JP3782084B2 - Damping structure of structure - Google Patents

Damping structure of structure Download PDF

Info

Publication number
JP3782084B2
JP3782084B2 JP2004026099A JP2004026099A JP3782084B2 JP 3782084 B2 JP3782084 B2 JP 3782084B2 JP 2004026099 A JP2004026099 A JP 2004026099A JP 2004026099 A JP2004026099 A JP 2004026099A JP 3782084 B2 JP3782084 B2 JP 3782084B2
Authority
JP
Japan
Prior art keywords
additional mass
damping
arm
rubber sphere
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004026099A
Other languages
Japanese (ja)
Other versions
JP2004132176A (en
Inventor
辰治 石丸
隆弘 新谷
雅春 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2004026099A priority Critical patent/JP3782084B2/en
Publication of JP2004132176A publication Critical patent/JP2004132176A/en
Application granted granted Critical
Publication of JP3782084B2 publication Critical patent/JP3782084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Floor Finish (AREA)

Description

本発明は、構造物の制振構造に関する。   The present invention relates to a structure damping structure.

制振構造とは、地震や風によって構造物に発生する振動を制御するもので、パッシブ方式とアクティブ方式に大別される。   Damping structures control vibrations generated in structures due to earthquakes and winds, and are broadly divided into passive methods and active methods.

パッシブ方式は、図10に示すように、建築物120が揺れると、建築物120の揺れの周期に同調された振り子122が共振現象を起こして揺れ、この揺れで建築物120の振動エネルギーを吸収するものである(所謂TMD:Tuned Mass Damper)。   In the passive method, as shown in FIG. 10, when the building 120 is shaken, the pendulum 122 tuned to the shaking period of the building 120 causes a resonance phenomenon and shakes, and the vibration energy of the building 120 is absorbed by this shaking. (So-called TMD: Tuned Mass Damper).

また、図11に示すように、建築物124の屋上部に付加質量126を相対移動可能に載せ、この付加質量126を建築物124にダンパー128を介して連結し、建築物124の重量と付加質量126の重量との比率から、最適なダンパー128の減衰力をチューニングし、建築物124へ減衰力を積極的に付加して共振振動を抑えるものもある。   Further, as shown in FIG. 11, an additional mass 126 is placed on the roof of the building 124 so as to be relatively movable, and the additional mass 126 is connected to the building 124 via a damper 128 to add to the weight of the building 124. In some cases, the optimum damping force of the damper 128 is tuned from the ratio of the mass 126 to the weight, and the damping force is positively added to the building 124 to suppress resonance vibration.

一方、アクティブ方式は、図12に示すように、建築物124の屋上部に相対移動可能に載せた付加質量126を、油圧等を利用したアクチュエータ130で作動させ、建築物124の揺れを制御するものである(所謂AMD:Active Mass Damper)。   On the other hand, in the active method, as shown in FIG. 12, the additional mass 126 placed on the roof of the building 124 so as to be relatively movable is actuated by an actuator 130 using hydraulic pressure or the like to control the shaking of the building 124. (So-called AMD: Active Mass Damper).

すなわち、センサー132が入力地震動を、センサー134が建築物124の揺れを検知し、制御装置136へ信号を出力する。ここで、制御装置136が、センサー132、134からの出力信号に基づき、建築物124を制振する最適な制御力を計算する。そして、アクチュエータ130を駆動させて付加質量126を動かし、その反力で建築物124の揺れを抑え込むものである。   That is, the sensor 132 detects the input seismic motion, the sensor 134 detects the shaking of the building 124, and outputs a signal to the control device 136. Here, the control device 136 calculates an optimal control force for damping the building 124 based on the output signals from the sensors 132 and 134. Then, the actuator 130 is driven to move the additional mass 126, and the reaction force suppresses the shaking of the building 124.

このように、従来の制振構造は、何れも、一定の重量(通常は、建築物の重量の1%、最大でも3%程度)を有する付加質量を、建築物の頂部に別途配置する必要があった。このため、建築物の総重量が増加し、これに伴い構造部材の設計強度を大きくする必要があり、建築コストの上昇を招いていた。   As described above, any conventional damping structure needs to separately arrange an additional mass having a constant weight (usually about 1% of the weight of the building and about 3% at the maximum) at the top of the building. was there. For this reason, the total weight of the building has increased, and accordingly, the design strength of the structural member has to be increased, leading to an increase in building cost.

また、付加質量の大きさには限界があるため、現状のTMD式の制振装置では通常風対策が主流となっているが、地震も想定した仕様とすると、TMD式では装置が大掛かりになり過ぎる。   In addition, because the size of the added mass is limited, the current TMD type vibration control devices are mainly used for countermeasures against normal winds. However, if the specifications are for earthquakes, the TMD type device will be large. Pass.

さらに、建築物は揺れ戻しによって高次のモードで振動するが、従来のように、最上階でのみで振動を制御する方法では、振動制御に限界がある。   Furthermore, the building vibrates in a higher-order mode by swinging back, but there is a limit to vibration control in the conventional method of controlling vibration only on the top floor.

本発明は係る事実を考慮し、構造物の総重量を増加させることなく、地震や風による揺れを効率よく制御することができる構造物の制振構造を提供することを課題とする。   In view of such facts, an object of the present invention is to provide a structure damping structure capable of efficiently controlling shaking due to an earthquake or wind without increasing the total weight of the structure.

請求項1に記載の発明では、構造物の各階層の床部にゴム球体が配置されており、このゴム球体は圧縮変形した状態で付加質量を構造物の揺れと相対変位可能に支持している。また、付加質量の周囲と構造物の柱との間には、弾性ばねが設けられており、付加質量をセット位置に保持する。   In the first aspect of the present invention, rubber spheres are arranged on the floor of each level of the structure, and the rubber spheres support the additional mass in a state of being compressed and deformed so as to be relatively displaceable with the vibration of the structure. Yes. An elastic spring is provided between the periphery of the additional mass and the pillar of the structure to hold the additional mass at the set position.

すなわち、強風や地震時に構造物が揺れると、構造物の各階層で付加質量が慣性力で移動し、構造物と相対的な揺れの違いを起こし(位相差を生じる)、振動を抑制する。   That is, when a structure shakes during strong winds or earthquakes, the added mass moves by inertial force at each level of the structure, causing a difference in relative shake with the structure (producing a phase difference) and suppressing vibration.

このように、各階層単位で振動エネルギーを吸収し、構造物全体を制振する方式では、構造物の頂部に別途付加質量を必要としないので、構造物全体の重量が増加しない。また、各階層で振動エネルギーを吸収するので、構造部材の設計が楽になり、構造部材の設計強度も通常の構造物(制振構造でない構造物)と同等にできる。   As described above, in the method of absorbing vibration energy in each layer unit and damping the entire structure, no additional mass is required at the top of the structure, so the weight of the entire structure does not increase. Further, since vibration energy is absorbed in each layer, the design of the structural member becomes easy, and the design strength of the structural member can be equivalent to that of a normal structure (a structure that is not a vibration-damping structure).

さらに、付加質量が相対変位したとき、ゴム球体は、付加質量と床部との面摩擦力によって弾性変形し、その変形が弾性変形範囲内であるとき、その防振機能によって、床部の揺れや振動が付加質量に伝わらない。   Further, when the additional mass is relatively displaced, the rubber sphere is elastically deformed by the surface friction force between the additional mass and the floor portion. When the deformation is within the elastic deformation range, the vibration of the floor portion is swayed by the vibration isolating function. And vibration is not transmitted to the added mass.

また、地震力が大きく、付加質量と床部との相対変位量がゴム球体の弾性変形範囲を越えると転がり始める。このとき、圧縮変形して潰れたゴム球体は、回転時に内部がせん断変形するので、減衰力を発揮する。   In addition, when the seismic force is large and the relative displacement between the additional mass and the floor exceeds the elastic deformation range of the rubber sphere, rolling starts. At this time, the rubber sphere crushed by compressive deformation exhibits a damping force because the inside undergoes shear deformation during rotation.

さらに、保持盤を配置することによって、ゴム球体の敷き並べ作業が容易になり、また、付加質量が上下振動したとき、ゴム球体が飛び跳ねて位置ズレすることがない。さらに、付加質量の位置を弾性ばね36の復元力によって保持することができる。   Furthermore, by arranging the holding plate, it becomes easy to lay and arrange the rubber spheres, and when the additional mass vibrates up and down, the rubber spheres will not jump and be displaced. Further, the position of the additional mass can be held by the restoring force of the elastic spring 36.

また、構造物は地震時等に高次のモードで振動するが、各階層で振動エネルギーを吸収することで、構造物の揺れを効率よく制御することができる。   In addition, the structure vibrates in a higher mode during an earthquake or the like, but the vibration of the structure can be efficiently controlled by absorbing vibration energy at each level.

請求項2に記載の発明では、請求項1の弾性ばねに替えて、吊り材で付加質量を吊下している。この吊り材は重力ばねとして機能し、付加質量の位置を保持する。   In the second aspect of the invention, instead of the elastic spring of the first aspect, the additional mass is suspended by a suspension material. This suspension material functions as a gravity spring and maintains the position of the additional mass.

請求項3に記載の発明では、付加質量と構造物との間に減衰装置を設けることで、ゴム球体と共に、大きな減衰力を付加質量に与えることができる。   In the invention described in claim 3, by providing a damping device between the additional mass and the structure, a large damping force can be given to the additional mass together with the rubber sphere.

この減衰装置は、構造物に一端が回転可能に取付けられた第1アームと、付加質量に一端が回転可能に取付けられた第2アームを備えている。そして、連結シャフトによって、第1アームと第2アームとの軸線或いはこれらの軸線の延長線が交わる角度が鋭角となるように、第1アームと第2アームの自由端が回転可能に連結され、トグル機構を構成している。   The damping device includes a first arm having one end rotatably attached to the structure and a second arm having one end rotatably attached to the additional mass. Then, the free ends of the first arm and the second arm are rotatably connected by the connecting shaft so that the angle between the axis of the first arm and the second arm or the extension line of these axes is an acute angle, It constitutes a toggle mechanism.

このように、第1アームと第2アームの交角を鋭角にすることにより、地震等により構造物と付加質量が、小さく水平方向或いは鉛直方向へ相対変形しても、大きな変形に増幅され連結シャフトは大きく円弧運動する。すなわち、第1アームと第2アームの交角が鈍角である場合に比較すると、交角を鋭角にすることにより、幾何学上、連結シャフトは際立って大きく移動する。このため、小さい変形×大きな力=大きな変形×小さな力という関係が成立し、連結シャフトの小さな摩擦力で、構造物の振動を抑制する減衰力を発生させることができる。   In this way, by making the angle of intersection of the first arm and the second arm acute, even if the structure and the additional mass are small and relatively deformed horizontally or vertically due to an earthquake or the like, they are amplified to a large deformation and connected shafts. Moves in a large arc. That is, as compared with the case where the intersection angle between the first arm and the second arm is an obtuse angle, the connection shaft moves remarkably geometrically by making the intersection angle an acute angle. For this reason, the relationship of small deformation × large force = large deformation × small force is established, and a damping force that suppresses vibration of the structure can be generated with a small frictional force of the connecting shaft.

本発明は上記構成としたので、構造物の総重量を増加させることなく、地震や風による揺れを効率よく制御することができる。   Since the present invention has the above-described configuration, it is possible to efficiently control shaking due to an earthquake or wind without increasing the total weight of the structure.

図1〜図3には、第1形態に係る構造物の制振構造が用いられた高層建物10が示されている。   1 to 3 show a high-rise building 10 in which the structure damping structure according to the first embodiment is used.

この高層建物10は、基礎地盤から立ち上げられた構造部材としての柱14と、この柱14に架設されたスラブ18で5階の居室空間が設けられている。各居室には二重床材16が設けられている。この二重床材16は二重床材構造を構成し、その板厚はスラブ18より厚く、付加質量としての重量を備えている。   This high-rise building 10 is provided with a fifth-floor room space with a pillar 14 as a structural member raised from the foundation ground and a slab 18 installed on the pillar 14. Each room is provided with a double flooring 16. This double flooring 16 constitutes a double flooring structure, and its plate thickness is thicker than that of the slab 18 and has a weight as an additional mass.

スラブ18の上に、保持盤42が載置されている。保持盤42は、図5に示すように、硬質プラスチック、軽量コンクリート、PC版等で成形された板材で、二重床材16に接触しない板厚に設計されている。   A holding plate 42 is placed on the slab 18. As shown in FIG. 5, the holding plate 42 is a plate material formed of hard plastic, lightweight concrete, PC plate or the like, and is designed to have a thickness that does not contact the double flooring 16.

また、保持盤42には、所定の間隔を置いて上下面を貫通する円形の保持部44が形成されている。この保持部44の内径は、後述する球体14が圧縮変形したときの外径より大きくされており、球体14が非接触状態で取り囲まれている。これによって、球体14が転がり始めたとき、初めて保持部44に当たるようになっている。   In addition, the holding plate 42 is formed with a circular holding portion 44 that penetrates the upper and lower surfaces at a predetermined interval. The inner diameter of the holding portion 44 is larger than the outer diameter when a sphere 14 described later is compressed and deformed, and the sphere 14 is surrounded in a non-contact state. Thus, when the sphere 14 starts to roll, it comes into contact with the holding portion 44 for the first time.

保持部44には、減衰性能を有する材料(高減衰ゴム、天然ゴム、粘弾性体等)で成形された球体46が収納されている。この球体46の上には、コンクリート板等の重量のある二重床材16が載置されている。これによって、球体46は圧縮荷重を受け、楕円状に圧縮変形し、面でスラブ18及び二重床材16と接触する。   The holding portion 44 accommodates a sphere 46 formed of a material having damping performance (high damping rubber, natural rubber, viscoelastic body, etc.). On the sphere 46, a heavy double flooring 16 such as a concrete board is placed. Thereby, the spherical body 46 receives a compressive load, compresses and deforms into an elliptical shape, and comes into contact with the slab 18 and the double flooring 16 at the surface.

また、二重床材16の周囲は柱14に弾性ばね36で連結されており、弾性ばね36の復元力によって、二重床材16のセット位置が保持されるようになっている。   Further, the periphery of the double flooring 16 is connected to the column 14 by an elastic spring 36, and the set position of the double flooring 16 is held by the restoring force of the elastic spring 36.

次に、第1形態に係る構造物の制振構造の機能を説明する。   Next, the function of the structure damping structure according to the first embodiment will be described.

図2に示す状態において、地震等によって、スラブ18が左方向へ移動すると、図3に示すように、スラブ18及び二重床材16との面摩擦力によって球体46が弾性変形する。そして、二重床材16との相対移動量が、球体46の弾性変形範囲内であるとき、その防振機能によって、スラブ18の揺れや振動が二重床材16に伝わらない。   In the state shown in FIG. 2, when the slab 18 moves leftward due to an earthquake or the like, the sphere 46 is elastically deformed by the surface friction force between the slab 18 and the double flooring 16 as shown in FIG. When the relative movement amount with respect to the double flooring 16 is within the elastic deformation range of the sphere 46, the vibration and vibration of the slab 18 are not transmitted to the double flooring 16 due to the vibration isolation function.

また、地震力が大きく、スラブ18と二重床材16との相対移動量が球体46の弾性変形範囲を越えると、図4に示すように、スラブ18と二重床材16の相対移動に伴って、球体46は、スラブ18と二重床材16の間を右方向へ転がり始める。   Further, when the seismic force is large and the relative movement amount between the slab 18 and the double flooring 16 exceeds the elastic deformation range of the sphere 46, as shown in FIG. Along with this, the sphere 46 starts to roll in the right direction between the slab 18 and the double flooring 16.

このとき、圧縮変形して潰れた球体46は、回転時に内部がせん断変形するので、減衰力を発揮し、さらに、回転体が転がるときのスラブ18と二重床材16との摩擦抵抗も同時に減衰力として作用するので、これらの組み合わせによって高い減衰効果を発揮する。   At this time, the sphere 46 that has been crushed by compressive deformation exhibits a damping force because the inside undergoes shear deformation during rotation, and also the frictional resistance between the slab 18 and the double flooring 16 when the rotator rolls simultaneously. Since it acts as a damping force, a high damping effect is exhibited by these combinations.

一方、スラブ18が、上下方向へ振動しても、球体46がせん断変形して振動が減衰される。また、本形態では、保持盤42を配置することによって、球体46の敷き並べ作業が容易になり、また、二重床材16が上下振動したとき、球体46が飛び跳ねて位置ズレすることがない。   On the other hand, even if the slab 18 vibrates in the vertical direction, the sphere 46 is shear-deformed and the vibration is attenuated. Further, in this embodiment, by arranging the holding plate 42, the work of arranging the spheres 46 becomes easy, and when the double flooring 16 vibrates up and down, the spheres 46 will not jump and be displaced. .

なお、本形態では、二重床材16の位置を弾性ばね36の復元力によって保持したが、図6に示すように、二重床材16を吊り材48で吊すことによって、元の位置に戻るようにしてもよい。本形態において、二重床材16が付加質量として機能する。   In the present embodiment, the position of the double flooring 16 is held by the restoring force of the elastic spring 36. However, as shown in FIG. You may make it return. In this embodiment, the double flooring 16 functions as an additional mass.

次に、第2形態に係る構造物の制振構造の機能を説明する。   Next, the function of the structure damping structure according to the second embodiment will be described.

図7に示すように、第2形態では、二重床材16の中央部に球体46を配置するため、後述する減衰装置12の取付ブロック24が、高層建物10の壁体を部分的に凹設して露出した梁50の上に固定され、取付ブロック32が二重床材16の端部に固定されている。   As shown in FIG. 7, in the second embodiment, since the sphere 46 is arranged at the center of the double flooring 16, the mounting block 24 of the attenuation device 12 described later partially dents the wall of the high-rise building 10. The mounting block 32 is fixed to the end of the double flooring 16 and is fixed on the exposed and exposed beam 50.

ここで、減衰装置12について説明する。   Here, the attenuation device 12 will be described.

図8及び図9に示すように、減衰装置12は、第1アーム22を備えている。この第1アーム22の一端は、梁50に固定された取付ブロック24から立設された軸体26に回転可能に連結されている。また、第1アーム22は、梁50と平行に張り出しており、自由端部は連結シャフト28へ回転可能に連結されている。   As shown in FIGS. 8 and 9, the attenuation device 12 includes a first arm 22. One end of the first arm 22 is rotatably connected to a shaft body 26 erected from a mounting block 24 fixed to the beam 50. Further, the first arm 22 projects in parallel with the beam 50, and the free end is rotatably connected to the connecting shaft 28.

この連結シャフト28には、梁50と平行に張り出した第2アーム30の自由端部が回転可能に連結され、そして、第1アーム22の軸線と第2アーム30の軸線が描く交角が鋭角となるように設定され、第1アーム22と第2アーム30とでトグル機構を構成している。また、第2アーム30の一端は、二重床材16に固定された取付ブロック32から垂下された軸体34に回転可能に連結されている。   A free end portion of the second arm 30 projecting in parallel with the beam 50 is rotatably connected to the connection shaft 28, and an intersection angle drawn by the axis line of the first arm 22 and the axis line of the second arm 30 is an acute angle. The first arm 22 and the second arm 30 constitute a toggle mechanism. Further, one end of the second arm 30 is rotatably connected to a shaft body 34 suspended from a mounting block 32 fixed to the double flooring 16.

この減衰装置12では、軸体26、34の小さな変位が連結シャフト28の大きな変位に増幅され、小さな変位×大きな力=大きな変位×小さな力という関係が成立する。そして、連結シャフト28の部分で発生する摩擦力によって、二重床材16の振動を減衰する。   In the damping device 12, a small displacement of the shaft bodies 26 and 34 is amplified to a large displacement of the connecting shaft 28, and a relationship of small displacement × large force = large displacement × small force is established. Then, the vibration of the double flooring 16 is attenuated by the frictional force generated at the connecting shaft 28 portion.

このように、球体46で二重床材16を支持することにより、二重床材16に強度が余り要求されない。また、球体46と減衰装置12で大きな減衰力を二重床材16に与えることができる。   Thus, by supporting the double flooring 16 with the sphere 46, the double flooring 16 is not required to have much strength. Further, a large damping force can be applied to the double flooring 16 by the sphere 46 and the damping device 12.

第1形態に係る構造物の制振構造が用いられた高層建物の正断面図である。It is a front sectional view of a high-rise building in which the structure damping structure according to the first embodiment is used. 第1形態に係る構造物の制振構造が用いられた居室の拡大断面図である。It is an expanded sectional view of the living room where the vibration damping structure of the structure concerning a 1st form was used. 第1形態に係る構造物の制振構造が用いられた居室の拡大断面図である。It is an expanded sectional view of the living room where the vibration damping structure of the structure concerning a 1st form was used. 第1形態に係る構造物の制振構造が用いられた居室の拡大断面図である。It is an expanded sectional view of the living room where the vibration damping structure of the structure concerning a 1st form was used. 第1形態に係る構造物の制振構造の保持盤を示す平面図である。It is a top view which shows the holding | maintenance board of the damping structure of the structure which concerns on a 1st form. 第1形態に係る構造物の制振構造が用いられた高層建物の変形例を示す正断面図である。It is a front sectional view showing a modification of a high-rise building in which the structure damping structure according to the first embodiment is used. 第2形態に係る構造物の制振構造が用いられた高層建物の正断面図である。It is a front sectional view of a high-rise building in which the structure damping structure according to the second embodiment is used. 第2形態に係る構造物の制振構造で用いられた減衰装置の斜視図である。It is a perspective view of the damping device used with the vibration damping structure of the structure concerning a 2nd form. 第2形態に係る構造物の制振構造で用いられた減衰装置の平面図である。It is a top view of the damping device used with the damping structure of the structure concerning a 2nd form. 従来の制振構造を示す説明図である。It is explanatory drawing which shows the conventional damping structure. 従来の制振構造を示す説明図である。It is explanatory drawing which shows the conventional damping structure. 従来の制振構造を示す説明図である。It is explanatory drawing which shows the conventional damping structure.

符号の説明Explanation of symbols

12 減衰装置
16 二重床材(床材、付加質量)
36 弾性ばね
42 保持盤
46 球体(ゴム球体)
48 吊り材
12 Attenuator
16 Double flooring (flooring, additional mass)
36 Elastic spring
42 Holding plate
46 Sphere (Rubber Sphere)
48 Hanging material

Claims (3)

複数の階層が構築された構造物に作用する外力によって、前記各階層の床部に配置され該構造物と相対変形する付加質量により、構造物の振動を抑える構造物の制振構造において、
前記床部に配置され圧縮変形した状態で前記付加質量を支持するゴム球体と、 前記ゴム球体を非接触状態で取り囲み、ゴム球体が転がり始めたとき接触する保持盤と、
前記付加質量の周囲と構造物の柱との間に設けられ、前記付加質量をセット位置に保持する弾性ばねと、
を有することを特徴とする構造物の制振構造。
In the damping structure of the structure that suppresses the vibration of the structure by an additional mass that is arranged on the floor portion of each hierarchy and is deformed relative to the structure by an external force acting on the structure in which a plurality of levels are constructed.
A rubber sphere that is arranged on the floor and supports the additional mass in a compressed and deformed state; a holding plate that surrounds the rubber sphere in a non-contact state and contacts when the rubber sphere begins to roll;
An elastic spring provided between the periphery of the additional mass and the pillar of the structure, and holding the additional mass in a set position;
A structure damping structure characterized by comprising:
複数の階層が構築された構造物に作用する外力によって、前記各階層の床部に配置され該構造物と相対変形する付加質量により、構造物の振動を抑える構造物の制振構造において、
前記床部に配置され圧縮変形した状態で前記付加質量を支持するゴム球体と、 前記ゴム球体を非接触状態で取り囲み、ゴム球体が転がり始めたとき接触する保持盤と、
前記付加質量を吊下する吊り材と、
を有することを特徴とする構造物の制振構造。
In the damping structure of the structure that suppresses the vibration of the structure by an additional mass that is arranged on the floor portion of each hierarchy and is deformed relative to the structure by an external force acting on the structure in which a plurality of levels are constructed.
A rubber sphere that is arranged on the floor and supports the additional mass in a compressed and deformed state; a holding plate that surrounds the rubber sphere in a non-contact state and contacts when the rubber sphere begins to roll;
A suspension material for suspending the additional mass;
A structure damping structure characterized by comprising:
複数の階層が構築された構造物に作用する外力によって、前記各階層の床部に配置され該構造物と相対変形する付加質量により、構造物の振動を抑える構造物の制振構造において、
前記床部に配置され圧縮変形した状態で前記付加質量を支持するゴム球体と、 前記ゴム球体を非接触状態で取り囲み、ゴム球体が転がり始めたとき接触する保持盤と、
前記付加質量の周囲と構造物の柱との間に設けられ、前記付加質量をセット位置に保持する弾性ばねと、
前記付加質量を吊下する吊り材と、
前記付加質量と構造物との間に設けられた減衰装置と、を備え、
前記減衰装置が、前記構造物に一端が回転可能に取付けられた第1アームと、前記付加質量に一端が回転可能に取付けられた第2アームと、前記第1アームと前記第2アームとの軸線或いはこれらの軸線の延長線が交わる角度が鋭角となるように、それぞれの自由端を回転可能に連結し摩擦力を発生させる連結シャフトと、を有することを特徴とする構造物の制振構造。
In the damping structure of the structure that suppresses the vibration of the structure by an additional mass that is arranged on the floor portion of each hierarchy and is deformed relative to the structure by an external force acting on the structure in which a plurality of levels are constructed.
A rubber sphere that is arranged on the floor and supports the additional mass in a compressed and deformed state; a holding plate that surrounds the rubber sphere in a non-contact state and contacts when the rubber sphere begins to roll;
An elastic spring provided between the periphery of the additional mass and the pillar of the structure, and holding the additional mass in a set position;
A suspension material for suspending the additional mass;
A damping device provided between the additional mass and the structure,
The damping device includes: a first arm having one end rotatably attached to the structure; a second arm having one end rotatably attached to the additional mass; and the first arm and the second arm. And a connecting shaft that rotatably connects the respective free ends to generate a frictional force so that the angle at which the axes or the extension lines of these axes intersect is an acute angle. .
JP2004026099A 2004-02-02 2004-02-02 Damping structure of structure Expired - Fee Related JP3782084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026099A JP3782084B2 (en) 2004-02-02 2004-02-02 Damping structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026099A JP3782084B2 (en) 2004-02-02 2004-02-02 Damping structure of structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP487298A Division JPH11200660A (en) 1998-01-13 1998-01-13 Vibration control structure for construction

Publications (2)

Publication Number Publication Date
JP2004132176A JP2004132176A (en) 2004-04-30
JP3782084B2 true JP3782084B2 (en) 2006-06-07

Family

ID=32291487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026099A Expired - Fee Related JP3782084B2 (en) 2004-02-02 2004-02-02 Damping structure of structure

Country Status (1)

Country Link
JP (1) JP3782084B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246142U (en) * 1988-09-27 1990-03-29
JPH03224293A (en) * 1990-01-30 1991-10-03 Fujitsu Ltd Base leg
JPH03111702U (en) * 1990-02-27 1991-11-15
JPH0925990A (en) * 1995-07-14 1997-01-28 Oiles Ind Co Ltd Base isolation device

Also Published As

Publication number Publication date
JP2004132176A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP5570605B2 (en) Method and structure for dampening motion in a building
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
JP6372034B2 (en) Anti-vibration vibration reduction device
JP2007262833A (en) Viscous system vibration damper and base isolation building having this damper
JP3696708B2 (en) Damping mechanism and damping device using the same
JPH11200660A (en) Vibration control structure for construction
JP4432208B2 (en) Damper and building using it
JP2007321853A (en) Base isolating device and base isolated structure
JP3782084B2 (en) Damping structure of structure
JP2001152695A (en) Three-storied house
JP2005249210A (en) Damping apparatus
JP2001295499A (en) Base isolation mechanism for structure
JP5348945B2 (en) Seismic isolation structure of building
JP2008121400A (en) Foundation-pile vibration-damping device
JP2001074093A (en) Base isolation device
JP4209814B2 (en) Attenuator
JP7037320B2 (en) Vibration control building
JP2004316420A (en) Base-isolated structure
JP7025988B2 (en) Building damping system and building
JP3671317B2 (en) Seismic isolation mechanism
JP4177991B2 (en) Seismic isolation device
JP4828053B2 (en) Structure damping device
JPH02154825A (en) Vibration suppressor for structure
JP2000104420A (en) Base isolation structure
JP2018145626A (en) Damping structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees