JP2003017595A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2003017595A
JP2003017595A JP2001198571A JP2001198571A JP2003017595A JP 2003017595 A JP2003017595 A JP 2003017595A JP 2001198571 A JP2001198571 A JP 2001198571A JP 2001198571 A JP2001198571 A JP 2001198571A JP 2003017595 A JP2003017595 A JP 2003017595A
Authority
JP
Japan
Prior art keywords
gate electrode
substrate
semiconductor substrate
trench
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001198571A
Other languages
Japanese (ja)
Inventor
Sunao Iguchi
口 直 井
Hiroaki Tsunoda
田 弘 昭 角
Koichi Matsuno
野 光 一 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001198571A priority Critical patent/JP2003017595A/en
Priority to US10/180,463 priority patent/US20030001227A1/en
Priority to CNB2004100818558A priority patent/CN100352010C/en
Priority to KR10-2002-0036887A priority patent/KR100508361B1/en
Priority to CNB021275696A priority patent/CN1215534C/en
Publication of JP2003017595A publication Critical patent/JP2003017595A/en
Priority to US10/839,140 priority patent/US7095093B2/en
Priority to KR10-2004-0057531A priority patent/KR100508609B1/en
Priority to US11/477,382 priority patent/US20060244098A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28123Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device having a comparatively small electronic trap having comparatively high gate voltage resistance without concentrating stress and an electric field on a semiconductor substrate and the end of an amorphous silicon film. SOLUTION: The semiconductor device is provided with the semiconductor substrate 10 having a substrate surface 12 forming an element, a gate electrode 30 insulated electrically from the semiconductor substrate and having an opposite face 32 opposite to the substrate surface 12, and a trench 60 formed so as to penetrate the gate electrode and reach the semiconductor substrate. A boundary part 15 between a substrate side 14 and the substrate surface constituting part of the side of the trench out of the semiconductor substrate and a boundary part 35 between a gate side 34 and the opposite face constituting part of the side out of the gate electrode make a curved face shape having a radius of curvature 30 Å or longer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置に係
り、特に、STIによって素子分離されている半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which elements are isolated by STI.

【0002】[0002]

【従来の技術】従来から、半導体装置を微小化するため
に、選択酸化法によって素子分離をする方法に代えて、
STI(Shallow Trench Isolation)によって素子分離を
する方法が用いられている。STIは、トレンチを設ける
ことによって半導体装置のうち素子を形成する素子領域
を他の領域から電気的に絶縁する。即ち、STIにおいて
は、 選択酸化法に代えてトレンチが素子分離領域に形
成される。
2. Description of the Related Art Conventionally, in order to miniaturize a semiconductor device, instead of a method of element isolation by a selective oxidation method,
A method of element isolation by STI (Shallow Trench Isolation) is used. By providing a trench, the STI electrically insulates an element region, which forms an element, of a semiconductor device from other regions. That is, in STI, a trench is formed in the element isolation region instead of the selective oxidation method.

【0003】図8は、従来のSTIを有する半導体装置7
00の製造途中における拡大断面図である。半導体基板
10の基板表面上にゲート絶縁膜20が形成されてい
る。ゲート絶縁膜20上には非晶質シリコン膜により形
成されているゲート電極30が形成されている。ゲート
電極30上にはシリコン窒化膜40が堆積されている。
シリコン窒化膜40上にはシリコン酸化膜50が堆積さ
れている。
FIG. 8 shows a semiconductor device 7 having a conventional STI.
It is an expanded sectional view in the middle of manufacture of 00. A gate insulating film 20 is formed on the substrate surface of the semiconductor substrate 10. A gate electrode 30 made of an amorphous silicon film is formed on the gate insulating film 20. A silicon nitride film 40 is deposited on the gate electrode 30.
A silicon oxide film 50 is deposited on the silicon nitride film 40.

【0004】シリコン窒化膜40およびシリコン酸化膜
50がフォト・リソグラフィを利用して所定のパターン
にエッチングされる。次に、シリコン酸化膜50をマス
クとして、ゲート電極30、ゲート絶縁膜20および半
導体基板10がエッチングされる。このエッチングによ
って、半導体基板10に到達するトレンチ60が形成さ
れる。
The silicon nitride film 40 and the silicon oxide film 50 are etched into a predetermined pattern by using photolithography. Next, the gate electrode 30, the gate insulating film 20, and the semiconductor substrate 10 are etched using the silicon oxide film 50 as a mask. By this etching, the trench 60 reaching the semiconductor substrate 10 is formed.

【0005】続いて、トレンチ60の側面部分および底
面部分がRTO(Rapid Thermal Oxidation)によって酸素O
雰囲気中、1000℃で酸化される。図8には、RTOを処
理した後のトレンチ60およびその周辺の拡大断面図が
示されている。
Subsequently, the side surface and the bottom surface of the trench 60 are oxygen O 2 by RTO (Rapid Thermal Oxidation).
2 Oxidized at 1000 ° C in an atmosphere. FIG. 8 shows an enlarged cross-sectional view of the trench 60 and its periphery after the RTO is processed.

【0006】トレンチ60の側面および底面にはRTOに
よってシリコン酸化膜70が形成されている。シリコン
酸化膜70によって、半導体基板10等が保護される。
A silicon oxide film 70 is formed by RTO on the side and bottom surfaces of the trench 60. The semiconductor substrate 10 and the like are protected by the silicon oxide film 70.

【0007】[0007]

【発明が解決しようとする課題】一般に、非晶質シリコ
ンに比較して、半導体基板として使用されるシリコン単
結晶への酸化種の拡散係数は小さい。
Generally, the diffusion coefficient of oxidizing species into a silicon single crystal used as a semiconductor substrate is smaller than that of amorphous silicon.

【0008】従って、RTOによる酸化工程において、シ
リコン単結晶である半導体基板10に形成されるシリコ
ン酸化膜70bの膜厚Tは、ゲート電極30に形成さ
れるシリコン酸化膜70aの膜厚Tに比較して薄い。
Therefore, in the oxidation process by RTO, the film thickness T 2 of the silicon oxide film 70b formed on the semiconductor substrate 10 made of silicon single crystal is equal to the film thickness T 1 of the silicon oxide film 70a formed on the gate electrode 30. Thin compared to.

【0009】また、シリコン単結晶や非晶質シリコンの
うち、平坦な面の部分に比較して、面と面との境界にあ
る辺や角のような端部には、酸化が進むにつれて応力が
加わる。シリコン単結晶や非晶質シリコンのうち応力が
加わる端部には酸化種が拡散し難い。従って、シリコン
単結晶や非晶質シリコンの平坦な面は酸化され易く、一
方で、端部は酸化され難いという現象が起こる。
In addition, as compared with a flat surface portion of a silicon single crystal or amorphous silicon, an edge portion such as a side or a corner at a boundary between the surfaces is stressed as oxidation progresses. Is added. Oxidizing species are less likely to diffuse at the end of the silicon single crystal or amorphous silicon to which stress is applied. Therefore, there occurs a phenomenon in which the flat surface of silicon single crystal or amorphous silicon is easily oxidized, while the edges are difficult to be oxidized.

【0010】図2(B)は、図8において破線円によっ
て囲まれた半導体基板10の端部およびゲート電極30
の端部の拡大図である。半導体基板10の端部およびゲ
ート電極30の端部はそれらの平坦な面に比較して酸化
され難いので、半導体基板10の端部およびゲート電極
30の端部により近いほど、形成される酸化膜の膜厚は
それらの平坦な面に形成される酸化膜の膜厚に比較して
薄くなる。従って、半導体基板10の端部およびゲート
電極30の端部は尖った形状になる(図2(B)の破線
円内を参照)。半導体基板10やゲート電極30の端部
が尖っているほど、より大きな応力がそれらの端部にか
かりやすく、電界がそれらの端部に集中しやすい。
FIG. 2B shows an end portion of the semiconductor substrate 10 surrounded by a broken line circle in FIG. 8 and the gate electrode 30.
It is an enlarged view of an end portion of FIG. Since the edge of the semiconductor substrate 10 and the edge of the gate electrode 30 are less likely to be oxidized than their flat surfaces, the oxide film formed is closer to the edge of the semiconductor substrate 10 and the edge of the gate electrode 30. Is thinner than the oxide film formed on the flat surface. Therefore, the end portion of the semiconductor substrate 10 and the end portion of the gate electrode 30 have a pointed shape (see the broken line circle in FIG. 2B). The sharper the edges of the semiconductor substrate 10 and the gate electrode 30, the more stress is likely to be applied to those edges, and the electric field is more likely to concentrate at those edges.

【0011】また、シリコン酸化膜70bの膜厚がシリ
コン酸化膜70aの膜厚に比較して薄いので、半導体基
板10の基板表面12に対して垂直方向から見た場合
に、ゲート電極30の端部が基板表面12の平坦な部分
と重複する(図2(B)の一点鎖線を参照)。
Further, since the thickness of the silicon oxide film 70b is smaller than that of the silicon oxide film 70a, the edge of the gate electrode 30 when viewed from the direction perpendicular to the substrate surface 12 of the semiconductor substrate 10. The portion overlaps with the flat portion of the substrate surface 12 (see the alternate long and short dash line in FIG. 2B).

【0012】ゲート電極30に大きな応力がかかるほ
ど、ゲート電極30にトラップされる電子(以下、電子
トラップという)が増加する。電子トラップの増加によ
って、閾値電圧が変化する(図6参照)。
The greater the stress applied to the gate electrode 30, the more electrons trapped in the gate electrode 30 (hereinafter referred to as electron traps). The threshold voltage changes as the number of electron traps increases (see FIG. 6).

【0013】閾値電圧の変化によって、半導体装置70
0が正常に動作しなくなる。ゲート電極30がメモリの
浮遊ゲート電極として使用されている場合には、読出し
/書込み可能な回数(以下、R/W回数という)が減少
してしまうという問題あった(図7参照)。
Due to the change in the threshold voltage, the semiconductor device 70
0 does not operate normally. When the gate electrode 30 is used as a floating gate electrode of a memory, there is a problem that the number of times that read / write is possible (hereinafter referred to as R / W number) is reduced (see FIG. 7).

【0014】また、半導体基板10の基板表面12に対
して垂直方向から見た場合に、電界が集中しやすいゲー
ト電極30の端部が基板表面12の平坦な部分と重複す
るので、半導体装置700のゲート耐圧が低下してしま
うという問題があった。
Further, when viewed from the direction perpendicular to the substrate surface 12 of the semiconductor substrate 10, the end portion of the gate electrode 30 where the electric field tends to concentrate overlaps with the flat portion of the substrate surface 12, so that the semiconductor device 700. However, there is a problem that the gate breakdown voltage of the device decreases.

【0015】よって、本発明の目的は、応力および電界
が半導体基板や非晶質シリコン膜の端部に集中せず、電
子トラップが比較的少なく、ゲート耐圧が比較的高い半
導体装置を提供することである。
Therefore, an object of the present invention is to provide a semiconductor device in which stress and electric field are not concentrated on the edge of a semiconductor substrate or an amorphous silicon film, electron traps are relatively small, and gate breakdown voltage is relatively high. Is.

【0016】[0016]

【課題を解決するための手段】本発明に従った実施の形
態による半導体装置は、素子が形成される基板表面を有
する半導体基板と、基板表面と対向する対向面を有し、
ゲート絶縁膜によって半導体基板と電気的に絶縁されて
いるゲート電極と、ゲート電極を貫通して半導体基板に
まで到達するように形成され、基板表面のうち素子が形
成される素子領域と他の領域とを電気的に分離するトレ
ンチとを備え、半導体基板のうちトレンチの側面の一部
分を構成する基板側面と基板表面との間にある第1の境
界部、およびゲート電極のうちトレンチの側面の一部分
を構成するゲート側面と対向面との間にある第2の境界
部が、30Å以上の曲率半径を有する曲面形状をなしてい
る。
A semiconductor device according to an embodiment of the present invention has a semiconductor substrate having a substrate surface on which elements are formed, and a facing surface facing the substrate surface,
A gate electrode electrically insulated from the semiconductor substrate by a gate insulating film, and an element region and another region of the substrate surface where the element is formed so as to penetrate the gate electrode and reach the semiconductor substrate. A first boundary portion between a substrate side surface and a substrate surface forming a part of the side surface of the trench of the semiconductor substrate, and a part of the side surface of the trench of the gate electrode. The second boundary portion between the side surface of the gate and the facing surface constituting the above has a curved surface shape having a radius of curvature of 30 Å or more.

【0017】本発明に従った実施の形態による半導体装
置は、素子が形成される基板表面を有する半導体基板
と、基板表面と対向する対向面を有し、ゲート絶縁膜に
よって半導体基板と電気的に絶縁されているゲート電極
と、ゲート電極を貫通して半導体基板にまで到達するよ
うに形成され、基板表面のうち素子が形成される素子領
域と他の領域とを電気的に分離するトレンチとを備え、
半導体基板のうちトレンチの側面の一部分を構成する基
板側面と基板表面との間にある第1の境界部、およびゲ
ート電極のうちトレンチの側面の一部分を構成するゲー
ト側面と対向面との間にある第2の境界部が、基板表面
に対して垂直の方向から見たときに、ほぼ一致して見え
る。
A semiconductor device according to an embodiment of the present invention has a semiconductor substrate having a substrate surface on which elements are formed, and a facing surface facing the substrate surface, and electrically connected to the semiconductor substrate by a gate insulating film. An insulated gate electrode and a trench that penetrates through the gate electrode and reaches the semiconductor substrate and electrically separates an element region on the substrate surface where an element is formed from other regions. Prepare,
A first boundary portion between a substrate side surface forming a part of a side surface of a trench of a semiconductor substrate and a substrate surface, and between a gate side surface forming a part of a side surface of a trench of a gate electrode and a facing surface. A second boundary appears to be nearly coincident when viewed from a direction perpendicular to the substrate surface.

【0018】好ましくは、基板側面およびゲート側面に
形成されたそれぞれの酸化膜の膜厚がほぼ等しい。
Preferably, the film thicknesses of the oxide films formed on the side surface of the substrate and the side surface of the gate are substantially equal to each other.

【0019】ゲート電極は、周囲が電気的に絶縁された
浮遊ゲート電極であってもよい。
The gate electrode may be a floating gate electrode whose periphery is electrically insulated.

【0020】本発明に従った実施の形態による半導体装
置の製造方法は、半導体基板上にゲート絶縁膜を形成す
るステップと、ゲート絶縁膜上に半導体基板と電気的に
絶縁するようにゲート電極を形成するステップと、基板
表面のうち素子が形成される素子領域と他の領域とを電
気的に分離するトレンチを形成するために、ゲート電
極、ゲート酸化膜および半導体基板をエッチングするス
テップと、半導体基板のうちトレンチの側面の一部分を
構成する基板側面およびゲート電極のうちトレンチの側
面の一部分を構成するゲート側面を水素Hおよび酸素
雰囲気中において酸化するステップとを含む。
A method of manufacturing a semiconductor device according to an embodiment of the present invention includes a step of forming a gate insulating film on a semiconductor substrate and a step of forming a gate electrode on the gate insulating film so as to electrically insulate the semiconductor substrate. A step of forming, a step of etching the gate electrode, the gate oxide film, and the semiconductor substrate to form a trench that electrically separates an element region in which an element is formed from other areas of the substrate surface, and a semiconductor And oxidizing the side surface of the substrate forming a part of the side surface of the trench and the side surface of the gate electrode forming a part of the side surface of the trench in a hydrogen H 2 and oxygen O 2 atmosphere.

【0021】本発明に従った他の実施の形態による半導
体装置の製造方法は、半導体基板上にゲート絶縁膜を形
成するステップと、ゲート絶縁膜上に半導体基板と電気
的に絶縁するようにゲート電極を形成するステップと、
基板表面のうち素子が形成される素子領域と他の領域と
を電気的に分離するトレンチを形成するために、ゲート
電極、ゲート酸化膜および半導体基板をエッチングする
ステップと、半導体基板のうちトレンチの側面の一部分
を構成する基板側面およびゲート電極のうちトレンチの
側面の一部分を構成するゲート側面をオゾンO雰囲気
中において酸化するステップとを含む。
A method of manufacturing a semiconductor device according to another embodiment of the present invention includes a step of forming a gate insulating film on a semiconductor substrate, and a gate for electrically insulating the gate insulating film from the semiconductor substrate. Forming electrodes,
A step of etching the gate electrode, the gate oxide film and the semiconductor substrate to form a trench that electrically separates the element region where the device is formed and the other region of the substrate surface; And oxidizing the side surface of the substrate forming a part of the side surface and the side surface of the gate of the gate electrode forming a part of the side surface of the trench in an ozone O 3 atmosphere.

【0022】[0022]

【発明の実施の形態】以下、図面を参照し、本発明によ
る実施の形態を説明する。尚、本実施の形態は本発明を
限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The present embodiment does not limit the present invention.

【0023】図1(A)、図1(B)および図1(C)
は、本発明に従った実施の形態によるSTIを有する半導
体装置100のトレンチおよびその周辺の拡大断面図で
ある。半導体装置100は図1(A)、図1(B)およ
び図1(C)の順に製造される。
1 (A), 1 (B) and 1 (C)
FIG. 6 is an enlarged cross-sectional view of a trench of a semiconductor device 100 having an STI and its periphery according to an embodiment of the present invention. The semiconductor device 100 is manufactured in the order of FIG. 1 (A), FIG. 1 (B) and FIG. 1 (C).

【0024】まず、図1(A)を参照して、半導体基板
10の基板表面上に、例えば、約10nmの厚さのシリコン
酸化膜から成るゲート絶縁膜20が形成されている。ゲ
ート絶縁膜20上には、例えば、約60nmの厚さの非晶質
シリコン膜により形成されているゲート電極30が形成
されている。ゲート電極30上にはシリコン窒化膜40
が堆積されている。シリコン窒化膜40上にはシリコン
酸化膜50が堆積されている。
First, referring to FIG. 1A, a gate insulating film 20 made of, for example, a silicon oxide film having a thickness of about 10 nm is formed on the surface of a semiconductor substrate 10. On the gate insulating film 20, a gate electrode 30 formed of, for example, an amorphous silicon film having a thickness of about 60 nm is formed. A silicon nitride film 40 is formed on the gate electrode 30.
Have been deposited. A silicon oxide film 50 is deposited on the silicon nitride film 40.

【0025】フォト・リソグラフィを利用することによ
ってシリコン窒化膜40およびシリコン酸化膜50が所
定のパターンにエッチングされる。次に、シリコン酸化
膜50をマスクとしてゲート電極30、ゲート絶縁膜2
0および半導体基板10がエッチングされる。このエッ
チングによって、ゲート電極30およびゲート絶縁膜2
0を貫通して半導体基板10に到達するトレンチ60が
形成される。
The silicon nitride film 40 and the silicon oxide film 50 are etched into a predetermined pattern by utilizing photolithography. Next, using the silicon oxide film 50 as a mask, the gate electrode 30 and the gate insulating film 2
0 and the semiconductor substrate 10 are etched. By this etching, the gate electrode 30 and the gate insulating film 2
A trench 60 that penetrates 0 and reaches the semiconductor substrate 10 is formed.

【0026】続いて、図1(B)を参照して、エッチン
グによって形成されたトレンチ60の側面部分および底
面部分が、RTOによって水素Hおよび酸素O雰囲気
中において1000℃で酸化される。図1(B)には、水素
および酸素O雰囲気中で酸化処理した後のトレン
チ60およびその周辺の拡大断面図が示されている。半
導体基板10の側面およびゲート電極30の側面に形成
されたそれぞれの酸化膜の膜厚Tおよび膜厚Tはほ
ぼ等しい。本実施の形態の場合、膜厚Tおよび膜厚T
は約6nmである。
Subsequently, referring to FIG. 1B, the side surface portion and the bottom surface portion of the trench 60 formed by etching are oxidized by RTO at 1000 ° C. in an atmosphere of hydrogen H 2 and oxygen O 2 . FIG. 1B shows an enlarged cross-sectional view of the trench 60 and its periphery after the oxidation treatment in a hydrogen H 2 and oxygen O 2 atmosphere. The film thicknesses T 3 and T 4 of the oxide films formed on the side surface of the semiconductor substrate 10 and the side surface of the gate electrode 30 are substantially equal. In the case of the present embodiment, the film thickness T 3 and the film thickness T
4 is about 6 nm.

【0027】さらに、図1(C)を参照して、シリコン
酸化材料80がトレンチ60内にHDP(High Density Pla
sma)法により堆積される。シリコン酸化材料80がCMP
法により平坦化された後、半導体基板10は約900℃の
窒素雰囲気中で加熱される。半導体基板10はNHF溶
液に晒された後、シリコン窒化膜40が約150℃の燐酸
処理により除去される。その後、シリコン酸化材料80
およびゲート電極30の上に燐を含むドープド・ポリシ
リコン90が減圧CVD法により形成される。
Further, referring to FIG. 1C, the silicon oxide material 80 is filled in the trench 60 with HDP (High Density Plas).
sma) method. Silicon oxide material 80 is CMP
After being planarized by the method, the semiconductor substrate 10 is heated in a nitrogen atmosphere at about 900 ° C. After exposing the semiconductor substrate 10 to the NH 4 F solution, the silicon nitride film 40 is removed by phosphoric acid treatment at about 150 ° C. After that, silicon oxide material 80
A doped polysilicon 90 containing phosphorus is formed on the gate electrode 30 by the low pressure CVD method.

【0028】さらに、その後、所定の工程を経て、トレ
ンチ60によって素子分離された半導体装置100が形
成される。
Further, after that, through a predetermined process, the semiconductor device 100 in which the elements are separated by the trench 60 is formed.

【0029】図2(A)はRTOによる酸化処理前の半
導体装置100、700における半導体基板10の端部
およびゲート電極30の端部の拡大断面図である。図2
(B)はRTOによる酸化処理後の従来の半導体装置7
00における半導体基板10の端部およびゲート電極3
0の端部の拡大断面図である。図2(C)はRTOによ
る酸化処理後の本発明に従った実施の形態による半導体
装置100における半導体基板10の端部およびゲート
電極30の端部の拡大断面図である。
FIG. 2A is an enlarged cross-sectional view of the end portion of the semiconductor substrate 10 and the end portion of the gate electrode 30 in the semiconductor devices 100 and 700 before the oxidation treatment by RTO. Figure 2
(B) is a conventional semiconductor device 7 after oxidation treatment by RTO
End of semiconductor substrate 10 and gate electrode 3
It is an expanded sectional view of the edge part of 0. FIG. 2C is an enlarged cross-sectional view of the end portion of semiconductor substrate 10 and the end portion of gate electrode 30 in semiconductor device 100 according to the embodiment of the present invention after the oxidation treatment by RTO.

【0030】図1(B)において破線円によって囲まれ
た半導体基板10の端部およびゲート電極30の端部の
拡大図が図2(C)に示されている。
FIG. 2C shows an enlarged view of the end portion of the semiconductor substrate 10 and the end portion of the gate electrode 30 which are surrounded by a broken line circle in FIG. 1B.

【0031】図2(C)に示すように、本実施の形態に
よる半導体装置100は、半導体基板10と電気的に絶
縁され、半導体基板の基板表面12と対向する対向面3
2を有するゲート電極30と、ゲート電極30を貫通し
て半導体基板10にまで到達するように形成されたトレ
ンチ60とを備える。半導体基板10とゲート電極30
との間にはゲート絶縁膜20が形成され、半導体基板1
0とゲート電極30とを電気的に絶縁している。
As shown in FIG. 2C, the semiconductor device 100 according to the present embodiment is electrically insulated from the semiconductor substrate 10 and faces the substrate surface 12 of the semiconductor substrate.
2 and a trench 60 formed to penetrate the gate electrode 30 and reach the semiconductor substrate 10. Semiconductor substrate 10 and gate electrode 30
A gate insulating film 20 is formed between the semiconductor substrate 1 and
0 and the gate electrode 30 are electrically insulated.

【0032】半導体基板10は、例えば、シリコン単結
晶により形成されている。ゲート絶縁膜20は、例え
ば、半導体基板10を酸化して形成されたシリコン酸化
膜である。ゲート電極30は、例えば、非晶質シリコン
を堆積して形成される。
The semiconductor substrate 10 is formed of, for example, a silicon single crystal. The gate insulating film 20 is, for example, a silicon oxide film formed by oxidizing the semiconductor substrate 10. The gate electrode 30 is formed by depositing amorphous silicon, for example.

【0033】RTOによる酸化処理によって、半導体基
板10の基板側面14上にシリコン酸化膜70aが形成
され、ゲート電極30のゲート側面34上にシリコン酸
化膜70bが形成されている。本実施の形態におけるシ
リコン酸化膜70aの膜厚T およびシリコン酸化膜7
0bの膜厚Tはほぼ等しい。
Oxidation treatment by RTO gives a semiconductor substrate.
A silicon oxide film 70a is formed on the substrate side surface 14 of the plate 10.
On the gate side surface 34 of the gate electrode 30
The chemical film 70b is formed. In this embodiment,
Thickness T of the recon oxide film 70a ThreeAnd silicon oxide film 7
0b film thickness TFourAre almost equal.

【0034】従来のように、トレンチ60の側面および
底面を酸化処理するときに、酸素O (乾燥酸素)雰囲
気中で酸化処理する場合、酸化種の拡散係数が比較的小
さい。特に、酸化種は非晶質シリコンよりもシリコン単
結晶内への拡散係数が小さい。従って、図2(B)に示
すように、シリコン酸化膜70bの膜厚Tはシリコン
酸化膜70aの膜厚Tよりも薄く形成される。
As is conventional, the sides of trench 60 and
When oxidizing the bottom surface, oxygen O Two(Dry oxygen) atmosphere
When oxidizing in air, the diffusion coefficient of oxidizing species is relatively small.
Sai. In particular, the oxidizing species should be silicon single rather than amorphous silicon.
The diffusion coefficient into the crystal is small. Therefore, as shown in FIG.
As described above, the thickness T of the silicon oxide film 70b isTwoIs silicon
Thickness T of oxide film 70a1Formed thinner.

【0035】一方、本実施の形態においては、トレンチ
60の側面および底面を酸化処理するときに、水素H
および酸素O雰囲気中で酸化処理する場合、酸化種の
拡散係数が比較的大きくなる。特に、非晶質シリコンよ
りもシリコン単結晶において拡散係数の増大が顕著であ
る。従って、シリコン単結晶と非晶質シリコンとの酸化
速度の差が小さくなる。よって、シリコン酸化膜70a
の膜厚Tおよびシリコン酸化膜70bの膜厚Tがほ
ぼ等しくなる。尚、本実施の形態においては、RTOによ
り水素Hおよび酸素Oを高温で反応させ、酸素ラジ
カルを発生させる。その酸素ラジカルが酸化種となる。
しかし、水素Hおよび酸素Oに代えてO(オゾ
ン)を使用して酸化処理を行っても、本実施の形態によ
る半導体装置100と同様の形状を得ることができる。
On the other hand, in the present embodiment, hydrogen H 2 is used when the side surface and the bottom surface of the trench 60 are oxidized.
When the oxidation treatment is performed in an oxygen O 2 atmosphere, the diffusion coefficient of the oxidizing species becomes relatively large. In particular, the increase of the diffusion coefficient is more remarkable in silicon single crystal than in amorphous silicon. Therefore, the difference in the oxidation rate between the silicon single crystal and the amorphous silicon becomes small. Therefore, the silicon oxide film 70a
Thickness T 3 and the thickness T 4 of the silicon oxide film 70b is substantially equal to. In the present embodiment, hydrogen H 2 and oxygen O 2 are reacted at high temperature by RTO to generate oxygen radicals. The oxygen radicals become oxidizing species.
However, even if the oxidizing process is performed using O 3 (ozone) instead of hydrogen H 2 and oxygen O 2 , the same shape as the semiconductor device 100 according to the present embodiment can be obtained.

【0036】また、本実施の形態においては、酸化種の
拡散係数が比較的大きくなることによって、応力のかか
り易い半導体基板10の端部やゲート電極30の端部の
酸化が促進される。従って、本実施の形態による半導体
装置100は、半導体基板10の端部やゲート電極30
の端部が従来のように尖っていない。
In the present embodiment, the relatively large diffusion coefficient of the oxidizing species promotes the oxidation of the end portion of the semiconductor substrate 10 and the end portion of the gate electrode 30 where stress is easily applied. Therefore, in the semiconductor device 100 according to the present embodiment, the end portion of the semiconductor substrate 10 and the gate electrode 30 are provided.
The edges are not as sharp as they used to be.

【0037】即ち、本実施の形態による半導体装置10
0において、半導体基板10のうちトレンチ60の側面
の一部分を構成する基板側面14と基板表面12との間
にある境界部15、およびゲート電極30のうちトレン
チ60の側面の一部分を構成するゲート側面34と対向
面12との間にある境界部35が、30Å以上の曲率半径
を有する曲面形状に成形されている。尚、従来の半導体
装置700において、半導体基板10の境界部およびゲ
ート電極30の境界部が明確でないため、半導体基板1
0の端部およびゲート電極30の端部と表現した。従っ
て、本実施の形態による半導体装置100の境界部15
および境界部35は、それぞれ半導体基板10の端部お
よびゲート電極30の端部と実質的に同じ部分である。
That is, the semiconductor device 10 according to the present embodiment.
0, the boundary portion 15 between the substrate side surface 14 that forms a part of the side surface of the trench 60 in the semiconductor substrate 10 and the substrate surface 12, and the gate side surface that forms a part of the side surface of the trench 60 in the gate electrode 30. A boundary portion 35 between 34 and the facing surface 12 is formed into a curved surface shape having a radius of curvature of 30 Å or more. In the conventional semiconductor device 700, the boundary portion of the semiconductor substrate 10 and the boundary portion of the gate electrode 30 are not clear.
It is expressed as an edge of 0 and an edge of the gate electrode 30. Therefore, the boundary portion 15 of the semiconductor device 100 according to the present embodiment is
The boundary portion 35 is substantially the same as the end portion of the semiconductor substrate 10 and the end portion of the gate electrode 30, respectively.

【0038】境界部15および境界部35がある曲率半
径以上の曲率半径を有することによって、境界部15お
よび境界部35への応力の集中も緩和される。また、境
界部15および境界部35への局所的な電界の集中が緩
和される。
Since the boundary portions 15 and 35 have a radius of curvature equal to or larger than a certain radius of curvature, the concentration of stress on the boundary portions 15 and 35 is relieved. Further, local concentration of the electric field on the boundary portion 15 and the boundary portion 35 is alleviated.

【0039】シリコン酸化膜70aの膜厚Tおよびシ
リコン酸化膜70bの膜厚Tがほぼ等しいので、本実
施の形態による半導体装置100においては、基板表面
12に対して垂直の方向から見たときに、基板表面12
と境界部35とは重複していない。さらに、対向面12
と境界部15も重複していない。即ち、基板表面12に
対して垂直の方向から見たときに、境界部35と境界部
15とが互いに重複している。
Since the film thickness T 3 of the silicon oxide film 70a and the film thickness T 4 of the silicon oxide film 70b are substantially equal to each other, in the semiconductor device 100 according to the present embodiment, it is viewed from the direction perpendicular to the substrate surface 12. Sometimes the substrate surface 12
And the boundary portion 35 do not overlap. Furthermore, the facing surface 12
Boundary 15 does not overlap. That is, when viewed from the direction perpendicular to the substrate surface 12, the boundary portion 35 and the boundary portion 15 overlap each other.

【0040】それによって、もし境界部15および境界
部35へ電界が集中しても、ゲート絶縁膜20が破壊さ
れ難い。従って、半導体装置の歩留まりが向上する。
Therefore, even if the electric field is concentrated on the boundary portions 15 and 35, the gate insulating film 20 is less likely to be destroyed. Therefore, the yield of semiconductor devices is improved.

【0041】図3は、境界部15および境界部35の曲
率半径と電子トラップの変化量(ΔVge)との関係を表
すグラフを示した図である。このグラフは、ゲート電極
30からゲート絶縁膜20へ0.1A/cmの定電流ストレ
スを20秒間加え、約2C/cmの電荷を注入した後の電子
トラップの変化量を示す。
FIG. 3 is a diagram showing a graph showing the relationship between the radius of curvature of the boundary 15 and the boundary 35 and the variation (ΔVge) of the electron trap. This graph shows the amount of change in electron traps after a constant current stress of 0.1 A / cm 2 was applied to the gate insulating film 20 from the gate electrode 30 for 20 seconds and a charge of about 2 C / cm 2 was injected.

【0042】境界部15および境界部35の曲率半径が
約30Åより小さいときには、ΔVgeが大きく、電子トラ
ップの量が大きい。一方で、境界部15および境界部3
5の曲率半径が約30Å以上のときには、ΔVgeが小さ
く、電子トラップの量が小さい。また、曲率半径が約30
Åを超えると、ΔVgeの低下の度合いが小さくなる。従
って、境界部15および境界部35の曲率半径を約30Å
以上にしたときに、境界部15および境界部35への応
力および電界の集中が効果的に緩和される。
When the radii of curvature of the boundary portions 15 and 35 are smaller than about 30Å, ΔVge is large and the amount of electron traps is large. On the other hand, the boundary 15 and the boundary 3
When the radius of curvature of 5 is about 30 Å or more, ΔVge is small and the amount of electron traps is small. Also, the radius of curvature is about 30.
When it exceeds Å, the degree of decrease in ΔVge decreases. Therefore, the radii of curvature of the boundary portion 15 and the boundary portion 35 are about 30Å
In the above case, stress and electric field concentration on the boundary portions 15 and 35 are effectively alleviated.

【0043】図4は、ゲート絶縁膜20の応力と電子ト
ラップとの関係を表すグラフを示した図である。図4に
示すグラフの横軸はゲート酸化膜20内の応力を示し、
縦軸は電子トラップの変化量(ΔVge)を示す。このグ
ラフは、従来の半導体装置700および本実施の形態に
よる半導体装置100のそれぞれにおいて、ゲート電極
30からゲート絶縁膜20へ0.1A/cmの定電流ストレ
スを20秒間加え、約2C/cmの電荷を注入した後の電子
トラップの変化量を示す。図4によると、ゲート電極2
0内の応力が小さいほどΔVgeが小さい。
FIG. 4 is a graph showing the relationship between the stress of the gate insulating film 20 and the electron trap. The horizontal axis of the graph shown in FIG. 4 represents the stress in the gate oxide film 20,
The vertical axis represents the amount of change in electron trap (ΔVge). This graph shows that in each of the conventional semiconductor device 700 and the semiconductor device 100 according to the present embodiment, a constant current stress of 0.1 A / cm 2 is applied to the gate insulating film 20 from the gate electrode 30 for 20 seconds, and then approximately 2 C / cm 2 is applied. The amount of change in the electron traps after the injection of the charges is shown. According to FIG. 4, the gate electrode 2
The smaller the stress in 0, the smaller ΔVge.

【0044】シリコン酸化膜70aの膜厚とシリコン酸
化膜70bの膜厚との差が大きいほど、ゲート絶縁膜2
0の応力も大きくなり、境界部15および境界部35の
応力が大きいほど、ゲート絶縁膜20の応力も大きくな
る。よって、本実施の形態による半導体装置100にお
ける電子トラップの量の方が従来の半導体装置700に
おける電子トラップの量よりも少ないことが理解でき
る。
As the difference between the thickness of the silicon oxide film 70a and the thickness of the silicon oxide film 70b increases, the gate insulating film 2
The stress of 0 also increases, and the stress of the gate insulating film 20 increases as the stress of the boundary 15 and the boundary 35 increases. Therefore, it can be understood that the amount of electron traps in the semiconductor device 100 according to the present embodiment is smaller than the amount of electron traps in the conventional semiconductor device 700.

【0045】図5は、ゲート絶縁膜20へ定電流を流し
た時間と電子トラップの量(Vge)との一般的な関係を
表すグラフを示した図である。図5によれば、ゲート絶
縁膜20へ定電流を流した時間が長いほど、電子トラッ
プの量が多くなることがわかる。
FIG. 5 is a graph showing a general relationship between the time for which a constant current is applied to the gate insulating film 20 and the amount of electron traps (Vge). From FIG. 5, it can be seen that the longer the constant current is applied to the gate insulating film 20, the larger the amount of electron traps.

【0046】図6は、半導体装置の閾値電圧(Vt)とゲ
ート絶縁膜20における電子トラップの量(ΔVge)と
の一般的な関係を表すグラフを示した図である。図6に
よれば、半導体装置の閾値電圧が電子トラップの量に比
例して変化してしまうことがわかる。
FIG. 6 is a graph showing a general relationship between the threshold voltage (Vt) of the semiconductor device and the amount of electron traps (ΔVge) in the gate insulating film 20. It can be seen from FIG. 6 that the threshold voltage of the semiconductor device changes in proportion to the amount of electron traps.

【0047】本実施の形態による半導体装置100は、
従来の半導体装置700に比べ、ゲート絶縁膜20にト
ラップされる電子の量(ΔVge)が少ない(図5参照)
ので、閾値電圧の変化が小さい(図6参照)。よって、
半導体装置100は半導体装置700に比べて電気的な
ストレスに強く、寿命が長くなる。
The semiconductor device 100 according to the present embodiment is
The amount of electrons (ΔVge) trapped in the gate insulating film 20 is smaller than that of the conventional semiconductor device 700 (see FIG. 5).
Therefore, the change in the threshold voltage is small (see FIG. 6). Therefore,
The semiconductor device 100 is more resistant to electrical stress than the semiconductor device 700 and has a longer life.

【0048】図7は、半導体装置のメモリにおけるR/
W回数と半導体装置の閾値電圧との一般的な関係を表す
グラフを示した図である。図7によれば、R/W回数が
多くなるほど、ゲート絶縁膜20にトラップされる電子
の量が多くなり、半導体装置の閾値電圧が変化してしま
う。
FIG. 7 shows R / in the memory of the semiconductor device.
It is the figure which showed the graph showing the general relationship between the number of times of W and the threshold voltage of a semiconductor device. According to FIG. 7, as the number of R / W increases, the amount of electrons trapped in the gate insulating film 20 increases and the threshold voltage of the semiconductor device changes.

【0049】従って、ゲート電極30を浮遊ゲート電極
とする不揮発性半導体記憶装置においても、本実施の形
態による半導体装置100は、従来の半導体装置700
に比べ、R/W回数が多くても、電子トラップの変化量
(ΔVge)が小さく、閾値電圧の変化が小さい。また、
R/W回数が多くても、半導体装置100は、半導体装
置700に比べ、浮遊ゲート電極としてのゲート電極3
0に長期間に亘って電荷を保持させておくことができ
る。
Therefore, also in the nonvolatile semiconductor memory device having the gate electrode 30 as the floating gate electrode, the semiconductor device 100 according to the present embodiment is the conventional semiconductor device 700.
Compared with, the change amount (ΔVge) of the electron trap is small and the change of the threshold voltage is small even if the R / W number is large. Also,
Even if the number of R / Ws is large, the semiconductor device 100 is different from the semiconductor device 700 in that the gate electrode 3 as the floating gate electrode
The charge can be held at 0 for a long period of time.

【0050】尚、図4から図7の説明において、電子ト
ラップのみに関して説明したが、ホール・トラップに関
しても同様のことがいえる。
In the description of FIGS. 4 to 7, only electron traps have been described, but the same applies to hole traps.

【0051】[0051]

【発明の効果】本発明に従った半導体装置によれば、応
力および電界が半導体基板や非晶質シリコン膜の端部に
集中せず、電子トラップが比較的少なく、ゲート耐圧が
比較的高い。
According to the semiconductor device of the present invention, the stress and the electric field are not concentrated on the edge of the semiconductor substrate or the amorphous silicon film, the number of electron traps is relatively small, and the gate breakdown voltage is relatively high.

【0052】本発明に従った半導体装置の製造方法によ
れば、応力および電界が半導体基板や非晶質シリコン膜
の端部に集中せず、電子トラップが比較的少なく、ゲー
ト耐圧が比較的高い半導体装置を製造することができ
る。
According to the method of manufacturing a semiconductor device according to the present invention, stress and electric field are not concentrated on the edge of the semiconductor substrate or the amorphous silicon film, electron traps are relatively small, and gate breakdown voltage is relatively high. A semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従った実施の形態によるSTIを有する
半導体装置100のトレンチおよびその周辺の拡大断面
図。
FIG. 1 is an enlarged cross-sectional view of a trench of a semiconductor device 100 having an STI and its periphery according to an embodiment of the present invention.

【図2】RTOによる酸化処理前後の半導体装置におけ
る半導体基板の端部およびゲート電極の端部の拡大断面
図である。
FIG. 2 is an enlarged cross-sectional view of an end portion of a semiconductor substrate and an end portion of a gate electrode in a semiconductor device before and after an oxidation process by RTO.

【図3】境界部15および境界部35の曲率半径と電子
トラップの変化量(ΔVge)との関係を表すグラフを示
した図。
FIG. 3 is a diagram showing a graph showing a relationship between a radius of curvature of a boundary portion 15 and a boundary portion 35 and a variation amount (ΔVge) of an electron trap.

【図4】ゲート絶縁膜内の応力と電子トラップとの関係
を表すグラフを示した図。
FIG. 4 is a graph showing a relationship between stress in a gate insulating film and electron traps.

【図5】ゲート絶縁膜20への定電流を流す時間と電子
トラップの量(ΔVge)との関係を表すグラフを示した
図。
FIG. 5 is a diagram showing a graph showing the relationship between the time for which a constant current is applied to the gate insulating film 20 and the amount of electron traps (ΔVge).

【図6】半導体装置の閾値電圧(Vt)とゲート絶縁膜2
0における電子トラップの量(ΔVge)との関係を表す
グラフを示した図。
FIG. 6 is a threshold voltage (Vt) of a semiconductor device and a gate insulating film 2
The figure showing the graph showing the relation with the amount (ΔVge) of the electron trap at 0.

【図7】半導体装置のメモリにおけるR/W回数と半導
体装置の閾値電圧との関係を表すグラフを示した図。
FIG. 7 is a graph showing a relationship between the R / W count in a memory of a semiconductor device and a threshold voltage of the semiconductor device.

【図8】従来のSTIを有する半導体装置700の製造途
中における拡大断面図。
FIG. 8 is an enlarged cross-sectional view of a conventional semiconductor device 700 having an STI during manufacturing.

【符号の説明】[Explanation of symbols]

100、700 半導体装置 10 半導体基板 12 基板表面 14 基板側面 15、35 境界部 20 ゲート絶縁膜 30 ゲート電極 32 対向面 34 ゲート側面 40 シリコン窒化膜 50 シリコン酸化膜 60 トレンチ 70 シリコン酸化膜 100,700 Semiconductor device 10 Semiconductor substrate 12 Substrate surface 14 Board side 15, 35 border 20 Gate insulating film 30 gate electrode 32 Opposing surface 34 Gate side 40 Silicon nitride film 50 Silicon oxide film 60 trench 70 Silicon oxide film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/792 (72)発明者 松 野 光 一 三重県四日市市山之一色町800番地 株式 会社東芝四日市工場内 Fターム(参考) 5F032 AA36 AA44 AA45 AA69 BA01 CA17 DA04 DA33 DA53 DA74 5F083 GA19 GA21 GA24 GA27 JA33 NA01 PR13 PR21 5F101 BA23 BD35 BE07 BF03 BH16 BH30 5F140 AA06 AA19 AC32 BA01 BB01 BE07 BF04 BF11 BF14 BF34 BF42 BG28 BG44 CB04 CB10─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 29/792 (72) Inventor Koichi Matsuno 800 No. 1, Yamanoichishiki-cho, Yokkaichi-shi, Mie Toshiba Yokkaichi Co., Ltd. F term in the factory (reference) 5F032 AA36 AA44 AA45 AA69 BA01 CA17 DA04 DA33 DA53 DA74 5F083 GA19 GA21 GA24 GA27 JA33 NA01 PR13 PR21 5F101 BA23 BD35 BE07 BF03 BH16 BH30 5F140 BF44 BF34 BF44 BF04 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14 BF14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】素子が形成される基板表面を有する半導体
基板と、 前記基板表面と対向する対向面を有し、ゲート絶縁膜に
よって前記半導体基板と電気的に絶縁されているゲート
電極と、 前記ゲート電極を貫通して前記半導体基板にまで到達す
るように形成され、前記基板表面のうち素子が形成され
る素子領域と他の領域とを電気的に分離するトレンチと
を備え、 前記半導体基板のうち前記トレンチの側面の一部分を構
成する基板側面と前記基板表面との間にある第1の境界
部、および前記ゲート電極のうち前記トレンチの側面の
一部分を構成するゲート側面と前記対向面との間にある
第2の境界部が、30Å以上の曲率半径を有する曲面形状
をなしていることを特徴とする半導体装置。
1. A semiconductor substrate having a substrate surface on which an element is formed, a gate electrode having a facing surface facing the substrate surface, and electrically insulated from the semiconductor substrate by a gate insulating film, A trench that is formed so as to reach the semiconductor substrate through the gate electrode and electrically separates an element region in which an element is formed and another region of the substrate surface from each other, A first boundary portion between the substrate side surface and the substrate surface forming a part of the side surface of the trench, and a gate side surface and a facing surface forming a part of the side surface of the trench of the gate electrode A semiconductor device characterized in that a second boundary portion between them has a curved shape having a radius of curvature of 30 Å or more.
【請求項2】素子が形成される基板表面を有する半導体
基板と、 前記基板表面と対向する対向面を有し、ゲート絶縁膜に
よって前記半導体基板と電気的に絶縁されているゲート
電極と、 前記ゲート電極を貫通して前記半導体基板にまで到達す
るように形成され、前記基板表面のうち素子が形成され
る素子領域と他の領域とを電気的に分離するトレンチと
を備え、 前記半導体基板のうち前記トレンチの側面の一部分を構
成する基板側面と前記基板表面との間にある第1の境界
部、および前記ゲート電極のうち前記トレンチの側面の
一部分を構成するゲート側面と前記対向面との間にある
第2の境界部が、前記基板表面に対して垂直の方向から
見たときに、ほぼ一致して見えることを特徴とする請求
項1または請求項2に記載の半導体装置。
2. A semiconductor substrate having a substrate surface on which an element is formed, a gate electrode having a facing surface facing the substrate surface and electrically insulated from the semiconductor substrate by a gate insulating film, A trench that is formed so as to reach the semiconductor substrate through the gate electrode and electrically separates an element region in which an element is formed and another region of the substrate surface from each other, A first boundary portion between the substrate side surface and the substrate surface forming a part of the side surface of the trench, and a gate side surface and a facing surface forming a part of the side surface of the trench of the gate electrode 3. The semiconductor device according to claim 1, wherein the second boundary portions between the two appear substantially coincident with each other when viewed from a direction perpendicular to the substrate surface.
【請求項3】前記基板側面および前記ゲート側面に形成
されたそれぞれの酸化膜の膜厚がほぼ等しいことを特徴
とする請求項2に記載の半導体装置。
3. The semiconductor device according to claim 2, wherein the oxide films formed on the side surface of the substrate and the side surface of the gate have substantially the same film thickness.
【請求項4】前記ゲート電極は、周囲が電気的に絶縁さ
れた浮遊ゲート電極であることを特徴とする請求項1か
ら請求項3のいずれかに記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the gate electrode is a floating gate electrode whose periphery is electrically insulated.
【請求項5】半導体基板上にゲート絶縁膜を形成するス
テップと、 前記ゲート絶縁膜上に前記半導体基板と電気的に絶縁す
るようにゲート電極を形成するステップと、前記基板表
面のうち素子が形成される素子領域と他の領域とを電気
的に分離するトレンチを形成するために、前記ゲート電
極、前記ゲート酸化膜および前記半導体基板をエッチン
グするステップと、 前記半導体基板のうち前記トレンチの側面の一部分を構
成する基板側面および前記ゲート電極のうち前記トレン
チの側面の一部分を構成するゲート側面を水素Hおよ
び酸素O雰囲気中において酸化するステップと、を含
むことを特徴とする半導体装置の製造方法。
5. A step of forming a gate insulating film on a semiconductor substrate; a step of forming a gate electrode on the gate insulating film so as to be electrically insulated from the semiconductor substrate; Etching the gate electrode, the gate oxide film, and the semiconductor substrate to form a trench that electrically separates a device region to be formed from other regions; and a side surface of the trench of the semiconductor substrate. A side surface of the substrate forming a part of the gate electrode and a side surface of the gate forming a part of the side surface of the trench in the gate electrode in a hydrogen H 2 and oxygen O 2 atmosphere. Production method.
【請求項6】半導体基板上にゲート絶縁膜を形成するス
テップと、 前記ゲート絶縁膜上に前記半導体基板と電気的に絶縁す
るようにゲート電極を形成するステップと、 前記基板表面のうち素子が形成される素子領域と他の領
域とを電気的に分離するトレンチを形成するために、前
記ゲート電極、前記ゲート酸化膜および前記半導体基板
をエッチングするステップと、 前記半導体基板のうち前記トレンチの側面の一部分を構
成する基板側面および前記ゲート電極のうち前記トレン
チの側面の一部分を構成するゲート側面をオゾンO
囲気中において酸化するステップと、を含むことを特徴
とする半導体装置の製造方法。
6. A step of forming a gate insulating film on a semiconductor substrate; a step of forming a gate electrode on the gate insulating film so as to be electrically insulated from the semiconductor substrate; Etching the gate electrode, the gate oxide film, and the semiconductor substrate to form a trench that electrically separates a device region to be formed from other regions; and a side surface of the trench of the semiconductor substrate. A side surface of the substrate forming a part of the gate electrode and a gate side surface of the gate electrode forming a part of the side surface of the trench in an ozone O 3 atmosphere.
JP2001198571A 2001-06-29 2001-06-29 Semiconductor device Pending JP2003017595A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001198571A JP2003017595A (en) 2001-06-29 2001-06-29 Semiconductor device
US10/180,463 US20030001227A1 (en) 2001-06-29 2002-06-27 Semiconductor device and method of manufacturing a semiconductor device
CNB2004100818558A CN100352010C (en) 2001-06-29 2002-06-28 Method of manufacturing a semiconductor device
KR10-2002-0036887A KR100508361B1 (en) 2001-06-29 2002-06-28 Semiconductor device
CNB021275696A CN1215534C (en) 2001-06-29 2002-06-28 Semiconductor device and method for manufacturing semiconductor device
US10/839,140 US7095093B2 (en) 2001-06-29 2004-05-06 Semiconductor device and method of manufacturing a semiconductor device
KR10-2004-0057531A KR100508609B1 (en) 2001-06-29 2004-07-23 Method of manufacturing a semiconductor device
US11/477,382 US20060244098A1 (en) 2001-06-29 2006-06-30 Semiconductor device and method of manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001198571A JP2003017595A (en) 2001-06-29 2001-06-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2003017595A true JP2003017595A (en) 2003-01-17

Family

ID=19036001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001198571A Pending JP2003017595A (en) 2001-06-29 2001-06-29 Semiconductor device

Country Status (4)

Country Link
US (3) US20030001227A1 (en)
JP (1) JP2003017595A (en)
KR (2) KR100508361B1 (en)
CN (2) CN1215534C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140521A (en) * 2006-01-10 2006-06-01 Matsushita Electric Ind Co Ltd Manufacturing method for semiconductor device
US7821056B2 (en) 2006-09-21 2010-10-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
JP2011146733A (en) * 2011-03-18 2011-07-28 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2014531175A (en) * 2011-10-28 2014-11-20 ダンマークス・テクニスケ・ユニヴェルシテット Dynamic encryption method
CN110495097A (en) * 2017-03-27 2019-11-22 住友电气工业株式会社 Lamina and SAW device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087720A (en) * 2002-08-26 2004-03-18 Toshiba Corp Semiconductor device and method of manufacturing the same
DE102015201045B4 (en) * 2015-01-22 2019-09-26 Infineon Technologies Austria Ag High voltage transistor operable with a high gate voltage, method of controlling the same, and circuitry
JP6475142B2 (en) * 2015-10-19 2019-02-27 トヨタ自動車株式会社 Semiconductor device and manufacturing method thereof

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US60019A (en) * 1866-11-27 lakgre
US106906A (en) * 1870-08-30 Improvement in folding tables
US45324A (en) * 1864-12-06 Improvement in horse hay-forks
US32996A (en) * 1861-08-06 Meastjkdsrcmfatrcet
US197823A (en) * 1877-12-04 Improvement in metallic cartridge-shells
US119276A (en) * 1871-09-26 Improvement in looms for weaving hair-cloth and fabrics produced thereon
US57484A (en) * 1866-08-28 Improvement in cultivators
US55217A (en) * 1866-05-29 Improvement in cigar-machines
US20867A (en) * 1858-07-13 dbnnisson
US115270A (en) * 1871-05-30 Improvement in hot-air furnaces
JPH0620108B2 (en) * 1987-03-23 1994-03-16 三菱電機株式会社 Method for manufacturing semiconductor device
EP0491975A1 (en) 1990-12-21 1992-07-01 Siemens Aktiengesellschaft Method for forming determined arsenic doping in trenches etched in silicon semiconductor substrates
US5434109A (en) 1993-04-27 1995-07-18 International Business Machines Corporation Oxidation of silicon nitride in semiconductor devices
US6281103B1 (en) * 1993-07-27 2001-08-28 Micron Technology, Inc. Method for fabricating gate semiconductor
JP2955459B2 (en) 1993-12-20 1999-10-04 株式会社東芝 Method for manufacturing semiconductor device
US6091129A (en) 1996-06-19 2000-07-18 Cypress Semiconductor Corporation Self-aligned trench isolated structure
TW388100B (en) * 1997-02-18 2000-04-21 Hitachi Ulsi Eng Corp Semiconductor deivce and process for producing the same
JPH10242264A (en) 1997-02-25 1998-09-11 Sharp Corp Manufacture of semiconductor device
TWI227530B (en) * 1997-03-05 2005-02-01 Hitachi Ltd Manufacturing method of semiconductor integrated circuit device
US6100132A (en) * 1997-06-30 2000-08-08 Kabushiki Kaisha Toshiba Method of deforming a trench by a thermal treatment
US6566224B1 (en) 1997-07-31 2003-05-20 Agere Systems, Inc. Process for device fabrication
JP3523048B2 (en) * 1998-02-18 2004-04-26 株式会社ルネサステクノロジ Semiconductor device manufacturing method and semiconductor device
JPH11251581A (en) 1998-03-02 1999-09-17 Toshiba Corp Semiconductor device and manufacture thereof
JPH11260906A (en) 1998-03-13 1999-09-24 Nec Corp Semiconductor device and its manufacture
JPH11274288A (en) 1998-03-25 1999-10-08 Sharp Corp Manufacture of semiconductor device
JP3472482B2 (en) * 1998-06-30 2003-12-02 富士通株式会社 Semiconductor device manufacturing method and manufacturing apparatus
TW444333B (en) 1998-07-02 2001-07-01 United Microelectronics Corp Method for forming corner rounding of shallow trench isolation
JP4592837B2 (en) * 1998-07-31 2010-12-08 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
TW513776B (en) 1998-09-19 2002-12-11 United Microelectronics Corp Manufacturing method of shallow trench isolation structure
US6143624A (en) * 1998-10-14 2000-11-07 Advanced Micro Devices, Inc. Shallow trench isolation formation with spacer-assisted ion implantation
JP3571236B2 (en) 1998-11-09 2004-09-29 株式会社ルネサステクノロジ Method for manufacturing semiconductor device
KR20000040458A (en) * 1998-12-18 2000-07-05 김영환 Isolation region formation of semiconductor substrate
US6130453A (en) 1999-01-04 2000-10-10 International Business Machines Corporation Flash memory structure with floating gate in vertical trench
US6281050B1 (en) * 1999-03-15 2001-08-28 Kabushiki Kaisha Toshiba Manufacturing method of a semiconductor device and a nonvolatile semiconductor storage device
JP2000315738A (en) * 1999-04-28 2000-11-14 Toshiba Corp Manufacture of nonvolatile semiconductor storage device
JP2001144170A (en) 1999-11-11 2001-05-25 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
KR100336777B1 (en) 1999-11-29 2002-05-16 박종섭 Method for forming isolation region of semiconductor device
JP2001284445A (en) 2000-03-29 2001-10-12 Toshiba Corp Semiconductor device and manufacturing method therefor
JP2001308208A (en) 2000-04-25 2001-11-02 Nec Corp Nonvolatile semiconductor memory device and fabrication method therefor
JP2002043407A (en) 2000-07-25 2002-02-08 Mitsubishi Electric Corp Semiconductor device and its method of fabrication
KR100386946B1 (en) * 2000-08-01 2003-06-09 삼성전자주식회사 Shallow trench isolation type semiconductor devices and method of forming it
JP2002134634A (en) 2000-10-25 2002-05-10 Nec Corp Semiconductor device and its manufacturing method
US6417070B1 (en) * 2000-12-13 2002-07-09 International Business Machines Corporation Method for forming a liner in a trench
US6624016B2 (en) 2001-02-22 2003-09-23 Silicon-Based Technology Corporation Method of fabricating trench isolation structures with extended buffer spacers
US20020197823A1 (en) * 2001-05-18 2002-12-26 Yoo Jae-Yoon Isolation method for semiconductor device
JP4672197B2 (en) * 2001-07-04 2011-04-20 株式会社東芝 Manufacturing method of semiconductor memory device
KR100395759B1 (en) * 2001-07-21 2003-08-21 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
US6723616B2 (en) 2001-09-27 2004-04-20 Texas Instruments Incorporated Process of increasing screen dielectric thickness
JP2003100860A (en) 2001-09-27 2003-04-04 Toshiba Corp Semiconductor device
JP2004111547A (en) * 2002-09-17 2004-04-08 Toshiba Corp Semiconductor device, and manufacturing method of semiconductor device
JP3699956B2 (en) * 2002-11-29 2005-09-28 株式会社東芝 Manufacturing method of semiconductor device
US6737700B1 (en) * 2003-05-13 2004-05-18 Powerchip Semiconductor Corp. Non-volatile memory cell structure and method for manufacturing thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140521A (en) * 2006-01-10 2006-06-01 Matsushita Electric Ind Co Ltd Manufacturing method for semiconductor device
US7821056B2 (en) 2006-09-21 2010-10-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
JP2011146733A (en) * 2011-03-18 2011-07-28 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2014531175A (en) * 2011-10-28 2014-11-20 ダンマークス・テクニスケ・ユニヴェルシテット Dynamic encryption method
US10469455B2 (en) 2011-10-28 2019-11-05 Danmarks Tekniske Universitet Dynamic encryption method
CN110495097A (en) * 2017-03-27 2019-11-22 住友电气工业株式会社 Lamina and SAW device
CN110495097B (en) * 2017-03-27 2024-01-30 住友电气工业株式会社 Layered body and SAW device

Also Published As

Publication number Publication date
US20040207039A1 (en) 2004-10-21
CN1652303A (en) 2005-08-10
US20030001227A1 (en) 2003-01-02
KR20040074033A (en) 2004-08-21
CN100352010C (en) 2007-11-28
KR100508609B1 (en) 2005-08-17
CN1395292A (en) 2003-02-05
KR20030003082A (en) 2003-01-09
CN1215534C (en) 2005-08-17
US7095093B2 (en) 2006-08-22
US20060244098A1 (en) 2006-11-02
KR100508361B1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
US7566929B2 (en) Nonvolatile memory devices having floating gate electrodes with nitrogen-doped layers on portions thereof
JPH08264669A (en) Ferroelectric substance memory device and its preparation
US7786013B2 (en) Method of fabricating semiconductor device
JPH10163348A (en) Manufcture of nonvolatile semiconductor storage device
US5210597A (en) Non-volatile semiconductor memory device and a method for fabricating the same
US20060244098A1 (en) Semiconductor device and method of manufacturing a semiconductor device
JP4425588B2 (en) Method for manufacturing nonvolatile memory device having sidewall gate and SONOS cell structure
US5225361A (en) Non-volatile semiconductor memory device and a method for fabricating the same
US6803622B2 (en) Semiconductor device and method of manufacturing the same
JP5365054B2 (en) Manufacturing method of semiconductor device
JPH07183409A (en) Semiconductor device and manufacture thereof
US7038304B2 (en) Semiconductor memory device and manufacturing method thereof
JPH10294431A (en) Semiconductor storage element and its manufacture
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JPH09232454A (en) Non-volatile semiconductor device and manufacturing method therefor
JPH05145081A (en) Manufacture of semiconductor nonvolatile storage device
KR20060098101A (en) Non-volatile memory devices with uniform tunnel insulating layer and fabrication methods thereof
JP2000269363A (en) Semiconductor storage device and its manufacture
JP2003017594A (en) Semiconductor device and its manufacturing method
JPH0629541A (en) Manufacture of semiconductor device
JPH0629550A (en) Manufacture of semiconductor nonvolatile storage
JPH07142614A (en) Non-volatile semiconductor memory and manufacture thereof
JPH01184863A (en) Manufacture of mos semiconductor device
JPH06296024A (en) Semiconductor device and manufacture thereof
KR20080036846A (en) Flash memory device having split gate structure and methods of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080104