JP2003017706A - Tft substrate, liquid crystal display device using the same, and its manufacturing method - Google Patents

Tft substrate, liquid crystal display device using the same, and its manufacturing method

Info

Publication number
JP2003017706A
JP2003017706A JP2001200710A JP2001200710A JP2003017706A JP 2003017706 A JP2003017706 A JP 2003017706A JP 2001200710 A JP2001200710 A JP 2001200710A JP 2001200710 A JP2001200710 A JP 2001200710A JP 2003017706 A JP2003017706 A JP 2003017706A
Authority
JP
Japan
Prior art keywords
film
tft substrate
metal
thin film
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001200710A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Inoue
一吉 井上
Shigeo Matsuzaki
滋夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2001200710A priority Critical patent/JP2003017706A/en
Priority to PCT/JP2002/005057 priority patent/WO2003005453A1/en
Priority to KR10-2003-7017295A priority patent/KR20040016908A/en
Priority to CNB028132793A priority patent/CN1279623C/en
Priority to TW091112014A priority patent/TWI293208B/zh
Publication of JP2003017706A publication Critical patent/JP2003017706A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Abstract

PROBLEM TO BE SOLVED: To provide a TFT substrate, a liquid crystal display device, and methods of manufacturing them. SOLUTION: An α-Si TFT substrate 1 is equipped with a gate electrode 4, a gate insulating film 6, an α-Si:H(i) film 8, a channel protective layer 10, an α-Si:H(n) film 12, source/drain electrodes 14 and 15, a source/drain insulating film 16, a metal thin film buffer layer 18, and a transparent electrode 20 which are all formed on a board 2. The metal buffer film 18 and the transparent conductive film 20 are formed on the source/drain electrodes 14 and 15, and then subjected to etching for the formation of the metal thin film buffer layer 18 and the transparent electrode 20. The source/drain electrode 15 is prevented from coming into direct contact with the transparent conductive film in a through-hole 22 by the metal buffer film 18, so that aluminum contained in the electrode 15 is hardly oxidized, and the electrode 15 is restrained from increasing in contact resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、TFT基板、それ
を用いた液晶表示装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a TFT substrate, a liquid crystal display device using the same, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】液晶ディスプレイ(LCD)や有機EL
ディスプレイ等のフラットパネルディスプレイは、表示
性能や省エネルギー化等の点から、携帯電話、PDA、
携帯用パソコン、ラップトップパソコン及びテレビ等の
表示機として主流を占めるに至った。これらの装置には
駆動用スイッチング素子としてTFT基板等が使用され
ている。TFT基板において、低抵抗の電極・配線材料
としては、アルミニウム合金が主流を占めている。ま
た、透明電極の材料としてはインジウム・スズ酸化物
(ITO)やインジウム・亜鉛酸化物(IZO)等が主
に使用されている。
2. Description of the Related Art Liquid crystal displays (LCD) and organic EL
Flat panel displays such as displays are used for mobile phones, PDAs,
It has become the mainstream as a display device for portable personal computers, laptop computers, televisions and the like. A TFT substrate or the like is used as a driving switching element in these devices. In TFT substrates, aluminum alloys are the mainstream as low resistance electrode / wiring materials. Further, as a material of the transparent electrode, indium tin oxide (ITO), indium zinc oxide (IZO), etc. are mainly used.

【0003】しかし、アルミニウム合金からなる電極上
に、層間絶縁膜のスルーホールを介して透明電極を直接
形成した場合、アルミニウムの酸化が起こり、電極と透
明電極との間で接触抵抗が発生するため、このような材
料で製造されたTFT基板を含む液晶表示装置は正常に
作動しないことが知られている。
However, when a transparent electrode is directly formed on an electrode made of an aluminum alloy via a through hole of an interlayer insulating film, aluminum is oxidized and a contact resistance is generated between the electrode and the transparent electrode. It is known that a liquid crystal display device including a TFT substrate manufactured from such a material does not operate normally.

【0004】この問題を解決するため、アルミニウム合
金からなる電極をMo、Ti、Cr等の金属で挟み込ん
だ三層構造にして、アルミニウム合金が透明電極と直接
接触することを防止することで接触抵抗の増加を抑える
ということが一般的に行なわれている。
In order to solve this problem, the electrode made of an aluminum alloy is sandwiched between metals such as Mo, Ti and Cr to prevent the aluminum alloy from directly contacting with the transparent electrode to form a contact resistance. It is generally practiced to suppress the increase in

【0005】[0005]

【発明が解決しようとする課題】しかし、アルミニウム
合金をMo、Ti、Cr等の金属を用いて三層構造とす
るためには、金属を三回成膜する必要があり、また、こ
れに伴いエッチング操作も三回行なう必要が生じるた
め、このような方法では、TFT基板の製造工程が複雑
になってしまうという課題があった。
However, in order to form an aluminum alloy into a three-layer structure using a metal such as Mo, Ti, or Cr, it is necessary to deposit the metal three times. Since it is necessary to perform the etching operation three times, such a method has a problem that the manufacturing process of the TFT substrate becomes complicated.

【0006】本発明は、安定して作動するTFT基板と
液晶表示装置及びその効率的な製造方法を提供すること
を目的とする。
An object of the present invention is to provide a TFT substrate which operates stably, a liquid crystal display device and an efficient manufacturing method thereof.

【0007】本発明者等は、鋭意研究した結果、ソース
・ドレイン電極と、透明電極との間に金属薄膜バッファ
ー層を設け、これらが直接接触することを防止すること
により、上記の目的を達成できることを見出した。
As a result of intensive studies, the present inventors achieved the above object by providing a metal thin film buffer layer between a source / drain electrode and a transparent electrode and preventing them from directly contacting each other. I found that I could do it.

【0008】[0008]

【課題を解決するための手段】本発明によれば、ソース
・ドレイン電極と透明電極の間に絶縁層が介在し、絶縁
層に形成されたスルーホールによりソース・ドレイン電
極と透明電極が電気的に接続されているTFT基板にお
いて、ソース・ドレイン電極が金属アルミニウムを主成
分とし、スルーホールにおいて、ソース・ドレイン電極
と透明電極との間に金属薄膜バッファー層を有するTF
T基板が提供される。ソース・ドレイン電極と透明電極
との間に、金属薄膜バッファー層を設けることにより、
電極間の接触抵抗の増加が防止できるため、安定して作
動できる。
According to the present invention, an insulating layer is interposed between a source / drain electrode and a transparent electrode, and the source / drain electrode and the transparent electrode are electrically connected by a through hole formed in the insulating layer. In the TFT substrate connected to the TF, the source / drain electrodes have metal aluminum as a main component, and the through hole has a metal thin film buffer layer between the source / drain electrodes and the transparent electrode.
A T substrate is provided. By providing a metal thin film buffer layer between the source / drain electrode and the transparent electrode,
Since the contact resistance between the electrodes can be prevented from increasing, stable operation can be achieved.

【0009】尚、本発明のTFT基板の具体的構造の一
例では、基板上に、ゲート電極(ゲート配線)、ゲート
絶縁膜、第一のシリコン層、チャンネル保護層、第二の
シリコン層、ソース・ドレイン電極、層間絶縁膜、金属
薄膜バッファー層、透明電極が配置される。この場合、
層間絶縁膜のスルーホールを介してソース・ドレイン電
極及び透明電極が電気的に接続される。尚、チャンネル
保護層が無いタイプも知られている。
In an example of a specific structure of the TFT substrate of the present invention, a gate electrode (gate wiring), a gate insulating film, a first silicon layer, a channel protection layer, a second silicon layer, a source are formed on the substrate. -A drain electrode, an interlayer insulating film, a metal thin film buffer layer, and a transparent electrode are arranged. in this case,
The source / drain electrodes and the transparent electrode are electrically connected via the through holes of the interlayer insulating film. A type without a channel protective layer is also known.

【0010】また、本発明のTFT基板において、金属
薄膜バッファー層が、透明電極と同一のエッチャントで
エッチング可能な物質からなることが好ましい。金属薄
膜バッファー層を透明電極と同一のエッチャントが使用
できるため、エッチング工程を簡略化することができ
る。
In the TFT substrate of the present invention, it is preferable that the metal thin film buffer layer is made of a material that can be etched with the same etchant as the transparent electrode. Since the same etchant as the transparent electrode can be used for the metal thin film buffer layer, the etching process can be simplified.

【0011】また、上記の金属薄膜バッファー層は、ア
ルミニウムより酸化されやすい金属を主成分とすること
が好ましい。アルミニウムより酸化されやすい金属を使
用すると、アルミニウムの酸化がより抑制され、アルミ
ニウムと透明電極間の導電性が良くなる。また、アルミ
ニウムスパッタリング後にアルミニウム表面に生成した
酸化アルムニウムが還元されるため、酸化されにくい金
属を用いた場合よりも、接触抵抗が下がることがある。
The metal thin film buffer layer preferably contains a metal which is more easily oxidized than aluminum as a main component. When a metal that is more easily oxidized than aluminum is used, the oxidation of aluminum is further suppressed, and the conductivity between aluminum and the transparent electrode is improved. Moreover, since the aluminum oxide generated on the aluminum surface after aluminum sputtering is reduced, the contact resistance may be lower than that when a metal that is not easily oxidized is used.

【0012】さらに、上記の金属が、酸化されたときに
導電性を示す金属であることが好ましく、透明性を示す
金属であることがより好ましい。金属酸化物が導電性で
あると、ソース・ドレイン電極と透明電極との間の接触
抵抗をより小さくすることができる。また、透明性であ
ると、金属薄膜バッファー層全体の透明性が良くなり、
画素部分の透明性も向上する。
Further, the above metal is preferably a metal which exhibits conductivity when oxidized, and more preferably a metal which exhibits transparency. When the metal oxide is conductive, the contact resistance between the source / drain electrode and the transparent electrode can be further reduced. In addition, the transparency improves the transparency of the entire metal thin film buffer layer,
The transparency of the pixel portion is also improved.

【0013】また、本発明のTFT基板において、金属
薄膜バッファー層が、Ag、Au、Pt、Rh、Pd、
Cr、In、Ga、Zn、Mo、Ti及びSnより選ば
れた一種以上の金属又は合金からなることが好ましい。
このような金属又は合金は、成膜性に優れている。ま
た、得られた薄膜の安定性にも優れている。
Further, in the TFT substrate of the present invention, the metal thin film buffer layer comprises Ag, Au, Pt, Rh, Pd,
It is preferably made of one or more metals or alloys selected from Cr, In, Ga, Zn, Mo, Ti and Sn.
Such a metal or alloy has excellent film forming properties. Moreover, the stability of the obtained thin film is also excellent.

【0014】また、本発明のTFT基板において、金属
薄膜バッファー層が、Cr、In、Ga、Zn、Mo、
Ti及びSnより選ばれた一種以上の金属又は合金から
なることが好ましい。このような金属又は合金は、酸化
されたときの酸化物が導電性に優れるためである。さら
に、本発明のTFT基板において、金属薄膜バッファー
層が、In、Ga、Zn及びSnより選ばれた一種以上
の金属又は合金からなることが好ましい。このような金
属又は合金は、アルミニウムより酸化され易く、その酸
化物が透明性や導電性に優れるためである。
In the TFT substrate of the present invention, the metal thin film buffer layer comprises Cr, In, Ga, Zn, Mo,
It is preferably made of one or more metals or alloys selected from Ti and Sn. This is because such a metal or alloy has excellent conductivity when it is oxidized. Further, in the TFT substrate of the present invention, the metal thin film buffer layer is preferably made of one or more metals or alloys selected from In, Ga, Zn and Sn. This is because such a metal or alloy is more easily oxidized than aluminum, and the oxide is excellent in transparency and conductivity.

【0015】また、本発明のTFT基板において、金属
薄膜バッファー層の膜厚を30〜300Åとすることが
好ましい。電極間における接触抵抗の増加の防止及び金
属薄膜バッファー層の透明性の点から、膜厚をこのよう
な範囲とすることが好ましい。
Further, in the TFT substrate of the present invention, it is preferable that the metal thin film buffer layer has a film thickness of 30 to 300 Å. From the viewpoint of preventing an increase in contact resistance between the electrodes and the transparency of the metal thin film buffer layer, it is preferable to set the film thickness in such a range.

【0016】本発明の別の態様は、上記のTFT基板を
含む液晶表示装置である。この液晶表示装置は、このよ
うなTFT基板を用いることにより、性能が劣化しない
で安定して作動できる。
Another aspect of the present invention is a liquid crystal display device including the above-mentioned TFT substrate. By using such a TFT substrate, this liquid crystal display device can operate stably without deterioration in performance.

【0017】本発明の別の態様は、ソース・ドレイン電
極上に、絶縁膜を形成し、絶縁膜にスルーホールを形成
し、絶縁膜及び前記スルーホールの上に、金属バッファ
ー膜と透明導電膜を成膜し、金属バッファー膜と透明導
電膜を同時にエッチングして金属薄膜バッファー層と透
明電極を形成する工程を含むことを特徴とするTFT基
板の製造方法である。金属バッファー膜を成膜すること
により、ソース・ドレイン電極を多層構造にする必要が
なくなり、さらに、金属バッファー膜及び透明導電膜を
同一のエッチャントでエッチングすることができるた
め、エッチングを繰り返し行なう必要もなくなり、TF
T基板を効率的に製造することができる。また、材料使
用量が低減することにより、より安価にTFT基板を製
造できる。
According to another aspect of the present invention, an insulating film is formed on the source / drain electrodes, a through hole is formed in the insulating film, and a metal buffer film and a transparent conductive film are formed on the insulating film and the through hole. And a metal buffer film and a transparent conductive film are simultaneously etched to form a metal thin film buffer layer and a transparent electrode. By forming the metal buffer film, it is not necessary to form the source / drain electrodes in a multi-layer structure, and since the metal buffer film and the transparent conductive film can be etched with the same etchant, repeated etching is also required. Gone, TF
The T substrate can be manufactured efficiently. Further, since the amount of material used is reduced, the TFT substrate can be manufactured at a lower cost.

【0018】[0018]

【発明の実施の形態】以下、本発明のTFT基板、それ
を用いた液晶表示装置及びその製造方法について説明す
る。 1.TFT基板及び液晶表示装置
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a TFT substrate of the present invention, a liquid crystal display device using the same, and a manufacturing method thereof will be described. 1. TFT substrate and liquid crystal display device

【0019】(1)ソース・ドレイン電極 ソース・ドレイン電極の材料は、金属アルミニウムが主
成分であれば特に制限されない。金属アルミニウム以外
の成分及びその量も特に限定されない。金属アルミニウ
ム以外の成分としては、例えば、Nd、Pt、Pd、Z
n、Ni等の金属が挙げられる。
(1) Source / Drain Electrode The material of the source / drain electrode is not particularly limited as long as metallic aluminum is the main component. Ingredients other than metallic aluminum and their amounts are not particularly limited. Examples of components other than metallic aluminum include Nd, Pt, Pd, and Z.
Examples of the metal include n and Ni.

【0020】(2)金属薄膜バッファー層 金属薄膜バッファー層は、ソース・ドレイン電極及び透
明電極との間に設けられ、これらの電極間の接触抵抗の
増加を防止する。金属薄膜バッファー層は、導電性であ
り、酸化されやすくても酸化されにくくても良い。酸化
されやすい場合は、酸化物が導電性であることが好まし
く、透明であることがより好ましい。
(2) Metal thin film buffer layer The metal thin film buffer layer is provided between the source / drain electrode and the transparent electrode and prevents an increase in contact resistance between these electrodes. The metal thin film buffer layer is electrically conductive and may be easily or hardly oxidized. When it is easily oxidized, the oxide is preferably conductive, and more preferably transparent.

【0021】金属薄膜バッファー層の材料は、電極間の
接触抵抗の増加が防止できれば特に制限されない。この
ような例として、Ag、Au、Pt、Rh、Pd及びC
rより選ばれた一種以上の金属又は合金が挙げられる。
The material of the metal thin film buffer layer is not particularly limited as long as the contact resistance between the electrodes can be prevented from increasing. Such examples include Ag, Au, Pt, Rh, Pd and C.
Examples include one or more metals or alloys selected from r.

【0022】また、これらの金属又は合金は、透明電極
と同一のエッチャントでエッチングが可能なものが好ま
しい。さらに、アルミニウムより酸化されやすいものが
好ましく、その金属酸化物が透明性及び導電性であるこ
とがより好ましい。
It is preferable that these metals or alloys can be etched with the same etchant as the transparent electrode. Further, those that are more easily oxidized than aluminum are preferable, and it is more preferable that the metal oxide is transparent and conductive.

【0023】上記のエッチャントとしては、特に限定さ
れないが、例えば、蓚酸水溶液、硝酸−酢酸−リン酸系
水溶液、塩酸水溶液、臭化水素水溶液、塩化鉄-塩酸水
溶液、王水等が挙げられる。
The above-mentioned etchant is not particularly limited, and examples thereof include oxalic acid aqueous solution, nitric acid-acetic acid-phosphoric acid aqueous solution, hydrochloric acid aqueous solution, hydrogen bromide aqueous solution, iron chloride-hydrochloric acid aqueous solution, and aqua regia.

【0024】また、同時エッチング可能な材料として
は、例えば、Ag、Au、Pt、Rh、Pd、Cr、I
n、Ga、Zn、Mo、Ti、及びSnより選ばれた一
種以上の金属又は合金が挙げられる。さらに、アルミニ
ウムより酸化されやすくその酸化物が透明性及び導電性
である材料としては、例えば、Cr、In、Ga、Z
n、Mo、Ti及びSnより選ばれた一種以上の金属又
は合金が挙げられる。
The materials that can be simultaneously etched are, for example, Ag, Au, Pt, Rh, Pd, Cr and I.
Examples include one or more metals or alloys selected from n, Ga, Zn, Mo, Ti, and Sn. Further, as a material which is more easily oxidized than aluminum and whose oxide is transparent and conductive, for example, Cr, In, Ga, Z
One or more metals or alloys selected from n, Mo, Ti and Sn may be mentioned.

【0025】金属薄膜バッファー層の膜厚は30〜30
0Åであることが好ましい。この理由は、膜厚が30Å
未満になると、薄膜が薄すぎて、金属薄膜バッファー層
の効果が発揮されない場合があるためである。一方、膜
厚が300Åを超えると、透明性に劣る場合があるため
である。
The thickness of the metal thin film buffer layer is 30 to 30.
It is preferably 0Å. The reason for this is that the film thickness is 30Å
If it is less than the range, the thin film may be too thin to exert the effect of the metal thin film buffer layer. On the other hand, if the film thickness exceeds 300Å, the transparency may be poor.

【0026】尚、金属薄膜バッファー層の材料に、酸化
されやすい金属を使用する場合は、透明性が良くなるた
め、膜厚を厚くすることができる。また、酸化されにく
い金属を使用する場合は、その膜厚を30〜100Åに
する。この理由は、膜厚が30Å以下になると、薄膜が
薄すぎてソース・ドレイン電極中のアルミニウムが酸化
されて、透明電極との接触抵抗が高くなる場合があるた
めである。一方、膜厚が100Å以上になると、光線透
過率が低下する場合があるためである。
When a metal that is easily oxidized is used as the material of the metal thin film buffer layer, the transparency is improved, so that the film thickness can be increased. If a metal that is difficult to oxidize is used, its film thickness is set to 30 to 100Å. The reason for this is that when the film thickness is 30 Å or less, the thin film is too thin and aluminum in the source / drain electrodes may be oxidized to increase the contact resistance with the transparent electrode. On the other hand, if the film thickness is 100 Å or more, the light transmittance may decrease.

【0027】さらに、金属薄膜バッファー層の材料に、
酸化物が透明性で導電性の金属を使用する場合は、その
膜厚を30〜300Åとするのが好ましい。この理由
は、膜厚が30Å以下になると、薄膜が薄すぎて接触抵
抗の増加を防止する効果が発揮されない場合があるため
である。一方、膜厚が300Å以上になると、酸化度合
いが低く、透明性が低下する場合があるためである。
Further, as the material of the metal thin film buffer layer,
When the oxide is a transparent and conductive metal, the film thickness is preferably 30 to 300 Å. The reason for this is that if the film thickness is 30 Å or less, the thin film may be too thin to exert the effect of preventing an increase in contact resistance. On the other hand, when the film thickness is 300 Å or more, the degree of oxidation is low and the transparency may be lowered.

【0028】(3)透明電極 透明電極の材料としては、例えば、インジウム・スズ酸
化物(ITO)やインジウム・亜鉛酸化物(IZO)等
の酸化物が挙げられる。 (4)その他 本発明のTFT基板は、基板やゲート電極等の、上記以
外の構成部分は特に限定されず、通常用いられる構成及
び材料を使用できる。また、液晶表示装置についても、
上記のTFT基板以外の構成部分は特に限定されず、通
常用いられる構成及び材料を使用できる。
(3) Transparent Electrode Examples of materials for the transparent electrode include oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO). (4) Others The TFT substrate of the present invention is not particularly limited in the components other than the above, such as the substrate and the gate electrode, and the components and materials usually used can be used. Also for liquid crystal display devices,
The components other than the above-mentioned TFT substrate are not particularly limited, and commonly used components and materials can be used.

【0029】2.TFT基板の製造方法 本発明のTFT基板の製造方法において、金属バッファ
ー膜と透明導電膜を同一のエッチャントを用いて同時に
エッチングして金属薄膜バッファー層と透明電極を形成
する。このように同時にエッチングするため、エッチン
グ工程の回数を少なくでき、材料の使用量を抑えること
ができる。
2. Method for Manufacturing TFT Substrate In the method for manufacturing a TFT substrate of the present invention, the metal buffer film and the transparent conductive film are simultaneously etched using the same etchant to form the metal thin film buffer layer and the transparent electrode. Since the etching is performed at the same time, the number of etching steps can be reduced and the amount of material used can be suppressed.

【0030】また、金属薄膜バッファー層及び透明電極
を含むTFT基板の各成分の形成工程は特に制限されな
い。例えば、各成分の成膜方法としては、真空蒸着法又
はスパッタリング法等を用いることができる。また、こ
の場合、真空蒸着やスパッタリングの方法及び装置は特
に制限されない。真空蒸着法の例としては、エレクトロ
ンビーム法、イオンプレーティング法、抵抗加熱法等が
挙げられる。また、スパッタリング法の例としては、高
周波スパッタリング法、DCスパッタリング法、RFス
パッタリング法、DCマグネトロンスパッタリング法、
RFマグネトロンスパッタリング法、ECRプラズマス
パッタリング法、イオンビームスパッタリング法等が挙
げられる。また、これらの方法で成膜した金属薄膜を、
目的の電極形状にパターニングする手段及びスルーホー
ルの形成手段は特に制限されず、通常のフォトリソグラ
フィー法等を用いて行なうことができる。
The step of forming each component of the TFT substrate including the metal thin film buffer layer and the transparent electrode is not particularly limited. For example, as a film forming method of each component, a vacuum vapor deposition method, a sputtering method, or the like can be used. Further, in this case, the method and apparatus for vacuum vapor deposition or sputtering are not particularly limited. Examples of the vacuum vapor deposition method include an electron beam method, an ion plating method, and a resistance heating method. Examples of the sputtering method include a high frequency sputtering method, a DC sputtering method, an RF sputtering method, a DC magnetron sputtering method,
An RF magnetron sputtering method, an ECR plasma sputtering method, an ion beam sputtering method and the like can be mentioned. In addition, the metal thin film formed by these methods,
The means for patterning the desired electrode shape and the means for forming the through holes are not particularly limited, and ordinary photolithography or the like can be used.

【0031】[0031]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明はこの実施例に限定されない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0032】実施例1 図1を用いて本発明の一実施例を説明する。図1は本発
明のTFT基板の一実施形態であるα−SiTFT基板
の断面図である。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view of an α-Si TFT substrate which is an embodiment of the TFT substrate of the present invention.

【0033】透光性のガラス基板2上に、Ndを1at
%含有する金属Al(抵抗率:5μΩ・cm)を高周波
スパッタリング法により膜厚1,500Åに堆積した。
この層を硝酸−酢酸−リン酸系水溶液をエッチング液と
して用いたホトエッチング法により、所望の形状のゲー
ト電極4及びゲート配線(図示せず)を形成した。
1 atm of Nd is formed on the transparent glass substrate 2.
% Metal Al (resistivity: 5 μΩ · cm) was deposited to a film thickness of 1,500 Å by the high frequency sputtering method.
A gate electrode 4 and a gate wiring (not shown) having a desired shape were formed on this layer by a photoetching method using a nitric acid-acetic acid-phosphoric acid aqueous solution as an etching solution.

【0034】次に、放電ガスとしてSiH4−NH3−N
2系ガスを用いて、第一の窒化シリコン(SiNx)膜
からなるゲート絶縁膜6を膜厚3,000Åに堆積し
た。続いて、放電ガスとして、SiH4−N2系の混合ガ
スを用いて、α−Si:H(i)膜(第一のシリコン
層)8を膜厚3,500Åに堆積した。
Next, as discharge gas, SiH 4 --NH 3 --N is used.
A gate insulating film 6 made of a first silicon nitride (SiNx) film was deposited to a film thickness of 3,000 Å using a 2 system gas. Then, using a SiH 4 —N 2 -based mixed gas as a discharge gas, an α-Si: H (i) film (first silicon layer) 8 was deposited to a film thickness of 3,500 Å.

【0035】さらに、この上に、放電ガスとして、Si
4−NH3−N2系ガスを用いて、第二の窒化シリコン
(SiNx)膜を膜厚700Åに堆積した。この第二の
SiNx膜から、CF4ガスを用いたドライエッチング
により所望のチャンネル保護層10を形成した。
On top of this, Si is used as a discharge gas.
A second silicon nitride (SiNx) film was deposited to a film thickness of 700 Å using H 4 —NH 3 —N 2 system gas. A desired channel protective layer 10 was formed from this second SiNx film by dry etching using CF 4 gas.

【0036】続いて、α−Si:H(n)膜(第二のシ
リコン層)12を、SiH4−H2−PH3系の混合ガス
を用いて膜厚1,000Åに堆積した。尚、ゲート絶縁
膜6、α−Si:H(i)膜8、チャンネル保護層10
及びα−Si:H(n)膜12は、グロー放電CVD法
で堆積した。
Subsequently, an α-Si: H (n) film (second silicon layer) 12 was deposited to a film thickness of 1,000 Å by using a mixed gas of SiH 4 -H 2 -PH 3 system. The gate insulating film 6, the α-Si: H (i) film 8, the channel protective layer 10
The α-Si: H (n) film 12 was deposited by the glow discharge CVD method.

【0037】次に、この上にNdを1at%含有するA
l(抵抗率:5μΩ・cm)を真空蒸着法又はスパッタリ
ング法により膜厚0.3μmに堆積した。このAl層を
硝酸−酢酸−リン酸水溶液系エッチング液を用いて、ホ
トエッチング法で所望のソース・ドレイン電極14,1
5及びソース・ドレイン配線(図示せず)のパターンと
した。
Next, A containing Nd in an amount of 1 at% was added.
1 (resistivity: 5 μΩ · cm) was deposited in a film thickness of 0.3 μm by a vacuum evaporation method or a sputtering method. This Al layer is formed into a desired source / drain electrode 14, 1 by a photoetching method using a nitric acid / acetic acid / phosphoric acid aqueous solution etching solution.
5 and source / drain wiring (not shown).

【0038】さらに、α−Si:H膜をCF4ガスを用
いたドライエッチング及びヒドラジン(NH2NH2・H
2O)水溶液を用いたウェットエッチングを併用するこ
とにより、α−Si:H(i)膜8のパターン及びα−
Si:H(n)膜12のパターンを、所望のパターンと
した。
Further, the α-Si: H film is dry-etched using CF 4 gas and hydrazine (NH 2 NH 2 .H) is used.
2 O) By using wet etching with an aqueous solution together, the pattern of α-Si: H (i) film 8 and α-Si: H (i) film 8
The pattern of the Si: H (n) film 12 was a desired pattern.

【0039】この上に、グロー放電CVD法により、第
三の窒化シリコン(SiNx)膜であるソース・ドレイ
ン絶縁膜(層間絶縁膜)16を膜厚3,000Åに堆積
した。このとき、放電ガスとして、第三のSiNx膜に
はSiH4−NH3−N2系ガスを用いた。
A source / drain insulating film (interlayer insulating film) 16, which is a third silicon nitride (SiNx) film, was deposited thereon by a glow discharge CVD method to a film thickness of 3,000 Å. At this time, as discharge gas, SiH 4 —NH 3 —N 2 based gas was used for the third SiNx film.

【0040】さらに、CF4ガスを用いたドライエッチ
ング法を用いたホトエッチング法により、ゲート電極の
取出し口24、ソース電極の取出し口(図示せず)、ソ
ース・ドレイン電極15と透明電極(画素電極)20と
の電気的接触点としての所望のスルーホール22を形成
した。
Further, by a photo-etching method using a dry etching method using CF 4 gas, a gate electrode outlet 24, a source electrode outlet (not shown), a source / drain electrode 15 and a transparent electrode (pixel). A desired through hole 22 was formed as an electrical contact point with the electrode 20.

【0041】その後、ソース・ドレイン絶縁膜16の全
面に、金属バッファー膜として、金属Inを真空蒸着法
又はスパッタリング法を用いて膜厚100Åで成膜し
た。そして、その上に、酸化インジウムと酸化亜鉛を主
成分とする非晶質透明導電膜をスパッタリング法で堆積
した。スパッタリングターゲットとして、InとZnの
原子比[In/(I+Zn)]を0.83に調整したI
23−ZnO焼結体をプレーナマグネトロン型のカゾ
ードに設置して用い、放電ガスとして、純アルゴン又は
1Vol%程度の微量の酸素ガスを混入させたアルゴン
ガスを用いて、透明導電膜を膜厚1,000Åに堆積し
た。
After that, metal In was formed as a metal buffer film on the entire surface of the source / drain insulating film 16 by a vacuum deposition method or a sputtering method to a film thickness of 100 Å. Then, an amorphous transparent conductive film containing indium oxide and zinc oxide as main components was deposited thereon by a sputtering method. As a sputtering target, the atomic ratio [In / (I + Zn)] of In and Zn was adjusted to 0.83 I
The n 2 O 3 —ZnO sintered body was installed in a planar magnetron type cathode and used, and as a discharge gas, pure argon or argon gas mixed with a small amount of oxygen gas of about 1 Vol% was used to form a transparent conductive film. It was deposited to a film thickness of 1,000Å.

【0042】このIn23−ZnO膜は、X線回折法で
分析するとピークは観察されず非晶質であった。金属バ
ッファー膜及び透明導電膜の薄膜を蓚酸3.4wt%の
水溶液を用いて、ホトエッチング法により所望の金属薄
膜バッファー層18、透明電極20及び取出し電極にパ
ターンニングし、さらに遮光膜パターンを形成して、α
−SiTFT基板1を完成させた。この基板を用いてT
FT−LCD方式平面ディスプレイを製造した後、ビデ
オ信号を入力して表示性能を確認したところ、表示性能
は良好であった。
This In 2 O 3 —ZnO film was amorphous with no peak observed when analyzed by X-ray diffraction. The thin film of the metal buffer film and the transparent conductive film is patterned into the desired metal thin film buffer layer 18, the transparent electrode 20 and the extraction electrode by a photoetching method using an aqueous solution of 3.4 wt% oxalic acid, and further a light shielding film pattern is formed. And α
-SiTFT substrate 1 was completed. T using this substrate
After the FT-LCD type flat panel display was manufactured, a video signal was inputted and the display performance was confirmed. The display performance was good.

【0043】実施例2 実施例1の金属薄膜バッファー層18を膜厚100Åの
金属Inから膜厚50Åの金属Agとし、金属薄膜バッ
ファー層18及び透明電極20のエッチャントを蓚酸
3.4wt%の水溶液から硝酸−酢酸−リン酸系水溶液
に代えた以外は、実施例1と同様にしてTFT−LCD
方式平面ディスプレイを製造した。得られた液晶表示装
置にビデオ信号を入力して表示性能を確認したところ、
表示性能は良好であった。
Example 2 The metal thin film buffer layer 18 of Example 1 was changed from metal In having a film thickness of 100Å to metal Ag having a film thickness of 50Å, and an etchant for the metal thin film buffer layer 18 and the transparent electrode 20 was an aqueous solution of 3.4 wt% oxalic acid. TFT-LCD in the same manner as in Example 1 except that the nitric acid-acetic acid-phosphoric acid-based aqueous solution was replaced with
A flat panel display was manufactured. When the video signal was input to the obtained liquid crystal display device and the display performance was confirmed,
The display performance was good.

【0044】比較例1 実施例1の金属薄膜バッファー層18の成膜工程を省略
した以外は、実施例1と同様にしてTFT−LCD方式
平面ディスプレイを製造した。得られた液晶表示装置に
ビデオ信号を入力して表示性能を確認したところ、信号
入力ができず、表示性能は不良であった。
Comparative Example 1 A TFT-LCD type flat display was manufactured in the same manner as in Example 1 except that the film forming step of the metal thin film buffer layer 18 of Example 1 was omitted. When a video signal was input to the obtained liquid crystal display device and the display performance was confirmed, no signal could be input and the display performance was poor.

【0045】[0045]

【発明の効果】本発明によれば、安定して作動するTF
T基板と液晶表示装置及びその効率的な製造方法が提供
できる。
According to the present invention, the TF which operates stably.
A T substrate, a liquid crystal display device, and an efficient manufacturing method thereof can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のTFT基板の一実施形態であるα−S
iTFT基板の断面図である。
1 is an embodiment of a TFT substrate of the present invention α-S
It is sectional drawing of an iTFT substrate.

【符号の説明】[Explanation of symbols]

1 α−SiTFT基板 14,15 ソース・ドレイン電極 16 絶縁膜 18 金属薄膜バッファー層 20 透明電極 22 スルーホール 1 α-Si TFT substrate 14,15 Source / drain electrodes 16 Insulating film 18 Metal thin film buffer layer 20 Transparent electrode 22 through hole

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/3205 H01L 29/78 616V 21/88 R Fターム(参考) 2H092 GA25 GA27 JA26 JA37 JA41 JA46 JB24 JB33 JB56 KA05 KA12 KB04 KB14 KB25 MA05 MA07 MA13 MA18 NA27 NA29 4M104 AA01 BB02 BB04 BB05 BB06 BB07 BB08 BB09 BB13 BB36 CC01 DD08 DD17 DD34 DD36 DD37 DD38 DD64 EE08 EE17 EE20 FF17 FF22 GG09 GG10 GG14 GG20 5C094 AA43 BA03 BA43 CA19 DA09 DA13 DB01 EA05 GB10 JA08 5F033 HH07 HH09 HH13 HH14 HH17 HH38 JJ01 JJ07 JJ09 JJ13 JJ14 JJ17 JJ38 KK01 KK09 MM05 MM13 NN06 NN07 PP15 PP19 PP20 QQ08 QQ09 QQ10 QQ11 QQ19 QQ37 RR06 SS11 VV06 VV15 XX32 XX33 5F110 AA16 BB01 CC07 DD02 EE06 EE44 FF03 FF29 FF30 GG02 GG15 GG25 GG44 GG45 HK06 HK09 HK16 HK25 HK32 HK33 HK34 HK35 HL02 HL04 HL06 HL07 HL11 HL22 HL23 HM18 NN04 NN14 NN24 NN35 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 21/3205 H01L 29/78 616V 21/88 RF term (reference) 2H092 GA25 GA27 JA26 JA37 JA41 JA46 JB24 JB33 JB56 KA05 KA12 KB04 KB14 KB25 MA05 MA07 MA13 MA18 NA27 NA29 4M104 AA01 BB02 BB04 BB05 BB06 BB07 BB08 BB09 BB13 BB36 CC01 DD08 DD17 DD34 DD36 DD37 DD38 DD64. HH09 HH13 HH14 HH17 HH38 JJ01 JJ07 JJ09 JJ13 JJ14 JJ17 JJ38 KK01 KK09 MM05 MM13 NN06 NN07 PP15 PP19 PP20 QQ08 QQ09 QQ10 QQ11 QQ06QGQGGQQQQGQGGQQQQQEQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ7Q7Q7Q7Q7Q7Q7Q7Q7DD07FF25 XX32 XX33 XX32 HK16 HK25 HK32 HK33 HK34 HK35 HL02 HL04 HL06 HL07 HL11 HL22 HL23 HM18 NN04 NN14 NN24 NN35

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ソース・ドレイン電極と透明電極の間に
絶縁層が介在し、前記絶縁層に形成されたスルーホール
により前記ソース・ドレイン電極と前記透明電極が電気
的に接続されているTFT基板において、 前記ソース・ドレイン電極が金属アルミニウムを主成分
とし、前記スルーホールにおいて、前記ソース・ドレイ
ン電極と前記透明電極との間に金属薄膜バッファー層を
有するTFT基板。
1. A TFT substrate in which an insulating layer is interposed between a source / drain electrode and a transparent electrode, and the source / drain electrode and the transparent electrode are electrically connected by a through hole formed in the insulating layer. In the TFT substrate, the source / drain electrodes are composed mainly of metallic aluminum, and a metal thin film buffer layer is provided between the source / drain electrodes and the transparent electrode in the through hole.
【請求項2】 前記金属薄膜バッファー層が、前記透明
電極と同一のエッチャントでエッチング可能な物質から
なることを特徴とする請求項1に記載のTFT基板。
2. The TFT substrate according to claim 1, wherein the metal thin film buffer layer is made of a material that can be etched with the same etchant as the transparent electrode.
【請求項3】 前記金属薄膜バッファー層が、アルミニ
ウムより酸化されやすい金属を主成分とすることを特徴
とする請求項1又は2に記載のTFT基板。
3. The TFT substrate according to claim 1, wherein the metal thin film buffer layer contains a metal that is more easily oxidized than aluminum as a main component.
【請求項4】 前記金属が、酸化されたときに透明性及
び導電性を示す金属であることを特徴とする請求項3に
記載のTFT基板。
4. The TFT substrate according to claim 3, wherein the metal is a metal that exhibits transparency and conductivity when oxidized.
【請求項5】 前記金属薄膜バッファー層が、Ag、A
u、Pt、Rh、Pd、Cr、In、Ga、Zn、M
o、Ti及びSnより選ばれた一種以上の金属又は合金
からなることを特徴とする請求項1又は2に記載のTF
T基板。
5. The metal thin film buffer layer comprises Ag, A
u, Pt, Rh, Pd, Cr, In, Ga, Zn, M
The TF according to claim 1 or 2, which is composed of one or more metals or alloys selected from o, Ti and Sn.
T substrate.
【請求項6】 前記金属薄膜バッファー層が、In、G
a、Zn及びSnより選ばれた一種以上の金属又は合金
からなることを特徴とする請求項3又は4に記載のTF
T基板。
6. The metal thin film buffer layer comprises In, G
The TF according to claim 3 or 4, wherein the TF is made of one or more metals or alloys selected from a, Zn and Sn.
T substrate.
【請求項7】 前記金属薄膜バッファー層の膜厚が30
〜300Åであることを特徴とする請求項1〜6のいず
れか一項に記載のTFT基板。
7. The film thickness of the metal thin film buffer layer is 30.
7. The TFT substrate according to claim 1, wherein the TFT substrate has a thickness of ˜300 Å.
【請求項8】 請求項1〜7のいずれか一項に記載のT
FT基板を含むことを特徴とする液晶表示装置。
8. The T according to claim 1.
A liquid crystal display device comprising an FT substrate.
【請求項9】 請求項1〜7のいずれか一項に記載のT
FT基板の製造方法において、 ソース・ドレイン電極上に、絶縁膜を形成し、 前記絶縁膜にスルーホールを形成し、 前記絶縁膜及び前記スルーホールの上に、金属バッファ
ー膜と透明導電膜を成膜し、 前記金属バッファー膜と前記透明導電膜を同時にエッチ
ングして金属薄膜バッファー層と透明電極を形成する工
程を含むことを特徴とするTFT基板の製造方法。
9. T according to any one of claims 1 to 7.
In the method of manufacturing an FT substrate, an insulating film is formed on the source / drain electrodes, a through hole is formed in the insulating film, and a metal buffer film and a transparent conductive film are formed on the insulating film and the through hole. A method of manufacturing a TFT substrate, comprising the steps of forming a film, and simultaneously etching the metal buffer film and the transparent conductive film to form a metal thin film buffer layer and a transparent electrode.
JP2001200710A 2001-07-02 2001-07-02 Tft substrate, liquid crystal display device using the same, and its manufacturing method Withdrawn JP2003017706A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001200710A JP2003017706A (en) 2001-07-02 2001-07-02 Tft substrate, liquid crystal display device using the same, and its manufacturing method
PCT/JP2002/005057 WO2003005453A1 (en) 2001-07-02 2002-05-24 Tft substrate, liquid crystal display using the same, and its manufacturing method
KR10-2003-7017295A KR20040016908A (en) 2001-07-02 2002-05-24 Tft substrate, liquid crystal display using the same, and its manufacturing method
CNB028132793A CN1279623C (en) 2001-07-02 2002-05-24 TFT substrate, liquid crystal display device using the same, and method of manufacturing the same
TW091112014A TWI293208B (en) 2001-07-02 2002-06-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200710A JP2003017706A (en) 2001-07-02 2001-07-02 Tft substrate, liquid crystal display device using the same, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003017706A true JP2003017706A (en) 2003-01-17

Family

ID=19037787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200710A Withdrawn JP2003017706A (en) 2001-07-02 2001-07-02 Tft substrate, liquid crystal display device using the same, and its manufacturing method

Country Status (5)

Country Link
JP (1) JP2003017706A (en)
KR (1) KR20040016908A (en)
CN (1) CN1279623C (en)
TW (1) TWI293208B (en)
WO (1) WO2003005453A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282066A (en) * 2003-03-12 2004-10-07 Samsung Sdi Co Ltd Thin film transistor and flat display element equipped with it
JP2005165304A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display and manufacturing method thereof
JP2005292768A (en) * 2004-03-09 2005-10-20 Idemitsu Kosan Co Ltd Tft substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method for tft substrate
EP1724790A1 (en) * 2004-03-09 2006-11-22 Idemitsu Kosan Company Limited Thin-film transistor and thin-film transistor substrate and production methods for them and liquid crystal display unit using these and related device and method, and, sputtering target and transparent conductive film formed by using this and transparent electrode and related device and method
JP2007242793A (en) * 2006-03-07 2007-09-20 Ulvac Japan Ltd Metal film, method of forming the same, and liquid crystal display device
JP2010117499A (en) * 2008-11-12 2010-05-27 Toshiba Mobile Display Co Ltd Array substrate and method for manufacturing array substrate
WO2011037102A1 (en) * 2009-09-28 2011-03-31 凸版印刷株式会社 Active matrix substrate, method for manufacturing same, and image display device
US8058652B2 (en) 2004-10-28 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device used as electro-optical device having channel formation region containing first element, and source or drain region containing second element
JP2014003298A (en) * 2006-10-12 2014-01-09 Cambrios Technologies Corp Transparent conductor of nanowire base and application of the same
US9646996B2 (en) 2013-09-11 2017-05-09 Samsung Display Co., Ltd. Thin film transistor substrate and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101058458B1 (en) * 2004-09-22 2011-08-24 엘지디스플레이 주식회사 Array substrate for liquid crystal display device using low molecular organic semiconductor material and manufacturing method thereof
KR20090115222A (en) 2005-11-15 2009-11-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR101221261B1 (en) * 2006-02-15 2013-01-11 엘지디스플레이 주식회사 Array substrate for LCD and the fabrication method thereof
JP2007286150A (en) * 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd Electrooptical device, and tft substrate for controlling electric current and method of manufacturing the same
CN101435962B (en) * 2007-11-15 2010-09-22 北京京东方光电科技有限公司 TFT-LCD array substrate structure and manufacturing method thereof
KR101671210B1 (en) 2009-03-06 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2012118199A (en) * 2010-11-30 2012-06-21 Panasonic Liquid Crystal Display Co Ltd Liquid crystal panel, liquid crystal display device, and manufacturing method thereof
CN102157567B (en) * 2011-03-18 2013-02-06 深圳南玻伟光导电膜有限公司 Semiconductor thin film transistor
CN102299104A (en) * 2011-09-20 2011-12-28 深圳市华星光电技术有限公司 Manufacturing method of thin film transistor (TFT) array substrate and TFT array substrate
US9793409B2 (en) * 2016-01-14 2017-10-17 Hon Hai Precision Industry Co., Ltd. Thin film transistor array panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153623A (en) * 1990-10-18 1992-05-27 Fuji Xerox Co Ltd Wiring structure
JP3349356B2 (en) * 1996-08-21 2002-11-25 シャープ株式会社 Thin film transistor and method of manufacturing the same
JP4663829B2 (en) * 1998-03-31 2011-04-06 三菱電機株式会社 Thin film transistor and liquid crystal display device using the thin film transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282066A (en) * 2003-03-12 2004-10-07 Samsung Sdi Co Ltd Thin film transistor and flat display element equipped with it
JP2005165304A (en) * 2003-11-14 2005-06-23 Semiconductor Energy Lab Co Ltd Liquid crystal display and manufacturing method thereof
JP2005292768A (en) * 2004-03-09 2005-10-20 Idemitsu Kosan Co Ltd Tft substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method for tft substrate
EP1724790A1 (en) * 2004-03-09 2006-11-22 Idemitsu Kosan Company Limited Thin-film transistor and thin-film transistor substrate and production methods for them and liquid crystal display unit using these and related device and method, and, sputtering target and transparent conductive film formed by using this and transparent electrode and related device and method
EP1724790A4 (en) * 2004-03-09 2008-10-01 Idemitsu Kosan Co Thin-film transistor and thin-film transistor substrate and production methods for them and liquid crystal display unit using these and related device and method, and, sputtering target and transparent conductive film formed by using this and transparent electrode and related device and method
US8773628B2 (en) 2004-03-09 2014-07-08 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
JP4660667B2 (en) * 2004-03-09 2011-03-30 出光興産株式会社 TFT substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method of TFT substrate
US8507111B2 (en) 2004-03-09 2013-08-13 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8038857B2 (en) 2004-03-09 2011-10-18 Idemitsu Kosan Co., Ltd. Thin film transistor, thin film transistor substrate, processes for producing the same, liquid crystal display using the same, and related devices and processes; and sputtering target, transparent electroconductive film formed by use of this, transparent electrode, and related devices and processes
US8058652B2 (en) 2004-10-28 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device used as electro-optical device having channel formation region containing first element, and source or drain region containing second element
JP2007242793A (en) * 2006-03-07 2007-09-20 Ulvac Japan Ltd Metal film, method of forming the same, and liquid crystal display device
JP2014003298A (en) * 2006-10-12 2014-01-09 Cambrios Technologies Corp Transparent conductor of nanowire base and application of the same
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
JP2010117499A (en) * 2008-11-12 2010-05-27 Toshiba Mobile Display Co Ltd Array substrate and method for manufacturing array substrate
JP4935963B2 (en) * 2009-09-28 2012-05-23 凸版印刷株式会社 Active matrix substrate, method for manufacturing the same, and image display device
WO2011037102A1 (en) * 2009-09-28 2011-03-31 凸版印刷株式会社 Active matrix substrate, method for manufacturing same, and image display device
US8848124B2 (en) 2009-09-28 2014-09-30 Toppan Printing Co., Ltd. Active matrix substrate, manufacturing method thereof, and image display device
US9646996B2 (en) 2013-09-11 2017-05-09 Samsung Display Co., Ltd. Thin film transistor substrate and manufacturing method thereof
US10288966B2 (en) 2013-09-11 2019-05-14 Samsung Display Co., Ltd. Thin film transistor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
KR20040016908A (en) 2004-02-25
WO2003005453A1 (en) 2003-01-16
TWI293208B (en) 2008-02-01
CN1279623C (en) 2006-10-11
CN1522470A (en) 2004-08-18

Similar Documents

Publication Publication Date Title
JP2003017706A (en) Tft substrate, liquid crystal display device using the same, and its manufacturing method
KR100983196B1 (en) Thin Film Transistor Substrates and Display Devices
JP5244295B2 (en) TFT substrate and manufacturing method of TFT substrate
JP2001223365A (en) Thin film transistor and its manufacturing method
JP2007157916A (en) Tft board, and manufacturing method therefor
US20080239217A1 (en) Semi-Transmissive/Semi-Reflective Electrode Substrate, Method for Manufacturing Same, and Liquid Crystal Display Using Such Semi-Transmissive/Semi-Reflective Electrode Substrate
JP2010065317A (en) DISPLAY DEVICE, AND Cu ALLOY FILM FOR USE IN THE DISPLAY DEVICE
JP2007235102A (en) Tft substrate and manufacturing method thereof
US10141451B2 (en) Electrode layer, thin film transistor, array substrate and display apparatus having the same, and fabricating method thereof
US6900461B2 (en) Conductive thin film for semiconductor device, semiconductor device, and method of manufacturing the same
JP2006191013A (en) Thin-film transistor substrate and its manufacturing method, and liquid crystal display
TW200406789A (en) Wiring material and wiring board using the same
US10707353B2 (en) Thin film transistor, method for fabricating the same, display substrate and display device
JP2003342653A (en) Wiring material and wiring board using the same
JP5374111B2 (en) Display device and Cu alloy film used therefor
JPH11264995A (en) Manufacture of liquid crystal display device
CN103400802B (en) Array base palte and preparation method thereof and display unit
JP2001318389A (en) Transparent electrode substrate, its manufacturing method and liquid crystal device
US20130323470A1 (en) Conductive structure for panel and manufacturing method thereof
KR100552283B1 (en) Thin film transistor substrate using molybdenum and molybdenum alloys and its manufacturing method
KR102198129B1 (en) Silver & silver alloy etchant for metal electrode & reflection layer
JP4738705B2 (en) Wiring material and wiring board using the same
JP2005250191A (en) Translucent / half-reflection electrode substrate, and method for manufacturing same, and liquid crystal display device using translucent / half-reflection electrode substrate
JP2001324724A (en) Liquid crystal display device
JP2012015200A (en) Thin film transistor substrate and display device including thin film transistor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090226