JP2003046243A - Method for manufacturing high density multilayer build- up wiring board - Google Patents

Method for manufacturing high density multilayer build- up wiring board

Info

Publication number
JP2003046243A
JP2003046243A JP2001227213A JP2001227213A JP2003046243A JP 2003046243 A JP2003046243 A JP 2003046243A JP 2001227213 A JP2001227213 A JP 2001227213A JP 2001227213 A JP2001227213 A JP 2001227213A JP 2003046243 A JP2003046243 A JP 2003046243A
Authority
JP
Japan
Prior art keywords
layer
alignment mark
wiring
exposure
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001227213A
Other languages
Japanese (ja)
Other versions
JP4792673B2 (en
Inventor
Jun Kawana
潤 川名
Tetsuo Hamada
哲郎 浜田
Noriyuki Ide
憲之 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2001227213A priority Critical patent/JP4792673B2/en
Publication of JP2003046243A publication Critical patent/JP2003046243A/en
Application granted granted Critical
Publication of JP4792673B2 publication Critical patent/JP4792673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a high density multilayer build-up wiring board which does not cause connection defect and is excellent in reliability. SOLUTION: A core substrate 11 wherein a first wiring layer 12a, a first wiring layer 12b and a throughole 13 are formed is prepared. An insulation layer 14 is formed in both sides of the core substrate 11, and a via hole 15 and an alignment mark double ring hole 16 are formed. Furthermore, desmear treatment, conducting processing and electrolytic copper panel plating are carried ort, and an alignment mark 23 is formed in a filled via 21, a second conductor layer 22 and an alignment mark region. A resist pattern 17 is formed by using the alignment mark 23 for exposure, a second wiring layer 22a, a second wiring layer 22b and a land 22c are formed by performing etching treatment for the second conductor layer 22, and a high density multilayer build-up wiring board is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スルーホールが形
成されたコア基板の両面に絶縁層を介して形成された各
配線層がフィルドビアにて電気的に接続されてなる高密
度多層ビルドアップ配線板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density multi-layered build-up wiring in which each wiring layer formed through insulating layers on both sides of a core substrate having through holes is electrically connected by filled vias. The present invention relates to a method for manufacturing a plate.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータ等に代表
されるように、電子機器の小型化、薄形化が求められ、
そこに用いられるプリント配線板においても配線の高密
度化もさることながら、小型化、薄型化及び高信頼性が
要求されている。そのため、配線層間をフィルドビアに
て電気的に接続するフィルドビア構造の半導体装置用基
板の必要性が高まっている。これら半導体装置用基板
は、半導体チップやその他の部品を搭載し、BGA(ボ
ール・グリッド・アレイ)やPGA(ピン・グリッド・
アレー)等の形態で、親基板となる半導体装置用基板上
に搭載される場合が多いだけでなく、親基板として用い
られる場合がある。
2. Description of the Related Art In recent years, there has been a demand for miniaturization and thinning of electronic equipment as represented by personal computers.
The printed wiring boards used therein are required to be compact, thin and highly reliable, as well as to have a high density of wiring. Therefore, there is an increasing need for a semiconductor device substrate having a filled via structure in which wiring layers are electrically connected by filled vias. These semiconductor device substrates are equipped with semiconductor chips and other components, and are used for BGA (ball grid array) or PGA (pin grid grid).
In a form such as an array), it is often mounted on a semiconductor device substrate, which is a parent substrate, and also used as a parent substrate.

【0003】小型化及び薄型化を実現するために、配線
層幅は狭く、間隔は小さく、また配線層の多層化、配線
層の層間を接続するビアホールの小径化という高密度配
線が求められ、高密度化しても接続不良や絶縁不良が発
生しない信頼性の高い半導体装置が求められている。
In order to realize miniaturization and thinning, there is a demand for high-density wiring in which the wiring layer width is narrow and the spacing is small, the wiring layers are multi-layered, and the diameter of via holes connecting the wiring layers is reduced. There is a demand for a highly reliable semiconductor device that does not cause connection failure or insulation failure even if the density is increased.

【0004】これらの要求に対応する半導体装置用基板
として、ビルドアップ法を用いた多層ビルドアップ配線
板が知られている。この方法は、コア基板上に絶縁層、
配線層の形成工程を繰り返すことにより、多層ビルドア
ップ配線板を作製するものである。
A multilayer build-up wiring board using a build-up method is known as a semiconductor device substrate that meets these requirements. This method consists of an insulating layer on the core substrate,
The multilayer build-up wiring board is manufactured by repeating the wiring layer forming process.

【0005】フィルドビア構造の多層ビルドアップ配線
板の形成法の一例について説明する。図4(a)〜
(e)に、コア基板上にフィルドビア及び配線層を形成
して多層ビルドアップ配線板を作製する製造工程の部分
模式構成断面図を示す。まず、面付けされたコア基板5
1上に第1配線層52a及びコア基板51周辺のアライ
メントマーク領域に丸パターンからなる露光用アライメ
ントマーク52dを形成し、所定厚の絶縁層53を形成
する(図4(a)参照)。
An example of a method for forming a multilayer build-up wiring board having a filled via structure will be described. 4 (a)-
(E) is a partial schematic cross-sectional view of a manufacturing process in which a filled via and a wiring layer are formed on a core substrate to manufacture a multilayer buildup wiring board. First, the core substrate 5 that has been impositioned
An exposure alignment mark 52d having a circular pattern is formed on the first wiring layer 52a and the alignment mark region around the core substrate 51 on the substrate 1, and an insulating layer 53 having a predetermined thickness is formed (see FIG. 4A).

【0006】次に、コア基板51のアライメントマーク
領域に形成された露光用アライメントマーク52dにて
レーザービームの位置合わせを行ってレーザー加工を行
い、第1配線層52のランド部52c上の絶縁層53に
ビア用穴54及び基板周辺のアライメント領域の導体層
52e上ににアライメントマーク用丸穴55を形成する
(図4(b)参照)。
Next, the laser beam is aligned with the alignment mark 52d for exposure formed in the alignment mark area of the core substrate 51 to perform laser processing, and the insulating layer on the land portion 52c of the first wiring layer 52 is formed. A via hole 54 is formed in 53 and an alignment mark round hole 55 is formed on the conductor layer 52e in the alignment region around the substrate (see FIG. 4B).

【0007】次に、デスミア処理を行い、ビア用穴5
4、アライメントマーク用丸穴55及び絶縁層53上に
無電解銅めっきにて薄膜導体層を形成し、薄膜導体層を
カソードにして電解銅パネルめっきを行い、フィルドビ
ア61、第2導体層62及び露光用アライメントマーク
63を形成する(図4(c)参照)。
Next, a desmear process is performed to form the via hole 5
4, a thin film conductor layer is formed on the alignment mark round hole 55 and the insulating layer 53 by electroless copper plating, electrolytic copper panel plating is performed using the thin film conductor layer as a cathode, and the filled via 61, the second conductor layer 62, and An exposure alignment mark 63 is formed (see FIG. 4C).

【0008】次に、第2導体層62上にフォトレジスト
層を形成し、基板周辺のアライメント領域に形成された
露光用アライメントマーク63を用いて露光パターンの
位置合わせを行い、パターン露光、現像等の一連のパタ
ーニング処理を行って、レジストパターン56を形成す
る(図4(d)参照)。
Next, a photoresist layer is formed on the second conductor layer 62, the exposure pattern is aligned using the exposure alignment marks 63 formed in the alignment region around the substrate, and pattern exposure, development, etc. are performed. The resist pattern 56 is formed by performing a series of patterning processes (see FIG. 4D).

【0009】次に、レジストパターン56をエッチング
マスクにして第2導体層62をエッチング処理し、レジ
ストパターン56を専用の剥離液で除去して、第2配線
層62aを形成し、ランド52cと第2配線層62aと
がフィルドビア61にて電気的に接続されたフィルドビ
ア構造の多層ビルドアップ配線板を作製する(図4
(e)参照)。さらに、上記、絶縁層、フィルドビア、
配線層及び露光用アライメントマーク形成工程を必要回
数繰り返して、所定層数のフィルドビア構造の多層ビル
ドアップ配線板を得ることができる。
Next, the second conductor layer 62 is etched by using the resist pattern 56 as an etching mask, and the resist pattern 56 is removed by a dedicated stripping solution to form a second wiring layer 62a, and the land 52c and the second wiring layer 62a are formed. A multilayer build-up wiring board having a filled via structure in which the two wiring layers 62a are electrically connected by the filled vias 61 is manufactured (FIG. 4).
(See (e)). Furthermore, the insulating layer, the filled via,
By repeating the steps of forming the wiring layer and the alignment mark for exposure a required number of times, it is possible to obtain a multilayer buildup wiring board having a filled via structure with a predetermined number of layers.

【0010】[0010]

【発明が解決しようとする課題】上記のフィルドビア構
造の多層ビルドアップ配線板の製造工程で、絶縁層にフ
ィルドビア及び導体層を形成する際に次工程で用いる露
光用アライメントマークを同時に形成するもので、露光
用アライメントマーク形成時のパターニング処理工程を
必要としないため、一般に使用されている工程である。
この絶縁層にフィルドビアと露光用アライメントマーク
を同時に形成する際に露光用アライメントマークの表面
形状に不具合が発生する。
In the manufacturing process of a multilayer build-up wiring board having a filled via structure as described above, an exposure alignment mark used in the next step when forming a filled via and a conductor layer in an insulating layer is formed at the same time. Since it does not require a patterning treatment step at the time of forming the exposure alignment mark, it is a step that is generally used.
When the filled via and the exposure alignment mark are simultaneously formed on this insulating layer, a defect occurs in the surface shape of the exposure alignment mark.

【0011】露光用アライメントマークのマーク形状
は、上記で述べたように、大口径の円形パターンが一般
的である。絶縁層に形成されたアライメントマーク用丸
穴にフィルドビア用の電解銅パネルめっきを行うと、ビ
ア用穴54及びアライメントマーク用丸穴55が銅の導
体層で埋まり、図4(c)に示すような露光用アライメ
ントマーク63が形成される。露光用アライメントマー
ク63の表面形状は図4(c)に示すように、アライメ
ントマーク用丸穴55の丸穴周辺のエッジがなだらかに
なり、アライメント作業工程で露光用アライメントマー
クの認識率が低下し、アライメント不良を引き起こす要
因となる。
As described above, the mark shape of the exposure alignment mark is generally a large-diameter circular pattern. When electrolytic copper panel plating for a filled via is performed on the alignment mark round hole formed in the insulating layer, the via hole 54 and the alignment mark round hole 55 are filled with the copper conductor layer, and as shown in FIG. A different alignment mark 63 for exposure is formed. As shown in FIG. 4C, the surface shape of the alignment mark 63 for exposure has a gentle edge around the round hole 55 for the alignment mark, and the recognition rate of the alignment mark for exposure decreases in the alignment work process. It becomes a cause of poor alignment.

【0012】このアライメント不良はビアオンビアのフ
ィルドビア構造の多層配線板を形成する際に、フィルド
ビアとランドの位置ズレとなり、最近の多層配線板の高
密度化に伴い、フィルドビアが小径化しているため、フ
ィルドビアとランドの電気的接続不良を発生させること
になり、結果的にフィルドビア構造の多層配線板の信頼
性を低下させるという問題を有している。
This misalignment causes a positional deviation between the filled via and the land when forming a multilayer wiring board having a via-on-via filled via structure, and the diameter of the filled via has become smaller with the recent increase in the density of the multilayer wiring board. Therefore, there is a problem in that the electrical connection between the land and the land occurs, and as a result, the reliability of the multilayer wiring board having a filled via structure is reduced.

【0013】本発明は上記問題点に鑑み考案されたもの
で、フィルドビアにて配線層の層間接続してなるフィル
ドビア構造の多層プリント配線板において、接続不良を
起こさない信頼性に優れた高密度多層ビルドアップ配線
板の製造方法を提供することを目的とする。
The present invention has been devised in view of the above problems, and in a multi-layer printed wiring board having a filled via structure in which wiring layers are interconnected by filled vias, a high-density multi-layer structure which is excellent in reliability and does not cause connection failure. An object is to provide a method for manufacturing a build-up wiring board.

【0014】[0014]

【課題を解決するための手段】本発明に於いて上記課題
を解決するために、まず、請求項1においては、スルー
ホールが形成されたコア基板の両面に複数の配線層が絶
縁層を介して形成されており、前記配線層間がフィルド
ビアにて電気的に接続されてなる多層プリント配線板に
おいて、以下の工程を少なくとも備えていることを特徴
とする高密度多層ビルドアップ配線板の製造方法とした
ものである。 (a)スルーホール及び配線層が形成されたコア基板の
両面に絶縁層を形成する工程。 (b)前記絶縁層にレーザー加工にてビア用穴及びアラ
イメントマーク用穴を形成する工程。 (c)前記ビア用穴、前記アライメントマーク用穴及び
前記絶縁層を導電化処理して薄膜導体層を形成する工
程。 (d)前記薄膜導体層をカソードにして電解銅パネルめ
っきを行い、フィルドビア、露光用アライメントマーク
及び導体層を形成する工程。 (e)前記導体層上に感光層を形成し、前記露光用アラ
イメントマークを用いてパターン位置合わせを行い、パ
ターン露光、現像処理等の一連のパターニング処理を行
って、レジストパターンを形成する工程。 (f)前記レジストパターンをマスクにして、前記導体
層及び前記薄膜導体層をエッチングし、前記レジストパ
ターンを剥離して配線層を形成する工程。 (g)上記絶縁層、フィルドビア及び配線層の形成工程
を必要回数繰り返して所定層数の高密度多層ビルドアッ
プ配線板を作製する工程。
In order to solve the above problems in the present invention, first, in claim 1, a plurality of wiring layers are provided on both sides of a core substrate having through holes with insulating layers interposed therebetween. And a multilayer printed wiring board in which the wiring layers are electrically connected by filled vias, and a method for manufacturing a high-density multilayer build-up wiring board characterized by comprising at least the following steps: It was done. (A) A step of forming insulating layers on both surfaces of the core substrate on which the through holes and the wiring layers are formed. (B) A step of forming via holes and alignment mark holes in the insulating layer by laser processing. (C) A step of forming a thin film conductor layer by subjecting the via hole, the alignment mark hole, and the insulating layer to a conductive treatment. (D) A step of performing electrolytic copper panel plating using the thin film conductor layer as a cathode to form a filled via, an alignment mark for exposure, and a conductor layer. (E) A step of forming a photosensitive layer on the conductor layer, performing pattern alignment using the alignment mark for exposure, and performing a series of patterning processes such as pattern exposure and development to form a resist pattern. (F) A step of forming a wiring layer by etching the conductor layer and the thin film conductor layer using the resist pattern as a mask and peeling the resist pattern. (G) A step of producing a high-density multi-layer build-up wiring board having a predetermined number of layers by repeating the above-described insulating layer, filled via, and wiring layer forming steps a necessary number of times.

【0015】また、請求項2においては、前記絶縁層に
形成する前記露光用アライメントマークが2重リング形
状であって、2重リングの外形をRD、リング幅をRw
したとき、RD≧200μmφ、Rw≧50μmの条件が
満たされていることを特徴とする請求項1に記載の高密
度多層ビルドアップ配線板の製造方法としたものであ
る。
According to a second aspect of the present invention, when the exposure alignment mark formed on the insulating layer has a double ring shape and the outer shape of the double ring is R D and the ring width is R w , R The method of manufacturing a high-density multilayer buildup wiring board according to claim 1, wherein the conditions of D ≧ 200 μmφ and R w ≧ 50 μm are satisfied.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につき
説明する。本発明の高密度多層ビルドアップ配線板の製
造方法は、図2(a)〜(f)図及び3(b)〜(f)
に示すように、第1配線層12a、第1配線層12b及
びスルーホール13が形成されたコア基板11に、絶縁
層14を形成し、基板周辺のアライメント領域に露光用
アライメントマークを電解銅めっきで形成する際絶縁層
に形成するアライメントマークの形状を図3(c)に示
すような二重リング形状のパターンとし、二重リングの
外形をRD、リング幅をRWとしたとき、RD≧200μ
mφ、Rw≧50μmの条件が満たされるようにして、
さらに、電解銅めっを行って得られた露光用アライメン
トマーク(図3(d)参照)の周辺エッジReが強調さ
れるようにして、面付け基板を投影露光でパターン露光
する際のアライメントマークの認識率を向上させ、配線
パターン等の位置合わせ精度を向上させるようにしたも
のである。本発明の高密度多層ビルドアップ配線板の製
造方法を用いて得られた高密度多層ビルドアップ配線板
の一例を図1(a)及び(b)に示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. A method for manufacturing a high-density multilayer buildup wiring board according to the present invention is shown in FIGS. 2 (a) to (f) and 3 (b) to (f).
As shown in, an insulating layer 14 is formed on the core substrate 11 on which the first wiring layer 12a, the first wiring layer 12b, and the through holes 13 are formed, and an alignment mark for exposure is electrolytic copper-plated in an alignment region around the substrate. When the shape of the alignment mark formed on the insulating layer at the time of formation is a double ring-shaped pattern as shown in FIG. 3C, the outer shape of the double ring is R D , and the ring width is R W , R D ≧ 200μ
mφ and R w ≧ 50 μm are satisfied so that
Further, the alignment mark for pattern exposure of the imposition substrate by projection exposure is performed so that the peripheral edge Re of the alignment mark for exposure (see FIG. 3D) obtained by performing electrolytic copper plating is emphasized. The recognition rate is improved, and the alignment accuracy of the wiring pattern and the like is improved. An example of a high-density multilayer build-up wiring board obtained by using the method for manufacturing a high-density multilayer build-up wiring board of the present invention is shown in FIGS. 1 (a) and 1 (b).

【0017】本発明の高密度多層ビルドアップ配線板の
製造方法について説明する。図2(a)〜(f)に、本
発明の高密度多層ビルドアップ配線板の製造方法の一実
施例を示す模式部分構成断面図を示す。図3(b)〜
(f)に、図2(b)〜(f)のA領域の模式部分拡大
構成断面図及びアライメントマーク領域の露光用アライ
メントマークの模式部分拡大構成断面図を示す。まず、
第1配線層12a、第1配線層12b及びスルーホール
13が形成されたコア基板11を作製する(図2(a)
参照)。コア基板11としては、両面配線板に内層板を
積層して作製したプリント配線板及び絶縁基材にビルア
ップ方式で作製したプリント配線板等が用いられる。
A method of manufacturing the high density multilayer buildup wiring board of the present invention will be described. 2 (a) to 2 (f) are schematic partial configuration sectional views showing an embodiment of a method for manufacturing a high-density multilayer buildup wiring board of the present invention. FIG. 3 (b)-
FIG. 2F is a schematic partially enlarged structural sectional view of the area A and a schematic partially enlarged structural sectional view of the alignment mark for exposure in the alignment mark area in FIGS. First,
The core substrate 11 on which the first wiring layer 12a, the first wiring layer 12b, and the through holes 13 are formed is manufactured (FIG. 2A).
reference). As the core substrate 11, a printed wiring board manufactured by laminating an inner layer board on a double-sided wiring board, a printed wiring board manufactured by a build-up method on an insulating base material, and the like are used.

【0018】次に、第1配線層12a、第1配線層12
b及びスルーホール13が形成されたコア基板11の両
面に樹脂溶液をスクリーン印刷等で塗膜を形成するか、
あるいは樹脂フィルムを積層し、絶縁層14を形成する
(図2(b)及び図3(b)参照)。
Next, the first wiring layer 12a and the first wiring layer 12
b, a resin solution is formed on both surfaces of the core substrate 11 on which the through holes 13 are formed by screen printing, or
Alternatively, resin films are laminated to form the insulating layer 14 (see FIGS. 2B and 3B).

【0019】次に、コア基板11のアライメントマーク
領域に形成された露光用アライメントマーク12dを用
いて、レーザー加工機のレーザービームの位置合わせを
行って、第1配線層12a及び第1配線層12bのラン
ド部12c上の絶縁層14にビア用穴15を、アライメ
ントマーク領域の導体層12e上の絶縁層14にアライ
メントマーク用2重リング穴16を形成する(図2
(c)及び図3(c)参照)。ここで、アライメントマ
ーク用2重リング穴16は、2重リングの外形をRD
リング幅をRWとしたとき、RD≧200μmφ、Rw
50μmの条件を満たすようになっている。例えば、ビ
ア用穴径50μmに対し、2重リングの外形R Dは20
0〜500μm、好ましくは400μm、リング幅RW
は50〜70μmが好適である。
Next, the alignment mark of the core substrate 11
Use the alignment mark 12d for exposure formed in the area
Position the laser beam of the laser processing machine.
Run the first wiring layer 12a and the first wiring layer 12b.
A via hole 15 is formed in the insulating layer 14 on the contact portion 12c.
Align the insulating layer 14 on the conductor layer 12e in the mark area.
A double ring hole 16 for a mark is formed (see FIG. 2).
(C) and FIG.3 (c)). Where the alignment marker
The double ring hole 16 for the brakeD,
Ring width is RWAnd then RD≧ 200μmφ, Rw
The condition of 50 μm is satisfied. For example,
A For double hole outer diameter R for hole diameter 50 μm DIs 20
0 to 500 μm, preferably 400 μm, ring width RW
Is preferably 50 to 70 μm.

【0020】次に、ビア用穴15、アライメントマーク
用2重リング穴16及び絶縁層14表面のデスミア処理
を行い、絶縁層14上、ビア用穴15内及びアライメン
トマーク用2重リング穴16内に無電解銅めっき等にて
薄膜導体層を形成し、さらに、薄膜導体層をカソードに
して電解銅パネルめっき行い、フィルドビア21、第2
導体層22及びアライメントマーク領域に露光用アライ
メントマーク23を形成する(図2(d)及び図3
(d)参照)。
Next, the surface of the via hole 15, the alignment mark double ring hole 16 and the surface of the insulating layer 14 is desmeared, and the insulating layer 14, the via hole 15 and the alignment mark double ring hole 16 are formed. A thin film conductor layer is formed by electroless copper plating, etc., and electrolytic copper panel plating is performed using the thin film conductor layer as a cathode.
An exposure alignment mark 23 is formed in the conductor layer 22 and the alignment mark region (FIGS. 2D and 3).
(See (d)).

【0021】次に、配線層等をサブトラクティブ法で形
成するためのフォトレジスト層をフィルドビア21及び
第2導体層22上に形成し、アライメント領域に形成さ
れた露光用アライメントマーク23を用いて露光装置に
て露光マスクの位置合わせを行い、露光、現像等の一連
のパターニング処理を行って、レジストパターン17を
形成する(図2(e)及び図3(e)参照)。
Next, a photoresist layer for forming a wiring layer and the like by the subtractive method is formed on the filled via 21 and the second conductor layer 22 and exposed using the exposure alignment mark 23 formed in the alignment region. The exposure mask is aligned by an apparatus, and a series of patterning processes such as exposure and development are performed to form a resist pattern 17 (see FIGS. 2E and 3E).

【0022】次に、レジストパターン17をエッチング
マスクにして第2導体層22及び薄膜導体層をエッチン
グ処理し、レジストパターン17を専用の剥離液で除去
して、第2配線層22a、第2配線層22b及びランド
部22cを形成し、ランド部12cと第2配線層18
a、第2配線層18b及びランド部22cとがフィルド
ビア21にて電気的に接続された高密度多層ビルドアッ
プ配線板100を得ることができる(図2(f)及び図
3(f)参照)。さらに、絶縁層、フィルドビア及び配
線層形成の工程を必要回数繰り返すことにより、所望層
数の高密度多層ビルドアップ配線板を得ることができ
る。
Next, the second conductor layer 22 and the thin film conductor layer are etched using the resist pattern 17 as an etching mask, the resist pattern 17 is removed by a dedicated stripping solution, and the second wiring layer 22a and the second wiring are formed. The layer 22b and the land portion 22c are formed, and the land portion 12c and the second wiring layer 18 are formed.
It is possible to obtain a high-density multilayer buildup wiring board 100 in which a, the second wiring layer 18b, and the land portion 22c are electrically connected by the filled via 21 (see FIGS. 2F and 3F). . Further, by repeating the steps of forming the insulating layer, the filled via, and the wiring layer a required number of times, it is possible to obtain a high-density multilayer buildup wiring board having a desired number of layers.

【0023】[0023]

【実施例】以下実施例により本発明を詳細に説明する。 <実施例1>まず、両面に15μmの導体層厚からなる
第1配線層12a、第1配線層12b及びランド部12
cとスルーホール13が形成されたコア基板11を作製
した(図2(a)参照)。
The present invention will be described in detail with reference to the following examples. Example 1 First, the first wiring layer 12a, the first wiring layer 12b, and the land portion 12 each having a conductor layer thickness of 15 μm on both sides.
A core substrate 11 in which c and the through hole 13 were formed was produced (see FIG. 2A).

【0024】次に、第1配線層12a及び第1配線層1
2bが形成されたコア基板11の両面にエポキシ系樹脂
をスクリーン印刷して乾燥し、45μm厚の絶縁層14
を形成した(図2(b)及び図3(b)参照)。
Next, the first wiring layer 12a and the first wiring layer 1
An epoxy resin is screen-printed on both surfaces of the core substrate 11 on which 2b is formed and dried to form an insulating layer 14 having a thickness of 45 μm.
Was formed (see FIGS. 2B and 3B).

【0025】次に、コア基板11のアライメントマーク
領域に形成されたアライメントマーク12dを用いて、
レーザー加工機のレーザービームの位置合わせを行っ
て、第1配線層のランド部12c上の絶縁層14に周波
数5KHz、30パルスの紫外線レーザーを照射して上
部径が50μmφのビア用穴15を、アライメントマー
ク領域の導体層12e上の絶縁層14に周波数5KH
z、4パルスの紫外線レーザーにてトレパニング加工し
てリング幅RWが50μmで二重リングの外形RDが20
0、300、400及び500μmφのアライメントマ
ーク用2重リング穴16を、それぞれ形成した(図2
(c)及び図3(c)参照)。
Next, using the alignment mark 12d formed in the alignment mark region of the core substrate 11,
The laser beam of the laser processing machine is aligned, and the insulating layer 14 on the land portion 12c of the first wiring layer is irradiated with an ultraviolet laser having a frequency of 5 KHz and 30 pulses to form a via hole 15 having an upper diameter of 50 μmφ. A frequency of 5 KH is applied to the insulating layer 14 on the conductor layer 12e in the alignment mark area.
trepanning with a 4-pulse ultraviolet laser, the ring width R W is 50 μm, and the outer diameter R D of the double ring is 20.
Double ring holes 16 for alignment marks of 0, 300, 400 and 500 μmφ were formed respectively (see FIG. 2).
(C) and FIG.3 (c)).

【0026】次に、過マンガン酸カリウム(58g/
L)溶液にてビア用穴15、アライメントマーク用2重
リング穴16及び絶縁層14表面のデスミア処理を行な
い、絶縁層14上、ビア用穴15内及びアライメントマ
ーク用2重リング穴16内に無電解銅めっき等にて薄膜
導体層を形成し、さらに、薄膜導体層をカソードにして
電解銅パネルめっき行い、フィルドビア21、15μm
厚の第2導体層22及びアライメントマーク領域に二重
リングの外形RDが200、300、400及び500
μmφの露光用アライメントマーク23を形成した(図
2(d)及び図3(d)参照)。
Next, potassium permanganate (58 g /
L) Desmear treatment is performed on the surface of the via hole 15, the alignment mark double ring hole 16 and the insulating layer 14 with a solution, and then, on the insulating layer 14, in the via hole 15 and the alignment mark double ring hole 16 A thin film conductor layer is formed by electroless copper plating or the like, and electrolytic copper panel plating is performed using the thin film conductor layer as a cathode. Filled vias 21 and 15 μm
The outer diameter R D of the double ring is 200, 300, 400 and 500 in the thick second conductor layer 22 and the alignment mark region.
An exposure alignment mark 23 of μmφ was formed (see FIGS. 2D and 3D).

【0027】次に、フィルドビア21及び第2導体層2
2上にフォトレジスト層を形成し、アライメントマーク
領域に形成された露光用アライメントマーク23を用い
て露光装置にて露光マスクの位置合わせを行い、露光、
現像等の一連のパターニング処理を行って、レジストパ
ターン17を形成した(図2(e)及び図3(e)参
照)。ここで、リング幅RWが50μmで二重リングの
外形RDが200、300、400及び500μmφの
それぞれの露光用アライメントマーク23に対して露光
装置のアライメント視認性の確認を行った結果いずれも
視認性良好であった。
Next, the filled via 21 and the second conductor layer 2
2, a photoresist layer is formed on the substrate 2, and the exposure mask is aligned with an exposure device using the exposure alignment mark 23 formed in the alignment mark region,
A series of patterning treatments such as development were performed to form a resist pattern 17 (see FIGS. 2E and 3E). Here, as a result of confirming alignment visibility of the exposure apparatus with respect to each of the alignment marks 23 for exposure having a ring width R W of 50 μm and outer shapes R D of the double ring of 200, 300, 400 and 500 μm The visibility was good.

【0028】次に、レジストパターン17をエッチング
マスクにして第2導体層22及び薄膜導体層をエッチン
グ処理し、レジストパターン17を専用の剥離液で除去
して、第2配線層22a、第2配線層22b及び140
μmφのランド部22cを形成し、ランド部12cと第
2配線層18a、第2配線層18b及びランド部22c
とがフィルドビア21にて電気的に接続された高密度多
層ビルドアップ配線板100を得た(図2(f)及び図
3(f)参照)。得られた高密度多層ビルドアップ配線
板100のフィルドビア21とランド部22cとの位置
合わせ精度の確認を行った結果、位置ズレはいずれも1
5μm以内であった。
Next, the second conductor layer 22 and the thin film conductor layer are etched by using the resist pattern 17 as an etching mask, the resist pattern 17 is removed by a dedicated stripping solution, and the second wiring layer 22a and the second wiring are formed. Layers 22b and 140
A land portion 22c of μmφ is formed, and the land portion 12c, the second wiring layer 18a, the second wiring layer 18b, and the land portion 22c are formed.
A high-density multilayer buildup wiring board 100 in which and are electrically connected by filled vias 21 is obtained (see FIGS. 2F and 3F). As a result of confirming the alignment accuracy of the filled via 21 and the land portion 22c of the obtained high-density multilayer build-up wiring board 100, the positional deviation is 1
It was within 5 μm.

【0029】<実施例2>実施例1と同様の工程で、両
面に15μmの導体層厚からなる第1配線層12a、第
1配線層12b及びランド部12cとスルーホール13
が形成されたコア基板11の両面に絶縁層14を形成し
た(図2(a)、(b)及び図3(b)参照)。
<Embodiment 2> In the same process as in Embodiment 1, the first wiring layer 12a, the first wiring layer 12b, the land portion 12c, and the through hole 13 each having a conductor layer thickness of 15 μm are formed on both surfaces.
Insulating layers 14 were formed on both surfaces of the core substrate 11 on which the layers were formed (see FIGS. 2A, 2B and 3B).

【0030】次に、コア基板11のアライメントマーク
領域に形成されたアライメントマーク12dを用いて、
レーザー加工機のレーザービームの位置合わせを行っ
て、第1配線層のランド部12c上の絶縁層14に周波
数5KHz、30パルスの紫外線レーザーを照射して上
部径が50μmφのビア用穴15を、アライメントマー
ク領域の導体層12e上の絶縁層14に周波数5KH
z、4パルスの紫外線レーザーにてトレパニング加工し
てリング幅RWが70μmで二重リングの外形RDが20
0、300、400及び500μmφのアライメントマ
ーク用2重リング穴16を、それぞれ形成した(図2
(c)及び図3(c)参照)。
Next, using the alignment mark 12d formed in the alignment mark region of the core substrate 11,
The laser beam of the laser processing machine is aligned, and the insulating layer 14 on the land portion 12c of the first wiring layer is irradiated with an ultraviolet laser having a frequency of 5 KHz and 30 pulses to form a via hole 15 having an upper diameter of 50 μmφ. A frequency of 5 KH is applied to the insulating layer 14 on the conductor layer 12e in the alignment mark area.
z, 4 external R D double ring pulse ring width R W by trepanning with ultraviolet laser of at 70μm 20
Double ring holes 16 for alignment marks of 0, 300, 400 and 500 μmφ were formed respectively (see FIG. 2).
(C) and FIG.3 (c)).

【0031】実施例1と同様の工程で、デスミア処理、
無電解銅めっき及び電解銅めっきを行って、フィルドビ
ア21、15μm厚の第2導体層22及びアライメント
マーク領域に二重リングの外形RDが200、300、
400及び500μmφの露光用アライメントマーク2
3を形成した(図2(d)及び図3(d)参照)。
In the same process as in Example 1, desmear treatment,
Electroless copper plating and electrolytic copper plating are performed so that the filled vias 21, the second conductor layer 22 having a thickness of 15 μm, and the outline R D of the double ring in the alignment mark region are 200, 300,
Alignment mark 2 for exposure of 400 and 500 μmφ
3 was formed (see FIGS. 2D and 3D).

【0032】次に、フィルドビア21及び第2導体層2
2上にフォトレジスト層を形成し、アライメントマーク
領域に形成された露光用アライメントマーク23を用い
て露光装置にて露光マスクの位置合わせを行い、露光、
現像等の一連のパターニング処理を行って、レジストパ
ターン17を形成した(図2(e)及び図3(e)参
照)。ここで、リング幅RWが70μmで二重リングの
外形RDが200、300、400及び500μmφの
それぞれの露光用アライメントマーク23に対して露光
装置のアライメント視認性の確認を行った結果いずれも
視認性良好であった。
Next, the filled via 21 and the second conductor layer 2
2, a photoresist layer is formed on the substrate 2, and the exposure mask is aligned with an exposure device using the exposure alignment mark 23 formed in the alignment mark region,
A series of patterning treatments such as development were performed to form a resist pattern 17 (see FIGS. 2E and 3E). Here, as a result of confirming the alignment visibility of the exposure apparatus for each of the exposure alignment marks 23 having a ring width R W of 70 μm and outer shapes R D of the double ring of 200, 300, 400 and 500 μm, The visibility was good.

【0033】次に、レジストパターン17をエッチング
マスクにして第2導体層22及び薄膜導体層をエッチン
グ処理し、レジストパターン17を専用の剥離液で除去
して、第2配線層22a、第2配線層22b及び140
μmφのランド部22cを形成し、ランド部12cと第
2配線層18a、第2配線層18b及びランド部22c
とがフィルドビア21にて電気的に接続された高密度多
層ビルドアップ配線板100’を得た(図2(f)及び
図3(f)参照)。得られた高密度多層ビルドアップ配
線板100’のフィルドビア21とランド部22cとの
位置合わせ精度の確認を行った結果、位置ズレはいずれ
も15μm以内であった。
Next, the second conductor layer 22 and the thin film conductor layer are etched using the resist pattern 17 as an etching mask, the resist pattern 17 is removed by a dedicated stripping solution, and the second wiring layer 22a and the second wiring are formed. Layers 22b and 140
A land portion 22c of μmφ is formed, and the land portion 12c, the second wiring layer 18a, the second wiring layer 18b, and the land portion 22c are formed.
A high-density multilayer build-up wiring board 100 'in which and are electrically connected by the filled via 21 was obtained (see FIG. 2 (f) and FIG. 3 (f)). As a result of confirming the alignment accuracy between the filled via 21 and the land portion 22c of the obtained high-density multilayer build-up wiring board 100 ', the positional deviation was within 15 μm.

【0034】<比較例>実施例1と同様の工程で、両面
に15μmの導体層厚からなる第1配線層12a、第1
配線層12b及びランド部12cとスルーホール13が
形成されたコア基板11の両面に絶縁層14を形成した
(図2(a)、(b)及び図3(b)参照)。
<Comparative Example> In the same process as in Example 1, the first wiring layer 12a having a conductor layer thickness of 15 μm on both surfaces and the first wiring layer 12a
Insulating layers 14 were formed on both surfaces of the core substrate 11 on which the wiring layer 12b, the land portion 12c, and the through holes 13 were formed (see FIGS. 2A, 2B, and 3B).

【0035】次に、コア基板11のアライメントマーク
領域に形成されたアライメントマーク12dを用いて、
レーザー加工機のレーザービームの位置合わせを行っ
て、第1配線層のランド部12c上の絶縁層14に周波
数5KHz、30パルスの紫外線レーザーを照射して上
部径が50μmφのビア用穴15を、アライメントマー
ク領域の導体層12e上の絶縁層14に周波数5KH
z、30パルスの紫外線レーザーを照射して穴径が7
0、100、110及び120μmφのアライメントマ
ーク用丸穴55を、それぞれ形成した(図2(c)及び
図4(b)参照)。
Next, using the alignment mark 12d formed in the alignment mark region of the core substrate 11,
The laser beam of the laser processing machine is aligned, and the insulating layer 14 on the land portion 12c of the first wiring layer is irradiated with an ultraviolet laser having a frequency of 5 KHz and 30 pulses to form a via hole 15 having an upper diameter of 50 μmφ. A frequency of 5 KH is applied to the insulating layer 14 on the conductor layer 12e in the alignment mark area.
The hole diameter is 7 by irradiating a z, 30 pulse ultraviolet laser.
Round holes 55 for alignment marks having a diameter of 0, 100, 110, and 120 μm were formed (see FIGS. 2C and 4B).

【0036】実施例1と同様の工程で、デスミア処理、
無電解銅めっき及び電解銅めっきを行って、フィルドビ
ア21、15μm厚の第2導体層22及びアライメント
マーク領域に穴径が70、100、110及び120μ
mφの露光用アライメントマーク63を形成した(図2
(d)及び図4(c)参照)。
In the same process as in Example 1, desmear treatment,
By performing electroless copper plating and electrolytic copper plating, the filled vias 21, the second conductor layer 22 having a thickness of 15 μm, and the alignment mark regions have hole diameters of 70, 100, 110, and 120 μ.
An alignment mark 63 for exposure of mφ was formed (see FIG. 2).
(D) and FIG.4 (c)).

【0037】次に、フィルドビア21及び第2導体層2
2上にフォトレジスト層を形成し、アライメントマーク
領域に形成された露光用アライメントマーク63を用い
て露光装置にて露光マスクの位置合わせを行い、露光、
現像等の一連のパターニング処理を行って、レジストパ
ターン17を形成した(図2(e)及び図3(e)参
照)。ここで、穴径が70、100、110及び120
μmφの露光用アライメントマーク63に対して露光装
置のアライメント視認性の確認を行った結果いずれも視
認性不良で、アライメント操作が不安定であった。
Next, the filled via 21 and the second conductor layer 2
2, a photoresist layer is formed on the substrate 2, and the exposure mask is aligned with an exposure device using the exposure alignment mark 63 formed in the alignment mark region,
A series of patterning treatments such as development were performed to form a resist pattern 17 (see FIGS. 2E and 3E). Here, the hole diameters are 70, 100, 110 and 120.
As a result of confirming the alignment visibility of the exposure apparatus for the exposure alignment mark 63 of μmφ, the visibility was poor in all cases, and the alignment operation was unstable.

【0038】次に、レジストパターン17をエッチング
マスクにして第2導体層22及び薄膜導体層をエッチン
グ処理し、レジストパターン17を専用の剥離液で除去
して、第2配線層22a、第2配線層22b及び140
μmφのランド部22cを形成し、ランド部12cと第
2配線層18a、第2配線層18b及びランド部22c
とがフィルドビア21にて電気的に接続された比較例の
高密度多層ビルドアップ配線板を得た。得られた比較例
の高密度多層ビルドアップ配線板のフィルドビア21と
ランド部22cとの位置合わせ精度の確認を行った結
果、15μm以上の位置ズレが確認された。
Next, the second conductor layer 22 and the thin film conductor layer are etched using the resist pattern 17 as an etching mask, the resist pattern 17 is removed by a dedicated stripping solution, and the second wiring layer 22a and the second wiring are formed. Layers 22b and 140
A land portion 22c of μmφ is formed, and the land portion 12c, the second wiring layer 18a, the second wiring layer 18b, and the land portion 22c are formed.
A high-density multilayer build-up wiring board of a comparative example in which and are electrically connected by the filled via 21 is obtained. As a result of confirming the alignment accuracy between the filled via 21 and the land portion 22c of the obtained high-density multilayer buildup wiring board of the comparative example, a positional deviation of 15 μm or more was confirmed.

【0039】[0039]

【発明の効果】本発明の高密度多層ビルドアップ配線板
の製造方法では、絶縁層に形成した二重リング状の露光
用アライメントマークを用いて、露光マスクの位置合わ
せを行うため、位置合わせ精度に優れたフィルドビアと
ランドを得ることができる。さらに、露光用アライメン
トマークの二重リングの外形RD≧200μmφ、リン
グ幅Rw≧50μmの範囲に設定しているため、位置合
わせ精度に優れたビアオンビア構造の高密度多層ビルド
アップ配線板を得ることができる。従って、本発明は、
高密度多層ビルドアップ配線板分野においては、優れた
実用上の効果を発揮する。
In the method for manufacturing a high-density multilayer build-up wiring board according to the present invention, the alignment accuracy of the exposure mask is adjusted by using the double ring-shaped exposure alignment mark formed on the insulating layer. You can get excellent filled via and land. Further, since the outer diameter R D ≧ 200 μmφ and the ring width R w ≧ 50 μm of the double ring of the exposure alignment mark are set within the range, a high-density multilayer build-up wiring board having a via-on-via structure with excellent alignment accuracy is obtained. be able to. Therefore, the present invention provides
In the field of high-density multilayer build-up wiring boards, it has excellent practical effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の高密度多層ビルドアップ配
線板の製造法で得られた高密度多層ビルドアップ配線板
の一例を示す模式部分構成断面図である。(b)は、A
領域の模式部分拡大構成断面図である。
FIG. 1 (a) is a schematic partial structural cross-sectional view showing an example of a high-density multilayer build-up wiring board obtained by the method for producing a high-density multilayer build-up wiring board according to the present invention. (B) is A
It is a model partial expanded structure sectional view of a field.

【図2】(a)〜(f)は、本発明の高密度多層ビルド
アップ配線板の製造方法の一実施例を示す模式部分構成
断面図である。
2 (a) to (f) are schematic partial configuration cross-sectional views showing an embodiment of a method for manufacturing a high-density multilayer buildup wiring board according to the present invention.

【図3】(b)〜(f)は、図2(b)〜(f)のA領
域の模式部分拡大構成断面図及びアライメントマーク領
域のアライメントマークを示す模式部分拡大構成断面図
である。
3 (b) to (f) are schematic partial enlarged configuration cross-sectional views of the area A of FIGS. 2 (b) to (f) and schematic partial enlarged configuration cross-sectional views showing alignment marks in the alignment mark area.

【図4】(a)〜(e)は、従来の多層ビルドアップ配
線板の製造工程の一例を示す模式部分構成断面図及びア
ライメントマーク領域のアライメントマークを示す模式
部分拡大構成断面図である。
4 (a) to (e) are a schematic partial configuration cross-sectional view showing an example of a manufacturing process of a conventional multilayer build-up wiring board and a schematic partial enlarged configuration cross-sectional view showing an alignment mark in an alignment mark region.

【符号の説明】[Explanation of symbols]

11、51……コア基板 12a、12b、52……第1配線層 12c、22c、52c……ランド部 12d、23……露光用アライメントマーク 12e、52e……導体層 13……スルーホール 14、53……絶縁層 15、54……ビア用穴 16……アライメントマーク用2重リング穴 17、56a……レジストパターン 21、61……フィルドビア 22、62……第2導体層 22a、22b、62a……第2配線層 23、63……露光用アライメントマーク 100……高密度多層ビルドアップ配線板 11, 51 ... Core substrate 12a, 12b, 52 ... First wiring layer 12c, 22c, 52c ... Land portion 12d, 23 ... Alignment mark for exposure 12e, 52e ... conductor layer 13-through hole 14, 53 ... Insulating layer 15, 54 ... Via holes 16: Double ring hole for alignment mark 17, 56a ... resist pattern 21, 61 …… Filled beer 22, 62 ... Second conductor layer 22a, 22b, 62a ... second wiring layer 23, 63 ... Alignment mark for exposure 100: High-density multilayer build-up wiring board

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/00 H01L 23/12 N Fターム(参考) 5E346 AA06 AA12 AA15 AA32 AA43 AA51 BB11 BB16 CC04 CC09 CC32 DD02 DD03 DD12 DD32 DD33 EE06 EE07 EE09 EE13 EE31 EE33 EE35 FF01 FF03 FF04 FF07 FF14 GG15 GG17 GG18 GG22 GG28 HH11 HH21─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05K 3/00 H01L 23/12 NF term (reference) 5E346 AA06 AA12 AA15 AA32 AA43 AA51 BB11 BB16 CC04 CC09 CC32 DD02 DD03 DD12 DD32 DD33 EE06 EE07 EE09 EE13 EE31 EE33 EE35 FF01 FF03 FF04 FF07 FF14 GG15 GG17 GG18 GG22 GG28 HH11 HH21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】スルーホールが形成されたコア基板の両面
に複数の配線層が絶縁層を介して形成されており、前記
配線層間がフィルドビアにて電気的に接続されてなる多
層プリント配線板において、以下の工程を少なくとも備
えていることを特徴とする高密度多層ビルドアップ配線
板の製造方法。 (a)スルーホール及び配線層が形成されたコア基板の
両面に絶縁層を形成する工程。 (b)前記絶縁層にレーザー加工にてビア用穴及びアラ
イメントマーク用穴を形成する工程。 (c)前記ビア用穴、前記アライメントマーク用穴及び
前記絶縁層を導電化処理して薄膜導体層を形成する工
程。 (d)前記薄膜導体層をカソードにして電解銅パネルめ
っきを行い、フィルドビア、露光用アライメントマーク
及び導体層を形成する工程。 (e)前記導体層上に感光層を形成し、前記露光用アラ
イメントマークを用いてパターン位置合わせを行い、パ
ターン露光、現像処理等の一連のパターニング処理を行
って、レジストパターンを形成する工程。 (f)前記レジストパターンをマスクにして、前記導体
層及び前記薄膜導体層をエッチングし、前記レジストパ
ターンを剥離して配線層を形成する工程。 (g)上記絶縁層、フィルドビア及び配線層の形成工程
を必要回数繰り返して所定層数の高密度多層ビルドアッ
プ配線板を作製する工程。
1. A multilayer printed wiring board in which a plurality of wiring layers are formed on both sides of a core substrate having a through hole via insulating layers, and the wiring layers are electrically connected by filled vias. A method for manufacturing a high-density multi-layer build-up wiring board, comprising at least the following steps. (A) A step of forming insulating layers on both surfaces of the core substrate on which the through holes and the wiring layers are formed. (B) A step of forming via holes and alignment mark holes in the insulating layer by laser processing. (C) A step of forming a thin film conductor layer by subjecting the via hole, the alignment mark hole, and the insulating layer to a conductive treatment. (D) A step of performing electrolytic copper panel plating using the thin film conductor layer as a cathode to form a filled via, an alignment mark for exposure, and a conductor layer. (E) A step of forming a photosensitive layer on the conductor layer, performing pattern alignment using the alignment mark for exposure, and performing a series of patterning processes such as pattern exposure and development to form a resist pattern. (F) A step of forming a wiring layer by etching the conductor layer and the thin film conductor layer using the resist pattern as a mask and peeling the resist pattern. (G) A step of producing a high-density multi-layer build-up wiring board having a predetermined number of layers by repeating the above-described insulating layer, filled via, and wiring layer forming steps a necessary number of times.
【請求項2】前記絶縁層に形成する前記露光用アライメ
ントマークが2重リング形状であって、2重リングの外
形をRD、リング幅をRwとしたとき、RD≧200μm
φ、Rw≧50μmの条件が満たされていることを特徴
とする請求項1に記載の高密度多層ビルドアップ配線板
の製造方法。
2. The exposure alignment mark formed on the insulating layer has a double ring shape, and when the outer shape of the double ring is R D and the ring width is R w , R D ≧ 200 μm
The method of manufacturing a high-density multilayer buildup wiring board according to claim 1, wherein the conditions of φ and R w ≧ 50 μm are satisfied.
JP2001227213A 2001-07-27 2001-07-27 Manufacturing method of high-density multilayer build-up wiring board Expired - Fee Related JP4792673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227213A JP4792673B2 (en) 2001-07-27 2001-07-27 Manufacturing method of high-density multilayer build-up wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227213A JP4792673B2 (en) 2001-07-27 2001-07-27 Manufacturing method of high-density multilayer build-up wiring board

Publications (2)

Publication Number Publication Date
JP2003046243A true JP2003046243A (en) 2003-02-14
JP4792673B2 JP4792673B2 (en) 2011-10-12

Family

ID=19059912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227213A Expired - Fee Related JP4792673B2 (en) 2001-07-27 2001-07-27 Manufacturing method of high-density multilayer build-up wiring board

Country Status (1)

Country Link
JP (1) JP4792673B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244182A (en) * 2004-01-30 2005-09-08 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2007234802A (en) * 2006-02-28 2007-09-13 Tdk Corp Manufacturing method of thin film electronic component
US8070932B2 (en) * 2004-04-22 2011-12-06 Unimicron Technology Corp. Circuit board with identifiable information and method for fabricating the same
US8240036B2 (en) 2008-04-30 2012-08-14 Panasonic Corporation Method of producing a circuit board
US8272126B2 (en) 2008-04-30 2012-09-25 Panasonic Corporation Method of producing circuit board
JP2013080836A (en) * 2011-10-04 2013-05-02 Ibiden Co Ltd Manufacturing method of printed wiring board
CN103187365A (en) * 2012-06-25 2013-07-03 珠海越亚封装基板技术股份有限公司 Interlayer alignment of multi-layer support structure
WO2014024754A1 (en) * 2012-08-07 2014-02-13 三菱瓦斯化学株式会社 Circuit board for semiconductor package and method for producing same
US8698003B2 (en) 2008-12-02 2014-04-15 Panasonic Corporation Method of producing circuit board, and circuit board obtained using the manufacturing method
US8929092B2 (en) 2009-10-30 2015-01-06 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
KR101525027B1 (en) * 2013-11-22 2015-06-10 주식회사 디에이피 method for manufacturing a printed circuit board
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
US9332642B2 (en) 2009-10-30 2016-05-03 Panasonic Corporation Circuit board
CN111542178A (en) * 2020-05-13 2020-08-14 上海泽丰半导体科技有限公司 Manufacturing process of multilayer circuit board and multilayer circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103166A (en) * 1997-07-28 1999-04-13 Ibiden Co Ltd Positioning mark for forming resist pattern and manufacture of multilayered printed wiring board
JP2000223833A (en) * 1999-02-01 2000-08-11 Nippon Avionics Co Ltd Manufacture of multilayer printed board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103166A (en) * 1997-07-28 1999-04-13 Ibiden Co Ltd Positioning mark for forming resist pattern and manufacture of multilayered printed wiring board
JP2000223833A (en) * 1999-02-01 2000-08-11 Nippon Avionics Co Ltd Manufacture of multilayer printed board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590272B2 (en) * 2004-01-30 2010-12-01 日本特殊陶業株式会社 Wiring board manufacturing method
JP2005244182A (en) * 2004-01-30 2005-09-08 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
US8070932B2 (en) * 2004-04-22 2011-12-06 Unimicron Technology Corp. Circuit board with identifiable information and method for fabricating the same
JP2007234802A (en) * 2006-02-28 2007-09-13 Tdk Corp Manufacturing method of thin film electronic component
US8240036B2 (en) 2008-04-30 2012-08-14 Panasonic Corporation Method of producing a circuit board
US8272126B2 (en) 2008-04-30 2012-09-25 Panasonic Corporation Method of producing circuit board
US9332650B2 (en) 2008-04-30 2016-05-03 Panasonic Corporation Method of producing multilayer circuit board
US9082438B2 (en) 2008-12-02 2015-07-14 Panasonic Corporation Three-dimensional structure for wiring formation
US8698003B2 (en) 2008-12-02 2014-04-15 Panasonic Corporation Method of producing circuit board, and circuit board obtained using the manufacturing method
US9332642B2 (en) 2009-10-30 2016-05-03 Panasonic Corporation Circuit board
US9351402B2 (en) 2009-10-30 2016-05-24 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
US8929092B2 (en) 2009-10-30 2015-01-06 Panasonic Corporation Circuit board, and semiconductor device having component mounted on circuit board
JP2013080836A (en) * 2011-10-04 2013-05-02 Ibiden Co Ltd Manufacturing method of printed wiring board
JP2014007367A (en) * 2012-06-25 2014-01-16 Zhuhai Advanced Chip Carriers & Electronic Substrates Solutions Technologies Co Ltd Alignment between layers of multilayer electronic support structure
CN103187365A (en) * 2012-06-25 2013-07-03 珠海越亚封装基板技术股份有限公司 Interlayer alignment of multi-layer support structure
WO2014024754A1 (en) * 2012-08-07 2014-02-13 三菱瓦斯化学株式会社 Circuit board for semiconductor package and method for producing same
KR101525027B1 (en) * 2013-11-22 2015-06-10 주식회사 디에이피 method for manufacturing a printed circuit board
CN111542178A (en) * 2020-05-13 2020-08-14 上海泽丰半导体科技有限公司 Manufacturing process of multilayer circuit board and multilayer circuit board

Also Published As

Publication number Publication date
JP4792673B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US5258094A (en) Method for producing multilayer printed wiring boards
JP4792673B2 (en) Manufacturing method of high-density multilayer build-up wiring board
JPH0141272B2 (en)
JP2010087168A (en) Method for manufacturing multilayer printed circuit board
JPS62158397A (en) Formation of conductive through-hole
JPH1051137A (en) Method for manufacturing printed wiring board
JPH05291744A (en) Manufacture of multilayer interconnection board and insulating board with multilayer metal layer
US6555016B2 (en) Method of making multilayer substrate
JP2009239105A (en) Method of manufacturing multilayer circuit board
JP2000216513A (en) Wiring board and manufacturing method using the same
JP2005108941A (en) Multilayer wiring board and its manufacturing method
JP4802402B2 (en) High-density multilayer build-up wiring board and manufacturing method thereof
KR100576652B1 (en) Method for making double sides wiring substrate
JPH06244529A (en) Manufacture of printed-wiring board
JP2004014672A (en) Substrate for semiconductor device and its manufacturing method
JP2002185140A (en) Multilayer printed board and its manufacturing method
JPH06252529A (en) Manufacture of printed wiring board
JP2003069226A (en) Board for semiconductor device and its manufacturing method
JPH09130049A (en) Method of forming via hole by build-up method of multilayer printed wiring board, and multilayer printed wiring board manufactured by it
JP2003318535A (en) Method of manufacturing printed wiring board
JP2647007B2 (en) Manufacturing method of printed wiring board
KR100652132B1 (en) Printed circuit board and Method of manufacturing the same
JP2005142253A (en) Manufacturing method of flexible multilayer printed circuit board
JPH09326561A (en) Multilayer printed wiring board and manufacture thereof
JP4337408B2 (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

LAPS Cancellation because of no payment of annual fees