JP2019190539A - Passive type anti-vibration device of building - Google Patents

Passive type anti-vibration device of building Download PDF

Info

Publication number
JP2019190539A
JP2019190539A JP2018082748A JP2018082748A JP2019190539A JP 2019190539 A JP2019190539 A JP 2019190539A JP 2018082748 A JP2018082748 A JP 2018082748A JP 2018082748 A JP2018082748 A JP 2018082748A JP 2019190539 A JP2019190539 A JP 2019190539A
Authority
JP
Japan
Prior art keywords
building
additional mass
vibration
outer shell
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018082748A
Other languages
Japanese (ja)
Other versions
JP6420012B1 (en
Inventor
正通 亀井
Masamichi Kamei
正通 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RANDO BUSINESS KK
Original Assignee
RANDO BUSINESS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RANDO BUSINESS KK filed Critical RANDO BUSINESS KK
Priority to JP2018082748A priority Critical patent/JP6420012B1/en
Application granted granted Critical
Publication of JP6420012B1 publication Critical patent/JP6420012B1/en
Publication of JP2019190539A publication Critical patent/JP2019190539A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a compact anti-vibration device that can be applied to an existing building enabling a maximum anti-vibration function in response to a vibration level ranging from a small-level earthquake to a major earthquake.SOLUTION: This invention comprises an outer shell structure 2 forming an outer shell of an anti-vibration device 1 and fixed to a building becoming an object to be anti-vibrated, an additional mass 3 which is stored in the outer shell structure 2 with a clearance C and having a circular or elliptical outer shell edge at a horizontal section that can be vibrated in all directions in a horizontal face through a horizontal spring means 4 and an attenuation means 5 for applying attenuation force against a horizontal vibration of the additional mass 3. A spring constant of the horizontal spring means 4 and an attenuation constant of the attenuation means 5 are set acting as TMD. When an amplitude in a horizontal direction of the additional mass 3 reaches to the clearance C or more, the additional mass 3 strikes against the inner surface of an outer wall part 2a of the outer shell structure 2 and a vibration of a building is attenuated by shock energy generated by the striking action.SELECTED DRAWING: Figure 1

Description

本発明は、地震や風による建物の振動を抑制するための建物用受動型制振装置に関するもので、従来のTMD(チューンド・マス・ダンパー)の機能に加え、インパクトダンパーの機能を付加したものである。   The present invention relates to a passive vibration control device for buildings for suppressing vibration of buildings due to earthquakes and winds. In addition to the function of a conventional TMD (tuned mass damper), the function of an impact damper is added. It is.

地震国である我が国おいては、過去の大地震による教訓をもとに、耐震、制振に関する考え方が都度見直されている。そのような状況下において、旧耐震の設計による既存の建物の構造では、今後予想される大地震に対しては耐震性能が十分ではないという問題がある。   In Japan, an earthquake-prone country, the idea of earthquake resistance and vibration suppression is reviewed each time based on the lessons learned from past major earthquakes. Under such circumstances, there is a problem that the existing building structure based on the old seismic design has insufficient seismic performance for a large earthquake that is expected in the future.

このようなことから、既存の建物については、建て替えによらずに耐震性能を大幅に向上させることができる耐震補強構造あるいは耐震補強方法が望まれており、種々の構造、方法が提案されている。   For these reasons, for existing buildings, there is a demand for an earthquake-resistant reinforcement structure or method that can greatly improve earthquake-resistance performance without rebuilding, and various structures and methods have been proposed. .

ところで、都会など地価が高価な地域では、ペンシルビルなど間口の狭い多層階のビルが多数建設されている。このようなペンシルビルはその形態から、桁行き方向は比較的耐震性が高いが、梁間方向の固有周期が長く、比較的長周期の地震動による横揺れが大きくなる傾向があるという問題がある。   By the way, in areas with high land prices such as urban areas, many multi-storey buildings with narrow frontage such as pencil buildings have been constructed. Due to the shape of such a pencil building, the girder direction has a relatively high earthquake resistance, but the natural period in the interbeam direction is long, and there is a problem that the roll due to a relatively long period of ground motion tends to increase.

また、ペンシルビルはもともと狭隘な敷地に建設されることが多いため、建物外部からの耐震補強が難しいといった問題もある。   Pencil buildings are often built on a narrow site, which makes it difficult to reinforce earthquake resistance from outside the building.

従来、建物の頂部などに設置される代表的な制振装置としては、建物の質量に対し、0.5〜3%程度の重り(付加質量)と、建物と重りをつなぐばね手段および減衰手段とから構成される受動型の動吸振器(TMD)、重り(付加質量)にアクチュエーターにより強制的な力を加えて建物の振動を抑制する能動型の動吸振器(AMD:アクティブマスダンパー)がある。   Conventionally, as a typical vibration damping device installed on the top of a building or the like, a weight (additional mass) of about 0.5 to 3% with respect to the mass of the building, a spring means and a damping means for connecting the weight to the building A passive dynamic vibration absorber (TMD) composed of the following: an active dynamic vibration absorber (AMD: active mass damper) that suppresses building vibration by applying a force to the weight (additional mass) with an actuator is there.

その他、TMDとAMDの両者の機能を有するハイブリッド型の動吸振器や、重りの衝突によってエネルギーを吸収する衝撃ダンパーあるいはインパクトダンパーなどが知られている。   In addition, a hybrid dynamic vibration absorber having both functions of TMD and AMD, and an impact damper or an impact damper that absorbs energy by a collision of a weight are known.

AMDの場合、理論的には理想的な制御が行われれば、コンパクトな装置で高い制震効果が得られるが、設計や装置のメンテナンスが難しく、制御に異常が生じた場合には逆効果となって装置を停止せざるを得ないという問題がある。   In the case of AMD, if theoretically ideal control is performed, a high vibration control effect can be obtained with a compact device. However, it is difficult to design and maintain the device. Therefore, there is a problem that the apparatus must be stopped.

TMDについても、従来の既存のTMDでは、高い制振効果とコンパクト化を両立させるのが難しいという問題がある。また、既存のTMDは特定の一方向に機能する装置が一般的であり、異なる2方向の振動に対応するための装置や配置方法も提案されているが実用的なものがない。   With regard to TMD, there is a problem that it is difficult to achieve both a high vibration suppression effect and downsizing with the existing TMD. In addition, existing TMDs are generally devices that function in one specific direction, and devices and arrangement methods for dealing with vibrations in two different directions have been proposed, but none are practical.

また、建物の制振のための衝撃ダンパーも検討されてはいるが、従来検討されている構造では、実用化に多くの課題がある。   Also, impact dampers for vibration control of buildings have been studied, but the structures that have been studied in the past have many problems in practical use.

上述のような課題に対し、特許文献1では、受動型の動吸振器であるTMDの一種として、付加質量としての重りを積層ゴムで支えるタイプのTMDについて、重りの水平方向の変位量の制限や安定性の課題に対し、間隔をおいて複数設けた多段積層ゴムと、重りのX軸方向およびY軸方向の変位の最大量を制限する緩衝装置と、揺動リンクアームなどを備え、摩擦抵抗が小さく、固有周期の微調整も精密に行なえ、安定性を高めることができる2次元パッシブ制振装置が提案されている。   With respect to the above-described problems, Patent Document 1 discloses a type of TMD that is a passive dynamic vibration absorber, and a type of TMD in which a weight as an additional mass is supported by laminated rubber. And a plurality of multi-layered rubbers provided at intervals, a shock absorber for limiting the maximum amount of displacement of the weight in the X-axis direction and the Y-axis direction, a swing link arm, etc. A two-dimensional passive vibration damping device has been proposed that has low resistance, can finely adjust the natural period, and can improve stability.

特許文献2では、振動方向によって異なる固有振動数を有する構造物を制振するための制振装置として、構造物の質量に応じた大きさの第1の付加質量と、第1の付加質量の内部に形成された空間に挿入されるように設けられた第2の付加質量と、第1の付加質量を揺動可能に支持する積層ゴムとよりなる。第1の付加質量は、四隅が4個の積層ゴムにより支持され、第2の付加質量はリニアベアリングによりX方向に摺動可能に支持された装置が提案されている。   In Patent Document 2, as a damping device for damping a structure having a different natural frequency depending on the vibration direction, a first additional mass having a size corresponding to the mass of the structure, and a first additional mass of It consists of the 2nd additional mass provided so that it might insert in the space formed inside, and the lamination rubber which supports the 1st additional mass so that rocking is possible. An apparatus has been proposed in which the first additional mass is supported by four laminated rubbers at the four corners, and the second additional mass is supported by a linear bearing so as to be slidable in the X direction.

また、特許文献3には、異なる周期特性を有する直交する水平2方向に加えて水平斜め方向の構造物の揺れにも対応できるスロッシングダンパーとして、長径D、短径Dの平面視楕円形の筒状容器内に所定の水深hを有する水が貯留されたものであり、楕円形の長軸方向Lと短軸方向Sのスロッシング周期が、構造物の主軸2方向の固有周期とそれぞれ同調するようにしたスロッシングダンパーが記載されている。 Further, in Patent Document 3, as a sloshing damper that can cope with the vibration of a structure in an oblique horizontal direction in addition to two orthogonal horizontal directions having different periodic characteristics, a plan view elliptical shape having a major axis D 1 and a minor axis D 2 is shown. In this cylindrical container, water having a predetermined depth h is stored, and the sloshing period in the major axis direction L and the minor axis direction S of the ellipse is synchronized with the natural period in the two main axis directions of the structure, respectively. A sloshing damper is described.

また、特許文献4には、従来のスロッシングダンパーでは、小さな風圧力や中小地震には有効であるが、水槽の水が破砕するような大きな風圧力や大地震に対しては制振効果がなくなる、長方形の水槽を使用するスロッシングダンパーでは、X、Yの2方向の制振装置が必要となる、といった課題に対し、構造物の上部に設置した円形流体容器の底面に、円柱状慣性質量体を滑動自在に載置し、同慣性質量体と前記容器との間に微弱なばねを介装するとともに、慣性質量体より放射状に岐出され、かつ夫々中間部にオリフィスを具えた可動隔壁の先端を、微弱なばねを介して容器に支持して構成されるパッシブマス制振装置が記載されている。   Patent Document 4 discloses that the conventional sloshing damper is effective for small wind pressures and small and medium earthquakes, but has no damping effect for large wind pressures and large earthquakes that cause water in the tank to be crushed. In a sloshing damper using a rectangular aquarium, a cylindrical inertial mass body is formed on the bottom surface of a circular fluid container installed at the top of the structure in response to the problem that a vibration damping device in two directions X and Y is required. Of the movable partition wall having a weak spring interposed between the inertial mass body and the container, radially radiating from the inertial mass body, and having an orifice at each intermediate portion. A passive mass damping device is described that is configured with its tip supported by a container via a weak spring.

特許文献5には、衝撃ダンパーを用いた高層構造物における制振構造として、付加重錘が重畳的に配された2自由度以上のダイナミックダンパーが独立的に配され、主振動系である高層構造物に揺れが生じたとき、小さい振動幅に対しては付加重錘は衝突せず、大きい振動幅に対しては付加重錘が衝突する被衝突物体を主振動系側に配した高層構造物における制振構造が提案されている。   In Patent Document 5, as a vibration damping structure in a high-rise structure using an impact damper, a dynamic damper having two or more degrees of freedom in which an additional weight is superimposed is arranged independently, and a high-rise structure that is a main vibration system When the structure shakes, the additional weight does not collide with a small vibration width, and the impacted object with which the additional weight collides with a large vibration width is placed on the main vibration system side. Damping structures for objects have been proposed.

また、特許文献6には、動吸振器ではないが、ダンパーを構成する鉛体が水平方向に塑性変形を受け、この塑性変形に伴うエネルギー吸収をもって構造物の振動を吸収する鉛ダンパーに関し、上下方向への鉛体の応力の高まりを抑え、鉛体の実質的な純せん断変形を保証するために、軸方向移動調整機構を設け、塑性変形部の鉛体の変形において、塑性変形に伴う軸方向の変位は軸方向移動調整機構部により吸収されるとともに、その反力機構部により軸方向の変位に応じた引き戻し力が発生し、その結果、塑性変形部の鉛体に過大な引張り抵抗が作用せず、鉛体に作用する軸方向変形応力が緩和されるようにした鉛ダンパーが開示されている。   Further, Patent Document 6 relates to a lead damper that is not a dynamic vibration absorber, but the lead body that constitutes the damper undergoes plastic deformation in the horizontal direction and absorbs the vibration of the structure by absorbing energy accompanying the plastic deformation. In order to suppress the increase of the stress of the lead body in the direction and to guarantee a substantial pure shear deformation of the lead body, an axial movement adjustment mechanism is provided, and in the deformation of the lead body of the plastic deformation portion, the shaft accompanying the plastic deformation The displacement in the direction is absorbed by the axial movement adjustment mechanism, and the reaction force mechanism generates a pull-back force corresponding to the axial displacement, resulting in excessive tensile resistance in the lead body of the plastic deformation portion. A lead damper is disclosed in which axial deformation stress acting on a lead body is relaxed without acting.

非特許文献1の「副質量を有する建物制振用マスダンパに関する研究」(第1報)では、建物頂部に設置される受動型の動吸振器(TMD)や能動型のアクティプマスダンパ(AMD)の場合、付加質量の質量や移動距離が制限されて十分な制振効果が得られないという課題に対し、主質量と副質量の2質量から構成される制振装置を基本とし、地震の入力レベルの大きさに従い、小レベル入力ではアクティブモード、中レベル入力ではパッシブモード、大地震の大レベル入力では衝撃力を応用したパッシブモードと段階的に変更させる制振装置の検討がなされている。   Non-Patent Document 1 “Study on Mass Dampers for Building Vibration Control with Submass” (1st Report) describes passive dynamic vibration absorbers (TMD) and active mass dampers (AMD) installed at the top of buildings. In the case of, the input of the earthquake is based on the vibration control device consisting of the main mass and the sub mass. According to the magnitude of the level, a vibration control device that changes in stages from an active mode for a low level input, a passive mode for a medium level input, and a passive mode applying an impact force for a large level input of a large earthquake has been studied.

非特許文献2の「副質量を有する建物制振用マスダンパに関する研究」(第2報)では、非特許文献1の研究の延長として、五層建物モデルを試験体とした振動実験が述べられている。実験に用いられた試験体は、主質量(ダンパー1)上に副質量(ダンパー2)を搭載し、各質量のばね要素にはコイルスプリング、減衰要素には粘性せん断形ダンパーを用いた構造となっており、主質量に副質量を固定することで1質量化したTMD、2つの質量が動作する2質量形TMD、副質量が建物頂部に設置したストッパーに衝突し主質量の変位を抑制する衝突2質量形TMDという構成とし、従来の制振装置と同等の制振性能を確保しつつ、主質量の最大駆動距離を低減できることを確認した旨の記載がある。   Non-Patent Document 2 “Study on Mass Damping Dampers for Buildings with Secondary Mass” (2nd report) describes a vibration experiment using a five-layer building model as an extension of the research of Non-Patent Document 1. Yes. The test body used in the experiment has a structure in which a secondary mass (damper 2) is mounted on the main mass (damper 1), a coil spring is used for the spring element of each mass, and a viscous shear damper is used for the damping element. TMD that is made 1 mass by fixing the secondary mass to the main mass, 2-mass type TMD that operates two masses, and the secondary mass collides with a stopper installed at the top of the building to suppress displacement of the primary mass There is a description that it has been confirmed that the maximum driving distance of the main mass can be reduced while ensuring the vibration damping performance equivalent to that of the conventional vibration damping device with the configuration of the collision two-mass type TMD.

さらに、非特許文献3の「副質量を有する建物制振用マスダンパに関する研究」(第3報)では、非特許文献1、非特許文献2の研究の延長として、建物高さ122m、地下3階、地上29階の鉄骨構造建物を解析対象として解析が行われている。   Furthermore, in “Research on Building Damping Mass Damper with Submass” in Non-Patent Document 3 (third report), as an extension of the research of Non-Patent Document 1 and Non-Patent Document 2, the building height is 122m and the third floor is underground. The analysis is performed on a steel structure building on the 29th floor above the ground.

特許第4259641号公報Japanese Patent No. 4259541 特開平09−310534号公報JP 09-310534 A 特開2005−256943号公報Japanese Patent Laid-Open No. 2005-256943 特許第2915126号公報Japanese Patent No. 2915126 特許第3394330号公報Japanese Patent No. 3394330 特許第3616425号公報Japanese Patent No. 3616425

藤田聡・里本好示・下田郁夫・持丸昌巳・永井潔・木本幸一郎・、副質量を有する建物制振用マスダンパに関する研究(第1報;応答解析による制振性能の予備的検討)、日本機械学会論文集C編、Vol. 61、No. 587 (1995)、pp. 2800-2805Satoshi Fujita, Yoshiaki Satomoto, Ikuo Shimoda, Masaaki Mochimaru, Kiyoshi Nagai, Koichiro Kimoto, research on mass dampers for building damping with secondary mass (1st report; preliminary study on damping performance by response analysis), Transactions of the Japan Society of Mechanical Engineers, Volume C, Vol. 61, No. 587 (1995), pp. 2800-2805 藤田聡・河相崇・下田郁夫・持丸昌巳・永井潔・木本幸一郎、“副質量を有する建物制振用マスダンパに関する研究(第2報;振動実験による制振性能の検討)”,日本機械学会論文集C編,Vol. 62, No. 597 (1996), pp. 1719-1725.Satoshi Fujita, Takashi Kawai, Ikuo Shimoda, Masatsugu Mochimaru, Kiyoshi Nagai, Koichiro Kimoto, "Study on mass damper for building damping with secondary mass (2nd report; Examination of damping performance by vibration experiment)", Japan Society of Mechanical Engineers Journal C, Vol. 62, No. 597 (1996), pp. 1719-1725. 藤田聡・渋谷真・河相崇・下田郁夫・持丸昌巳・永井潔・木本幸一郎、副質量を有する建物制振用マスダンパに関する研究(第3報;実物大建物モデルを用いた制振性能の検討)、日本機械学会論文集C編、Vol. 63、No. 615 (1997)、pp. 3840-3847.Satoshi Fujita, Makoto Shibuya, Takashi Kawai, Ikuo Shimoda, Shogo Mochimaru, Kiyoshi Nagai, Koichiro Kimoto, Study on mass damper for building damping with secondary mass (3rd report; Examination of damping performance using full-scale building model) ), Transactions of the Japan Society of Mechanical Engineers, Volume C, Vol. 63, No. 615 (1997), pp. 3840-3847.

TMDに関しては、設置された複数のTMDの総質量が約1800tにも及ぶ超高層ビル用の大型のTMDも実用化されているが、無数に存在する旧耐震基準で設計された既存のビルにも設置可能なコンパクトでかつ制振性能に優れたTMDがないのが現状である。   With regard to TMD, large TMDs for high-rise buildings with a total mass of multiple TMDs of approximately 1800t have been put into practical use, but there are numerous existing buildings designed based on the old earthquake resistance standards. However, there is no TMD that can be installed compactly and has excellent damping performance.

すなわち、重り(マス)の質量や水平方向の変位量の制限がネックとなっており、既存の建物の頂部にTMDやAMDなどの動吸振器型の制振装置の設置は困難と考えられている。前述した特許文献1〜5記載の発明も、基本的には新築の建物を対象としており、既存の建物への適用は難しい。   In other words, the limitations of the mass of the weight and the amount of displacement in the horizontal direction are the bottleneck, and it is considered difficult to install a dynamic vibration absorber type damping device such as TMD or AMD on the top of an existing building. Yes. The inventions described in Patent Documents 1 to 5 described above are basically intended for new buildings and are difficult to apply to existing buildings.

また、前述のように、AMDの場合、設計や装置のメンテナンスが難しく、制御に異常が生じた場合には逆効果となり、装置を機能させることができなくなるという問題がある。   In addition, as described above, in the case of AMD, there is a problem that design and maintenance of the apparatus are difficult, and if an abnormality occurs in the control, an adverse effect occurs and the apparatus cannot function.

また、前述した特許文献1〜4記載の発明のように、特定の一方向だけでなく、二方向あるいは全方向に機能させる構造も提案されているものの構造が複雑になるなど実用化が難しい。   Further, as in the inventions described in Patent Documents 1 to 4, a structure that functions not only in one specific direction but also in two or all directions has been proposed, but it is difficult to put it to practical use because the structure becomes complicated.

また、特許文献5や非特許文献1〜3には、構造物の振動レベルに応じてAMD,TMD、衝撃ダンパーと切り替わる制振装置が提案されているが、一方向のみに機能する2質量形TMDを基本とし、小レベル入力ではアクティブモード、中レベル入力ではパッシブモード、大地震の大レベル入力では衝撃力を応用したパッシブモードと変化させようとするものであり、複雑な設計を必要とし、コンパクトな形態とはなっていない。   Further, Patent Document 5 and Non-Patent Documents 1 to 3 propose a vibration damping device that switches between AMD, TMD, and an impact damper according to the vibration level of the structure, but a two-mass type that functions only in one direction. Based on TMD, it is intended to change to active mode for small level input, passive mode for medium level input, and passive mode applying impact force for large level input of large earthquakes, requiring a complicated design, It is not compact.

本発明は上述のような背景のもとに開発されたものであり、既存の建物にも適用可能なコンパクトな制振装置であって、かつコンパクトな構造という制約の中で小規模の地震から大地震まで振動レベルに応じて最大限に制震機能を発揮することができ、またAMDのような誤作動の恐れがない建物用受動型制振装置を提供することを目的としている。   The present invention was developed based on the background described above, and is a compact vibration control device that can be applied to existing buildings. An object of the present invention is to provide a passive vibration control device for buildings that can exhibit the vibration control function to the maximum according to the vibration level until a major earthquake and that does not cause a malfunction like AMD.

本発明の建物用受動型制振装置は、装置の外殻をなし制振の対象となる建物に固定される外殻構造体と、前記外殻構造体内にクリアランスをおいて収納され、水平バネ手段を介して水平面内の全方向に振動可能な水平断面における外郭縁が円形または楕円形の付加マスと、前記付加マスの水平振動に対して減衰力を与える減衰手段とを備え、前記建物の固有振動数に応じて、受動型動吸振器として機能するように前記水平バネ手段のバネ定数および前記減衰手段の減衰定数を設定してあり、前記付加マスの水平方向の振幅が前記クリアランス以上に達すると、前記外殻構造体の外壁部内面に衝突し、前記付加マスと前記外壁部内面の衝突によって生ずる衝撃エネルギーによって建物の振動を減衰させるように構成したことを特徴とするものである。   A passive vibration damping device for a building according to the present invention comprises an outer shell structure that forms an outer shell of the device and is fixed to a building to be subjected to vibration damping, and is housed with clearance in the outer shell structure, and has a horizontal spring. An additional mass having a circular or elliptical outer edge in a horizontal cross section that can vibrate in all directions within a horizontal plane through the means, and a damping means for applying a damping force to the horizontal vibration of the additional mass, According to the natural frequency, the spring constant of the horizontal spring means and the damping constant of the damping means are set so as to function as a passive dynamic vibration absorber, and the horizontal amplitude of the additional mass is greater than the clearance. When it reaches, it collides with the inner surface of the outer wall portion of the outer shell structure, and the vibration of the building is attenuated by the impact energy generated by the collision between the additional mass and the inner surface of the outer wall portion. That.

本発明の制振装置は、付加マス(重り)と、水平バネ手段と、減衰手段からなる受動型動吸振器であるTMDの構成を備えた制振装置であるが、大地震の際に付加マスに上述のクリアランスを超える水平方向の変位が生じると、付加マスが外殻構造体の外壁部内面に衝突し、衝突によって生じるエネルギーによって建物の振動を減衰させるものである。   The vibration damping device of the present invention is a vibration damping device having a configuration of TMD which is a passive dynamic vibration absorber including an additional mass (weight), a horizontal spring means, and a damping means. When a horizontal displacement exceeding the above-described clearance occurs in the mass, the additional mass collides with the inner surface of the outer wall portion of the outer shell structure, and the vibration of the building is attenuated by energy generated by the collision.

また、本発明では付加マスの水平断面形状(外郭形状)を円形または楕円形とし、水平面内の全方向に振動可能としているため、地震の入力方向に応じて付加マスを振動させることができる。すなわち1つの制振装置で建物の全方向の揺れに対処させることができる。   In the present invention, the additional mass has a horizontal cross-sectional shape (outer shape) of a circle or an ellipse, and can vibrate in all directions within a horizontal plane. Therefore, the additional mass can be vibrated according to the input direction of the earthquake. That is, it is possible to deal with shaking in all directions of the building with one vibration damping device.

例えば、建物の直交するX方向、Y方向の2方向で固有周期など振動特性が大きく異なる場合には、付加マスの水平断面形状を円形ではなく楕円形とすればよい。外殻構造体の外壁部の断面も付加マスの水平断面形状に応じて円形または楕円形のリング状に形成することができる。   For example, when the vibration characteristics such as the natural period are greatly different in the two directions of the building in the X direction and the Y direction, the horizontal cross-sectional shape of the additional mass may be an ellipse instead of a circle. The cross-section of the outer wall portion of the outer shell structure can also be formed in a circular or elliptical ring shape according to the horizontal cross-sectional shape of the additional mass.

本発明においては、付加マスと外殻構造体の外壁部の衝突によって、付加マスまたは外壁部あるいは双方に変形や場合によっては損壊が生じることも許容される。例えば、外殻構造体の外壁部を鋼製の弾塑性ダンパーとして機能させ、衝突時の鋼製の外壁部の弾塑性変形によってもエネルギーを吸収させることができる。   In the present invention, it is permitted that the additional mass and / or the outer wall portion are deformed or damaged in some cases due to the collision between the additional mass and the outer wall portion of the outer shell structure. For example, the outer wall portion of the outer shell structure can function as a steel elastic-plastic damper, and energy can be absorbed also by elastic-plastic deformation of the steel outer wall portion at the time of collision.

なお、付加マスと外壁部を直接衝突させると、付加マスの表面および外壁部の内面の衝突部に応力が集中し、いきなり損傷を生じる恐れがあるため、付加マスの外周面または外殻構造体の内周面、あるいはその双方にゴム系部材、あるいはバネ材などの緩衝部材を取り付けて衝突時の応力の集中を緩和することが望ましい。   In addition, if the additional mass and the outer wall are directly collided, stress concentrates on the surface of the additional mass and the inner wall of the outer wall, and there is a risk of sudden damage. It is desirable to reduce the concentration of stress at the time of collision by attaching a buffer member such as a rubber-based member or a spring material to the inner peripheral surface or both of them.

水平バネ手段として、従来のTMDでは付加マスを下から支持する積層ゴム支承が多用されている。ただし、本発明の制振装置では、大地震に対する衝撃ダンパーの構成において、通常のTMDより大きなストロークが必要となるため、鉛直荷重に対する安定性を維持した上で水平変形能力の大きい積層ゴムを用いる必要がある。   As the horizontal spring means, the conventional TMD often uses a laminated rubber bearing that supports the additional mass from below. However, in the vibration damping device of the present invention, since the stroke of the shock damper for a large earthquake requires a stroke larger than that of normal TMD, a laminated rubber having a large horizontal deformation capacity is used while maintaining stability against a vertical load. There is a need.

また、付加マスの鉛直荷重の支持については、水平バネ手段と切り離してすべり支承(摩擦係数の小さいすべり面など)などを介して水平方向に摺動可能に支持することができる。すべり支承としては、例えば、従来、すべり式の免震構造に用いられているステンレス板と低摩擦のすべり材を組み合わせたすべり支承や、ボールベアリング支承などがある。また、磁力を利用した磁気浮上または疑似磁気浮上によって付加マスを支持する方式を利用したり、あるいはすべり支承と併用することも考えられる。   Further, the vertical load of the additional mass can be supported so as to be slidable in the horizontal direction through a sliding bearing (such as a sliding surface having a small friction coefficient) separated from the horizontal spring means. As the sliding bearing, for example, there are a sliding bearing in which a stainless steel plate and a low-friction sliding material, which are conventionally used in a sliding type seismic isolation structure, and a ball bearing bearing are used. It is also conceivable to use a method of supporting an additional mass by magnetic levitation using magnetic force or pseudo magnetic levitation, or to use it together with a sliding bearing.

また、従来、付加マスの鉛直荷重の支持について、付加マスを1本または複数本の吊り材によって振り子式に支持し、振り子を水平バネとして機能させる構造も採用されている。ただし、その場合、建物の固有周期との関係で振り子の高さが高くなるという欠点がある。   Conventionally, as to support the vertical load of the additional mass, a structure in which the additional mass is supported in a pendulum manner by one or a plurality of suspension members and the pendulum functions as a horizontal spring is also employed. However, in that case, there is a disadvantage that the height of the pendulum becomes high in relation to the natural period of the building.

水平バネ手段としては、積層ゴム、鉛プラグ入り積層ゴム、積層減衰ゴム、コイルバネ、あるいはこれらの組み合わせを用いることができる。   As the horizontal spring means, laminated rubber, laminated rubber with a lead plug, laminated damping rubber, coil spring, or a combination thereof can be used.

積層ゴムに付加マスの鉛直荷重を支持させた場合、付加マスの振動範囲としてのストロークが制限され、水平バネとしての機能にも影響が生じることも考えられるため、積層ゴム鉛プラグ入り積層ゴム、積層減衰ゴムなどを用いる場合は、付加マスを上述のすべり支承を介して支持し、付加マスと外殻構造体の上部内面(外殻構造体の上部に設けた天井部あるいは支持部材など)との間に積層ゴムなどを設置すれば、積層ゴムには実質的に鉛直荷重が作用しないため、水平バネとして外殻構造体の外壁部までのクリアランス分も含め大きなストロークを確保することができる。   When the vertical load of the additional mass is supported by the laminated rubber, the stroke as the vibration range of the additional mass is limited and the function as a horizontal spring may be affected. When using laminated damping rubber or the like, the additional mass is supported via the above-mentioned sliding support, and the additional mass and the upper inner surface of the outer shell structure (such as a ceiling or a support member provided on the upper portion of the outer shell structure) If a laminated rubber or the like is installed between them, a vertical load does not substantially act on the laminated rubber, so that a large stroke including a clearance to the outer wall portion of the outer shell structure can be secured as a horizontal spring.

また、水平バネ手段としてコイルバネを用いる場合、付加マスと外殻構造体の外壁部とがコイルバネ近傍で衝突する場合、コイルバネが衝突の支承となることが考えられるが、例えば付加マスにコイルバネの一端を収納する穴状または溝状の収納部を形成しておけば、コイルバネを衝突まで支障なく機能させることができる。   In addition, when a coil spring is used as the horizontal spring means, when the additional mass and the outer wall portion of the outer shell structure collide in the vicinity of the coil spring, the coil spring may be a support for the collision. If a hole-shaped or groove-shaped storage portion for storing the coil is formed, the coil spring can function without any trouble until the collision.

減衰手段は種々の形態が考えられる。基本的には従来のTMDと同様であり、各種ダンパー装置を上述の水平バネ手段と併用することができるが、鉛プラグ入り積層ゴムや積層減衰ゴムなどの場合、それ自体が水平バネ手段と減衰手段の一部または全部を兼ねている。   Various forms of damping means are possible. Basically, it is the same as the conventional TMD, and various damper devices can be used in combination with the horizontal spring means described above. However, in the case of laminated rubber with lead plugs or laminated damping rubber, the damper itself is damped with the horizontal spring means. It also serves as part or all of the means.

従来のTMDやAMDでは付加質量として鋼材を用いるのが一般的であり、本発明においても鋼材を用いることができる。しかしながら、鋼材は高価で加工あるいは組立てにも手間がかかるため、比重が大きく、変形加工が容易で、価格的にも安価な鉛を用いることが考えられる。   Conventional TMD and AMD generally use steel as an additional mass, and steel can be used in the present invention. However, since steel is expensive and takes time and effort to assemble, it is conceivable to use lead that has a large specific gravity, is easily deformable, and is inexpensive.

鉛は特許文献6にも記載されるように、水平方向に塑性変形することに伴うエネルギー吸収によって構造物の振動を吸収する機能があるが、付加マスを鉛のみで構成すると外殻構造体の外壁部との衝突によって容易に変形してしまい、繰り返しの揺れに対応できなくなるため、鋼製あるいは合成ゴムなどの弾性体からなる外殻部材の内部に鉛を充填するかまたは鉛の塊を収納するなどして用いることができる。   As described in Patent Document 6, lead has a function of absorbing the vibration of the structure by energy absorption accompanying plastic deformation in the horizontal direction. However, if the additional mass is composed only of lead, the outer shell structure Because it easily deforms due to collision with the outer wall and cannot respond to repeated shaking, it fills the inside of an outer shell member made of an elastic body such as steel or synthetic rubber or stores a lump of lead. Can be used.

本発明の制振装置は、付加マスと、水平バネ手段と、減衰手段からなる受動型動吸振器であるTMDの構成を備え、かつ大地震の際に付加マスに所定のクリアランスを超える大きな水平方向の変位が生じると、付加マスが外殻構造体の外壁部内面に衝突し、衝突によって生じるエネルギーによって建物の振動を減衰させるものであり、コンパクトな構成によって地震レベルに応じた大きな制振効果を得ることができる。   The vibration damping device of the present invention has a configuration of TMD which is a passive dynamic vibration absorber composed of an additional mass, a horizontal spring means, and a damping means, and has a large horizontal exceeding a predetermined clearance in the case of a large earthquake. When a displacement occurs in the direction, the additional mass collides with the inner surface of the outer wall of the outer shell structure, and the energy generated by the collision attenuates the vibration of the building. Can be obtained.

また、本発明では付加マスの水平断面形状を円形または楕円形とし、水平面内の全方向に振動可能としているため、地震の入力方向に応じて付加マスを振動させることができ、1つの制振装置で建物の全方向の揺れに対処させることができる。   Further, in the present invention, since the horizontal cross-sectional shape of the additional mass is circular or elliptical and can vibrate in all directions in the horizontal plane, the additional mass can be vibrated in accordance with the input direction of the earthquake, and one damping The device can deal with shaking in all directions of the building.

このように構造的にも機能的にもコンパクトな制振装置としたことで、既存の建物にも適用することができる。また、装置を安価に製作することができる。   Since the vibration damping device is compact in terms of structure and function, it can be applied to existing buildings. Also, the device can be manufactured at low cost.

本発明の建物用受動型制振装置の一実施形態を示したもので、(a)は装置の鉛直断面図、(b)はそのA−A断面図である。1 shows an embodiment of a passive vibration damping device for buildings according to the present invention, in which (a) is a vertical sectional view of the device, and (b) is an AA sectional view thereof. 本発明の建物用受動型制振装置を多層階建物の頂部に設置した状態を概略的に示した立面図である。It is the elevation which showed roughly the state which installed the passive type damping device for buildings of the present invention in the top part of the multi-story building. 図1の実施形態における装置の作動原理を示す説明図である。It is explanatory drawing which shows the operating principle of the apparatus in embodiment of FIG. 本発明の建物用受動型制振装置の他の実施形態を示す鉛直断面図である。It is a vertical sectional view showing other embodiments of the passive vibration damping device for buildings of the present invention. 本発明の建物用受動型制振装置のさらに他の実施形態を示す鉛直断面図である。It is a vertical sectional view showing still another embodiment of the passive vibration damping device for buildings of the present invention. 付加マスおよび外殻構造体の外壁部の水平断面を楕円形とした実施形態についての建物屋上への配置例を示す概略平面図である。It is a schematic plan view which shows the example of arrangement | positioning on the building roof about embodiment which made the horizontal cross section of the outer wall part of an additional mass and an outer shell structure elliptical. 本発明の建物用受動型制振装置の建物への設置位置のバリエーションを示したもので、(a)は建物の内部の最上階に設置した場合の概略立面図、(b)は新築の建物について建物内に制振装置を設置するための専用の階を設けた場合の概略立面図、(c)は建物の屋上のほか建物の内部にも設置した場合の概略立面図である。The variation of the installation position in the building of the passive vibration damping device for buildings of the present invention is shown, (a) is a schematic elevation view when installed on the top floor inside the building, (b) is a newly built About the building, a schematic elevation when a dedicated floor is installed in the building to install the damping device, (c) is a schematic elevation when it is installed inside the building in addition to the building roof .

以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の建物用受動型制振装置1の一実施形態を示したもので、(a)は制振装置1の鉛直断面図、(b)はそのA−A断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B show an embodiment of a passive vibration damper 1 for a building according to the present invention. FIG. 1A is a vertical sectional view of the vibration damper 1, and FIG.

本発明の制振装置1は、図2に示すように主として多層階建物10の屋上など建物の頂部に設置することができる。場合によっては、建物10の内部に設置してもよい。図3は制振装置1の作動原理を示したものである。   The vibration damping device 1 of the present invention can be installed mainly on the top of a building such as the roof of a multi-story building 10 as shown in FIG. In some cases, it may be installed inside the building 10. FIG. 3 shows the operating principle of the vibration damping device 1.

制振装置1は、装置の外殻をなし制振の対象となる建物に固定される外殻構造体2と、外殻構造体2内にクリアランスCをおいて収納され(図3(a)参照)、水平バネ手段4を介して水平面内の全方向に振動可能な水平断面における外郭縁が円形または楕円形の付加マス3と、付加マス3の水平振動に対して減衰力を与える減衰手段5とを備え、建物10の固有振動数に応じて、TMDとして機能するように水平バネ手段4のバネ定数および減衰手段5の減衰定数を設定してあり(図3(b)参照)、付加マス3の水平方向の振幅がクリアランスC以上に達すると、外殻構造体2の外壁部2a内面に衝突し(図3(c)参照)、付加マス3と外壁部3a内面の衝突によって生ずる衝撃エネルギーによって建物10の振動を減衰させる構成となっている。   The damping device 1 is an outer shell structure 2 that forms an outer shell of the device and is fixed to a building to be subjected to damping, and is housed in the outer shell structure 2 with a clearance C (FIG. 3A). Reference), additional mass 3 having a circular or elliptical outer edge in a horizontal cross section that can vibrate in all directions within a horizontal plane via horizontal spring means 4, and damping means for imparting damping force to horizontal vibration of additional mass 3 5 and the spring constant of the horizontal spring means 4 and the damping constant of the damping means 5 are set so as to function as TMD according to the natural frequency of the building 10 (see FIG. 3B). When the horizontal amplitude of the mass 3 reaches the clearance C or more, it collides with the inner surface of the outer wall 2a of the outer shell structure 2 (see FIG. 3 (c)), and the impact caused by the collision between the additional mass 3 and the inner surface of the outer wall 3a. The vibration of the building 10 is attenuated by energy.

すなわち、この制振装置1は、中小の地震に対してはTMDとして機能するものであり、円筒リング状の外殻構造体2の内側に、水平断面における外郭縁が円形または楕円形の付加マス3と、建物側に固定される外殻構造体2と付加マス3間をつなぐバネ手段3および減衰手段4を基本的な構成要素として備え、本実施形態では、1つの付加マス3がすべり支承を構成する低摩擦係数のすべり面6上を水平全方向に摺動可能となっている。   In other words, the vibration damping device 1 functions as a TMD for small and medium-sized earthquakes, and has an additional mass having a circular or elliptical outer edge in the horizontal section inside the cylindrical ring-shaped outer shell structure 2. 3 and a spring means 3 and a damping means 4 for connecting the outer shell structure 2 fixed to the building side and the additional mass 3 as basic components. In this embodiment, one additional mass 3 is a sliding support. Is slidable in all horizontal directions on the sliding surface 6 having a low friction coefficient.

この制振装置1は、上述のように大地震の際には、付加マス3が外殻構造体2の外壁部2a内面に衝突することを許容するものであり、衝突によって生じる衝撃エネルギーによって建物10の振動を減衰させる。   As described above, the vibration damping device 1 allows the additional mass 3 to collide with the inner surface of the outer wall portion 2a of the outer shell structure 2 in the event of a large earthquake. 10 vibrations are attenuated.

また、外殻構造体2の外壁部2aを鋼製とし、衝突時の鋼製の外壁部2aの弾塑性変形によっても弾塑性ダンパーとしてエネルギーを吸収させることができる。   Moreover, the outer wall 2a of the outer shell structure 2 is made of steel, and energy can be absorbed as an elastic-plastic damper by elastic-plastic deformation of the steel outer wall 2a at the time of collision.

本実施例では、付加マス3として鋼殻3a内に鉛3bを充填したものを用いている。鉄の比重が約7.9であるのに対し、鉛の比重は約11.3であり、少ない体積で質量をかせぐことができる。   In this embodiment, as the additional mass 3, a steel shell 3a filled with lead 3b is used. The specific gravity of iron is about 7.9, whereas the specific gravity of lead is about 11.3, so that mass can be obtained with a small volume.

従来のTMDにおける付加マス1の質量は建物10の質量の1〜3%が一般的であるが、本発明の制振装置1は中小の地震にはTMDとして機能し、大地震に対しては衝撃ダンパーとして機能させることができるため、付加マス3の質量は建物10の質量の0.5〜1.5%程度が好ましい。例えば、質量が800tのペンシルビルを想定した場合、4t〜12t程度となる。鉛の体積で換算すると、0.35〜1.06m3程度となる。 The mass of the additional mass 1 in the conventional TMD is generally 1 to 3% of the mass of the building 10, but the damping device 1 of the present invention functions as a TMD for small and medium earthquakes, and for large earthquakes. Since it can function as an impact damper, the mass of the additional mass 3 is preferably about 0.5 to 1.5% of the mass of the building 10. For example, when a pencil building having a mass of 800 t is assumed, it is about 4 t to 12 t. When converted by the volume of lead, it is about 0.35 to 1.06 m 3 .

このように、制振装置1をコンパクトな構造とし、かつ付加マス3の質量を抑えることで、従来、TMDの利用が困難であった旧耐震の設計による既存建物への適用が容易となる。   Thus, by making the vibration damping device 1 have a compact structure and suppressing the mass of the additional mass 3, it is easy to apply to the existing building based on the old seismic design, which has conventionally been difficult to use TMD.

また、鉛は金属材料としては安価である他、鉛は容易に塑性変形する材料であるため、付加マス3が外殻構造体2の外壁部に衝突する際、この塑性変形に伴うエネルギー吸収によって建物の振動を吸収することができる。なお、付加マス3を鉛3bのみで構成しようとすると、衝突の際の変形が大きくなりすぎて付加マス3としての機能が損なわれるため、本実施形態では上述のように鋼殻3a内に鉛3bを充填する構成としている。   In addition, lead is inexpensive as a metal material, and lead is a material that is easily plastically deformed. Therefore, when the additional mass 3 collides with the outer wall portion of the outer shell structure 2, energy absorption associated with this plastic deformation causes It can absorb building vibration. If the additional mass 3 is composed only of the lead 3b, the deformation at the time of collision becomes too large and the function as the additional mass 3 is impaired. Therefore, in this embodiment, the lead is contained in the steel shell 3a as described above. It is set as the structure filled with 3b.

水平バネ手段4としては、本実施形態では合成ゴムと薄鋼板を互層に配置し、上下に取付用のプレートを設けた積層ゴム4aを用いている。本実施形態において、積層ゴム4aは付加マス3上面と外殻構造体2の天井部2bとの間に、後述する減衰手段5としてのサンドイッチ型粘性ダンパー5aを介在させた形で設置されている。   As the horizontal spring means 4, in this embodiment, a laminated rubber 4a in which synthetic rubber and a thin steel plate are alternately arranged and mounting plates are provided on the upper and lower sides is used. In the present embodiment, the laminated rubber 4a is installed between a top surface of the additional mass 3 and the ceiling portion 2b of the outer shell structure 2 with a sandwich type viscous damper 5a serving as a damping means 5 described later interposed therebetween. .

付加マス3は前述のようにすべり面6上を水平全方向に摺動するように構成され、積層ゴム4aおよびサンドイッチ型粘性ダンパー5aには実質的に鉛直荷重が作用しないため、大きな水平変形でも安定性を保つことができ、付加マス3のクリアランスC全領域での移動に対応可能となっている。   As described above, the additional mass 3 is configured to slide on the sliding surface 6 in all horizontal directions, and substantially no vertical load acts on the laminated rubber 4a and the sandwich type viscous damper 5a. The stability can be maintained, and the movement of the additional mass 3 in the entire clearance C region can be handled.

減衰手段5としてのサンドイッチ型粘性ダンパー5aは、上下2枚の鋼板の間に粘性体を挟み込んだものであり、鋼板間の距離と面積、粘性体あるいは粘弾性体の種類などによって、装置の減衰定数を調整することができる。   The sandwich-type viscous damper 5a as the damping means 5 has a viscous body sandwiched between two upper and lower steel plates, and the damping of the device depends on the distance and area between the steel plates, the type of the viscous body or viscoelastic body, and the like. The constant can be adjusted.

減衰手段5としてのサンドイッチ型粘性ダンパー5aは、上下2枚の鋼板の間に粘性体を挟み込んだものであり、鋼板間の距離と面積、粘性体あるいは粘弾性体の種類などによって、装置の減衰定数を調整することができる。   The sandwich-type viscous damper 5a as the damping means 5 has a viscous body sandwiched between two upper and lower steel plates, and the damping of the device depends on the distance and area between the steel plates, the type of the viscous body or viscoelastic body, and the like. The constant can be adjusted.

本実施形態で用いているすべり支承6は、例えばステンレス鋼板などで摩擦係数の非常に小さいすべり面を形成し、その上を付加マス3が摺動するようにしたものであり、付加マス3の下面にフッ素樹脂のコーティングを施すといったことが行われる。   The sliding support 6 used in the present embodiment is formed by forming a sliding surface with a very small friction coefficient using, for example, a stainless steel plate and the additional mass 3 sliding on the sliding surface. For example, a fluororesin coating is applied to the lower surface.

また、本実施形態において、大地震の際に衝突する外殻構造体2の外壁部2aの内面および付加マス3の側面には、それぞれ合成ゴムなどからなる緩衝材2c、3cを取り付けてある。   In the present embodiment, buffer materials 2c and 3c made of synthetic rubber or the like are attached to the inner surface of the outer wall portion 2a of the outer shell structure 2 and the side surfaces of the additional mass 3 that collide in the event of a large earthquake.

図4は本発明の建物用受動型制振装置1の他の実施形態を示したものである。図1の実施形態との相違点としては、本実施形態では水平バネ手段4としてコイルバネ4bを用い、減衰手段5としてコイルバネ4bと平行にシリンダー形式の粘性ダンパー5bを用いている。   FIG. 4 shows another embodiment of the building passive vibration damping device 1 of the present invention. The difference from the embodiment of FIG. 1 is that in this embodiment, a coil spring 4b is used as the horizontal spring means 4, and a cylinder-type viscous damper 5b is used as the damping means 5 in parallel with the coil spring 4b.

図4では特定の鉛直断面のみを示しているが、コイルバネ4bは付加マス3を中心に複数本放射状に配置し、一端を付加マス3に形成した穴状または溝状の収納部3dに固定し、他端を外殻構造体2の外壁部2aの内面側に固定している。   Although only a specific vertical section is shown in FIG. 4, a plurality of coil springs 4b are arranged radially around the additional mass 3, and one end is fixed to a hole-shaped or groove-shaped storage portion 3d formed in the additional mass 3. The other end is fixed to the inner surface side of the outer wall 2 a of the outer shell structure 2.

このように構成することで、すべり支承6上を摺動する付加マス4の移動に対し、コイルバネ4bおよび粘性ダンパー5bが伸縮し、大地震による付加マス3が外壁部2aに衝突する際には、コイルバネ4bおよび粘性ダンパー5bが収納部3d内に納まった状態で衝突するようになっている。   With this configuration, when the additional mass 4 sliding on the sliding support 6 moves, the coil spring 4b and the viscous damper 5b expand and contract, and when the additional mass 3 due to a large earthquake collides with the outer wall 2a. The coil spring 4b and the viscous damper 5b collide with each other in the state of being accommodated in the storage portion 3d.

図5は本発明の建物用受動型制振装置1のさらに他の実施形態を示したものである。図1の実施形態との相違点として、本実施形態では、鉛3bを主体とする付加マス3を水平バネ手段4としての積層ゴム4cで支持する形態としている。   FIG. 5 shows still another embodiment of the passive vibration damping device 1 for buildings according to the present invention. As a difference from the embodiment of FIG. 1, in this embodiment, the additional mass 3 mainly composed of lead 3 b is supported by a laminated rubber 4 c as the horizontal spring means 4.

付加マス3を水平バネ手段4としての積層ゴム4cで支持する上で、安定性を確保するために付加マス3をより扁平な形態としている。また、水平バネ手段4としての積層ゴム4cとして安定した大きな水平変形を確保するため、取付け用の端板としての上下の鋼板間に比較的高さの高い小断面の複数(例えば周方向に6個)の積層ゴム4cを配置した構成としている。   When the additional mass 3 is supported by the laminated rubber 4c as the horizontal spring means 4, the additional mass 3 has a flatter shape in order to ensure stability. Further, in order to ensure stable and large horizontal deformation as the laminated rubber 4c as the horizontal spring means 4, a plurality of relatively small high cross-sections (for example, 6 in the circumferential direction) between the upper and lower steel plates as the end plates for mounting. ) Laminated rubber 4c.

図6は付加マス3および外殻構造体2の外壁部2aの水平断面を楕円形とした制振装置1の建物10屋上への配置例を示したものである。   FIG. 6 shows an arrangement example of the vibration damping device 1 on the roof of the building 10 in which the horizontal cross section of the additional mass 3 and the outer wall 2a of the outer shell structure 2 is elliptical.

図6に示すように建物10の直交するX方向、Y方向の2方向で固有周期など振動特性が大きく異なる場合には、付加マス3の水平断面形状を円形ではなく楕円形とすればよい。   As shown in FIG. 6, when the vibration characteristics such as the natural period are greatly different between the two orthogonal X and Y directions of the building 10, the horizontal cross-sectional shape of the additional mass 3 may be elliptical instead of circular.

図6の例はペンシルビルなど間口方向(図ではY方向)が狭い細長い建物10を想定しており、この場合X方向の固有周期が短く、Y方向の固有周期が長くなっている。そのため長周期の地震動に対してY方向の振幅が大きくなる恐れがある。   The example in FIG. 6 assumes a long and narrow building 10 having a narrow frontage direction (Y direction in the figure) such as a pencil building. In this case, the natural period in the X direction is short and the natural period in the Y direction is long. For this reason, the amplitude in the Y direction may increase with respect to long-period ground motion.

そのため、図6の実施例では付加マス3および外殻構造体2の外壁部2aの水平断面をY方向に長い楕円形とした制振装置1を建物10の屋上に2台並列させて設置している。なお、図5では、作図上、水平バネ手段、減衰手段等の記載は省略している。   Therefore, in the embodiment of FIG. 6, two vibration damping devices 1 in which the horizontal cross section of the additional mass 3 and the outer wall portion 2a of the outer shell structure 2 are long in the Y direction are installed in parallel on the roof of the building 10. ing. In FIG. 5, descriptions of horizontal spring means, damping means, and the like are omitted for drawing.

図7は本発明の建物用受動型制振装置の建物への設置位置のバリエーションを示したものである。   FIG. 7 shows variations of the installation position of the passive vibration damping device for buildings of the present invention in the building.

図7(a)は建物10の内部の最上階に制振装置1を設置した場合である。既存の建物10において屋上に制振装置1を設置するスペースがない場合、建物10の内部に設置してもよい。入力地震動と建物10の固有振動数との関係で1次の振動モードが卓越する場合には、建物の頂部に近い階に設置するのが効果的である。   FIG. 7A shows a case where the vibration control device 1 is installed on the top floor inside the building 10. If there is no space for installing the vibration damping device 1 on the roof of the existing building 10, it may be installed inside the building 10. When the primary vibration mode is dominant due to the relationship between the input seismic motion and the natural frequency of the building 10, it is effective to install it on the floor near the top of the building.

なお、建物10内に設置することで、設置階の有効スペースが減少する反面、装置が風雨にさらされることがなく、メンテンス作業も容易となるというメリットがある。   The installation in the building 10 has the advantage that the effective space on the installation floor is reduced, but the apparatus is not exposed to wind and rain and maintenance work is facilitated.

図7(b)は新築の建物10について、建物10内に制振装置1を設置するための専用の階を設けた場合である。図7(b)の例では基準階の階高Lに対し、制振装置1の階高L=L+Lとし、Lの高さの床内に制振装置1を設置している。なお、制振装置1の設置スペースを階高の小さい(階高L)の独立した階としてもよい。 FIG. 7B shows a case where a dedicated floor for installing the vibration control device 1 is provided in the building 10 for the newly built building 10. 7 to floor height L a reference floor in the example of (b), a floor height L b = L a + L c of the vibration damping device 1, the vibration damping device 1 is placed in the bed height L c ing. The installation space of the vibration damping device 1 may be an independent floor having a small floor height (floor height L c ).

図7(c)は建物10の屋上のほか建物10の内部にも設置した場合である。建物10の細長比が大きい場合、入力地震動と建物10の固有振動数との関係で2次の振動モードの影響も大きくなる場合が考えられる。そのため、図7(c)の例では建物10の頂部に加え、2次の振動モードの腹に位置する階にも制振装置1を設置している。   FIG. 7 (c) shows a case where it is installed not only on the roof of the building 10 but also inside the building 10. When the slenderness ratio of the building 10 is large, the influence of the secondary vibration mode may be increased due to the relationship between the input ground motion and the natural frequency of the building 10. Therefore, in the example of FIG. 7 (c), in addition to the top of the building 10, the vibration control device 1 is installed on the floor located on the belly of the secondary vibration mode.

なお、1次モードに対する制振装置1は屋上でなく、図7(a)、(b)のように建物10内部に設置することもできる。   The vibration damping device 1 for the primary mode can be installed inside the building 10 as shown in FIGS. 7A and 7B instead of the rooftop.

以上、本発明の制振装置1について好ましい複数の実施形態を説明したが、本発明はこれらの実施形態に限定されるものではない   The preferred embodiments of the vibration damping device 1 of the present invention have been described above, but the present invention is not limited to these embodiments.

1…制振装置、2…外殻構造体、2a…外壁部、2b…天井部、2c…緩衝材、3…付加マス、3a…外殻、3b…鉛、3c…緩衝材、3d…収納部、4…水平バネ手段、4a…積層ゴム、4b…コイルバネ、4c…積層ゴム、5…減衰手段、5a…サンドイッチ型粘性ダンパー、5b…粘性ダンパー、6…すべり支承、
10…建物
DESCRIPTION OF SYMBOLS 1 ... Damping device, 2 ... Outer shell structure, 2a ... Outer wall part, 2b ... Ceiling part, 2c ... Buffer material, 3 ... Additional mass, 3a ... Outer shell, 3b ... Lead, 3c ... Buffer material, 3d ... Storage 4, 4 ... horizontal spring means, 4a ... laminated rubber, 4b ... coil spring, 4c ... laminated rubber, 5 ... damping means, 5a ... sandwich type viscous damper, 5b ... viscous damper, 6 ... sliding bearing,
10 ... Building

本発明の建物用受動型制振装置は、装置の外殻をなし制振の対象となる多層階建物に固定される外殻構造体と、前記外殻構造体内にクリアランスをおいて収納され、水平バネ手段を介して水平面内の全方向に振動可能な水平断面における外郭縁が円形または楕円形の付加マスと、前記付加マスの水平振動に対して減衰力を与える減衰手段とを備え、前記建物の固有振動数に応じて、水平方向の振動に対する受動型動吸振器として機能するように前記水平バネ手段のバネ定数および前記減衰手段の減衰定数を設定してあり、大地震の際に前記付加マスの水平方向の振幅が前記クリアランス以上に達すると、前記外殻構造体の外壁部内面に衝突し、前記付加マスと前記外壁部内面の衝突によって生ずる衝撃エネルギーによって建物の振動を減衰させるように構成したことを特徴とするものである。 A passive vibration damping device for a building according to the present invention is housed in an outer shell structure that forms an outer shell of the device and is fixed to a multi-storey building to be subjected to vibration damping, with a clearance in the outer shell structure, An additional mass having a circular or oval outer edge in a horizontal cross section that can vibrate in all directions within a horizontal plane via a horizontal spring means, and a damping means for imparting a damping force to the horizontal vibration of the additional mass, depending on the natural frequency of the building and have set the attenuation constant of the spring constant and the damping means of the horizontal spring means to function as a passive type dynamic vibration absorber for horizontal vibrations, the during large earthquakes When the horizontal amplitude of the additional mass reaches the clearance or more, it collides with the inner surface of the outer wall of the outer shell structure, and the vibration of the building is attenuated by the impact energy generated by the collision between the additional mass and the inner surface of the outer wall. It is characterized in that it has constructed so that.

本発明の建物用受動型制振装置は、装置の外殻をなし制振の対象となる多層階建物に固定される外殻構造体と、前記外殻構造体内にクリアランスをおいて収納され、水平バネ手段を介して水平面内の全方向に振動可能な水平断面における外郭縁が円形または楕円形の付加マスと、前記付加マスの水平振動に対して減衰力を与える減衰手段とを備え、中小の地震に対しては、前記建物の固有振動数に応じて、水平方向の振動に対する受動型動吸振器として機能するように前記水平バネ手段のバネ定数および前記減衰手段の減衰定数を設定してあり、大地震の際にのみ前記付加マスの水平方向の振幅が前記クリアランス以上に達し、前記外殻構造体の外壁部内面に衝突し、前記付加マスと前記外壁部内面の衝突によって生ずる衝撃エネルギーによって建物の振動を減衰させるように構成したことを特徴とするものである。 A passive vibration damping device for a building according to the present invention is housed in an outer shell structure that forms an outer shell of the device and is fixed to a multi-storey building to be subjected to vibration damping, with a clearance in the outer shell structure, with outer edge of vibratable horizontal section in all directions within a horizontal plane through the horizontal spring means and the additional mass of circular or elliptical, and a damping means for providing a damping force with respect to the horizontal vibration of the additional mass, small For this earthquake, the spring constant of the horizontal spring means and the damping constant of the damping means are set so as to function as a passive dynamic vibration absorber for horizontal vibration according to the natural frequency of the building. There, the horizontal amplitude of the additional mass only during earthquake reached above the clearance, collides with the outer wall the inner surface of the outer shell structure, caused by collisions with the additional mass outer wall inner surface impact Energy It is characterized in that the vibration of the building is constructed to attenuate Te.

すなわち、この制振装置1は、中小の地震に対してはTMDとして機能するものであり、円筒リング状の外殻構造体2の内側に、水平断面における外郭縁が円形または楕円形の付加マス3と、建物側に固定される外殻構造体2と付加マス3間をつなぐバネ手段および減衰手段を基本的な構成要素として備え、本実施形態では、1つの付加マス3がすべり支承を構成する低摩擦係数のすべり面6上を水平全方向に摺動可能となっている。 In other words, the vibration damping device 1 functions as a TMD for small and medium-sized earthquakes, and has an additional mass having a circular or elliptical outer edge in the horizontal section inside the cylindrical ring-shaped outer shell structure 2. 3 and a spring means 4 and a damping means 5 for connecting the outer shell structure 2 fixed to the building side and the additional mass 3 as basic components. In this embodiment, one additional mass 3 is a sliding support. Is slidable in all horizontal directions on the sliding surface 6 having a low friction coefficient.

Claims (8)

装置の外殻をなし制振の対象となる建物に固定される外殻構造体と、
前記外殻構造体内にクリアランスをおいて収納され、水平バネ手段を介して水平面内の全方向に振動可能な水平断面における外郭縁が円形または楕円形の付加マスと、
前記付加マスの水平振動に対して減衰力を与える減衰手段と、
を備え、前記建物の固有振動数に応じて、受動型動吸振器として機能するように前記水平バネ手段のバネ定数および前記減衰手段の減衰定数を設定してあり、
前記付加マスの水平方向の振幅が前記クリアランス以上に達すると、前記外殻構造体の外壁部内面に衝突し、前記付加マスと前記外壁部内面の衝突によって生ずる衝撃エネルギーによって建物の振動を減衰させるように構成したことを特徴とする建物用受動型制振装置。
An outer shell structure that forms an outer shell of the device and is fixed to a building subject to vibration suppression;
An additional mass having a circular or elliptical outer edge in a horizontal cross section that is housed with clearance in the outer shell structure and can vibrate in all directions within a horizontal plane via horizontal spring means,
Damping means for imparting damping force to horizontal vibration of the additional mass;
In accordance with the natural frequency of the building, the spring constant of the horizontal spring means and the damping constant of the damping means are set to function as a passive dynamic vibration absorber,
When the horizontal amplitude of the additional mass reaches the clearance or more, it collides with the inner surface of the outer wall of the outer shell structure, and the vibration of the building is attenuated by the impact energy generated by the collision between the additional mass and the inner surface of the outer wall. A passive vibration control device for buildings, characterized by being configured as described above.
請求項1記載の建物用受動型制振装置において、前記前記外殻構造体の外壁部は弾塑性変形によりエネルギー吸収する弾塑性材料からなることを特徴とする建物用受動型制振装置。   2. The building passive vibration damping device according to claim 1, wherein an outer wall portion of the outer shell structure is made of an elastic-plastic material that absorbs energy by elastic-plastic deformation. 請求項1または2記載の建物用受動型制振装置において、前記付加マスの外周面または前記外殻構造体の内周面には緩衝部材が取り付けられていることを特徴とする建物用受動型制振装置。   The passive type vibration damping device for buildings according to claim 1 or 2, wherein a buffer member is attached to an outer peripheral surface of the additional mass or an inner peripheral surface of the outer shell structure. Damping device. 請求項1〜3のいずれか一項に記載の建物用受動型制振装置において、前記付加マスはすべり支承を介して水平方向に摺動可能に支持されていることを特徴とする建物用受動型制振装置。   The passive type vibration damping device for buildings according to any one of claims 1 to 3, wherein the additional mass is supported so as to be slidable in a horizontal direction via a sliding bearing. Mold damping device. 請求項1〜4のいずれか一項に記載の建物用受動型制振装置において、前記水平バネ手段は、積層ゴム、合成ゴム、コイルバネ、またはこれらの組み合わせであることを特徴とする建物用受動型制振装置。   The passive vibration damping device for buildings according to any one of claims 1 to 4, wherein the horizontal spring means is laminated rubber, synthetic rubber, a coil spring, or a combination thereof. Mold damping device. 請求項1〜5のいずれか一項に1記載の建物用受動型制振装置において、前記外殻構造体の内部下面には、前記付加マスの鉛直荷重を支持するすべり支承が形成されており、前記水平バネ手段は前記付加マスの上面と前記外殻構造体の上部内面との間をつなぐ積層ゴムであることを特徴とする建物用受動型制振装置。   The passive vibration damping device for a building according to any one of claims 1 to 5, wherein a sliding bearing for supporting a vertical load of the additional mass is formed on an inner lower surface of the outer shell structure. The building-type passive vibration damping device, wherein the horizontal spring means is a laminated rubber that connects the upper surface of the additional mass and the upper inner surface of the outer shell structure. 請求項1〜6のいずれか一項に1記載の建物用受動型制振装置において、前記付加マスは前記外殻構造体に対し、1本または複数本の吊り材を介して振り子式に吊り支持されていることを特徴とする建物用受動型制振装置。   7. The passive vibration damping device for a building according to claim 1, wherein the additional mass is suspended in a pendulum manner from the outer shell structure via one or a plurality of suspension members. A passive vibration control device for buildings characterized by being supported. 請求項1〜7のいずれか一項に1記載の建物用受動型制振装置において、前記付加マスは外殻部材の内部に鉛を充填または収納したものであることを特徴とする建物用受動型制振装置。   The building passive type vibration damping device according to any one of claims 1 to 7, wherein the additional mass is one in which lead is filled or stored in an outer shell member. Mold damping device.
JP2018082748A 2018-04-24 2018-04-24 Passive vibration control device for buildings Active JP6420012B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018082748A JP6420012B1 (en) 2018-04-24 2018-04-24 Passive vibration control device for buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082748A JP6420012B1 (en) 2018-04-24 2018-04-24 Passive vibration control device for buildings

Publications (2)

Publication Number Publication Date
JP6420012B1 JP6420012B1 (en) 2018-11-07
JP2019190539A true JP2019190539A (en) 2019-10-31

Family

ID=64098737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082748A Active JP6420012B1 (en) 2018-04-24 2018-04-24 Passive vibration control device for buildings

Country Status (1)

Country Link
JP (1) JP6420012B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577429B (en) * 2022-02-23 2024-02-23 长沙理工大学 Automatic test device for simulating sudden damage of doors and windows in wind tunnel test
CN115727084B (en) * 2022-11-30 2024-07-30 福州大学 Shock absorber with automatic resetting and limiting functions and working method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118162A (en) * 1991-10-29 1993-05-14 Mitsui Constr Co Ltd Damping device
JP2000170181A (en) * 1998-12-03 2000-06-20 Ishikawajima Harima Heavy Ind Co Ltd Foundation damping device
JP3560140B2 (en) * 2000-01-18 2004-09-02 本田技研工業株式会社 Damping device
JP2002371726A (en) * 2001-06-15 2002-12-26 Tokai Rubber Ind Ltd Multifunctional vibration damping device for dwelling house

Also Published As

Publication number Publication date
JP6420012B1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US11339849B2 (en) Three-dimensional isolator with adaptive stiffness property
JP6420012B1 (en) Passive vibration control device for buildings
CN108589513B (en) Damping counterweight system for bridge and working method thereof
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JPH01322061A (en) Earthquake isolating device
JP2012042016A (en) Three-dimensional base isolation device
JP3843174B2 (en) Seismic isolation structure
WO2015098084A1 (en) Boiler support structure
JPH11270175A (en) Vibration damping method of connected structure
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JP2877293B2 (en) Outer tube supported steel chimney
JP5462059B2 (en) Foundation structure
JP7455682B2 (en) Buffer structure and buffer material
CN111684206A (en) Boiler structure
JP5252227B2 (en) Seismic isolation system
JP2011099538A (en) Vertical base isolation system
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
AU2021104588A4 (en) A method to suppress Vibration in a Civil Engineering Structure using a 3-Dimensional Isolator.
JPH0941713A (en) Response control device
JP2016056875A (en) Seismic base isolation structure with vibration control function
JPS62220734A (en) Vibrational energy absorbing device
Ibrahim et al. Vibration Control of A Frames Structure Using Tuned Mass Damper
Hemalatha et al. Water tank as passive TMD for seismically excited structures
JP2021014905A (en) Vibration damping device and vibration damping structure
JPH0259262B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181010

R150 Certificate of patent or registration of utility model

Ref document number: 6420012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250