JP4803620B2 - Seismic isolation structure with damping function - Google Patents

Seismic isolation structure with damping function Download PDF

Info

Publication number
JP4803620B2
JP4803620B2 JP2000286118A JP2000286118A JP4803620B2 JP 4803620 B2 JP4803620 B2 JP 4803620B2 JP 2000286118 A JP2000286118 A JP 2000286118A JP 2000286118 A JP2000286118 A JP 2000286118A JP 4803620 B2 JP4803620 B2 JP 4803620B2
Authority
JP
Japan
Prior art keywords
vibration
seismic isolation
mass body
mass
support base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000286118A
Other languages
Japanese (ja)
Other versions
JP2002098188A (en
Inventor
郁夫 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000286118A priority Critical patent/JP4803620B2/en
Publication of JP2002098188A publication Critical patent/JP2002098188A/en
Application granted granted Critical
Publication of JP4803620B2 publication Critical patent/JP4803620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震装置で免震化された事務所ビル、集合住宅、橋梁又は戸建住宅等の構造物に対して更に制振機能を付加した制振機能付き免震構造物に関する。
【0002】
【発明が解決しようとする課題】
事務所ビル、集合住宅、橋梁又は戸建住宅等の構造物において、当該構造物と基礎との間に免震装置を介在させて免震化した免震構造物が提案されている。斯かる免震構造物では、免震装置により構造物の振動の固有周期を長周期化し、急激な大きな地震による構造物の共振を回避して地震による構造物の破壊を防止している。
【0003】
ところで、上記の免震構造物でも、地震動では一応構造物が水平方向に振動するのであって、この長周期の振幅が大きければ、またそれが長く続くと構造物が破壊される虞がある上に、特に、事務所ビル、集合住宅及び戸建住宅等ではその居住者にきわめて大きな不快感、不安感を与えることになる。
【0004】
このような問題に対して、構造物に搭載された質量体を構造物の振動と共に位相差をもって振動させて、この質量体の振動により構造物の振動を低減する制振機能付き免震構造物が提案されているが、斯かる免震構造物では、構造物に質量体を搭載するために、構造物を自身の荷重に加えて質量体の荷重に耐えるように強固に設計する必要があり、また、斯かる強固に設計された構造物を免震装置を介して基礎上に支持する場合には、免震装置の耐荷重性能を大きくしなければならなくなる虞がある。
【0005】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、免震装置を介して支持された構造物の振動を効果的に減小させることができる上に、その振動を早期に減衰させることができ、加えて、質量体の質量(重量)に起因する構造物及び免震装置の耐荷重性能の増大を必要としない制振機能付き免震構造物を提供することにある。
【0006】
【課題を解決するための手段】
本発明の第一の態様の制振機能付き免震構造物は、地盤及び構造物間に介在されて、構造物を支持すると共に、当該構造物の地盤に対する水平方向の振動を免震する免震装置と、構造物の地盤に対する水平方向の振動を制振する制振手段と、地盤に設置、固定された支持台とを具備しており、制振手段は、下面で支持台の上面に接触して当該支持台に水平方向に移動自在に支持されている質量体と、構造物の支持台に対する水平方向の振動に応答して質量体を弾性的な伸縮により水平方向に振動させるように、一端部では構造物に他端部では質量体に夫々連結された弾性体と、質量体の支持台に対する水平方向の振動に応じてその振動エネルギを吸収するように、一端部では構造物に他端部では質量体に夫々連結された振動エネルギ吸収手段とを具備しており、支持台は、互いに接触する質量体の下面及び支持台の上面を介して質量体の荷重を受容するようになっており、質量体は、その水平方向の振動に関して、構造物には、弾性体及び振動エネルギ吸収手段を介して連結されている一方、支持台には、質量体の下面と支持台の上面との摩擦接触のみを介して連結されている。
【0007】
第一の態様の免震構造物によれば、構造物の水平方向の振動を制振する制振手段を具備しているために、地震により免震装置を介して構造物が水平方向に振動されても、それと振動位相の異なる制振手段の質量体の振動により構造物の振動が減小され、しかも、構造物の振動エネルギが制振手段の振動エネルギ吸収手段により例えば熱エネルギとして消費されて吸収され、構造物の振動が早期に減衰されることになる上に、質量体が地盤に水平方向に移動自在に支持されているために、質量体の荷重が構造物に実質的に付加されず、したがって、質量体の質量に起因する構造物及び免震装置の耐荷重性能の増大を必要としない。
【0008】
本発明の第二の態様の制振機能付き免震構造物では、第一の態様の免震構造物において、支持台の上面及び質量体の下面の夫々は、低摩擦面とされていると共に互いに摺動自在に接触しており、こうして、質量体は、低摩擦面又は参考として転がり摩擦面を介して地盤に水平方向に移動自在に支持されている。
【0009】
第二の態様の免震構造物によれば、質量体を地盤に対してほとんど抵抗なしに水平方向に移動させることができる結果、免震装置の免震機能を阻害しなく、而して、地震に際して効果的に構造物を免震できる。
【0010】
なお、本発明における質量体は地盤に支持されるのであるが、この場合、地盤に基礎と同様な支持台を基礎と別体に設置、固定して、この支持台を介して質量体を地盤に支持しても、これに代えて、構造物を支持する基礎を構造物の下面全体に亘って設置し、斯かる基礎の一部を支持台として用い、この基礎の一部からなる支持台を介して質量体を地盤に支持してもよく、斯かる支持台を用いる場合には、支持台と質量体との間に低摩擦面又は参考として転がり摩擦面を介在させて質量体を地盤に水平方向に移動自在に支持するとよい。また、第二の態様の免震構造物において、参考としての転がり摩擦面は、ころ、ローラ、ボール(球体)等を用いて具体化するとよい。
【0011】
上記の第一及び第二の態様の夫々の免震構造物において、質量体として構造物とは別体のものでもよいのであるが、本発明の第三の態様の制振機能付き免震構造物のように、構造物の床部材を質量体としてもよい。
【0012】
本発明の第四の態様の制振機能付き免震構造物は、基礎及び構造物間に介在されて、構造物を支持すると共に、当該構造物の水平方向の振動を免震する免震装置と、構造物の水平方向の振動を制振する制振手段とを具備しており、ここで、制振手段は、水平方向に移動自在な質量体と、構造物の水平方向の振動に応答して質量体を弾性的な伸縮により水平方向に振動させるように、質量体に連結された弾性体と、質量体の水平方向の振動に応じてその振動エネルギを吸収する振動エネルギ吸収手段とを具備しており、構造物の床部材を質量体としている。
【0013】
第四の態様の免震構造物によれば、上記の第一の態様の免震構造物と同様な効果を得ることができる上に、構造物の床部材を質量体としているために、第三の態様の免震構造物と同様に、特に別体の質量体を必要としなく、取付工数を省くことができ、低価格化を図り得る。
【0014】
なお、第四の態様の免震構造物においては、質量体としての床部材を低摩擦面又は転がり摩擦面等を介して基礎に水平方向に移動自在に支持してもよいが、これに代えて又はこれと共に、当該床部材を構造物の梁、根太等の支持部材に水平方向に移動自在に支持してもよい。
【0015】
免震装置としては、本発明の第五の態様の制振機能付き免震構造物のように、剛性層と弾性層とが鉛直方向に交互に積層された積層ゴムを具備しているものであっても、本発明の第六の態様の制振機能付き免震構造物のように、上方に向かって凹な下凹面と、下方に向かって凹な上凹面と、これら下凹面及び上凹面間に介在されて、下凹面及び上凹面に対して転動自在な転がり体又は下凹面及び上凹面に対して摺動自在な摺動体とを具備しているものであってもよいが、これに限定されずに、その他のものであってもよい。なお、下凹面と上凹面とは、凹溝面(樋状の面)であってもよいが、これに代えて、凹球面であってもよく、凹溝面の場合には、転がり体はころ、ローラで構成でき、摺動体は、上面及び下面が凹溝面の曲率半径と同一の曲率半径を有して、二個の板付き蒲鉾を板同士を互いに合わせたような棒状部材で構成でき、凹球面の場合には、転がり体はボール(球体)で構成でき、摺動体は、上面及び下面が凹球面の曲率半径と同一の曲率半径を有した扁平部材又は柱状部材で構成できる。
【0016】
本発明では、弾性体は、好ましくは、その第七の態様の制振機能付き免震構造物のように、コイルばね、空気ばね及びゴム部材のうちの少なくとも一つを具備しており、更に、本発明では、弾性体は、好ましくは、一端部と他端部とを有しており、一端部では構造物に、他端部では質量体に夫々連結されており、この場合、好ましくは、弾性体の一端部と他端部との構造物及び質量体への連結は、球面継手を用いて行われている。
【0017】
本発明の振動エネルギ吸収手段は、その第八の態様の制振機能付き免震構造物のように、内部に鉛を充填したシリンダと、シリンダの内部において膨大部を有すると共に、シリンダを貫通したロッドとを具備しているものであっても、また、その第九の態様の免震構造物のように、内部に流体を充填したシリンダと、このシリンダの内部を二室に画成すると共に、当該二室を互いに連通するオリフィスを有したピストンと、このピストンが固着されていると共に、シリンダの両端部を貫通したピストンロッドとを具備しているものであってもよい。斯かる振動エネルギ吸収手段を用いる場合には、好ましくは、シリンダ及びロッド若しくはピストンロッドのいずれか一方が構造物に、他方が質量体に夫々に球面継手を介して連結される。
【0018】
弾性体及び振動エネルギ吸収手段のうちの少なくとも一方は、好ましくは、本発明の第十の態様の免震構造物のように、質量体の周囲に配される。
【0019】
なお、本発明の第十一の態様の制振機能付き免震構造物のように、振動エネルギ吸収手段を、構造物に設けられた摩擦滑り面と、この摩擦滑り面に摩擦接触するように質量体に設けられた摩擦滑り面とを具備して構成してもよい。
【0020】
本発明の構造物は、好ましくは、その第十二の態様の制振機能付き免震構造物のように、事務所ビル、集合住宅又は橋梁であるが、本発明はこれらに限定されず、その他の構造物であってもよい。
【0021】
【発明の実施の形態】
次に本発明及びその実施の形態を、図を参照して更に詳細に説明する。なお、本発明はこれら実施の形態に何等限定されないのである。
【0022】
図1及び図2において、本例の制振機能付き免震構造物1は、地盤に杭等により固定されて設置されたコンクリート製の基礎2と構造物としての高層の事務所ビル3との間に介在されて、事務所ビル3の鉛直方向Vの荷重を支持すると共に、当該事務所ビル3の水平方向Hの振動を免震する免震装置4と、事務所ビル3の水平方向Hの振動を制振すべく、事務所ビル3の水平方向Hの振動周期T1と略同一の振動周期T2、好ましくは振動周期T1の約0.95倍の振動周期T2を有して質量体5を事務所ビル3の水平方向Hの振動に応答して水平方向Hに振動させるようにした制振手段6とを具備している。
【0023】
免震装置4は、剛性層と弾性層とが鉛直方向Vに交互に積層された積層ゴム11を複数個具備しており、各積層ゴム11は、下面では、当該積層ゴム11に固着された下部取り付け板12及びアンカーボルト等を介して基礎2に、上面では、当該積層ゴム11に固着された上部取り付け板13及びボルト等を介して事務所ビル3の下面14に夫々固着されている。斯かる下部取り付け板12及び上部取り付け板13が取り付けられた積層ゴム11の複数個が夫々事務所ビル3の荷重を受けるべく、当該事務所ビル3の下面14に適当に分散されて配されている。
【0024】
なお、免震装置4としては、積層ゴム11に代えて、上方に向かって凹な下凹面、例えば半凹球面と、下方に向かって凹な上凹面、例えば半凹球面と、これら下半凹球面及び上半凹球面間に介在されて、これら下半凹球面及び上半凹球面に対して転動自在な球体のような転がり体又は下半凹球面及び上半凹球面に対して摺動自在であって、下半凹球面及び上半凹球面と同一の曲率半径の上半凹球面及び下半凹球面を有した摺動体とを具備した振り子型のものであってもよい。
【0025】
事務所ビル3の下面14に配された制振手段6は、水平方向Hに振動自在な質量体5と、事務所ビル3の水平方向Hの振動に応答して質量体5を弾性的な伸縮により水平方向Hに振動させるように、質量体5に連結された弾性体としての複数個のコイルばね15と、質量体5の水平方向Hの振動に応じてその振動エネルギを吸収する複数個の振動エネルギ吸収手段16とを具備している。
【0026】
図1には2個のコイルばね15を示すが、地震による事務所ビル3の振動が図1の紙面に平行な方向及びそれに直交する方向を含めて水平方向Hのあらゆる方向にも生じるために、このような事務所ビル3の振動に対しても概略均等に制振手段6が応答し得るように、コイルばね15は、水平面内で質量体5を取り囲んで周囲に2個以上配されている。
【0027】
各コイルばね15は、一端部22及び他端部23を有しており、一端部22は、球面継手24を介して連結部材25に連結されており、他端部23は、同じく球面継手26を介して質量体5に連結されており、連結部材25は、事務所ビル3の下面14に固着されており、こうして本例の各コイルばね15は、一端部22では事務所ビル3の下面14に球面継手24及び連結部材25を介して、他端部23では質量体5に球面継手26を介して夫々連結されており、各コイルばね15の一端部22と他端部23との事務所ビル3及び質量体5への連結は、球面継手24及び26を用いて行われている。
【0028】
弾性体としては、コイルばね15に代えて又はコイルばね15と共に、空気ばね及びゴム部材のうちの少なくとも一つを用いてもよい。
【0029】
図1には2個の振動エネルギ吸収手段16を示すが、コイルばね15と同様に、地震による事務所ビル3の振動が図1の紙面に平行な方向及びそれに直交する方向を含めて水平方向Hのあらゆる方向にも生じるために、このような事務所ビル3の振動に対しても概略均等に制振手段6が応答し得るように、振動エネルギ吸収手段16は、水平面内で質量体5を取り囲んで周囲に2個以上配されている。
【0030】
各振動エネルギ吸収手段16は、内部に鉛31を充填したシリンダ32と、シリンダ32の内部において膨大部33を有すると共に、シリンダ32の両端部である端面部材34及び端面部35を貫通したロッド36と、シリンダ32に固着された取り付け部材37とを具備しており、振動エネルギ吸収手段16の一端部である取り付け部材37は、球面継手41を介して連結部材25に連結されており、振動エネルギ吸収手段16の他端部である、端面部材34から突出するロッド36は、球面継手42を介して質量体5に連結されており、こうして、振動エネルギ吸収手段16は、シリンダ32及びロッド36のいずれか一方、本例ではシリンダ32が取り付け部材37、球面継手41及び連結部材25を介して事務所ビル3に、他方であるロッド36が球面継手42を介して質量体5に夫々連結されており、振動エネルギ吸収手段16の一端部と他端部との事務所ビル3及び質量体5への連結は、球面継手41及び42を用いて行われている。
【0031】
振動エネルギ吸収手段16では、質量体5の事務所ビル3に対する相対的な水平方向Hの振動に基づくロッド36の水平方向Hの振動で鉛31に塑性流動を生じさせ、これにより水平方向Hの振動を減小させると共に、その振動エネルギを吸収するようになっている。
【0032】
質量体5は、基礎2とは別体であって地盤に設置、固定された支持台51に水平方向Hに移動自在に支持されており、質量体5の下面52と、下面52が水平方向Hに摺動自在に接触する支持台51の上面53とは低摩擦面とされており、こうして、質量体5は、下面52及び上面53並びに支持台51を介して地盤に水平方向Hに移動自在に支持されており、支持台51は、互いに接触する質量体5の下面52及び支持台51の上面53を介して質量体5の荷重を受容しており、而して、質量体5は、その水平方向Hの振動に関して、事務所ビル3には、コイルばね15及び振動エネルギ吸収手段16を介して連結されている一方、支持台51には、質量体5の下面52と支持台51の上面53との摩擦接触のみを介して連結されている。
【0033】
振動エネルギ吸収手段16としては、図3に示すような、内部に流体、好ましくはシリコン系の液体を充填したシリンダ61と、シリンダ61の内部を二室62及び63に画成すると共に、当該二室62及び63を互いに連通するオリフィス64を有したピストン65と、ピストン65が固着されていると共に、シリンダ61の両端部である端面部材66及び端面部67を貫通したピストンロッド68と、シリンダ61に固着された取り付け部材69とを具備したものを用いてもよく、この場合にも、例えば取り付け部材69が球面継手41を介して連結部材25に、ピストンロッド68が球面継手42を介して質量体5に夫々連結される。
【0034】
図3に示す振動エネルギ吸収手段16では、質量体5の事務所ビル3に対する相対的な水平方向Hの振動に基づくピストンロッド68の水平方向Hの振動でシリンダ61の内部の流体にオリフィス64を介する二室62及び63に対する流出入を生じさせ、これにより水平方向Hの振動を減小させると共に、その振動エネルギを吸収するようになっている。
【0035】
以上の免震構造物1では、地震により基礎2が水平方向Hに振動されると積層ゴム11が水平方向Hに剪断変形されると共に、基礎2の水平方向Hの振動エネルギの一部が事務所ビル3に伝達されて、事務所ビル3は、当該事務所ビル3の質量m1並びに積層ゴム11のばね定数k1及び減衰係数c1等に基づく固有周期T1をもって水平方向Hに振動する。事務所ビル3のこの振動で、質量体5も当該質量体5の質量m2、コイルばね15のばね定数k2及び振動エネルギ吸収手段16の減衰係数c1等に基づく、固有周期T1に略等しい固有周期T2をもって水平方向Hに、事務所ビル3の振動位相と概略逆位相で振動し、質量体5のこの振動で事務所ビル3の振動振幅が大きく減小されると共に、事務所ビル3の振動エネルギが主に振動エネルギ吸収手段16において熱エネルギとして消費され吸収され、事務所ビル3の振動が早期に減衰される。
【0036】
そして免震構造物1では、質量体5が地盤に水平方向Hに移動自在に支持されているために、質量体5の荷重が事務所ビル3に実質的に付加されず、したがって、質量体5の質量に起因する事務所ビル3及び免震装置4の耐荷重性能の増大を必要としない。
【0037】
また免震構造物1では、質量体5が低摩擦面である下面52及び上面53を介して地盤に水平方向Hに移動自在に支持されているために、質量体5を地盤に対してほとんど抵抗なしに水平方向Hに移動させることができる結果、免震装置4の免震機能を阻害しなく、而して、地震に際して効果的に事務所ビル3を免震できる。
【0038】
上記の免震構造物1では、質量体5及び振動エネルギ吸収手段16を事務所ビル3と別体に設けたが、これに代えて、図4に示すように、質量体を事務所ビル3の一部である床部材71で構成して、振動エネルギ吸収手段を、床部材71の周囲下面の摩擦面72と床部材71の周囲下面を水平方向Hに摺動自在に支持する事務所ビル3の支持部材73の上面であって摩擦面72に摩擦接触する摩擦面74とで構成してもよく、この場合、コイルばね15の一端部22を事務所ビル3の柱又は壁75に、その他端部23を床部材71の側端面76に夫々連結する。
【0039】
図4に示す質量体として床部材71を、弾性体としてコイルばね15を、そして振動エネルギ吸収手段として摩擦面72及び74を夫々具備した制振手段81からなる免震構造物82でも、免震構造物1と同様に、地震により事務所ビル3が水平方向Hに振動されると、事務所ビル3のこの振動で、床部材71も当該床部材71の質量m2、コイルばね15のばね定数k2並びに摩擦面72及び74での摺動摩擦抵抗に起因する減衰係数c1等に基づく、固有周期T1に略等しい固有周期T2をもって水平方向Hに事務所ビル3の振動位相と略逆位相で振動し、床部材71のこの振動で事務所ビル3の振動振幅が大きく減小されると共に、事務所ビル3の振動エネルギが主に摩擦面72及び74での熱エネルギとして消費され吸収され、事務所ビル3の振動が早期に減衰される。
【0040】
免震構造物82によれば、事務所ビル3の床部材71を質量体としているために、質量体5に対する取付工数を省くことができ、低価格化を図り得る。
【0041】
なお、質量体としての水平方向Hに振動自在な斯かる床部材71からなる制振手段81を事務所ビル3の一階、中間階又は地階のみに設けるのではなく、適当な任意の複数の階、必要であれば全階に設けてもよい。
【0042】
【発明の効果】
本発明によれば、免震装置を介して支持された構造物の振動を効果的に減小させることができる上に、その振動を早期に減衰させることができ、加えて、質量体の質量(重量)に起因する構造物及び免震装置の耐荷重性能の増大を必要としない制振機能付き免震構造物を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様の好ましい例の正面図である。
【図2】図1に示す例の一部拡大説明図である。
【図3】図1に示す例に適用できる振動エネルギ吸収手段の他の例の断面図である。
【図4】本発明の一実施態様の他の好ましい例の説明図である。
【符号の説明】
1 制振機能付き免震構造物
2 基礎
3 事務所ビル
4 免震装置
5 質量体
6 制振手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure with a damping function in which a damping function is further added to a structure such as an office building, an apartment house, a bridge, or a detached house that has been seismically isolated by a seismic isolation device.
[0002]
[Problems to be solved by the invention]
In structures such as office buildings, apartment houses, bridges or detached houses, seismic isolation structures have been proposed in which seismic isolation devices are interposed between the structures and the foundation. In such a seismic isolation structure, the seismic isolation device lengthens the natural period of the vibration of the structure, avoids the resonance of the structure due to a sudden large earthquake, and prevents the destruction of the structure due to the earthquake.
[0003]
By the way, even in the above-mentioned seismic isolation structure, the structure vibrates in the horizontal direction in the event of an earthquake motion. If the amplitude of this long cycle is large, the structure may be destroyed if it continues for a long time. In particular, office buildings, apartment houses, detached houses, and the like give a great discomfort and anxiety to the residents.
[0004]
In response to such problems, the mass body mounted on the structure is vibrated with a phase difference together with the vibration of the structure, and the seismic isolation structure with a vibration damping function that reduces the vibration of the structure by the vibration of the mass body However, in such a base-isolated structure, in order to mount the mass body on the structure, it is necessary to design the structure to withstand the load of the mass body in addition to its own load. In addition, when such a strongly designed structure is supported on the foundation via the seismic isolation device, there is a possibility that the load bearing performance of the seismic isolation device must be increased.
[0005]
The present invention has been made in view of the above-mentioned points. The object of the present invention is to effectively reduce the vibration of a structure supported via a seismic isolation device. Provided is a seismic isolation structure with a damping function that can dampen vibrations early, and that does not require an increase in load bearing performance of the structure and the base isolation device due to the mass (weight) of the mass body There is.
[0006]
[Means for Solving the Problems]
The seismic isolation structure with a damping function according to the first aspect of the present invention is interposed between the ground and the structure to support the structure and to isolate the horizontal vibration of the structure with respect to the ground. A seismic device, a vibration control means for controlling horizontal vibration of the structure with respect to the ground, and a support base installed and fixed on the ground. The mass body that is supported by the support base so as to be movable in the horizontal direction and the mass body is vibrated in the horizontal direction by elastic expansion and contraction in response to the horizontal vibration of the structure with respect to the support base. The elastic body connected to the structure at one end and the mass body at the other end, and the structural body at one end to absorb vibration energy in response to the horizontal vibration of the mass body with respect to the support base. Vibration energy absorbing means connected to the mass respectively at the other end The support base is adapted to receive the load of the mass body via the lower surface of the mass body and the upper surface of the support base that are in contact with each other, and the mass body has a structure with respect to its horizontal vibration. The object is connected via an elastic body and vibration energy absorbing means, while the support base is connected only through frictional contact between the lower surface of the mass body and the upper surface of the support base.
[0007]
According to the seismic isolation structure of the first aspect, the structure vibrates in the horizontal direction via the seismic isolation device due to the earthquake because the vibration control means for suppressing the horizontal vibration of the structure is provided. However, the vibration of the structure is reduced by the vibration of the mass body of the vibration damping means having a vibration phase different from that, and the vibration energy of the structure is consumed as, for example, heat energy by the vibration energy absorbing means of the vibration damping means. In addition, the vibration of the structure is attenuated at an early stage, and the mass body is supported by the ground so as to be movable in the horizontal direction, so that the load of the mass body is substantially applied to the structure. Therefore, it is not necessary to increase the load bearing performance of the structure and the seismic isolation device due to the mass of the mass body.
[0008]
In the seismic isolation structure with a vibration damping function according to the second aspect of the present invention, in the seismic isolation structure according to the first aspect, each of the upper surface of the support base and the lower surface of the mass body is a low friction surface. The mass bodies are slidably in contact with each other. Thus, the mass bodies are supported on the ground so as to be movable in a horizontal direction via a low friction surface or a rolling friction surface as a reference.
[0009]
According to the seismic isolation structure of the second aspect, as a result of being able to move the mass body in the horizontal direction with little resistance to the ground, the seismic isolation function of the seismic isolation device is not hindered. The structure can be effectively isolated in the event of an earthquake.
[0010]
The mass body in the present invention is supported by the ground. In this case, a support base similar to the foundation is installed and fixed separately from the foundation, and the mass body is grounded through the support base. However, instead of this, a foundation for supporting the structure is installed over the entire lower surface of the structure, and a part of the foundation is used as a support base. The mass body may be supported on the ground via the base, and when such a support base is used, the mass body is grounded by interposing a low friction surface or a rolling friction surface as a reference between the support base and the mass body. It is better to support it so that it can move horizontally. In the seismic isolation structure according to the second aspect, the rolling friction surface as a reference may be embodied using rollers, rollers, balls (spheres), or the like.
[0011]
In each of the first and second seismic isolation structures according to the first and second aspects, the mass body may be a separate body from the structure, but the third aspect of the present invention is a seismic isolation structure with a damping function. Like a thing, it is good also considering the floor member of a structure as a mass body.
[0012]
Damping function seismic isolation structure of the present onset Ming fourth aspect, it is interposed between the foundation and the structure, to support the structure, seismic isolation for seismic isolation of vibrations in the horizontal direction of the structure And a damping means for damping the vibration in the horizontal direction of the structure, wherein the damping means includes a mass body movable in the horizontal direction and a vibration in the horizontal direction of the structure. An elastic body coupled to the mass body so as to vibrate the mass body in a horizontal direction by elastic expansion and contraction in response, and vibration energy absorbing means for absorbing the vibration energy according to the horizontal vibration of the mass body; The floor member of the structure is a mass body.
[0013]
According to the seismic isolation structure of the fourth aspect, the same effect as the seismic isolation structure of the first aspect can be obtained, and the floor member of the structure is a mass body. Similar to the seismic isolation structure of the third aspect, a separate mass body is not particularly required, the number of mounting steps can be omitted, and the cost can be reduced.
[0014]
In the seismic isolation structure according to the fourth aspect, the floor member as the mass body may be supported movably in the horizontal direction on the foundation via a low friction surface or a rolling friction surface. Alternatively, the floor member may be supported by a support member such as a beam or joist of the structure so as to be movable in the horizontal direction.
[0015]
The seismic isolation device includes a laminated rubber in which rigid layers and elastic layers are alternately laminated in the vertical direction, like the seismic isolation structure with a vibration damping function of the fifth aspect of the present invention. Even if it exists, like the seismic isolation structure with a vibration suppression function of the sixth aspect of the present invention, a lower concave surface that is concave upward, an upper concave surface that is concave downward, and these lower concave surface and upper concave surface It may be provided with a rolling element that is interposed between and a rolling element that can roll with respect to the lower concave surface and the upper concave surface, or a sliding body that is slidable with respect to the lower concave surface and the upper concave surface. It is not limited to, and other things may be used. The lower concave surface and the upper concave surface may be a concave groove surface (a bowl-shaped surface). Alternatively, the concave concave surface may be a concave spherical surface. The sliding body can be composed of rollers and rollers, and the upper and lower surfaces have the same radius of curvature as that of the concave groove surface, and the rods with two plates are composed of rod-like members such that the plates are aligned with each other. In the case of a concave spherical surface, the rolling body can be composed of a ball (spherical body), and the sliding body can be composed of a flat member or a columnar member whose upper and lower surfaces have the same radius of curvature as the concave spherical surface.
[0016]
In the present invention, the elastic body preferably includes at least one of a coil spring, an air spring, and a rubber member, like the seismic isolation structure with a vibration damping function of the seventh aspect, In the present invention, the elastic body preferably has one end and the other end, and is connected to the structure at one end and to the mass at the other end. The connection between the one end portion and the other end portion of the elastic body to the structure and the mass body is performed using a spherical joint.
[0017]
The vibration energy absorbing means of the present invention has a cylinder filled with lead and a huge portion inside the cylinder, and penetrates the cylinder, like the seismic isolation structure with a damping function of the eighth aspect. Even if it is equipped with a rod, as in the seismic isolation structure of the ninth aspect, the cylinder is filled with fluid and the inside of this cylinder is defined in two chambers. A piston having an orifice communicating with the two chambers, and a piston rod fixed to the piston and penetrating both ends of the cylinder may be provided. When such vibration energy absorbing means is used, it is preferable that any one of the cylinder and the rod or the piston rod is connected to the structure and the other is connected to the mass body via a spherical joint.
[0018]
At least one of the elastic body and the vibration energy absorbing means is preferably arranged around the mass body like the seismic isolation structure of the tenth aspect of the present invention.
[0019]
In addition, like the seismic isolation structure with a vibration control function of the eleventh aspect of the present invention, the vibration energy absorbing means is configured to frictionally contact the friction sliding surface provided in the structure and the friction sliding surface. You may comprise and comprise the friction sliding surface provided in the mass body.
[0020]
The structure of the present invention is preferably an office building, an apartment house or a bridge like the seismic isolation structure with a vibration damping function of the twelfth aspect, but the present invention is not limited to these, Other structures may be used.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention and its embodiments will be described in more detail with reference to the drawings. The present invention is not limited to these embodiments.
[0022]
1 and 2, the seismic isolation structure 1 with a vibration control function of this example is composed of a concrete foundation 2 fixed on a ground by a pile or the like and a high-rise office building 3 as a structure. The seismic isolation device 4 that is interposed between the office building 3 to support the load in the vertical direction V of the office building 3 and to isolate the vibration in the horizontal direction H of the office building 3, and the horizontal direction H of the office building 3. Mass body 5 having a vibration period T2 that is substantially the same as the vibration period T1 of the office building 3 in the horizontal direction H, preferably about 0.95 times the vibration period T1. Is provided with vibration damping means 6 adapted to vibrate in the horizontal direction H in response to the vibration in the horizontal direction H of the office building 3.
[0023]
The seismic isolation device 4 includes a plurality of laminated rubbers 11 in which rigid layers and elastic layers are alternately laminated in the vertical direction V. Each laminated rubber 11 is fixed to the laminated rubber 11 on the lower surface. The upper surface is fixed to the base 2 via the lower mounting plate 12 and anchor bolts, and the upper surface is fixed to the lower surface 14 of the office building 3 via the upper mounting plate 13 and bolts fixed to the laminated rubber 11. A plurality of the laminated rubbers 11 to which the lower mounting plate 12 and the upper mounting plate 13 are attached are appropriately distributed and arranged on the lower surface 14 of the office building 3 so as to receive the load of the office building 3. Yes.
[0024]
As the seismic isolation device 4, instead of the laminated rubber 11, a downwardly concave surface that is concave upward, for example, a semi-concave spherical surface, an upwardly concave surface that is concave downward, for example, a semi-concave spherical surface, and these lower half-concave It is interposed between the spherical surface and the upper semi-concave spherical surface, and slides on a rolling body such as a sphere capable of rolling with respect to the lower semi-concave spherical surface and the upper semi-concave spherical surface or on the lower semi-concave spherical surface and the upper semi-concave spherical surface. A pendulum type may be used which includes a sliding body having an upper half concave spherical surface and a lower half concave spherical surface having the same curvature radius as the lower half concave spherical surface and the upper half concave spherical surface.
[0025]
The vibration damping means 6 disposed on the lower surface 14 of the office building 3 elastically moves the mass body 5 in response to the vibration of the office building 3 in the horizontal direction H and the mass body 5 that can vibrate in the horizontal direction H. A plurality of coil springs 15 as elastic bodies connected to the mass body 5 so as to vibrate in the horizontal direction H by expansion and contraction, and a plurality that absorbs the vibration energy according to the vibration of the mass body 5 in the horizontal direction H. Vibration energy absorbing means 16.
[0026]
Although two coil springs 15 are shown in FIG. 1, the vibration of the office building 3 due to the earthquake occurs in all directions in the horizontal direction H including the direction parallel to the plane of FIG. Two or more coil springs 15 are arranged around the mass body 5 in the horizontal plane so that the vibration damping means 6 can respond to the vibration of the office building 3 approximately equally. Yes.
[0027]
Each coil spring 15 has one end 22 and the other end 23, and the one end 22 is connected to a connecting member 25 via a spherical joint 24, and the other end 23 is similarly a spherical joint 26. The connecting member 25 is fixed to the lower surface 14 of the office building 3, and thus each coil spring 15 of this example has a lower surface of the office building 3 at one end 22. 14 is connected to the mass body 5 via a spherical joint 26 at the other end 23 via a spherical joint 24 and a connecting member 25, and the work between one end 22 and the other end 23 of each coil spring 15 is performed. The building 3 and the mass body 5 are connected by using spherical joints 24 and 26.
[0028]
As the elastic body, at least one of an air spring and a rubber member may be used instead of or together with the coil spring 15.
[0029]
Although two vibration energy absorbing means 16 are shown in FIG. 1, as in the case of the coil spring 15, the vibration of the office building 3 due to the earthquake is horizontal including the direction parallel to the plane of FIG. The vibration energy absorbing means 16 is provided in the horizontal plane so that the vibration damping means 6 can respond to the vibration of the office building 3 evenly evenly in the direction of H. Two or more are arranged around.
[0030]
Each vibration energy absorbing means 16 has a cylinder 32 filled with lead 31 inside, a huge portion 33 inside the cylinder 32, and a rod 36 penetrating the end surface member 34 and the end surface portion 35 which are both ends of the cylinder 32. And an attachment member 37 fixed to the cylinder 32. The attachment member 37, which is one end of the vibration energy absorbing means 16, is connected to the connection member 25 via the spherical joint 41, and vibration energy is absorbed. The rod 36 protruding from the end face member 34, which is the other end of the absorbing means 16, is connected to the mass body 5 via the spherical joint 42. Thus, the vibration energy absorbing means 16 is connected to the cylinder 32 and the rod 36. In any case, in this example, the cylinder 32 is connected to the office building 3 via the mounting member 37, the spherical joint 41 and the connecting member 25, and the other side. The rods 36 are respectively connected to the mass body 5 via the spherical joint 42, and one end and the other end of the vibration energy absorbing means 16 are connected to the office building 3 and the mass body 5. 42 is used.
[0031]
In the vibration energy absorbing means 16, plastic flow is generated in the lead 31 by the vibration in the horizontal direction H of the rod 36 based on the vibration in the horizontal direction H relative to the office building 3 of the mass body 5. The vibration is reduced and the vibration energy is absorbed.
[0032]
The mass body 5 is separate from the base 2 and is supported by a support base 51 installed and fixed on the ground so as to be movable in the horizontal direction H. The lower surface 52 and the lower surface 52 of the mass body 5 are horizontally aligned. The upper surface 53 of the support base 51 that is slidably in contact with H is a low friction surface. Thus, the mass body 5 moves in the horizontal direction H to the ground via the lower surface 52 and the upper surface 53 and the support base 51. The support base 51 receives the load of the mass body 5 through the lower surface 52 of the mass body 5 and the upper surface 53 of the support base 51 that are in contact with each other. As for the vibration in the horizontal direction H, the office building 3 is connected to the office building 3 via the coil spring 15 and the vibration energy absorbing means 16, while the support base 51 is connected to the lower surface 52 of the mass body 5 and the support base 51. Are connected only through frictional contact with the upper surface 53.
[0033]
As the vibration energy absorbing means 16, as shown in FIG. 3, a cylinder 61 filled with a fluid, preferably a silicon-based liquid, and the inside of the cylinder 61 are defined in two chambers 62 and 63. A piston 65 having an orifice 64 communicating with the chambers 62 and 63, a piston rod 68 passing through the end surface member 66 and the end surface portion 67 that are both ends of the cylinder 61, and the cylinder 61 In this case, for example, the attachment member 69 is connected to the connecting member 25 via the spherical joint 41, and the piston rod 68 is connected to the mass via the spherical joint 42. Each is connected to the body 5.
[0034]
In the vibration energy absorbing means 16 shown in FIG. 3, the orifice 64 is formed in the fluid in the cylinder 61 by the vibration in the horizontal direction H of the piston rod 68 based on the vibration in the horizontal direction H relative to the office building 3 of the mass body 5. This causes the two chambers 62 and 63 to flow in and out, thereby reducing vibration in the horizontal direction H and absorbing vibration energy.
[0035]
In the above seismic isolation structure 1, when the foundation 2 is vibrated in the horizontal direction H due to the earthquake, the laminated rubber 11 is sheared and deformed in the horizontal direction H, and part of the vibration energy in the horizontal direction H of the foundation 2 is office work. When transmitted to the building 3, the office building 3 vibrates in the horizontal direction H with a natural period T1 based on the mass m1 of the office building 3, the spring constant k1 of the laminated rubber 11, the damping coefficient c1, and the like. Due to this vibration of the office building 3, the mass body 5 also has a natural period substantially equal to the natural period T1 based on the mass m2 of the mass body 5, the spring constant k2 of the coil spring 15, the damping coefficient c1 of the vibration energy absorbing means 16, and the like. The vibration of the office building 3 vibrates in the horizontal direction H at T2 with a substantially opposite phase to the vibration phase of the office building 3, and the vibration amplitude of the office building 3 is greatly reduced by this vibration of the mass body 5. Energy is mainly consumed and absorbed as thermal energy in the vibration energy absorbing means 16, and the vibration of the office building 3 is attenuated at an early stage.
[0036]
In the seismic isolation structure 1, since the mass body 5 is supported by the ground so as to be movable in the horizontal direction H, the load of the mass body 5 is not substantially applied to the office building 3. Therefore, the mass body No increase in load bearing performance of the office building 3 and the seismic isolation device 4 due to the mass of 5 is required.
[0037]
In the seismic isolation structure 1, the mass body 5 is supported by the ground so as to be movable in the horizontal direction H via the lower surface 52 and the upper surface 53, which are low friction surfaces. As a result of being able to move in the horizontal direction H without resistance, the seismic isolation function of the seismic isolation device 4 is not hindered, and the office building 3 can be effectively isolated in the event of an earthquake.
[0038]
In the seismic isolation structure 1 described above, the mass body 5 and the vibration energy absorbing means 16 are provided separately from the office building 3, but instead, as shown in FIG. The floor building 71 is a part of the floor, and the vibration energy absorbing means supports the friction surface 72 on the lower peripheral surface of the floor member 71 and the peripheral lower surface of the floor member 71 slidably in the horizontal direction H. 3 and a friction surface 74 that is in frictional contact with the friction surface 72. In this case, one end 22 of the coil spring 15 is attached to the column or wall 75 of the office building 3, The other end portions 23 are connected to the side end surfaces 76 of the floor member 71, respectively.
[0039]
The seismic isolation structure 82 including the damping member 81 provided with the floor member 71 as the mass body, the coil spring 15 as the elastic body, and the friction surfaces 72 and 74 as the vibration energy absorbing means shown in FIG. Similarly to the structure 1, when the office building 3 is vibrated in the horizontal direction H due to an earthquake, the floor member 71 also has the mass m <b> 2 of the floor member 71 and the spring constant of the coil spring 15 due to this vibration of the office building 3. vibrates in the horizontal direction H in a phase substantially opposite to the vibration phase of the office building 3 with a natural period T2 substantially equal to the natural period T1 based on k2 and the damping coefficient c1 caused by the sliding frictional resistance at the friction surfaces 72 and 74. The vibration of the office building 3 is greatly reduced by this vibration of the floor member 71, and the vibration energy of the office building 3 is mainly consumed and absorbed as heat energy at the friction surfaces 72 and 74, and The vibration of the building 3 is attenuated at an early stage.
[0040]
According to the seismic isolation structure 82, since the floor member 71 of the office building 3 is a mass body, the number of mounting steps for the mass body 5 can be omitted, and the cost can be reduced.
[0041]
The vibration control means 81 including the floor member 71 that can vibrate in the horizontal direction H as a mass body is not provided only on the first floor, the intermediate floor, or the basement of the office building 3, and any appropriate plural number It may be provided on all floors if necessary.
[0042]
【The invention's effect】
According to the present invention, the vibration of the structure supported via the seismic isolation device can be effectively reduced, and the vibration can be attenuated at an early stage. In addition, the mass of the mass body It is possible to provide a seismic isolation structure with a damping function that does not require an increase in load bearing performance of the structure and the seismic isolation device due to (weight).
[Brief description of the drawings]
FIG. 1 is a front view of a preferred example of an embodiment of the present invention.
FIG. 2 is a partially enlarged explanatory view of the example shown in FIG.
3 is a cross-sectional view of another example of vibration energy absorbing means applicable to the example shown in FIG.
FIG. 4 is an explanatory diagram of another preferred example of one embodiment of the present invention.
[Explanation of symbols]
1 Seismic isolation structure with damping function 2 Foundation 3 Office building 4 Seismic isolation device 5 Mass 6 Damping means

Claims (7)

地盤及び構造物間に介在されて、構造物を支持すると共に、当該構造物の地盤に対する水平方向の振動を免震する免震装置と、構造物の地盤に対する水平方向の振動を制振する制振手段と、地盤に設置、固定された支持台とを具備しており、制振手段は、下面で支持台の上面に接触して当該支持台に水平方向に移動自在に支持されている質量体と、構造物の支持台に対する水平方向の振動に応答して質量体を弾性的な伸縮により水平方向に振動させるように、一端部では構造物に他端部では質量体に夫々連結された弾性体と、質量体の支持台に対する水平方向の振動に応じてその振動エネルギを吸収するように、一端部では構造物に他端部では質量体に夫々連結された振動エネルギ吸収手段とを具備しており、支持台は、互いに接触する質量体の下面及び支持台の上面を介して質量体の荷重を受容するようになっており、質量体は、その水平方向の振動に関して、構造物には、弾性体及び振動エネルギ吸収手段を介して連結されている一方、支持台には、質量体の下面と支持台の上面との摩擦接触のみを介して連結されており、支持台の上面及び質量体の下面の夫々は、低摩擦面とされていると共に互いに水平方向に摺動自在に接触しており、振動エネルギ吸収手段は、構造物に設けられた摩擦滑り面と、この摩擦滑り面に摩擦接触するように質量体に設けられた摩擦滑り面とを具備しており、構造物の床部材を質量体とした制振機能付き免震構造物。 A seismic isolation device interposed between the ground and the structure to support the structure and to isolate the horizontal vibration of the structure against the ground, and to control the horizontal vibration of the structure against the ground. Mass comprising a vibration means and a support base installed and fixed on the ground, and the vibration suppression means is in contact with the upper surface of the support base on the lower surface and is supported by the support base so as to be movable in the horizontal direction. The mass body is connected to the structure at one end and the mass body at the other end so that the mass body is vibrated in the horizontal direction by elastic expansion and contraction in response to the horizontal vibration with respect to the body and the support of the structure. An elastic body and vibration energy absorbing means connected to the structure at one end and to the mass at the other end so as to absorb vibration energy in response to horizontal vibration of the mass body with respect to the support base. And the support bases are in mass The mass body receives the load of the mass body through the lower surface of the support and the upper surface of the support base, and the mass body is connected to the structure via the elastic body and the vibration energy absorbing means with respect to the horizontal vibration. On the other hand, the support base is connected only through frictional contact between the lower surface of the mass body and the upper surface of the support base, and each of the upper surface of the support base and the lower surface of the mass body is a low friction surface. The vibration energy absorbing means includes a friction sliding surface provided on the structure and a friction provided on the mass body so as to make frictional contact with the friction sliding surface. A seismic isolation structure with a vibration control function that has a sliding surface and uses the floor of the structure as a mass. 免震装置は、剛性層と弾性層とが鉛直方向に交互に積層された積層ゴムを具備している請求項1に記載の制振機能付き免震構造物。The seismic isolation device according to claim 1, wherein the seismic isolation device includes a laminated rubber in which rigid layers and elastic layers are alternately laminated in a vertical direction. 弾性体は、コイルばね、空気ばね及びゴム部材のうちの少なくとも一つを具備している請求項1又は2に記載の制振機能付き免震構造物。The seismic isolation structure with a damping function according to claim 1 or 2, wherein the elastic body includes at least one of a coil spring, an air spring, and a rubber member. 振動エネルギ吸収手段は、内部に鉛を充填したシリンダと、シリンダの内部において膨大部を有すると共に、シリンダの両端部を貫通したロッドとを具備している請求項1から3のいずれか一項に記載の制振機能付き免震構造物。4. The vibration energy absorbing means according to claim 1, further comprising: a cylinder filled with lead; and a rod having a huge portion inside the cylinder and penetrating both ends of the cylinder. The seismic isolation structure with the damping function described. 振動エネルギ吸収手段は、内部に流体を充填したシリンダと、このシリンダの内部を二室に画成すると共に、当該二室を互いに連通するオリフィスを有したピストンと、このピストンが固着されていると共に、シリンダの両端部を貫通したピストンロッドとを具備している請求項1から3のいずれか一項に記載の制振機能付き免震構造物。The vibration energy absorbing means includes a cylinder filled with a fluid, a piston having an orifice that communicates the two chambers with each other, and a fixed piston. The seismic isolation structure with a damping function according to any one of claims 1 to 3, further comprising a piston rod penetrating both ends of the cylinder. 弾性体及び振動エネルギ吸収手段のうちの少なくとも一方は、質量体の周囲に配されている請求項1から5のいずれか一項に記載の制振機能付き免震構造物。The seismic isolation structure with a damping function according to any one of claims 1 to 5, wherein at least one of the elastic body and the vibration energy absorbing means is disposed around the mass body. 構造物は、事務所ビル、集合住宅又は橋梁である請求項1から6のいずれか一項に記載の制振機能付き免震構造物。The seismic isolation structure with a damping function according to any one of claims 1 to 6, wherein the structure is an office building, an apartment house, or a bridge.
JP2000286118A 2000-09-20 2000-09-20 Seismic isolation structure with damping function Expired - Fee Related JP4803620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000286118A JP4803620B2 (en) 2000-09-20 2000-09-20 Seismic isolation structure with damping function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000286118A JP4803620B2 (en) 2000-09-20 2000-09-20 Seismic isolation structure with damping function

Publications (2)

Publication Number Publication Date
JP2002098188A JP2002098188A (en) 2002-04-05
JP4803620B2 true JP4803620B2 (en) 2011-10-26

Family

ID=18770085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000286118A Expired - Fee Related JP4803620B2 (en) 2000-09-20 2000-09-20 Seismic isolation structure with damping function

Country Status (1)

Country Link
JP (1) JP4803620B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901348B2 (en) * 2012-02-28 2016-04-06 大成建設株式会社 Seismic isolation structure
JP2016056875A (en) * 2014-09-10 2016-04-21 オイレス工業株式会社 Seismic base isolation structure with vibration control function
CN107762807A (en) * 2017-12-10 2018-03-06 岳文智 A kind of compressor for natural gas
JP7330122B2 (en) * 2020-03-16 2023-08-21 株式会社フジタ Support structure for superstructure
CN114135629B (en) * 2021-12-06 2023-04-11 西南科技大学 Damping-adjustable semi-active control three-way vibration isolation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362247U (en) * 1989-10-24 1991-06-18
JPH0751857B2 (en) * 1991-02-26 1995-06-05 鹿島建設株式会社 Vibration control structure
JP3074572B2 (en) * 1991-04-26 2000-08-07 オイレス工業株式会社 Seismic isolation support structure for low-load structures
JP3176084B2 (en) * 1991-05-30 2001-06-11 辰治 石丸 Damping structure
JPH05340132A (en) * 1992-06-08 1993-12-21 Taisei Corp Vibration controller for structure
JPH0791106A (en) * 1993-09-27 1995-04-04 Ishikawajima Harima Heavy Ind Co Ltd Vibration-damping apparatus
JP3075550B2 (en) * 1993-11-11 2000-08-14 辰治 石丸 Lever mechanism and structure for vibration damping device
JP3046192B2 (en) * 1994-01-11 2000-05-29 株式会社熊谷組 Bridge vibration control device
JPH0868234A (en) * 1994-08-30 1996-03-12 Bridgestone Corp Seismic isolator
JPH10317717A (en) * 1997-05-23 1998-12-02 Mitsubishi Steel Mfg Co Ltd Base isolation rolling support having restoring force
JPH11230249A (en) * 1998-02-09 1999-08-27 Takenaka Komuten Co Ltd Passive type mass damper for large earthquake
JP2000145191A (en) * 1998-11-09 2000-05-26 Misawa Homes Co Ltd Vibration damper

Also Published As

Publication number Publication date
JP2002098188A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
JP5079766B2 (en) Isolation platform
CN105971148A (en) Universal swing track supporting tuned mass damper
JP2004535534A (en) Friction damper for damping structure motion
JP2586794Y2 (en) Seismic isolation support device for structures
JP4803620B2 (en) Seismic isolation structure with damping function
JPH0960334A (en) Three dimensional base insulation method and vibration isolation device
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
US20080072508A1 (en) Vibration and force absorbing assembly incorporated into a building foundation for dampening the effects of environmentally induced events
JP3677712B2 (en) Seismic isolation and control building
JP4419218B2 (en) Energy absorption structure of beam-column joint
CN216664573U (en) Vertical tuning damping/vibrating device with quasi-zero rigidity characteristic
JP2660340B2 (en) Dynamic vibration absorber for buildings
JPH11200660A (en) Vibration control structure for construction
JPH11200661A (en) Vibration control method for connected structure
JP2001082542A (en) Three-dimensional base isolation device
JP2019190539A (en) Passive type anti-vibration device of building
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JPH0483070A (en) Support struction of roof installation
JPH0414613Y2 (en)
JP2003155838A (en) Vibration-isolated structure of building
JP4022313B2 (en) Seismic isolation / vibration isolation structure with suspension and sliding
JPH09296626A (en) Base isolation structural system, and uplift-preventing device therefor
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP2016056875A (en) Seismic base isolation structure with vibration control function
JP4029685B2 (en) Damping type seismic isolation building and vibration damping device used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100907

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

R150 Certificate of patent or registration of utility model

Ref document number: 4803620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees