JP2003010604A - Degassing apparatus - Google Patents

Degassing apparatus

Info

Publication number
JP2003010604A
JP2003010604A JP2001200806A JP2001200806A JP2003010604A JP 2003010604 A JP2003010604 A JP 2003010604A JP 2001200806 A JP2001200806 A JP 2001200806A JP 2001200806 A JP2001200806 A JP 2001200806A JP 2003010604 A JP2003010604 A JP 2003010604A
Authority
JP
Japan
Prior art keywords
vacuum pump
degassing
liquid
membrane
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001200806A
Other languages
Japanese (ja)
Other versions
JP4587428B2 (en
Inventor
Tetsuya Torii
哲也 取違
Sadahito Nakahara
禎仁 中原
Kenji Watari
謙二 亘
Hiroshi Tasaka
広 田阪
Hitoshi Takayama
仁史 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001200806A priority Critical patent/JP4587428B2/en
Publication of JP2003010604A publication Critical patent/JP2003010604A/en
Application granted granted Critical
Publication of JP4587428B2 publication Critical patent/JP4587428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a degassing apparatus usable in inflammable gas atmosphere, scarcely corroded even in corrosive gas atmosphere, and operable at a low maintenance cost. SOLUTION: This apparatus is an apparatus for degassing using a membrane by reducing pressure, and when a vacuum pump is used for fluid operation as a pressure reducing means, since no electric motive power is required, the apparatus can be used even in inflammable gas atmosphere. Further, when a gas, especially air, is used for the fluid for operation, such a gas is commonly available, so that the apparatus is excellent in handling easiness. In the case the members of the vacuum pump to be brought into contact with a degassing liquid are made of a tetrafluoro resin, or the like, the apparatus can be used preferably for degassing a solvent, or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液体を脱気及び/
あるいは脱泡する液体の処理装置及び処理方法に関す
る。
FIELD OF THE INVENTION The present invention relates to degassing and / or liquid
Alternatively, it relates to a treatment device and a treatment method for a liquid to be defoamed.

【0002】[0002]

【従来の技術】液体に溶解している溶存ガス濃度を減少
させる方法としては、例えば、充填塔やスプレー塔内を
減圧するいわゆる真空脱気、加熱脱気、超音波脱気、酸
素・窒素以外のガスをバブリングする方法、遠心分離を
利用する方法、加圧する方法、消泡剤などを添加する方
法等が知られている。その中でも、気体が透過し液体は
透過しない膜の一方に液体を通し他の側を減圧する膜式
真空脱気法が、装置が小型であること、取扱が容易であ
ること、高度の脱気が可能であるなどの特徴を持ってお
り、化学品、食品、医療、半導体等種々の分野で分析、
洗浄、製造に使用される液体の脱気及び/あるいは脱泡
に広く利用されている。
2. Description of the Related Art As a method for reducing the concentration of dissolved gas dissolved in a liquid, for example, so-called vacuum deaeration, heating deaeration, ultrasonic deaeration, other than oxygen / nitrogen, which decompresses the inside of a packed tower or a spray tower. The method of bubbling the gas, the method of utilizing centrifugation, the method of pressurizing, the method of adding an antifoaming agent, etc. are known. Among them, the membrane-type vacuum degassing method, in which the liquid is passed through one of the membranes through which the gas is permeable and the liquid is not permeable, and the other side is depressurized, the device is small, easy to handle, and highly degassed. It is possible to analyze in various fields such as chemicals, food, medical care, semiconductors, etc.
It is widely used for deaeration and / or defoaming of liquids used for cleaning and manufacturing.

【0003】真空脱気の減圧に用いる真空ポンプとして、油
回転式真空ポンプ、水封式真空ポンプ、ルーツブロワ式
真空ポンプ、ダイアフラム式真空ポンプ、スクロール式
真空ポンプなどが知られている。特開平06−2738
97号公報ではダイアフラム式真空ポンプが、特開平0
9−45615号公報では水封式真空ポンプが記載され
ている。
[0003] As a vacuum pump used for reducing the pressure of vacuum deaeration, an oil rotary vacuum pump, a water ring vacuum pump, a roots blower vacuum pump, a diaphragm vacuum pump, a scroll vacuum pump, and the like are known. Japanese Patent Laid-Open No. 06-2738
In JP 97, a diaphragm type vacuum pump is disclosed in
Japanese Patent Laid-Open No. 9-45615 discloses a water-sealed vacuum pump.

【0004】[0004]

【発明が解決しようとする課題】脱気が必要な分野とし
て溶剤系の洗浄剤があるが、IPA(イソプロピルアル
コール)などの引火性液体に従来の技術を適用する場
合、駆動源が電気である真空ポンプの接点のショートに
より引火爆発する危険性があった。その対策として、引
火性ガスの雰囲気中でも使用可能な防爆構造の真空ポン
プを用いる方法が考えられるが、ポンプが大容量モータ
ーを搭載した大型のものとなり、脱気装置全体の重量、
形状が大きくなり、扱い難く、場所を取り、且つ多大な
施工、並びにメンテナンスコストが必要であった。
There is a solvent-based cleaning agent as a field requiring deaeration, but when the conventional technique is applied to a flammable liquid such as IPA (isopropyl alcohol), the driving source is electricity. There was a risk of ignition and explosion due to short circuit of the vacuum pump contacts. As a countermeasure, it is possible to use a vacuum pump with an explosion-proof structure that can be used even in an atmosphere of flammable gas, but the pump will be a large size equipped with a large capacity motor,
The shape is large, it is difficult to handle, it takes up a lot of space, and a great deal of construction and maintenance costs are required.

【0005】また、脱気装置の脱気用配管を工場内の別な場
所にある真空ポンプまで接続して脱気装置を減圧する方
法もあるが、真空ポンプまでの配管長が長く複雑化して
コストがかかる。さらに、配管抵抗の増大による吸引能
力の低下を回避するために、配管径を大きくして配管抵
抗を減らしたり、排気速度の大きな真空ポンプを選定し
たりする必要があり、設備が大型化して多大なコストが
必要であった。さらには、配管のリーク等による排気能
力の低減が発生する場合もあり、多大な配管のメンテテ
ナンスコストが必要であった。
[0005] Further, there is also a method of decompressing the deaerator by connecting the deaerator piping of the deaerator to a vacuum pump in another place in the factory, but the length of the pipe to the vacuum pump becomes long and complicated. There will be a cost. Furthermore, in order to avoid a decrease in suction capacity due to an increase in pipe resistance, it is necessary to increase the pipe diameter to reduce the pipe resistance and to select a vacuum pump with a high pumping speed, which leads to large equipment and Cost was required. Further, there is a case where the exhaust capacity is reduced due to a leak in the pipe, which requires a great maintenance cost of the pipe.

【0006】また、油回転式真空ポンプを用いる場合、排気
中にオイルミストが発生するのでオイルミストトラップ
が必要となる。また、洗浄剤との反応による油劣化及
び、水分吸引による油の乳化の問題があり、真空ポンプ
とは別に油水分離器を設けなければならず、その設置や
維持管理に多大なコストがかかるという問題がある。
[0006] Further, when the oil rotary vacuum pump is used, an oil mist is generated during exhaust, so an oil mist trap is required. In addition, there is a problem of oil deterioration due to the reaction with the cleaning agent and oil emulsification due to water suction, and an oil / water separator must be provided separately from the vacuum pump, which requires great cost for installation and maintenance. There's a problem.

【0007】また、水封式真空ポンプを用いる場合、他のポ
ンプに比べて真空能力が低く、さらには水温管理が必要
という問題がある。また、水蒸気、水以外の有害ガスま
たは液体を吸引する場合、封水にそれらが溶解してその
ままでは封水を排水できないので封水の密閉循環を行う
必要がある。更にその封水を排水する場合、封水に溶解
した成分の分離装置が必要となり、その設置や維持管理
に多大なコストがかかるという問題があった。
[0007] Further, when the water-sealed vacuum pump is used, the vacuum capacity is lower than that of other pumps, and there is a problem that water temperature control is required. Further, when sucking harmful gas or liquid other than water vapor and water, it is necessary to carry out closed circulation of the sealed water because they dissolve in the sealed water and cannot drain the sealed water as it is. Further, when the sealed water is drained, there is a problem that a device for separating the components dissolved in the sealed water is required, which requires a great deal of cost for installation and maintenance.

【0008】また、膜式真空脱気により脱気する場合には、
液体の飽和蒸気圧力よりも低い圧力で減圧した場合に
は、液体の気化が促進され液体の蒸気が系外に大量に排
出されることもあり、減圧するポンプへ流入し易くな
る。真空ポンプの材質に鉄やアルミニウムあるいはNB
R(ニトリルブタジエンゴム)などを使用した場合、ポ
ンプ内部が吸引された溶剤や水と接触することで腐食を
起こして、真空ポンプが故障を起こす問題があった。
[0008] When degassing by membrane vacuum degassing,
When the pressure is reduced at a pressure lower than the saturated vapor pressure of the liquid, vaporization of the liquid is promoted, and a large amount of the vapor of the liquid may be discharged to the outside of the system. The material of the vacuum pump is iron, aluminum or NB
When R (nitrile butadiene rubber) or the like is used, there is a problem in that the inside of the pump comes into contact with the sucked solvent or water to cause corrosion, resulting in failure of the vacuum pump.

【0009】本発明は、このような問題に鑑みてなされたも
のであり、引火性ガス雰囲気中でも使用が可能であり、
且つ、腐食性ガス雰囲気中でも腐食を起こさず、低メン
テナンスコストの脱気装置を供給することを目的とす
る。
[0009] The present invention has been made in view of such a problem, and can be used even in a flammable gas atmosphere,
Moreover, it is an object of the present invention to provide a deaerator that does not cause corrosion even in a corrosive gas atmosphere and has a low maintenance cost.

【0010】[0010]

【課題を解決するための手段】即ち、本発明の要旨は、
膜を用いて減圧処理を行って脱気する装置であって、減
圧手段として流体駆動の真空ポンプを用いることを特徴
とする脱気装置、である。
The summary of the present invention is as follows.
An apparatus for degassing by performing a depressurization process using a membrane, characterized in that a fluid-driven vacuum pump is used as depressurizing means.

【0011】前記真空ポンプの脱気液と接する部材が4弗化
樹脂、弗素ゴム、ステンレス鋼、の少なくとも一つの素
材からなるか、若しくは4弗化樹脂コーティング、Ni
メッキ、カチオン塗装、の少なくとも一つの表面処理が
なされていると、耐久性に優れ好ましい。前記真空ポン
プが往復式もしくは回転式であると、効率的に減圧処理
を行うことができ好ましい。前記真空ポンプが空気駆動
であると、設置場所を選ばず使用することができ好まし
い。前記膜が非多孔質膜の両側を多孔質の支持層で挟み
込んだ三層中空糸膜からなると、効率的な脱気が可能と
なり好ましい。前記膜及び前記真空ポンプを収納し、か
つ貫通口を有するケーシングを設け、前記真空ポンプか
ら排気される駆動用空気を前記ケーシング内部に一旦排
気し、前記貫通口を通して前記ケーシング外部に排気す
るように構成すると、溶剤の脱気を行った際に、装置に
溶剤の侵入が起こらないため好ましい。
[0011] The member of the vacuum pump that comes into contact with the degassed liquid is made of at least one material of tetrafluororesin, fluororubber, and stainless steel, or tetrafluororesin coating, Ni.
It is preferable that at least one of surface treatments such as plating and cationic coating is performed because it has excellent durability. It is preferable that the vacuum pump is of a reciprocating type or a rotating type because the depressurizing process can be efficiently performed. When the vacuum pump is driven by air, it is preferable because it can be used in any place. It is preferable that the membrane is a three-layer hollow fiber membrane in which both sides of the non-porous membrane are sandwiched by porous support layers, because efficient degassing is possible. A casing containing the membrane and the vacuum pump and having a through-hole is provided, and driving air exhausted from the vacuum pump is once exhausted inside the casing and exhausted outside the casing through the through-hole. With this configuration, the solvent does not enter the apparatus when the solvent is degassed, which is preferable.

【0012】[0012]

【発明の実施の形態】以下、図面をもとに本発明の脱気
装置について説明する。図1は、本発明の脱気装置の一
例を示したフロー図であり、図2および図3は本発明で
用いられる脱気膜の一態様を示した断面図である。図1
において、液体は脱気装置1の液体導入口6から導入さ
れ、脱気膜2で脱気されて液体導出口7から導出され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The deaerator of the present invention will be described below with reference to the drawings. FIG. 1 is a flow chart showing an example of the degassing apparatus of the present invention, and FIGS. 2 and 3 are cross-sectional views showing one mode of the degassing membrane used in the present invention. Figure 1
In, the liquid is introduced through the liquid introduction port 6 of the degassing device 1, degassed by the degassing film 2, and led out through the liquid derivation port 7.

【0013】ここで、図1に示す減圧手段とは、膜の液相側
の圧力以下に膜の気相側の圧力を減圧させることができ
るものであればよいが、電気火花を発生させる電気的な
接点のない流体駆動の真空ポンプを用いることが必要で
あり、本発明の脱気装置を用いることで、引火性雰囲気
中で脱気することが可能となる。
[0013] Here, the decompression means shown in FIG. 1 may be any as long as it can reduce the pressure on the gas phase side of the film below the pressure on the liquid phase side of the film. It is necessary to use a fluid-driven vacuum pump having no special contact point, and by using the degassing device of the present invention, degassing can be performed in a flammable atmosphere.

【0014】本発明でいう流体駆動の真空ポンプとは、減圧
するための原動力として流体を用いるものを言い、ピス
トン、ダイアフラム、スクリュー等を、液体や気体の力
で移動や回転させるものを言う。もちろん、これらに類
するもので減圧可能な方式であれば使用することがで
き、例えば、水流アスピレーター、ベンチュリー管等液
体や気体の流れを利用した減圧手段等を挙げる事が出来
る。
[0014] The fluid-driven vacuum pump in the present invention refers to one that uses a fluid as a motive force for decompressing, and refers to one that moves or rotates a piston, a diaphragm, a screw, or the like by the force of a liquid or gas. As a matter of course, any type similar to these can be used as long as it can be depressurized, and examples thereof include a water flow aspirator, a Venturi tube, and other depressurizing means using a flow of liquid or gas.

【0015】流体駆動の真空ポンプの作動方式は特に限定さ
れるものではないが、往復式または回転式が好ましく用
いられる。ここで、往復式とは、往復運動させることで
減圧する方式であり、例えばピストン方式やダイアフラ
ム方式が該当する。また回転式とは、回転運動により減
圧する方式であり、例えばスクロール方式、スクリュー
方式が該当する。
The operation system of the fluid-driven vacuum pump is not particularly limited, but a reciprocating type or a rotating type is preferably used. Here, the reciprocating system is a system in which the pressure is reduced by reciprocating motion, and for example, a piston system or a diaphragm system is applicable. The rotary type is a method of reducing the pressure by a rotary motion, and for example, a scroll method and a screw method are applicable.

【0016】駆動用流体としては、気体が好ましく、水等の
液体の場合と比べて、タンクに液体を予め用意しておく
必要がなく、また排液用配管を設置して排液を行う必要
もない。更には、気体の中でも空気は普遍に存在し、取
り扱い性に優れているので特に好ましく、コンプレッサ
等を用いて大気中から容易に供給可能であり、且つ大気
中に直接排気することができる。したがって、本発明の
脱気装置では、空気駆動の真空ポンプを用いることが好
ましい。
As the driving fluid, gas is preferable, and it is not necessary to prepare the liquid in the tank in advance as compared with the case of a liquid such as water, and it is necessary to install a drainage pipe to drain the liquid. Nor. Further, among the gases, air is particularly preferable because it is universally present and has excellent handleability, and it can be easily supplied from the atmosphere using a compressor or the like and can be directly exhausted to the atmosphere. Therefore, it is preferable to use an air-driven vacuum pump in the deaerator of the present invention.

【0017】ポンプの種類としては、ピストン式真空ポン
プ、ダイアフラム式真空ポンプ、スクロール式真空ポン
プ、スクリュー式真空ポンプなどのいわゆるドライ型の
真空ポンプを使用することが好ましく、油回転式真空ポ
ンプを用いる場合のオイルミスト対策、ポンプ油の劣化
や乳化の対策、あるいは水封式真空ポンプを用いる場合
の、封水の温度管理、封水の水質管理などの問題がなく
なり、メンテナンスコストを低減できる。
[0017] As the type of pump, it is preferable to use a so-called dry type vacuum pump such as a piston type vacuum pump, a diaphragm type vacuum pump, a scroll type vacuum pump, a screw type vacuum pump, etc., and an oil rotary type vacuum pump is used. In this case, problems such as oil mist measures, pump oil deterioration and emulsification measures, and temperature control of sealed water and water quality of sealed water when using a water-sealed vacuum pump are eliminated, and maintenance costs can be reduced.

【0018】本発明に使用する膜の形態は必ずしも限定はさ
れず、平膜、中空糸膜、チューブラー膜等を用いること
もできるが、単位体積当たりの膜面積を大きくでき、装
置のコンパクト化が容易な中空糸膜の形態がより好まし
い。本発明で利用される中空糸膜は、内径が50〜50
0μm、膜厚が10〜150μmである中空糸膜を用い
ることが好ましい。内径がこの範囲より小さいと、中空
糸膜内部に液体を通液する場合、圧力損失が大きくなり
すぎ、大きいと脱泡、脱気の効率が低下する。また、膜
厚がこの範囲より薄いと機械的強度が低くなり、圧力の
変動によって中空糸膜が振動して中空糸膜の損傷を招き
やすくなり、厚くなるとガス透過性が低下するので脱
気、脱泡の効率が低下する。
[0018] The form of the membrane used in the present invention is not necessarily limited, and a flat membrane, a hollow fiber membrane, a tubular membrane or the like can be used, but the membrane area per unit volume can be increased and the apparatus can be made compact. It is more preferable to use a hollow fiber membrane which is easy to form. The hollow fiber membrane used in the present invention has an inner diameter of 50 to 50.
It is preferable to use a hollow fiber membrane having a thickness of 0 μm and a thickness of 10 to 150 μm. When the inner diameter is smaller than this range, the pressure loss becomes too large when the liquid is passed through the hollow fiber membrane, and when the inner diameter is large, the efficiency of defoaming and deaeration decreases. Further, if the film thickness is thinner than this range, the mechanical strength will be low, the hollow fiber membrane will vibrate due to pressure fluctuations and the hollow fiber membrane will be easily damaged, and if it becomes thicker, gas permeability will decrease and degassing, Degassing efficiency decreases.

【0019】中空糸膜の構造は、非多孔質層の両面に多孔質
層が配された三層構造を有する複合中空糸膜がさらに好
ましい。このような複合中空糸膜を用いると、液体が直
接非多孔質層に接触し難いため非多孔質層が液体で侵さ
れ難く、効率よく液体の脱気、脱泡を行うことができ
る。複合中空糸膜としては、非多孔質層の厚みが0.3
〜3μmであり、多孔質層の厚みがそれぞれ5〜100
μmである複合中空糸膜を用いると、機械的強度が高
く、かつ脱気、脱泡を行う際の気体の透過量を向上させ
ることができる。
[0019] The structure of the hollow fiber membrane is more preferably a composite hollow fiber membrane having a three-layer structure in which a porous layer is arranged on both surfaces of a non-porous layer. When such a composite hollow fiber membrane is used, it is difficult for the liquid to come into direct contact with the non-porous layer, the non-porous layer is less likely to be attacked by the liquid, and the liquid can be efficiently degassed and defoamed. As a composite hollow fiber membrane, the thickness of the non-porous layer is 0.3.
˜3 μm, and the thickness of the porous layer is 5 to 100, respectively.
When the composite hollow fiber membrane having a thickness of μm is used, the mechanical strength is high and the amount of gas permeation during degassing and defoaming can be improved.

【0020】この様な複合中空糸膜の非多孔質層を構成する
ポリマーとしては、ポリジメチルシロキサン、シリコン
とポリカーボネートの共重合体等のシリコンゴム系ポリ
マー、ポリ(4−メチルペンテン−1)、低密度ポリエ
チレンなどのポリオレフィン系ポリマー、パーフルオロ
アルキル系ポリマー等のフッ素含有ポリマー、エチルセ
ルロース等のセルロース系ポリマー、ポリフェニレンオ
キサイド、ポリ(4−ビニルピリジン)、ウレタン系ポ
リマーが挙げられ、これらのポリマー素材の共重合体あ
るいはブレンドポリマー等も用いることができる。
[0020] Examples of the polymer constituting the non-porous layer of such a composite hollow fiber membrane include polydimethylsiloxane, a silicone rubber-based polymer such as a copolymer of silicon and polycarbonate, poly (4-methylpentene-1), Polyolefin polymers such as low density polyethylene, fluorine-containing polymers such as perfluoroalkyl polymers, cellulosic polymers such as ethyl cellulose, polyphenylene oxide, poly (4-vinylpyridine), and urethane polymers are listed. Copolymers or blend polymers can also be used.

【0021】特に、この中でも、効率良く液体の脱気、脱泡
の処理が行える非多孔質層の素材として、ウレタン系ポ
リマーや、スチレン系熱可塑性エラストマーとポリオレ
フィンから構成される素材が好ましい。特に、スチレン
系熱可塑性エラストマーとポリオレフィンの組み合わせ
は薬品に対する耐久性に優れ、薬品に接触しても素材が
損なわれたり、性能が低下したりしにくい点で好まし
い。
[0021] In particular, among these, as a material of the non-porous layer capable of efficiently performing degassing and defoaming of the liquid, a urethane polymer or a material composed of a styrene thermoplastic elastomer and a polyolefin is preferable. In particular, a combination of a styrene-based thermoplastic elastomer and a polyolefin is preferable because it has excellent durability against chemicals and is less likely to damage the raw material or deteriorate in performance even when contacted with chemicals.

【0022】スチレン系熱可塑性エラストマーの具体的な素
材としては、スチレンとブタジエンの共重合体、スチレ
ンとエチレン−ブチレンの共重合体、スチレンとイソプ
レンの共重合体、スチレンとエチレン−プロピレンの共
重合体等が挙げられる。これらのポリマーやエラストマ
ーは単独で用いても構わないし、複数の素材を組み合わ
せて用いても構わない。
[0022] Specific materials for the styrene-based thermoplastic elastomer include a copolymer of styrene and butadiene, a copolymer of styrene and ethylene-butylene, a copolymer of styrene and isoprene, and a copolymer of styrene and ethylene-propylene. Examples include coalescence. These polymers and elastomers may be used alone or in combination of a plurality of materials.

【0023】複合中空糸膜の多孔質層を構成するポリマー素
材としては、ポリエチレン、ポリプロピレン、ポリ(3
−メチルブテン−1)、ポリ(4−メチルペンテン−
1)等のポリオレフィン系ポリマー、ポリフッ化ビニリ
デン、ポリテトラフルオロエチレン等のフッ素系ポリマ
ー、ポリスチレン、ポリエーテルエーテルケトン、ポリ
エーテルケトン等のポリマーを用いることができる。非
多孔質層を構成するポリマー素材と、多孔質層を構成す
るポリマー素材との組み合わせについては特に限定され
ず、異種のポリマーはもちろん、同種のポリマーであっ
ても構わない。
[0023] As the polymer material forming the porous layer of the composite hollow fiber membrane, polyethylene, polypropylene, poly (3
-Methylbutene-1), poly (4-methylpentene-)
Polyolefin-based polymers such as 1), polyvinylidene fluoride, fluorine-based polymers such as polytetrafluoroethylene, polystyrene, polyether ether ketone, polyether ketone, and other polymers can be used. The combination of the polymer material forming the non-porous layer and the polymer material forming the porous layer is not particularly limited, and different kinds of polymers or the same kind of polymers may be used.

【0024】中空糸膜を使用する場合、中空糸膜の中空部に
液体を通し、中空糸膜の外側を減圧する方式でもいい
し、中空糸膜の外側に液体を通し、中空部を減圧する方
式でも、どちらとも採用できる。図2は中空糸膜内部に
液体を通す時の中空糸膜モジュールの一例であり、中空
糸膜1の両端の開口状態を保持したまま、固定部材2で
液体が流れる側と減圧される側とが液密に封止されてい
る。図3は中空糸膜の外部に液体を通すときの中空糸膜
モジュールの一例であり、ケース3に液体導入口4と液
体導出口5を設けた他は図2の構成と同様である。ただ
し、減圧口6は必ずしも両端に存在する必要はなく、片
方のみから減圧することも可能であり、その際には減圧
しない側の中空糸端部は閉じていることが好ましい。
[0024] When using the hollow fiber membrane, a method may be used in which liquid is passed through the hollow portion of the hollow fiber membrane to depressurize the outside of the hollow fiber membrane, or liquid is passed through the outside of the hollow fiber membrane to depressurize the hollow portion. Either method can be adopted. FIG. 2 shows an example of a hollow fiber membrane module when a liquid is passed through the inside of the hollow fiber membrane. While holding the open state at both ends of the hollow fiber membrane 1, the side where the liquid flows through the fixing member 2 and the side where the pressure is reduced are shown. Is liquid-tightly sealed. FIG. 3 is an example of a hollow fiber membrane module when a liquid is passed through the outside of the hollow fiber membrane, and is the same as the configuration of FIG. 2 except that a liquid inlet 4 and a liquid outlet 5 are provided in the case 3. However, the depressurizing ports 6 do not necessarily have to be present at both ends, and it is possible to depressurize from only one side. In that case, it is preferable that the hollow fiber end on the non-depressurizing side is closed.

【0025】使用する液体の蒸気が膜を透過する性質を有す
る場合には、減圧度の下限はその液体の蒸気圧程度であ
ることが好ましい。液体の蒸気圧よりも低い減圧度にな
った場合には、液体の蒸気が膜を透過して、真空ポンプ
へ導かれ易くなり、真空ポンプの性能低下を引き起こす
ことがある。このため図1には図示されていないが、中
空糸膜モジュール2と真空ポンプ9との間にトラップを
設けることが好ましい。通常の状態においても、脱気モ
ジュール2から真空ポンプ側へ極く少量の液体が滲み出
すことがあり、また、真空用配管内で結露が生じること
もあるが、トラップを設けることは真空ポンプ9の内部
へ液体が流入することを防ぐことが可能となるため好ま
しい方法である。
[0025] When the vapor of the liquid to be used has a property of permeating the membrane, the lower limit of the degree of pressure reduction is preferably about the vapor pressure of the liquid. When the degree of pressure reduction is lower than the vapor pressure of the liquid, the vapor of the liquid permeates through the membrane and is easily guided to the vacuum pump, which may cause deterioration of the performance of the vacuum pump. Therefore, although not shown in FIG. 1, it is preferable to provide a trap between the hollow fiber membrane module 2 and the vacuum pump 9. Even in a normal state, a very small amount of liquid may exude from the degassing module 2 to the vacuum pump side, and dew condensation may occur in the vacuum pipe. This is a preferable method because it is possible to prevent the liquid from flowing into the inside of the.

【0026】溶剤のような腐食性ある液体を脱気処理する場
合、鉄やアルミニウムあるいはNBR(ニトリルブタジ
エンゴム)といった素材でできた真空ポンプを用いる
と、ポンプの内部が腐食を起こし故障の原因となるの
で、真空ポンプ9の脱気液と接する部材に、4弗化樹
脂、弗素ゴム、ステンレス鋼の少なくとも一つからなる
部材を使用するか、あるいは、真空ポンプの脱気液と接
する部材の表面へ4弗化樹脂のコーティング、Niメッ
キ、カチオン塗装の少なくとも一つの表面処理を施すこ
とが好ましい。また、これに限定されず、脱気される液
体の腐食性等の性質に応じた材料の選定を行うことが好
ましい。
[0026] When a corrosive liquid such as a solvent is deaerated, if a vacuum pump made of a material such as iron, aluminum or NBR (nitrile butadiene rubber) is used, the inside of the pump may be corroded and cause a failure. Therefore, a member made of at least one of tetrafluoride resin, fluororubber, and stainless steel is used as the member of the vacuum pump 9 that contacts the degassed liquid, or the surface of the member that contacts the degassed liquid of the vacuum pump. It is preferable to perform at least one surface treatment such as coating with a tetrafluororesin, Ni plating, and cationic coating. Further, the material is not limited to this, and it is preferable to select a material according to the properties such as corrosiveness of the liquid to be degassed.

【0027】また液体の送液手段に関しては図示していない
が、送液手段の配置や方法に特に限定されるものではな
いが、例えば、脱気装置とは別に設置してある液体タン
クおよび送液ポンプから送られてくる非処理液体を脱気
装置の液体導入口6へ導入し、脱気装置で脱気された脱
気液を液体導出口7から超音波洗浄槽などの供給先へ配
管を介して供給する方法がある。また、液体タンクと脱
気装置の間で循環ポンプにより液体の循環を行わせる方
法がある。
[0027] Further, although the liquid feeding means is not shown, the arrangement and method of the liquid feeding means are not particularly limited. For example, a liquid tank and a feeding means installed separately from the degassing device. The untreated liquid sent from the liquid pump is introduced into the liquid introduction port 6 of the deaerator, and the deaerated liquid deaerated by the deaerator is piped from the liquid outlet 7 to a supply destination such as an ultrasonic cleaning tank. There is a method of supplying via. In addition, there is a method of circulating a liquid between a liquid tank and a deaerator by a circulation pump.

【0028】また、本発明の脱気装置では、中空糸膜モジュ
ール2と真空ポンプ9の間に仕切弁11とリーク弁12
を介設することが好ましい。脱気運転を行う場合、仕切
弁11を開き、リーク弁12を閉じることで、中空糸膜
モジュール2と真空ポンプ9が連通し、中空糸膜モジュ
ール内部の減圧が行われる。ここで、仕切弁11および
リーク弁12は、手動式または空気駆動式であることが
好ましく、電動式の駆動弁を用いる場合の引火爆発の危
険性がない。また、弁の種類は、特に限定はされない
が、例えば、ボール弁、ダイアフラム弁、ニードル弁を
用いることができる。本発明の脱気装置では、真空ポン
プの起動前に、リーク弁12を開くことで、大気を導入
して真空ポンプの吸引側を大気圧とすることが好まし
く、真空ポンプの吸引側が負圧状態から起動を行う場合
に比べて起動動力を軽減でき、少動力の小型真空ポンプ
を選定することが可能となる。また、リーク弁12の前
段にフイルタ13を設けることが好ましく、中空糸膜モ
ジュールあるいは真空ポンプの内部へ粉塵が流入するこ
とによるそれらの損傷を未然に防ぐことができる。
[0028] In the deaerator of the present invention, the sluice valve 11 and the leak valve 12 are provided between the hollow fiber membrane module 2 and the vacuum pump 9.
It is preferable to interpose. When performing the deaeration operation, by opening the sluice valve 11 and closing the leak valve 12, the hollow fiber membrane module 2 and the vacuum pump 9 communicate with each other, and the pressure inside the hollow fiber membrane module is reduced. Here, the sluice valve 11 and the leak valve 12 are preferably of a manual type or an air-driven type, and there is no risk of ignition and explosion when an electrically driven valve is used. The type of valve is not particularly limited, but for example, a ball valve, a diaphragm valve, or a needle valve can be used. In the deaerator of the present invention, it is preferable to open the leak valve 12 before starting the vacuum pump to introduce the atmosphere so that the suction side of the vacuum pump becomes atmospheric pressure, and the suction side of the vacuum pump is in a negative pressure state. It is possible to reduce the starting power compared to the case of starting from the above, and it is possible to select a small vacuum pump with low power. In addition, it is preferable to provide a filter 13 in front of the leak valve 12, and it is possible to prevent damage to the hollow fiber membrane module or the vacuum pump due to dust inflow into the module.

【0029】本発明の脱気装置1は、膜2及び真空ポンプ9
を収納し、貫通口17を有するケーシング18を設け、
駆動用空気入口14から真空ポンプ9へ供給され駆動用
空気出口15から排気される空気を、ケーシング18内
部に一旦排気し、貫通口17を通してケーシング18外
部に排気するように構成することが好ましい。このよう
な構成により、溶剤などの蒸気の雰囲気中に脱気装置1
を設置し運転した場合に、装置内部へ溶剤蒸気が流入す
ることを防止することを可能とし、装置内部が溶剤など
の蒸気と接触回数を大幅に低減できることから、装置内
部の各種構成部材の寿命を伸長させ、メンテナンス等も
低減させることが可能となる。また、同様の理由から、
真空ポンプで吸引して排出されるガスまたはガスと液体
の混合物は、配管を用い脱気ガス排出口16から直接装
置外へ排出することが好ましい。また、前記貫通口17
を空気駆動式真空ポンプより排出された駆動用空気によ
る内圧の解放用貫通口として用いることは、脱気装置の
構造を簡易化させる面で好ましい。さらに貫通口17
は、真空ポンプ等の発熱による内部蓄熱を放出させる効
果も有している。
The degassing apparatus 1 of the present invention includes a membrane 2 and a vacuum pump 9.
And housing a casing 18 having a through-hole 17,
It is preferable that the air supplied from the drive air inlet 14 to the vacuum pump 9 and exhausted from the drive air outlet 15 is temporarily exhausted to the inside of the casing 18 and exhausted to the outside of the casing 18 through the through hole 17. With such a configuration, the deaerator 1 is placed in an atmosphere of vapor such as solvent.
It is possible to prevent solvent vapor from flowing into the equipment when installed and operated, and it is possible to significantly reduce the number of times the interior of the equipment comes into contact with vapor such as solvent, so the life of various components inside the equipment is reduced. Can be extended and maintenance can be reduced. Also, for the same reason,
It is preferable that the gas or the mixture of the gas and the liquid that is sucked and discharged by the vacuum pump is directly discharged from the degassing gas discharge port 16 to the outside of the apparatus by using a pipe. Also, the through hole 17
Is preferably used as a through hole for releasing the internal pressure by the driving air discharged from the air-driven vacuum pump, from the viewpoint of simplifying the structure of the deaerator. Further through hole 17
Also has an effect of releasing internal heat storage due to heat generation of a vacuum pump or the like.

【0030】以下、実施例を基に本発明を具体的に説明す
る。 <実施例1>図1のフロー図に示す構成に基づき脱気装
置を製作した。真空ポンプは、空気駆動のダイアフラム
式を用い、電気部品は一切用いなかった。また、ステン
レス製のケーシングを用い、これに貫通口を設けるとと
もに、を空気駆動真空ポンプの駆動部からケーシング内
部に一旦排気し、貫通口からケーシング外部に排気する
構成とした。さらに、真空ポンプから排出されるガスま
たはガスと液体の混合物を、脱気ガス排出口を設けて脱
気ガス排出口から直接ケーシング外へ排出されるように
した。中空糸膜モジュールには、内径200μm、外径
254μm(膜厚27μm)の三層構造中空糸膜(三菱
レイヨン製、MHF200TL)を用い、その中空糸膜
の両端部の開口を保持したまま両端を固定し、膜面積
0.64mの中空糸膜モジュールを製作して使用し
た。
[0030] Hereinafter, the present invention will be specifically described based on Examples. Example 1 A deaerator was manufactured based on the configuration shown in the flow chart of FIG. The vacuum pump used an air-driven diaphragm type, and no electric parts were used. Further, a stainless steel casing is used, a through-hole is provided in the casing, and the air is exhausted from the drive portion of the air-driven vacuum pump into the casing once and then out through the through-hole to the outside of the casing. Further, the gas or the mixture of the gas and the liquid discharged from the vacuum pump is provided with a degassing gas outlet so that the gas is directly discharged from the degassing gas outlet to the outside of the casing. For the hollow fiber membrane module, a three-layer hollow fiber membrane (MHF200TL, manufactured by Mitsubishi Rayon Co., Ltd.) having an inner diameter of 200 μm and an outer diameter of 254 μm (film thickness of 27 μm) was used. It was fixed and a hollow fiber membrane module having a membrane area of 0.64 m 2 was manufactured and used.

【0031】製作した脱気装置を屋内に設置し、エタノール
88%の水溶液を48時間連続で脱気処理を行った。こ
のとき液体の流量は300ml/minであり、脱気前
の溶存酸素濃度と脱気後の溶存酸素濃度から溶存酸素除
去率を測定した。また、装置近傍におけるエタノールの
蒸気濃度を、ガステック社製のガステックGV−100
Sおよびエタノール用検知管を用いて10分間隔で測定
した。液体の温度は25℃であった。
[0031] The manufactured degassing apparatus was installed indoors, and an 88% aqueous solution of ethanol was degassed continuously for 48 hours. At this time, the flow rate of the liquid was 300 ml / min, and the dissolved oxygen removal rate was measured from the dissolved oxygen concentration before degassing and the dissolved oxygen concentration after degassing. In addition, the concentration of ethanol vapor in the vicinity of the apparatus was measured by Gastec GV-100 manufactured by Gastec.
The measurement was performed at intervals of 10 minutes using a detector tube for S and ethanol. The liquid temperature was 25 ° C.

【0032】その結果、溶存酸素除去率は常に80%以上で
あり、安定した運転が可能であることを確認できた。ま
た、検知管を貫通口から装置内部へ挿入して測定した装
置内部のエタノール蒸気濃度は、運転開始から終了まで
常に0%を示した。一方、脱気ガス排出口で測定したエ
タノール蒸気濃度は、真空ポンプの排気中に含まれるエ
タノールの蒸気により平均で約5%であった。運転終了
後の観察では、装置内部にエタノールや水による濡れは
認められず、構成部材が腐食している様子も認められな
かった。以上、空気駆動の真空ポンプの駆動部から排気
される空気を用いて装置内部をパージし常に新しい空気
で満たすことにより、装置内部の腐食性ガスとの接触を
防いで運転を行えることを確認できた。
[0032] As a result, it was confirmed that the dissolved oxygen removal rate was always 80% or more, and stable operation was possible. Further, the ethanol vapor concentration inside the device, which was measured by inserting the detector tube into the inside of the device through the through hole, was always 0% from the start to the end of the operation. On the other hand, the ethanol vapor concentration measured at the degassing gas outlet was about 5% on average due to the ethanol vapor contained in the exhaust of the vacuum pump. In the observation after the end of the operation, wetting of ethanol or water inside the device was not observed, and no appearance of corrosion of the constituent members was observed. As described above, it can be confirmed that operation can be performed by preventing contact with corrosive gas inside the device by purging the inside of the device with air exhausted from the drive part of the air-driven vacuum pump and constantly filling it with new air. It was

【0033】<実施例2>ケーシングを設けないこと以外
は、実施例1と同様にして脱気処理を行った。その結
果、溶存酸素除去率は常に80%以上であり、安定した
運転が可能であることを確認できた。なお、真空ポンプ
近辺でのエタノール蒸気濃度は、真空ポンプの排気中に
含まれるエタノールの蒸気が拡散することにより除々に
増加し、10時間後に4.4%を示し、真空ポンプの脱
気ガス排出口でのエタノール蒸気濃度は、約5%を示し
たものの、空気駆動の真空ポンプであるため、引火爆発
の懸念はなかった。また、運転終了後の観察では、装置
内部にエタノールや水による濡れが認められ、構成部材
の一部に濡れを原因とする腐食が観察された。以上、構
成部材の腐食を除けば、エア駆動の真空ポンプを用いる
ことで引火性ガスの雰囲気中でも安定して運転を行える
ことを確認できた。
<Example 2> A degassing process was performed in the same manner as in Example 1 except that the casing was not provided. As a result, the dissolved oxygen removal rate was always 80% or more, and it was confirmed that stable operation was possible. The ethanol vapor concentration near the vacuum pump gradually increased due to the diffusion of ethanol vapor contained in the exhaust of the vacuum pump, showing 4.4% after 10 hours, and the degassing gas exhaust of the vacuum pump was reduced. Although the ethanol vapor concentration at the outlet showed about 5%, there was no concern about ignition and explosion because it was an air-driven vacuum pump. Further, in the observation after the operation was completed, wetting by ethanol or water was recognized inside the apparatus, and corrosion due to wetting was observed in a part of the constituent members. As described above, it was confirmed that stable operation can be performed even in an atmosphere of flammable gas by using an air-driven vacuum pump, except for corrosion of constituent members.

【0034】[0034]

【発明の効果】以上説明したように、本発明の脱気装置
は、流体駆動の真空ポンプを用いているので、引火性ガ
ス雰囲気中で装置を使用することが可能となる。また、
空気駆動の真空ポンプの駆動部から排気される空気を用
いてケーシング内部をパージし常に新しい空気で満たす
ことにより、腐食性ガスとの接触回数を大幅に低減する
ことが可能となり、装置の腐食や故障等が起こり難く、
メンテナンスコストを低減できる。また、装置を小型化
できるので、供給先の装置近傍に設置して配管施工コス
トおよびメンテナンスコストを大幅に低減することが可
能となる。
As described above, since the deaerator of the present invention uses the fluid-driven vacuum pump, the apparatus can be used in a flammable gas atmosphere. Also,
By purging the inside of the casing with the air exhausted from the drive part of the air-driven vacuum pump and constantly filling it with new air, it is possible to significantly reduce the number of contacts with corrosive gas, and to prevent the equipment from corroding. It is difficult for failures to occur,
Maintenance costs can be reduced. Further, since the device can be downsized, it is possible to install the device in the vicinity of the device to which the product is supplied and significantly reduce the piping construction cost and the maintenance cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の脱気装置の一例を示したフロー図であ
る。
FIG. 1 is a flow chart showing an example of a deaerator of the present invention.

【図2】本発明で用いられる中空糸膜モジュールの一態
様を示した断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of a hollow fiber membrane module used in the present invention.

【図3】本発明で用いられる中空糸膜モジュールの一態
様を示した断面図である。
FIG. 3 is a cross-sectional view showing an embodiment of the hollow fiber membrane module used in the present invention.

【符号の説明】[Explanation of symbols]

1 脱気装置 2 中空糸膜モジュール 3 中空糸膜 4 固定部材 5 容器 6 液体導入口 7 液体導出口 8 減圧口 9 真空ポンプ 10 圧力計 11 仕切弁 12 リーク弁 13 フィルタ 14 駆動用空気入口 15 駆動用空気出口 16 脱気ガス排出口 17 貫通口 18 ケーシング 1 deaerator 2 Hollow fiber membrane module 3 hollow fiber membranes 4 fixing members 5 containers 6 Liquid inlet 7 Liquid outlet 8 decompression port 9 Vacuum pump 10 pressure gauge 11 gate valve 12 Leak valve 13 filters 14 Air inlet for driving 15 Drive air outlet 16 Degassing gas outlet 17 through 18 casing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田阪 広 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 (72)発明者 高山 仁史 愛知県名古屋市東区砂田橋四丁目1番60号 三菱レイヨン株式会社商品開発研究所内 Fターム(参考) 4D006 GA32 HA02 HA18 HA19 JA03A JA53A JA53C JA54A JA54C JA63A KA12 KB17 MA01 MA09 MA31 MA33 MB03 MC16 MC22 MC30 MC53 MC65 MC68 PA01 PB12 PB70 PC11 PC41 4D011 AA17 AC04 AC10 4D037 AA11 AB11 BA23 BB07 CA03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroshi Tasaka             4-1-1 Sunadabashi, Higashi-ku, Nagoya-shi, Aichi               Mitsubishi Rayon Co., Ltd. Product Development Laboratory (72) Inventor Hitoshi Takayama             4-1-1 Sunadabashi, Higashi-ku, Nagoya-shi, Aichi               Mitsubishi Rayon Co., Ltd. Product Development Laboratory F-term (reference) 4D006 GA32 HA02 HA18 HA19 JA03A                       JA53A JA53C JA54A JA54C                       JA63A KA12 KB17 MA01                       MA09 MA31 MA33 MB03 MC16                       MC22 MC30 MC53 MC65 MC68                       PA01 PB12 PB70 PC11 PC41                 4D011 AA17 AC04 AC10                 4D037 AA11 AB11 BA23 BB07 CA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 膜を用いて減圧処理を行って脱気する装
置であって、減圧手段として流体駆動の真空ポンプを用
いることを特徴とする脱気装置。
1. A degassing apparatus for degassing by performing a depressurization process using a membrane, characterized in that a fluid-driven vacuum pump is used as the depressurizing means.
【請求項2】 前記真空ポンプの脱気液と接する部材
が、4弗化樹脂、弗素ゴム、ステンレス鋼、の少なくと
も一つの素材からなることを特徴とする請求項1記載の
脱気装置。
2. The degassing apparatus according to claim 1, wherein the member of the vacuum pump that comes into contact with the degassing liquid is made of at least one material of tetrafluoride resin, fluororubber, and stainless steel.
【請求項3】 前記真空ポンプの脱気液と接する部材の
表面が、4弗化樹脂コーティング、Niメッキ、カチオ
ン塗装、の少なくとも一つの表面処理がなされているこ
とを特徴とする請求項1記載の脱気装置。
3. The surface of a member of the vacuum pump, which is in contact with the degassed liquid, is subjected to at least one surface treatment of tetrafluoride resin coating, Ni plating, and cationic coating. Deaerator.
【請求項4】 前記真空ポンプが往復式もしくは回転式
である請求項1〜3ずれかに記載の脱気装置。
4. The deaerator according to claim 1, wherein the vacuum pump is a reciprocating type or a rotating type.
【請求項5】 前記真空ポンプが空気駆動であることを
特徴とする請求項1〜4いずれかに記載の脱気装置。
5. The degassing device according to claim 1, wherein the vacuum pump is driven by air.
【請求項6】 前記膜が非多孔質膜の両側を多孔質の支
持層で挟み込んだ三層中空糸膜からなることを特徴とす
る請求項1〜5いずれかに記載の脱気装置。
6. The degassing apparatus according to claim 1, wherein the membrane is a three-layer hollow fiber membrane in which both sides of a non-porous membrane are sandwiched by porous support layers.
【請求項7】 前記膜及び前記真空ポンプを収納し、か
つ貫通口を有するケーシングを設け、前記真空ポンプか
ら排気される駆動用空気を該ケーシング内部に一旦排気
し、該貫通口を通して該ケーシング外部に排気するよう
に構成したことを特徴とする請求項5又は6記載の脱気
装置。
7. A casing for accommodating the membrane and the vacuum pump and having a through-hole is provided, driving air exhausted from the vacuum pump is once exhausted into the casing, and the casing outside through the through-hole. The degassing device according to claim 5 or 6, wherein the degassing device is configured to exhaust the air.
JP2001200806A 2001-07-02 2001-07-02 Deaerator Expired - Fee Related JP4587428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200806A JP4587428B2 (en) 2001-07-02 2001-07-02 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200806A JP4587428B2 (en) 2001-07-02 2001-07-02 Deaerator

Publications (2)

Publication Number Publication Date
JP2003010604A true JP2003010604A (en) 2003-01-14
JP4587428B2 JP4587428B2 (en) 2010-11-24

Family

ID=19037866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200806A Expired - Fee Related JP4587428B2 (en) 2001-07-02 2001-07-02 Deaerator

Country Status (1)

Country Link
JP (1) JP4587428B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245573A (en) * 2005-02-28 2006-09-14 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and apparatus for degassing liquid
JPWO2005078364A1 (en) * 2004-02-17 2007-08-02 松下電器産業株式会社 Combustible refrigerant, refrigerating machine oil processing apparatus and processing method
JP2008000698A (en) * 2006-06-23 2008-01-10 Yoshimitsu Ishihara Degassed water generating device and method
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
JP2017189739A (en) * 2016-04-13 2017-10-19 オルガノ株式会社 Deaeration method and device of liquid medicine
CN108774751A (en) * 2018-08-09 2018-11-09 宜宾丝丽雅股份有限公司 A kind of evacuation of viscose system
CN113442333A (en) * 2021-05-15 2021-09-28 安徽百通达科技医疗用品有限公司 Vacuum defoaming equipment for degradable gloves and defoaming method thereof
CN113899804A (en) * 2021-09-30 2022-01-07 国网福建省电力有限公司永安市供电公司 Main transformer fault oil gas surface field rapid detection and judgment device and detection method thereof
JP7066035B1 (en) 2021-11-04 2022-05-12 アーベーベー・シュバイツ・アーゲー Painting robot
WO2024004829A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Deaerator
WO2024004830A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Deaerator
WO2024004828A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Degassing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143625A (en) * 1987-11-27 1989-06-06 Ube Ind Ltd Method for dehumidifying gases
JPH01257800A (en) * 1988-04-08 1989-10-13 Tokyo Electron Ltd Liquid collecting device
JPH07303802A (en) * 1994-05-12 1995-11-21 Dainippon Ink & Chem Inc Diaphragm deaeration device
JPH10298470A (en) * 1997-04-30 1998-11-10 Mitsubishi Rayon Co Ltd Method and apparatus for deaerating ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143625A (en) * 1987-11-27 1989-06-06 Ube Ind Ltd Method for dehumidifying gases
JPH01257800A (en) * 1988-04-08 1989-10-13 Tokyo Electron Ltd Liquid collecting device
JPH07303802A (en) * 1994-05-12 1995-11-21 Dainippon Ink & Chem Inc Diaphragm deaeration device
JPH10298470A (en) * 1997-04-30 1998-11-10 Mitsubishi Rayon Co Ltd Method and apparatus for deaerating ink

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005078364A1 (en) * 2004-02-17 2007-08-02 松下電器産業株式会社 Combustible refrigerant, refrigerating machine oil processing apparatus and processing method
JP4854302B2 (en) * 2004-02-17 2012-01-18 パナソニック株式会社 Combustible refrigerant, refrigerating machine oil processing apparatus and processing method
JP2009260381A (en) * 2005-02-28 2009-11-05 Asml Netherlands Bv Apparatus and method for de-gassing liquid
US8958051B2 (en) 2005-02-28 2015-02-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
JP2006245573A (en) * 2005-02-28 2006-09-14 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and apparatus for degassing liquid
US7393388B2 (en) 2005-05-13 2008-07-01 United Technologies Corporation Spiral wound fuel stabilization unit for fuel de-oxygenation
US7435283B2 (en) 2005-05-18 2008-10-14 United Technologies Corporation Modular fuel stabilization system
US7465336B2 (en) 2005-06-09 2008-12-16 United Technologies Corporation Fuel deoxygenation system with non-planar plate members
US7377112B2 (en) 2005-06-22 2008-05-27 United Technologies Corporation Fuel deoxygenation for improved combustion performance
US7615104B2 (en) 2005-11-03 2009-11-10 United Technologies Corporation Fuel deoxygenation system with multi-layer oxygen permeable membrane
US7582137B2 (en) 2006-01-18 2009-09-01 United Technologies Corporation Fuel deoxygenator with non-planar fuel channel and oxygen permeable membrane
US7569099B2 (en) 2006-01-18 2009-08-04 United Technologies Corporation Fuel deoxygenation system with non-metallic fuel plate assembly
US7824470B2 (en) 2006-01-18 2010-11-02 United Technologies Corporation Method for enhancing mass transport in fuel deoxygenation systems
JP2008000698A (en) * 2006-06-23 2008-01-10 Yoshimitsu Ishihara Degassed water generating device and method
JP2017189739A (en) * 2016-04-13 2017-10-19 オルガノ株式会社 Deaeration method and device of liquid medicine
CN108774751A (en) * 2018-08-09 2018-11-09 宜宾丝丽雅股份有限公司 A kind of evacuation of viscose system
CN113442333A (en) * 2021-05-15 2021-09-28 安徽百通达科技医疗用品有限公司 Vacuum defoaming equipment for degradable gloves and defoaming method thereof
CN113899804A (en) * 2021-09-30 2022-01-07 国网福建省电力有限公司永安市供电公司 Main transformer fault oil gas surface field rapid detection and judgment device and detection method thereof
CN113899804B (en) * 2021-09-30 2024-04-16 国网福建省电力有限公司永安市供电公司 Device and method for rapidly detecting and judging gas in main transformer fault oil on site
JP7066035B1 (en) 2021-11-04 2022-05-12 アーベーベー・シュバイツ・アーゲー Painting robot
JP2023068921A (en) * 2021-11-04 2023-05-18 アーベーベー・シュバイツ・アーゲー Coating robot
WO2024004829A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Deaerator
WO2024004830A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Deaerator
WO2024004828A1 (en) * 2022-06-27 2024-01-04 Dic株式会社 Degassing device

Also Published As

Publication number Publication date
JP4587428B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP2003010604A (en) Degassing apparatus
US8551338B2 (en) Wafer-shaped hollow fiber module for in-line use in a piping system
JP3685289B2 (en) Liquid degassing module
US7387661B2 (en) Pleated construction for effecting gas transfer membrane
JPH10298470A (en) Method and apparatus for deaerating ink
JPH0768103A (en) Membrane deaerating method
JP3370407B2 (en) Hollow fiber membrane module for gas exchange
JPH07303802A (en) Diaphragm deaeration device
JP2003245525A (en) Module
JP2002370006A (en) Liquid treatment apparatus and treatment method using the same
JPH0751505A (en) Method and apparatus for removal of gal dissolved in aqueous solution
JP2743419B2 (en) Diaphragm deaerator and deaeration method
JP3198171B2 (en) Degassing device
WO2020111158A1 (en) Membrane distillation module and membrane distillation apparatus
JP3224409B2 (en) Hollow fiber membrane module for degassing
WO2024004827A1 (en) Degassing device
JPH06134446A (en) Method for manufacturing deaerated water and module for manufacture of deaerated water
JPH0568808A (en) Equipment and method for diaphragm vacuum deaeration
KR200284400Y1 (en) Oxygen generator
JPH1147564A (en) Gas dissolution and dissolved gas-removing module
JPH0463104A (en) Diaphragm degassing apparatus and degassing method
JP3409863B2 (en) Removal device for dissolved organic matter in water
JP3283072B2 (en) Underwater dissolved organic matter removal equipment
JPH0557157A (en) Drying method for hollow fiber membrane separation module and the module
JPH06121904A (en) Deaeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees