時には弾塑性体46を弾塑性変形させて振動を減衰さ
せ、大地震時には弾塑性体46を塑性破壊させて転がり
支承体44で上部構造物42の振動周期を長周期化させ
ることができる。
According to the seismic isolation device 41, the stiffness of the upper structure 42 is suppressed by the high initial rigidity of the elasto-plastic body 46 of the trigger mechanism 45 during a strong wind or a small earthquake, and the elasto-plastic body 46 is deformed during a moderate earthquake. The vibration is damped by elasto-plastic deformation, and in the case of a large earthquake, the elasto-plastic body 46 is plastically destroyed, and the vibration period of the upper structure 42 can be lengthened by the rolling bearing 44.

【0011】しかしながら、大地震等により弾塑性体4
6が破断した場合には、当該弾塑性体46を交換しなけ
ればならず、作業の手間やコストがかかるという難点が
あった。
However, due to a large earthquake or the like,
In the case where 6 breaks, the elasto-plastic body 46 has to be replaced, and there is a problem that labor and cost for the operation are required.

【0012】本発明は、このような従来の難点を解決す
るためになされたもので、簡易な構成でトリガー機能と
免震機能とを一体化させて、構造物が強風により揺動す
るのを回避すると共に、地震発生時には効果的に免震機
能を果たすことができる免震装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and has a simple configuration in which a trigger function and a seismic isolation function are integrated to prevent the structure from swinging due to strong wind. It is an object of the present invention to provide a seismic isolation device that can avoid a collision and effectively perform a seismic isolation function when an earthquake occurs.

【0013】[0013]

【課題を解決するための手段】このような目的を達成す
る本発明の免震装置は、構造物および基礎間、または上
部構造物および下部構造物間に、水平方向に発生する振
動エネルギによって相対変位して当該振動エネルギを吸
収する転がり支承体を備えた免震装置において、転がり
支承体は、構造物あるいは上部構造物に固定され転動部
材を転動自在に下方に突出させて支承する支承部材と、
基礎あるいは下部構造物に固定され転動部材を転動自在
に支持する円錐形状の凹部が上面に形成された受皿部材
とから構成され、受皿部材の凹部の傾斜面は直線状に且
つ当該直線状傾斜面の傾斜角度θが、予め決定された演
算要素、 α≦g(sinθ・cosθ+μcos2θ)≦β (但し、地震動の加速度α=8gal、β=140gal、重
力加速度g=980galとする。なお、μは、転がり支
承体の摩擦係数とする。)によって求められ形成されて
いるものである。
According to the seismic isolation device of the present invention which achieves the above object, a relative vibration is generated between a structure and a foundation or between an upper structure and a lower structure by vibration energy generated in a horizontal direction. In a seismic isolation device having a rolling bearing body that displaces and absorbs the vibration energy, the rolling bearing body is fixed to a structure or an upper structure, and supports a rolling member by rollingly protruding downward and supporting the rolling member. Components,
And a saucer member having a conical recess formed on an upper surface fixed to the foundation or the lower structure and rotatably supporting the rolling member. The inclined surface of the recess of the saucer member is linear and linear. The inclination angle θ of the inclined surface is a predetermined calculation element, α ≦ g (sin θ · cos θ + μcos 2 θ) ≦ β (provided that the acceleration of seismic motion α = 8 gal, β = 140 gal, and the gravitational acceleration g = 980 gal. , Μ are the frictional coefficients of the rolling bearings).

【0014】このような免震装置によれば、地震動の加
速度が8〜140gal、即ち、気象庁の震度階が5弱に
なると、転がり支承体の転動部材が受皿部材の凹部の傾
斜面で転動を開始するので、免震機能を効果的に発揮す
ることができる。したがって、強風では揺動しなくなる
ので、居住性が向上する。
According to such a seismic isolation device, when the acceleration of the seismic motion is 8-140 gal, that is, when the seismic intensity floor of the Meteorological Agency becomes less than 5, the rolling member of the rolling bearing body rolls on the inclined surface of the concave portion of the receiving plate member. Since the movement starts, the seismic isolation function can be exhibited effectively. Therefore, it does not oscillate in a strong wind, so that the livability is improved.

【0015】また、本発明の免震装置において地震動の
加速度αは25gal、βは80galであることが好まし
い。これにより、気象庁の震度階が5弱にて免震機能を
発揮させることができるようになるので、居住性を損な
うことなく免震機能を発揮させることができる。
In the seismic isolation device of the present invention, the acceleration α of the seismic motion is preferably 25 gal, and β is preferably 80 gal. As a result, the seismic intensity function of the Japan Meteorological Agency can exhibit the seismic isolation function when the seismic intensity level is less than 5, so that the seismic isolation function can be exhibited without impairing the livability.

【0016】[0016]

【発明の実施の形態】以下、本発明の免震装置における
好ましい実施の形態例について図面を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a seismic isolation device according to the present invention will be described below with reference to the drawings.

【0017】本発明の免震装置は図1(a)に示すよう
に、比較的軽量な構造物である建物2と、基礎である地
盤3との間に介装され、水平方向に発生する振動エネル
ギによって相対変位して当該水平方向の振動エネルギを
吸収する転がり支承体4を備えている。
As shown in FIG. 1 (a), the seismic isolation device of the present invention is interposed between a building 2, which is a relatively lightweight structure, and a ground 3, which is a foundation, and is generated in a horizontal direction. A rolling bearing 4 is provided which absorbs the horizontal vibration energy by being relatively displaced by the vibration energy.

【0018】この転がり支承体4は図1(b)に示すよ
うに、建物2に固定され転動部材であるボールベアリン
グ5を転動自在に下方に突出させて支承する支承部材6
と、地盤3に固定されボールベアリング5を転動自在に
支持する円錐状の凹部7が上面に形成された受皿部材8
とから構成されている。したがって、ボールベアリング
5を介して水平方向へ移動した支承部材6は建物2の重
力作用で凹部7に沿って元の位置、即ち、凹部7の最深
位置に戻ることができる。これにより、建物2は、元の
位置に完全復帰することができる。
As shown in FIG. 1 (b), the rolling bearing member 4 is fixed to the building 2 and supports a ball bearing 5 which is a rolling member so as to rollably protrude downward and support it.
And a saucer member 8 having a conical recess 7 fixed to the ground 3 and rotatably supporting the ball bearing 5 and having an upper surface formed therein.
It is composed of Therefore, the bearing member 6 that has moved in the horizontal direction via the ball bearing 5 can return to the original position along the concave portion 7, that is, the deepest position of the concave portion 7 by the gravitational action of the building 2. Thereby, the building 2 can completely return to the original position.

【0019】このような受皿部材8の凹部7の傾斜面は
直線状に形成されている。この直線状傾斜面の傾斜角度
θは、予め決定された演算要素、 α≦g(sinθ・cosθ+μcos2θ)≦β (但し、地震動の加速度α=8gal、β=140gal、重
力加速度g=980galとする。なお、μは、転がり支
承体4の摩擦係数とする。)によって求められる。
The inclined surface of the concave portion 7 of the receiving member 8 is formed linearly. The inclination angle θ of this linear inclined surface is determined by a predetermined calculation element, α ≦ g (sin θ · cos θ + μcos 2 θ) ≦ β (provided that the acceleration of seismic motion α = 8 gal, β = 140 gal, and the gravity acceleration g = 980 gal Where μ is the coefficient of friction of the rolling bearing 4).

【0020】ここで、受皿部材8の凹部7の最深位置、
即ち、中心から初速度0(ゼロ)でボールベアリング5
が上昇する時の加速度αは、重力により下がろうとする
力がg(sinθ・cosθ)、ボールベアリング5を押し上げ
ようとする力がμgcos2θになるので、 α=g(sinθ・cosθ+μcos2θ) となる。なお、この運動方程式については特開平11−
101021号公報に開示されている。
Here, the deepest position of the concave portion 7 of the pan member 8,
That is, the ball bearing 5 has an initial speed of 0 (zero) from the center.
When the force α rises, the force for lowering by gravity is g (sin θ · cos θ) and the force for pushing up the ball bearing 5 is μg cos 2 θ, so that α = g (sin θ · cos θ + μcos 2 θ ). This equation of motion is described in
It is disclosed in Japanese Patent Publication No. 101021.

【0021】したがって、地震動の加速度αを8〜14
0galに設定すれば、気象庁の震度階5弱で転がり支承
体4のボールベアリング5が受皿部材8の凹部7の傾斜
面で転動を開始するので、免震機能を効果的に発揮する
ことができる。これにより、強風では揺動しなくなるの
で、居住性が向上する。なお、気象庁の震度階3は、地
震動の加速度αが8〜25galで、棚にある食器類が、
音をたてることがある状態、また、震度階4は地震動の
加速度αが25〜80galで、吊り下げ物は大きく揺
れ、棚にある食器類は音をたて、座りの悪い置物が倒れ
ることもある状態を示す。したがって、地震動の加速度
αを25gal、βを80galに設定すれば、気象庁の震度
階が4にて免震機能を発揮させることができるようにな
るので、居住性を損なうことなく免震機能を発揮させる
ことができる。
Therefore, the acceleration α of the earthquake motion is set to 8 to 14
If it is set to 0 gal, the ball bearing 5 of the rolling bearing 4 starts rolling on the inclined surface of the concave portion 7 of the saucer member 8 at the seismic intensity floor 5 of the Meteorological Agency, so that the seismic isolation function can be exhibited effectively. it can. Thereby, since it does not oscillate in a strong wind, livability is improved. In addition, the seismic intensity floor 3 of the Japan Meteorological Agency has an acceleration α of seismic motion of 8 to 25 gal, and the tableware on the shelf is
In a state where sound may be heard, seismic intensity floor 4 has an acceleration α of seismic motion of 25 to 80 gal, suspended objects shake greatly, tableware on shelves makes sound, and a poorly seated ornament falls down. Indicates a certain state. Therefore, if the acceleration α of the seismic motion is set to 25 gal and β to 80 gal, the seismic intensity level of the Japan Meteorological Agency will be able to exhibit the seismic isolation function at 4, and the seismic isolation function will be exhibited without impairing the livability Can be done.

【0022】このように構成された本発明の免震装置の
免震動作について説明する。なお、受皿部材8の凹部7
の直線状傾斜面の傾斜角度θは、気象庁の震度階4であ
る地震動の加速度60galに設定する。
The seismic isolation operation of the seismic isolation device according to the present invention thus configured will be described. The recess 7 of the pan member 8
The inclination angle θ of the linear inclined surface is set to the acceleration of the seismic motion of the seismic intensity floor 4 of the Japan Meteorological Agency of 60 gal.

【0023】建物2に強風や気象庁の震度階1〜2の小
地震(地震動の加速度0.8〜8gal)による水平方向
の振動エネルギが加わると、転がり支承体4のボールベ
アリング5の重力により下がろうとする力(g(sinθ・
cosθ))の方が、ボールベアリング5を押し上げようと
する力(μgcos2θ)より大きいので、転がり支承体4
は建物2の揺れを抑制させる。
When horizontal vibration energy is applied to the building 2 by a strong wind or a small earthquake of seismic intensity 1 or 2 (earthquake acceleration 0.8 to 8 gal) by the Japan Meteorological Agency, the gravity of the ball bearing 5 of the rolling bearing 4 decreases due to the gravity. The force of gutter (g (sinθ ・
cos θ) is larger than the force (μg cos 2 θ) for pushing up the ball bearing 5, so that the rolling bearing 4
Suppresses the shaking of the building 2.

【0024】また、建物2に気象庁の震度階3の中地震
(地震動の加速度8〜25gal)による水平方向の振動
エネルギが加わっても、ボールベアリング5の重力によ
り下がろうとする力(g(sinθ・cosθ))の方が、ボー
ルベアリング5を押し上げようとする力(μgcos2θ)
より大きいので、転がり支承体4は建物2の揺れを抑制
させる。
Even if the building 2 receives horizontal vibration energy due to a moderate earthquake of seismic intensity 3 at the Meteorological Agency (acceleration of seismic motion of 8 to 25 gal), the force (g (sin θ) of the ball bearing 5 to drop due to gravity. · Cos θ)) is the force (μg cos 2 θ) to push up the ball bearing 5
Since it is larger, the rolling bearing 4 suppresses the shaking of the building 2.

【0025】さらに、建物2に気象庁の震度階4の中地
震(地震動の加速度25〜80gal)による水平方向の
振動エネルギが加わると、地震動の加速度が80gal以
上の場合には、ボールベアリング5を押し上げようとす
る力(μgcos2θ)の方が、ボールベアリング5の重力
により下がろうとする力(g(sinθ・cosθ))より大き
くなるので、建物2と地盤3とは転がり支承体4によっ
て相対変位して水平方向の振動エネルギは吸収される。
これにより、建物2の揺れを減衰させることができる。
また、受皿部材8の凹部7の直線状傾斜面に沿って移動
したボールベアリング5が、建物2による重力作用で凹
部7の直線状傾斜面に沿って元の位置、即ち、凹部7の
最深位置に戻ることができる。したがって、建物2は、
元の位置に完全復帰できるようになる。
Further, when horizontal vibration energy is applied to the building 2 by a moderate earthquake of seismic intensity 4 at the Meteorological Agency (acceleration of seismic motion of 25 to 80 gal), the ball bearing 5 is pushed up when the acceleration of the seismic motion is 80 gal or more. Since the force (μgcos 2 θ) to be applied is larger than the force (g (sinθ · cosθ)) of the ball bearing 5 that tends to decrease due to gravity, the building 2 and the ground 3 are relatively moved by the rolling bearing 4. Displaced and horizontal vibration energy is absorbed.
Thereby, the shaking of the building 2 can be attenuated.
Further, the ball bearing 5 moved along the linear inclined surface of the concave portion 7 of the receiving member 8 returns to its original position along the linear inclined surface of the concave portion 7 due to the gravitational action of the building 2, that is, the deepest position of the concave portion 7. You can go back to Therefore, building 2
It will be possible to completely return to the original position.

【0026】なお、建物2に気象庁の震度階5以上の大
地震(地震動の加速度80gal以上)による水平方向の
振動エネルギが加わった場合には、ボールベアリング5
を押し上げようとする力(μgcos2θ)の方が、ボール
ベアリング5の重力により下がろうとする力(g(sinθ
・cosθ))より遥かに大きくなるので、建物2と地盤3
とは転がり支承体4によって大きく相対変位するので、
建物2の振動周期は長周期化される。また、中地震の場
合と同様に、転がり支承体4によって建物2は、元の位
置に完全復帰できる。
When the building 2 is subjected to horizontal vibration energy due to a large earthquake having a seismic intensity of 5 or more by the Japan Meteorological Agency (acceleration of ground motion of 80 gal or more), the ball bearing 5
Force (μg cos 2 θ) is lower than the force (g (sin θ)
・ Cos θ)) is much larger than building 2 and ground 3
Is relatively displaced by the rolling support 4,
The vibration cycle of the building 2 is made longer. In addition, similarly to the case of the middle earthquake, the building 2 can be completely returned to the original position by the rolling bearing 4.

【0027】上述した本発明の免震装置における好まし
い実施の形態例においては、転がり支承体4のみによっ
て水平方向の振動エネルギを吸収させていたが、これに
限らず、建物を水平方向に滑動可能に支承する滑り支承
体や、鉛直方向には硬いばねを持ち大荷重を支持し、水
平方向にはゴム特有の柔らかいばねにより大変形するこ
とができる積層ゴム、あるいはオイルダンパや鉛ダンパ
などの減衰機構などと併用してよい。
In the preferred embodiment of the seismic isolation device of the present invention described above, the horizontal vibration energy is absorbed only by the rolling bearings 4. However, the present invention is not limited to this, and the building can be slid in the horizontal direction. Rubber bearings that support large loads by supporting a sliding bearing body that supports the vertical direction and a rigid spring in the vertical direction, and can be largely deformed in the horizontal direction by a soft spring unique to rubber, or damping of oil dampers, lead dampers, etc. You may use together with a mechanism etc.

【0028】また、本発明の免震装置の設置箇所は構造
物および地盤間には限らず、例えば上部構造物および下
部構造物となるビルの8階と9階との間に設置してもよ
く、さらには精密機器等の比較的軽量の構造物の免震に
も適用できる。
The place of installation of the seismic isolation device of the present invention is not limited to the space between the structure and the ground. For example, it may be installed between the 8th and 9th floors of the building that will be the upper structure and the lower structure. It can be applied to seismic isolation of relatively lightweight structures such as precision equipment.

【0029】このような本発明の免震装置は、除振作用
を有しているのは元より、振動を発生する機器から基礎
に当該振動が伝われば、防振作用することになる。
Such a seismic isolation device of the present invention not only has an anti-vibration effect, but also has an anti-vibration effect if the vibration is transmitted from the device that generates the vibration to the foundation.

【0030】[0030]

【発明の効果】以上、説明したように、本発明の免震装
置によれば、構造物が強風により揺動するのを回避する
と共に、構造物に悪影響を与えるような地震発生時には
効果的に免震機能を果たすことができるので、快適な居
住性を確保できる。また、簡易な構成でトリガー機能と
免震機能とを一体化させていることから、施工が容易に
なるので、低コストで設置できるようになる。
As described above, according to the seismic isolation device of the present invention, it is possible to prevent the structure from oscillating due to strong wind, and to effectively prevent the structure from being affected by an earthquake that adversely affects the structure. Because it can perform the seismic isolation function, comfortable livability can be ensured. In addition, since the trigger function and the seismic isolation function are integrated with a simple configuration, the construction is easy, and the installation can be performed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の免震装置における好ましい実施の形態
例を示す図で、(a)は設置状態を示す説明図、(b)
は転がり支承体の詳細説明図。
FIG. 1 is a view showing a preferred embodiment of a seismic isolation device of the present invention, wherein FIG. 1 (a) is an explanatory view showing an installed state, and FIG.
Is a detailed explanatory view of a rolling bearing.

【図2】従来の免震装置を示す全体図。FIG. 2 is an overall view showing a conventional seismic isolation device.

【図3】従来の免震装置を示す全体図。FIG. 3 is an overall view showing a conventional seismic isolation device.

【図4】図3の免震装置の滑り支承が水平方向の振動エ
ネルギを受けた場合の荷重と変位との関係を表わすグラ
フ。
FIG. 4 is a graph showing a relationship between a load and a displacement when a sliding bearing of the seismic isolation device of FIG. 3 receives horizontal vibration energy.

【図5】従来の免震装置を示す全体図。FIG. 5 is an overall view showing a conventional seismic isolation device.

【符号の説明】[Explanation of symbols]

2・・・・・建物(構造物) 3・・・・・地盤(基礎) 4・・・・・転がり支承体 5・・・・・ボールベアリング(転動部材) 6・・・・・支承部材 7・・・・・凹部 8・・・・・受皿部材 2. Building (structure) 3. Ground (foundation) 4. Rolling bearing 5. Ball bearing (rolling member) 6. Bearing Member 7 ... Recess 8 ... Receiver member

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】構造物および基礎間、または上部構造物お
よび下部構造物間に、水平方向に発生する振動エネルギ
によって相対変位して当該振動エネルギを吸収する転が
り支承体を備えた免震装置において、 前記転がり支承体は、前記構造物あるいは前記上部構造
物に固定され転動部材を転動自在に下方に突出させて支
承する支承部材と、前記基礎あるいは前記下部構造物に
固定され前記転動部材を転動自在に支持する円錐形状の
凹部が上面に形成された受皿部材とから構成され、前記
受皿部材の前記凹部の傾斜面は直線状に且つ当該直線状
傾斜面の傾斜角度θが、予め決定された演算要素、 α≦g(sinθ・cosθ+μcos2θ)≦β (但し、地震動の加速度α=8gal、β=140gal、重
力加速度g=980galとする。なお、μは、前記転が
り支承体の摩擦係数とする。)によって求められ形成さ
れていることを特徴とする免震装置。
1. A seismic isolation device having a rolling bearing between a structure and a foundation, or between an upper structure and a lower structure, which is relatively displaced by vibration energy generated in a horizontal direction to absorb the vibration energy. The rolling bearing body is fixed to the structure or the upper structure, and a rolling member that protrudes downward so as to freely roll and supports the rolling member, and the rolling member fixed to the foundation or the lower structure. And a receiving member having a conical concave portion formed on an upper surface of the receiving member so that the member can roll freely.The inclined surface of the concave portion of the receiving member is linear and the inclination angle θ of the linear inclined surface is Predetermined calculation elements, α ≦ g (sin θ · cos θ + μcos 2 θ) ≦ β (provided that the acceleration of seismic motion α = 8 gal, β = 140 gal, and the gravitational acceleration g = 980 gal. Here, μ is the rolling bearing. Friction A seismic isolation device characterized by being formed by a coefficient.
【請求項2】前記地震動の加速度αは25gal、βは8
0galであることを特徴とする請求項1記載の免震装
置。
2. The acceleration α of the ground motion is 25 gal and β is 8
The seismic isolation device according to claim 1, wherein the seismic isolation device is 0 gal.
JP25211199A 1999-09-06 1999-09-06 Base isolation device Withdrawn JP2001074093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25211199A JP2001074093A (en) 1999-09-06 1999-09-06 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25211199A JP2001074093A (en) 1999-09-06 1999-09-06 Base isolation device

Publications (1)

Publication Number Publication Date
JP2001074093A true JP2001074093A (en) 2001-03-23

Family

ID=17232645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25211199A Withdrawn JP2001074093A (en) 1999-09-06 1999-09-06 Base isolation device

Country Status (1)

Country Link
JP (1) JP2001074093A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6595501B2 (en) * 2001-12-11 2003-07-22 Paul B. Van Slyke Cone and ball bearing vibration damper
JP2006031119A (en) * 2004-07-12 2006-02-02 Yakumo Kk Base isolation device
JP2010096270A (en) * 2008-10-16 2010-04-30 Univ Of Fukui Base isolation device
CN102927183A (en) * 2012-10-15 2013-02-13 清华大学 Low-frequency two-degree-of-freedom horizontal vibration isolation mechanism
KR101438707B1 (en) 2014-01-13 2014-09-05 주식회사 아이솔테크 Isolator having a V-type friction surface
JP6154533B1 (en) * 2016-11-14 2017-06-28 新日鉄住金エンジニアリング株式会社 Seismic isolation building and its construction method
JP6228337B1 (en) * 2017-04-27 2017-11-08 新日鉄住金エンジニアリング株式会社 Wind resistance device
JP2020169540A (en) * 2019-04-05 2020-10-15 株式会社大林組 Structure and design method of structure

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6595501B2 (en) * 2001-12-11 2003-07-22 Paul B. Van Slyke Cone and ball bearing vibration damper
JP2006031119A (en) * 2004-07-12 2006-02-02 Yakumo Kk Base isolation device
JP4652735B2 (en) * 2004-07-12 2011-03-16 ヤクモ株式会社 Seismic isolation device
JP2010096270A (en) * 2008-10-16 2010-04-30 Univ Of Fukui Base isolation device
CN102927183A (en) * 2012-10-15 2013-02-13 清华大学 Low-frequency two-degree-of-freedom horizontal vibration isolation mechanism
KR101438707B1 (en) 2014-01-13 2014-09-05 주식회사 아이솔테크 Isolator having a V-type friction surface
JP6154533B1 (en) * 2016-11-14 2017-06-28 新日鉄住金エンジニアリング株式会社 Seismic isolation building and its construction method
JP2018080444A (en) * 2016-11-14 2018-05-24 新日鉄住金エンジニアリング株式会社 Base-isolated building and construction method thereof
JP6228337B1 (en) * 2017-04-27 2017-11-08 新日鉄住金エンジニアリング株式会社 Wind resistance device
JP2018184791A (en) * 2017-04-27 2018-11-22 新日鉄住金エンジニアリング株式会社 Wind resistant device
JP2020169540A (en) * 2019-04-05 2020-10-15 株式会社大林組 Structure and design method of structure
JP7423901B2 (en) 2019-04-05 2024-01-30 株式会社大林組 Structure and structure design method

Similar Documents

Publication Publication Date Title
US4883250A (en) Vibration-proof and earthquake-immue mount system
JP4836569B2 (en) Base isolation table
JP2001074093A (en) Base isolation device
JP2007071399A (en) Vertical base isolation device
JPH0532505U (en) Seismic isolation support for light loads
JPH11200660A (en) Vibration control structure for construction
JP4392567B2 (en) Seismic isolation device
JP2000266116A (en) Swinging bearing type base isolation device
JPS63297837A (en) Double acting vibration absorber
JP3803940B2 (en) Vibration control device for high-rise buildings with different building cycles in two orthogonal directions
JP4803620B2 (en) Seismic isolation structure with damping function
JP2016151278A (en) Vibration control device
JP2005249210A (en) Damping apparatus
JPH0544773A (en) Dynamic vibration absorber
JPS63297673A (en) Dynamic vibration reducing roof
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JP3240432B2 (en) Damping structure
JP2003294083A (en) Isolation system
JP3082134B2 (en) Shaking 2-plate seismic reduction device
JP3115586B2 (en) Three-dimensional seismic isolation device for structures using spherical rubber bearings
JP2000104420A (en) Base isolation structure
JP3782084B2 (en) Damping structure of structure
JP2004316420A (en) Base-isolated structure
JP4351763B2 (en) Seismic isolation device with rolling elements
JPH1182617A (en) Base isolation device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107