JPH0463104A - Diaphragm degassing apparatus and degassing method - Google Patents

Diaphragm degassing apparatus and degassing method

Info

Publication number
JPH0463104A
JPH0463104A JP17193490A JP17193490A JPH0463104A JP H0463104 A JPH0463104 A JP H0463104A JP 17193490 A JP17193490 A JP 17193490A JP 17193490 A JP17193490 A JP 17193490A JP H0463104 A JPH0463104 A JP H0463104A
Authority
JP
Japan
Prior art keywords
scroll
water
vacuum pump
diaphragm
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17193490A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
穴沢 孝典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP17193490A priority Critical patent/JPH0463104A/en
Publication of JPH0463104A publication Critical patent/JPH0463104A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/023Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where both members are moving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To accelerate degassing by using a scroll vacuum pump as a pressure reducing means. CONSTITUTION:Low pressure gas is sucked from a suction port 1a by the rotation of scrolls 4, 5 and enters a compression chamber 7 between the scroll blades 4b, 5b of the driving scroll 4 driven by a motor 2, and the following scroll 5 set eccentrically to the scroll 4. The gas is compressed to the central part of the chamber 7 by the rotation of the scrolls 4, 5, passed through an exhaust hole 4e and an exhaust path 3a, and exhausted from an exhaust port 1b.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、膜を隔てて被処理液体と減圧された気相とを
接触させることにより、該液体中に含まれる気体や揮発
性物質を膜を通して除去もしくは回収する事を目的とし
た隔膜真空脱気装置および方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is capable of removing gases and volatile substances contained in the liquid by bringing the liquid to be treated into contact with a reduced pressure gas phase across a membrane. The present invention relates to a diaphragm vacuum degassing device and method for removal or recovery through a membrane.

本発明は、水に溶解している気体を除去する用途として
、例えばボイラー供給水からの脱酸素、食品用水の脱酸
素、洗浄用水の酸素や炭酸ガスの除去などの分野に利用
でき、水中に溶解あるいは分散して存在する揮発性物質
、たとえばクロロホルム、トリクロロエチレン、メタノ
ール、アセトン、トルエンなどを除去する用途として、
排水処理や上水の浄化に利用できる。また、土中水に含
まれる悪臭物質を除去する用途や、水中に含まれる香気
成分の回収などの用途に使用できる。更に、有機液体か
らの脱気として、ビニル系単量体からの脱酸素や、食用
油からの脱酸素、硫化油からの硫化水素の除去などに使
用できる。
The present invention can be used to remove gases dissolved in water, such as deoxidizing boiler supply water, deoxidizing water for food use, and removing oxygen and carbon dioxide from cleaning water. For use in removing volatile substances that exist dissolved or dispersed, such as chloroform, trichloroethylene, methanol, acetone, toluene, etc.
It can be used for wastewater treatment and water purification. It can also be used for purposes such as removing malodorous substances contained in soil water and recovering aromatic components contained in water. Furthermore, it can be used for degassing organic liquids, such as deoxidizing vinyl monomers, deoxidizing edible oils, and removing hydrogen sulfide from sulfurized oils.

[従来の技術] 隔膜真空脱気法は、気体や揮発性物質は透過するが、液
体は透過しない膜の一方の側に処理すべき液体を流し、
他方の側を真空ポンプなどで減圧することにより、液体
中に含まれる気体や揮発性物質を膜を通して減圧側に除
去または回収する方法である。
[Prior art] In the diaphragm vacuum degassing method, the liquid to be treated is passed through one side of a membrane that allows gases and volatile substances to pass through, but not liquids.
This is a method in which gases and volatile substances contained in the liquid are removed or recovered to the reduced pressure side through the membrane by reducing the pressure on the other side using a vacuum pump or the like.

隔膜真空脱気の減圧手段としては、水封式真空ポンプ、
ピストン型真空ポンプ、油回転真空ポンプ、ダイヤフラ
ム真空ポンプ等の真空ポンプや、蒸気エジェクタ、水流
アスピレータなどのエジェクタなどが用いられる。
Water ring type vacuum pump,
Vacuum pumps such as piston vacuum pumps, oil rotary vacuum pumps, diaphragm vacuum pumps, and ejectors such as steam ejectors and water aspirators are used.

[発明が解決しようとする課題] しかしながら、これらの減圧手段はそれぞれ短所があり
、そのために隔膜脱気の限界があった。
[Problems to be Solved by the Invention] However, each of these pressure reducing means has disadvantages, and as a result, there are limits to diaphragm degassing.

即ち、例えば水から酸素などの気体や、トリクロロエチ
レンなどの揮発性物質を除去する場合、潤滑剤として潤
滑油を使用しているピストン型や油回転真空ポンプは、
潤滑油中に凝結水が混入することにより、水の蒸気圧が
真空度の下限となり、残存濃度をある限度以下に出来ず
、処理量も小さくなるという欠点があった。さらに錆つ
きや潤滑油量の増加などが生じ、長期間の使用が不可能
だった。ダイアフラム真空ポンプ、水封式真空ポンプ、
固体潤滑剤を用いたドライ型真空ポンプ、及びエジェク
タやアスピレータは多量の水蒸気の吸入には耐えるもの
の、ダイアフラム型やドライ型真空ポンプは減圧度(大
気圧から真空にいたる度合)が低い上、ひんばんな部品
交換を要する、水封式ポンプは排気量の大小に関わらず
水の蒸気圧付近までしか減圧できない上、封水を流す必
要がある、アスピレータは水の蒸気圧付近までしか減圧
出来ない上、排気容量が小さい、蒸気エジェクタは大が
かりで使用条件が限られる土エネルギー効率が悪い、等
の欠点を有していた。
In other words, for example, when removing gases such as oxygen or volatile substances such as trichlorethylene from water, piston type or oil rotary vacuum pumps that use lubricating oil as the lubricant,
When condensed water is mixed into the lubricating oil, the vapor pressure of the water becomes the lower limit of the degree of vacuum, making it impossible to reduce the residual concentration below a certain limit and resulting in a reduction in throughput. Furthermore, rusting and an increase in the amount of lubricating oil occurred, making it impossible to use for a long period of time. diaphragm vacuum pump, water ring vacuum pump,
Dry-type vacuum pumps that use solid lubricants, as well as ejectors and aspirators, can withstand the inhalation of large amounts of water vapor, but diaphragm-type and dry-type vacuum pumps have a low degree of pressure reduction (the degree to which atmospheric pressure goes to vacuum) and are difficult to heat. Replacement of parts is required. Water ring pumps can only reduce pressure to around the vapor pressure of water regardless of the displacement size, and seal water needs to flow. Aspirators can only reduce pressure to around the vapor pressure of water. On the other hand, the steam ejector has disadvantages such as a small exhaust capacity, a large steam ejector, limited usage conditions, and poor energy efficiency.

又、空気エジェクタ付きの水封式ポンプは、非常に大き
な排気量のポンプが必要となり、装置及び運転コストの
上昇を招いていた。
Furthermore, a water ring type pump with an air ejector requires a pump with a very large displacement, resulting in an increase in equipment and operating costs.

又、水からクロロホルムやトリクロロエチレン等の揮発
性物質を除去する用途においても、潤滑油を用いるタイ
プは、長期間運転するとこれらの揮発性物質が潤滑油に
溶解し、減圧度が低下する為、除去能力の低下を招くと
いう問題があった。
In addition, in applications where volatile substances such as chloroform and trichloroethylene are removed from water, types that use lubricating oil are difficult to remove as these volatile substances dissolve in the lubricating oil and the degree of vacuum decreases during long-term operation. There was a problem in that it led to a decline in performance.

例えば、水から脱酸素する用途において残留酸素濃度を
20 ppb (ppb = 1(1−@)以下まで脱
気するには、真空ポンプは水の蒸気圧以下にまで減圧可
能なものである必要があり、又水から揮発性物質を除去
する用途に於いても、残留II4度を下げ処理量を上げ
るためには、真空ポンプは十分低い圧力まで減圧でき、
長期間連続して使用する必要があるが、これらの目的に
合致する適当な真空ポンプは知られていなかった。
For example, in an application where water is deoxidized, in order to degas the residual oxygen concentration to below 20 ppb (ppb = 1 (1 - @)), the vacuum pump must be able to reduce the pressure to below the vapor pressure of water. Also, in applications where volatile substances are removed from water, vacuum pumps can reduce the pressure to a sufficiently low level in order to reduce the residual II4 degree and increase the throughput.
Although it is necessary to use the vacuum pump continuously for a long period of time, a vacuum pump suitable for these purposes has not been known.

[課題を解決する手段] 本発明は上記課題を解決するためになされたものであっ
て、隔膜脱気装置として、気体は透過し液体は透過しな
い隔膜を組み込んだ膜モジュール、減圧手段、および付
属する配管とから構成し、前記減圧手段として、スクロ
ール型真空ポンプを用いたことを特徴としている。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and is a diaphragm degassing device that includes a membrane module incorporating a diaphragm that allows gas to pass therethrough but not liquids, a pressure reducing means, and accessories. The present invention is characterized in that a scroll-type vacuum pump is used as the pressure reducing means.

また脱気方法として、隔膜の一方の側に被処理液体を流
し、他の側に減圧手段を接続して減圧することにより、
該液体に含まれている気体や揮発性物質を、膜を通して
減圧側に除去することを特徴としている。
In addition, as a degassing method, by flowing the liquid to be treated on one side of the diaphragm and connecting a pressure reducing means to the other side to reduce the pressure,
It is characterized by removing gases and volatile substances contained in the liquid to the reduced pressure side through a membrane.

本発明をさらに詳細に説明する。本発明に用いるスクロ
ール型真空ポンプとは、駆動スクロールと、固定または
従動スクロールの、2枚の渦巻翼か組合わさっており、
モーターなとの動力により駆動スクロールを駆動するこ
とにより、2枚の渦巻翼の接触部が外周部より中心部へ
、または中心部より外周部へ移動し、それに伴い2枚の
渦巻翼間に形成される空間(圧縮部)か外周部より中心
部へ、または中心部より外周部へ移動することにより、
気体が圧縮されるタイプの真空ポンプを云つ。
The present invention will be explained in further detail. The scroll type vacuum pump used in the present invention is a combination of two spiral blades, a driving scroll and a fixed or driven scroll.
By driving the drive scroll using the power of a motor, the contact area between the two spiral blades moves from the outer periphery to the center, or from the center to the outer periphery, and as a result, a contact area is formed between the two spiral blades. By moving the space (compressed part) from the outer periphery to the center, or from the center to the outer periphery,
A type of vacuum pump that compresses gas.

潤滑剤としては、固体潤滑剤または真空ポンプ油などを
用いうる。
As the lubricant, a solid lubricant or vacuum pump oil can be used.

第1図に、実施例で使用する回転型スクロールポンプP
の構造を示す。
Figure 1 shows a rotary scroll pump P used in the example.
shows the structure of

このポンプPは、円筒状のケーシング1と、このケーシ
ング1の上部に固定されたモータ2と、このモータ2に
よって回転駆動されケーシング1内にこのケーシング1
と同軸的に延び、その内部に排気通路3aが形成されて
いる駆動シャフト3と、この駆動シャフト3の下端に一
体に設けられた駆動スクロール4と、ケーシングlの底
部に回転自在に装着された従動スクロール6とを備えて
いる。
This pump P includes a cylindrical casing 1, a motor 2 fixed to the top of the casing 1, and a motor 2 that rotates the casing 1 inside the casing 1.
A drive shaft 3 extending coaxially with the drive shaft 3 and having an exhaust passage 3a formed therein, a drive scroll 4 integrally provided at the lower end of the drive shaft 3, and a drive scroll 4 rotatably mounted on the bottom of the casing l. A driven scroll 6 is provided.

駆動スクロール4は、第4図(a)に示すように、前記
シャフト3に一体化された基板4aに渦巻翼4bが一体
に形成され、渦巻翼4bの先端には基板4aに直交して
延びるピン4Cが一体に形成され、基板4aの渦巻翼4
bが形成された面の外周部におけるピン4Cに対する1
80°の位置に、基板4aの径方向に延びガイド溝4d
が形成され、さらに、基板4aの中央には排気孔4eが
形成されてなるものである。
As shown in FIG. 4(a), the drive scroll 4 has a spiral blade 4b integrally formed on a substrate 4a integrated with the shaft 3, and a spiral blade 4b has a tip extending perpendicularly to the substrate 4a. The pin 4C is integrally formed, and the spiral blade 4 of the substrate 4a
1 for pin 4C at the outer periphery of the surface where b is formed.
A guide groove 4d extends in the radial direction of the substrate 4a at an 80° position.
Further, an exhaust hole 4e is formed in the center of the substrate 4a.

また、従動スクロール5は、第4図(b)に示すように
、基板5aに前記駆動スクロール4の渦巻翼4bとは逆
向きな渦巻翼5bが固定され、駆動スクロール4と同様
に、渦巻翼5bの先端にピン5cが、基板5aにはガイ
ド溝5dが形成されてなるものである。
Further, as shown in FIG. 4(b), the driven scroll 5 has a spiral vane 5b fixed to a base plate 5a in a direction opposite to the spiral vane 4b of the driving scroll 4. A pin 5c is formed at the tip of the pin 5b, and a guide groove 5d is formed in the substrate 5a.

そして、従動スクロール5は、ケーシング1の底部に軸
7を介し、駆動スクロール4に対して偏芯してケーシン
グ1にセットされ、この状態で、第2図および第3図に
示すように、ピン4C15Cが互いのガイド溝5d、4
dに嵌合して相互の渦巻翼4b、5bが組み合わせられ
ている。渦巻翼4b、5b間に生じる間隙は圧縮室7と
なっており、この圧縮室7は、駆動スクロール4の基板
4aに形成された排気孔4eを介して前記駆動シャフト
3の排気通路3aに連通している。
The driven scroll 5 is set in the casing 1 eccentrically with respect to the driving scroll 4 through the shaft 7 at the bottom of the casing 1, and in this state, as shown in FIGS. 4C15C are mutually guide grooves 5d, 4
d, the spiral blades 4b and 5b are combined with each other. The gap created between the spiral blades 4b and 5b serves as a compression chamber 7, and this compression chamber 7 communicates with the exhaust passage 3a of the drive shaft 3 through an exhaust hole 4e formed in the base plate 4a of the drive scroll 4. are doing.

また、前記ケーシング1には、ケーシング1内に通じる
吸気口1aおよび排気口1bがそれぞれ形成され、さら
に、上部給油栓8a、下部給油栓8bがそれぞれ設けら
れている。
Further, the casing 1 is formed with an intake port 1a and an exhaust port 1b that communicate with the inside of the casing 1, and is further provided with an upper oil filler plug 8a and a lower oil filler plug 8b, respectively.

上記ポンプPによれば、モータ2を駆動すると、駆動シ
ャフト3を介して駆動スクロール4が回転し、駆動スク
ロール4のピン4Cが従動スクロール5のガイド溝5d
に沿って移動することにより、従動スクロール5が駆動
スクロール4と同じ回転数で回転させられる。その際、
従動スクロール5のピン5Cは駆動スクロール4のガイ
ド溝4dに沿って移動する。
According to the pump P, when the motor 2 is driven, the drive scroll 4 rotates via the drive shaft 3, and the pin 4C of the drive scroll 4 is inserted into the guide groove 5d of the driven scroll 5.
By moving along, the driven scroll 5 is rotated at the same rotation speed as the driving scroll 4. that time,
The pin 5C of the driven scroll 5 moves along the guide groove 4d of the drive scroll 4.

この両スクロール4.5の回転により、吸気口1aから
低圧気体が吸気され、この低圧気体は、モータ2により
駆動される駆動スクロール4と、駆動スクロール4に対
して偏芯してセットされた従動スクロール5の各渦巻翼
4b、5b間の圧縮室7に入り、各スクロール4.5の
回転と共に圧縮室7の中心部へ圧縮され、そこから排気
孔4e、排気通路3aを通って排気口1bより外部へ排
出される。なお、本発明に使用するスクロール型真空ポ
ンプPは、エアブリーダー機構を有することが好ましい
Due to the rotation of both scrolls 4.5, low-pressure gas is taken in from the intake port 1a, and this low-pressure gas is fed to the drive scroll 4 driven by the motor 2 and the driven scroll set eccentrically with respect to the drive scroll 4. It enters the compression chamber 7 between the spiral vanes 4b and 5b of the scroll 5, is compressed into the center of the compression chamber 7 as each scroll 4.5 rotates, and from there passes through the exhaust hole 4e and the exhaust passage 3a to the exhaust port 1b. is discharged to the outside. Note that the scroll type vacuum pump P used in the present invention preferably has an air bleeder mechanism.

本発明者らは、隔膜真空脱気の減圧手段として上記のよ
うなスクロール型真空ポンプを用いると、水蒸気や揮発
性液体の蒸気を吸引しても十分な真空度まで減圧可能で
あり、高度の脱気が可能であること、かつ長期間の運転
にも支障が無いことを見いだした。例えば、実施例に見
られるように、圧力約IQtorrで運転することによ
り、水から酸素を効率よく除去し、残存酸素濃度を20
 ppb以下、条件により1 ppb以下にすることが
可能であること、また同じ残存濃度の場合には、処理量
の増加を図れる事を見いだした。
The present inventors have found that by using the scroll type vacuum pump as described above as a pressure reduction means for diaphragm vacuum degassing, it is possible to reduce the pressure to a sufficient degree of vacuum even when water vapor or volatile liquid vapor is sucked, and It was discovered that degassing is possible and that there is no problem with long-term operation. For example, as seen in the examples, by operating at a pressure of about IQtorr, oxygen can be efficiently removed from water and the residual oxygen concentration can be reduced to 20
It has been found that it is possible to reduce the amount to 1 ppb or less depending on the conditions, and that it is possible to increase the throughput at the same residual concentration.

本発明の隔膜は、気体や揮発性物質の蒸気は透過するが
、液体は液体のままでは透過しないものである。この様
な特性を持つ膜として、非多孔均質膜(例えば特公昭5
8−20261)、非多孔層を有する不均質膜や複合膜
(例えば特開昭63−258605)、疎水性素材で構
成された多孔質膜(例えば特開昭63−264127)
などが知られており、本発明ではこれらの隔膜を使用し
得る。
The diaphragm of the present invention allows gases and vapors of volatile substances to pass through it, but does not allow liquids to pass therethrough while they are still liquids. As a membrane with such characteristics, non-porous homogeneous membrane (for example,
8-20261), heterogeneous membranes or composite membranes having non-porous layers (e.g. JP-A No. 63-258605), porous membranes composed of hydrophobic materials (e.g. JP-A No. 63-264127)
These membranes can be used in the present invention.

しかし、本発明はこれらの中で非多孔均質膜や、非多孔
層を有する不均質膜や複合膜を用いた場合に、より特長
を発揮し得る。多孔質膜は、一般に液体の蒸気透過量が
過大となり、スクロール型真空ポンプをもってしても潤
滑油中に凝結水が蓄積するため油水分離が必要となる。
However, the present invention can exhibit its advantages more when a non-porous homogeneous membrane, a heterogeneous membrane having a non-porous layer, or a composite membrane is used. Porous membranes generally allow an excessive amount of liquid vapor to permeate, and even with a scroll-type vacuum pump, condensed water accumulates in the lubricating oil, making oil-water separation necessary.

膜形状やモジュール形状は任意のものを使用しうる。例
えば隔膜として、平膜、管状膜、中空糸膜などを使用し
うるし、膜モジュールとして、積層型、スパイラル型、
外部かん流量、内部かん流量等を使用できる。
Any membrane shape or module shape can be used. For example, a flat membrane, a tubular membrane, a hollow fiber membrane, etc. can be used as a diaphragm, and a laminated type, spiral type, etc. can be used as a membrane module.
External perfusion rate, internal perfusion rate, etc. can be used.

本発明の対象となる、処理すべき液体には特に制約はな
く、例えば水、水溶液、水を分散媒とする懸濁液、酸、
アルカリ、鉱油、植物油、動物油有機溶剤、等一般の液
体が対象となるが、中でも液体か、常温における蒸気圧
かQ 、 l torr以上である液体である場合、お
よび水または水を含有する液体である場合に特に有用で
ある。常温における蒸気圧がO,1torr未満の液体
の場合は、広(使用されている油回転式真空ポンプが使
用できる。
There are no particular restrictions on the liquid to be treated, which is the object of the present invention, such as water, aqueous solutions, suspensions using water as a dispersion medium, acids,
This applies to general liquids such as alkalis, mineral oils, vegetable oils, animal oils, organic solvents, etc., but especially liquids, liquids with a vapor pressure of Q, l torr or more at room temperature, and water or liquids containing water. Particularly useful in certain cases. In the case of a liquid with a vapor pressure of less than 0.1 torr at room temperature, an oil rotary vacuum pump commonly used can be used.

本発明の対象となる気体または揮発性物質についても特
に制約はなく、例えば酸素、窒素、炭酸ガス、−酸化炭
素、メタンなどの炭化水素、塩素ナトのハロゲン、ヘリ
ウムなどの不活性気体、ハロゲン化水素、硫化水素、ア
ンモニア、アミン類、トリクロロエチレンなどのハロゲ
ン化炭化水素、フロンなどの含フツ素化合物、石油類、
有機溶剤、2メチルインボルネオールなどの臭気物質、
などが挙げられる。
There are no particular restrictions on the gases or volatile substances that are the object of the present invention, such as oxygen, nitrogen, carbon dioxide, carbon oxide, hydrocarbons such as methane, halogens such as chlorine, inert gases such as helium, halogenated gases, etc. Hydrogen, hydrogen sulfide, ammonia, amines, halogenated hydrocarbons such as trichloroethylene, fluorine-containing compounds such as fluorocarbons, petroleum,
Organic solvents, odorous substances such as 2-methylinborneol,
Examples include.

[実施例] 以下、実施例にて本発明を更に具体的に説明するが、こ
れらの例により本発明が限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

◆実施例1 ポリ4メチルペンテン1を素材として溶融成形法により
製造した中空糸不均質膜は、外形260μm、内径20
6μmであり、ASTM  D1434に準じて測定し
た気体透過特性は、酸素透過速度2 、 I X l 
O−4cm3(STP)/cm2. see、 cmH
g、酸素/窒素分離係数1.2であった。
◆Example 1 A hollow fiber heterogeneous membrane manufactured by a melt molding method using poly-4 methylpentene 1 as a material had an outer diameter of 260 μm and an inner diameter of 20 μm.
6 μm, and the gas permeation characteristics measured according to ASTM D1434 are oxygen permeation rate 2, I
O-4cm3 (STP)/cm2. see, cmH
g, and the oxygen/nitrogen separation coefficient was 1.2.

この中空糸膜を用いて有効面積13m2のモジュールを
作製した。そして、第1図に示したような、排気量26
01/winの回転スクロール型真空ポンプPを用い、
第5図のような構成の脱気装置を組み立てた。
A module with an effective area of 13 m2 was produced using this hollow fiber membrane. Then, as shown in Fig. 1, displacement 26
Using 01/win rotating scroll vacuum pump P,
A deaerator having the configuration shown in FIG. 5 was assembled.

この脱気装置9は、モジュールケース10の上下に液体
人口11aおよび液体出口11bが、さらに減圧口12
・12が設けられ、モジュールケース10の内部に、前
記中空糸膜13を樹脂封止部14により支持するよう構
成され、各減圧口12に、前記ポンプPの吸気口1aが
接続される。
This deaerator 9 has a liquid population 11a and a liquid outlet 11b on the upper and lower sides of a module case 10, and a decompression port 12.
- 12 are provided inside the module case 10 so that the hollow fiber membrane 13 is supported by a resin sealing part 14, and each pressure reducing port 12 is connected to the inlet port 1a of the pump P.

この装置に25℃の上水道水をいくつかの流量で流し、
原水及び処理水の溶存酸素濃度(Do)、およびその時
の減圧側の圧力を測定した。結果を比較例1と共に第1
表に示す。
25℃ tap water was flowed through this device at several flow rates.
The dissolved oxygen concentration (Do) of the raw water and treated water and the pressure on the reduced pressure side at that time were measured. The results are shown in the first column along with Comparative Example 1.
Shown in the table.

◆比較例1 真空ポンプとして、排気量501/winの水封式真空
ポンプを用い封水量1501/hrで運転し、他は実施
例1と同様の試験を行った。結果を実施例1と共に第1
表に示す。
◆Comparative Example 1 A water ring type vacuum pump with a displacement of 501/win was used as the vacuum pump, and the test was conducted in the same manner as in Example 1 except that it was operated at a water sealing rate of 1501/hr. The results are shown in Example 1.
Shown in the table.

第1表 ◆実施例2 実施例1の測定例1の実験を連続72時間継続した時の
処理水のDoの様子を、第6図に比較例2と共に示す。
Table 1 ◆ Example 2 The state of Do of the treated water when the experiment of Measurement Example 1 of Example 1 was continued for 72 hours is shown in FIG. 6 together with Comparative Example 2.

運転開始後約1時間で30 ppbの安定状態に達した
後は、72時間後も変化がみられない。又、72時間後
の潤滑油のレベルに変化はみられなかった。
After reaching a stable state of 30 ppb approximately 1 hour after the start of operation, no change was observed even after 72 hours. Also, no change was observed in the lubricant level after 72 hours.

◆比較例2 真空ポンプとして、排気量1501/minの油回転型
真空ポンプを用いた他は実施例1と同じ脱気装置を作製
し、原水流量2801/hrにて連続72時間連続して
運転した時の処理水のDoの変化を、第6図に実施例2
と共に示す。運転開始後約1時間で30 ppbに到達
するが。その後徐々に残存濃度が増加し、72時間後に
は約90ppbまで悪化する。又、72時間後、潤滑油
レベルの増加がみられた。
◆Comparative Example 2 The same deaerator as in Example 1 was manufactured except that an oil rotary vacuum pump with a displacement of 1501/min was used as the vacuum pump, and it was continuously operated for 72 hours at a raw water flow rate of 2801/hr. Figure 6 shows the changes in Do of the treated water when
Shown with The concentration reached 30 ppb approximately one hour after the start of operation. After that, the residual concentration gradually increases and deteriorates to about 90 ppb after 72 hours. There was also an increase in lubricant levels after 72 hours.

■。■.

◆実施例3 実施例Iと同じ脱気装置を用い、原水として1゜0 p
pmのトリクロロエチレンを含有する25℃の水を10
01/ff1inで流した時の、処理水中のトリクロロ
エチレニン残存濃度の時間的な変化を第7図に示す。運
転開始後約1時間てo、tsppmの安定状態に達し、
72時間経過後も変化がみられない。
◆Example 3 Using the same deaerator as in Example I, the raw water was 1°0 p.
10 pm of water at 25°C containing trichlorethylene
FIG. 7 shows the temporal change in the residual concentration of trichloroethylenine in the treated water when flowing at a rate of 0.01/ff1 in. Approximately 1 hour after the start of operation, a stable state of o, tsppm was reached.
No change was observed even after 72 hours had passed.

◆比較例3 真空ポンプとして、排気jl l 501/winの油
回転型真空ポンプを用いた他は実施例1と同じ脱気装置
を作製し、実施例3と同じ測定を行った。残存トリクロ
ロエチレン濃度は、運転開始後約1時間で実施例3と同
じ0.15ppmに到達するが。
◆Comparative Example 3 The same degassing device as in Example 1 was prepared, except that an oil rotary vacuum pump with exhaust jl l 501/win was used as the vacuum pump, and the same measurements as in Example 3 were performed. The residual trichlorethylene concentration reached 0.15 ppm, the same as in Example 3, about 1 hour after the start of operation.

その後徐々に残存濃度が増加し、72時間後には約0.
2ppmまで悪化し、更に増加する傾向がみられる。
After that, the residual concentration gradually increased, and after 72 hours, it was about 0.
It worsens to 2 ppm, and there is a tendency for it to increase further.

[発明の効果] 本発明の脱気装置及び脱気方法は、処理すべき液体が常
温で0 、 1 torrを越える蒸気圧を示す液体、
特に水であったり、液体から除去すべき物質が常温で液
体であるような物質であっても、減圧側の減圧度の低下
が少なく、従って除去すべき物質の残存濃度を小さくす
ることができ、又同じ残存濃度では処理量を増すことが
出来る。例えば、水の脱酸素の場合、残存濃度を1 p
pb以下まで′下げることができ、また同じ残存濃度、
例えば30ppbにする場合には、−船釣に使用される
水封式真空ポンプを用いた場合に比べて、処理量を3倍
近くに増加させることが出来る。
[Effects of the Invention] The degassing device and the degassing method of the present invention provide the following advantages: The liquid to be treated is a liquid exhibiting a vapor pressure exceeding 0.1 torr at room temperature;
In particular, even if the substance to be removed from the liquid is water or a substance that is liquid at room temperature, the degree of pressure reduction on the pressure reduction side will be small, and therefore the residual concentration of the substance to be removed can be reduced. , and the throughput can be increased at the same residual concentration. For example, in the case of water deoxygenation, the residual concentration is 1 p
It can be lowered to below pb, and the same residual concentration,
For example, when setting the amount to 30 ppb, the throughput can be increased nearly three times as much as when using a water ring vacuum pump used for boat fishing.

また、上記の条件に於いても、潤滑油のひんばんな交換
や油水分離などの操作が不要で、腐食の進行も遅く、長
期間の運転が可能である。
Furthermore, even under the above conditions, operations such as frequent replacement of lubricating oil and separation of oil and water are not required, corrosion progresses slowly, and long-term operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用するスクロール型真空ポ
ンプの縦割断面図、第2図および第3図は要部側面図、
第4図(a)、(b)はそれぞれ該真空ポンプの駆動ス
クロールおよび従動スクロールの平面図、第5図は本発
明の脱気装置の構成を示す概念図、第6図は実施例2及
び比較例2の測定結果を示すグラフ、第7図は実施例3
及び比較例3の測定結果を示すグラフである。 第6図 4・・・・・・駆動スクロール、5・・・・・・従動ス
クロール、9・・・・・・脱気装置、P・・・・・スク
ロール型真空ポンプ。 出願人 大日本インキ化学工業株式会社時間(h「) 第7図 時間(h「) 第4図 (a) (b) h 第2図 〈コ 第3図 第5図
FIG. 1 is a vertical cross-sectional view of a scroll-type vacuum pump used in an embodiment of the present invention, FIGS. 2 and 3 are side views of main parts,
4(a) and 4(b) are plan views of the driving scroll and driven scroll of the vacuum pump, respectively, FIG. 5 is a conceptual diagram showing the configuration of the deaerator of the present invention, and FIG. 6 is a plan view of the driving scroll and the driven scroll of the vacuum pump, and FIG. Graph showing the measurement results of Comparative Example 2, Figure 7 is Example 3
and a graph showing the measurement results of Comparative Example 3. Fig. 6 4... Drive scroll, 5... Followed scroll, 9... Deaerator, P... Scroll type vacuum pump. Applicant: Dainippon Ink & Chemicals Co., Ltd. Time (h'') Figure 7 Time (h'') Figure 4 (a) (b) h Figure 2 (Figure 3) Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)気体は透過し液体は透過しない隔膜を組み込んだ
膜モジュール、減圧手段、および付属する配管とから構
成され、前記減圧手段として、スクロール型真空ポンプ
を用いたことを特徴とする隔膜脱気装置。
(1) A diaphragm deaeration system comprising a membrane module incorporating a diaphragm that allows gas to pass through but not liquids, a pressure reduction means, and attached piping, and is characterized in that a scroll-type vacuum pump is used as the pressure reduction means. Device.
(2)隔膜の一方の側に被処理液体を流し、他の側に減
圧手段を接続して減圧することにより、該液体に含まれ
ている気体や揮発性物質を、膜を通して減圧側に除去す
ることを特徴とする脱気方法。
(2) By flowing the liquid to be treated on one side of the diaphragm and reducing the pressure by connecting a pressure reducing means to the other side, gases and volatile substances contained in the liquid are removed through the membrane to the reduced pressure side. A degassing method characterized by:
JP17193490A 1990-06-29 1990-06-29 Diaphragm degassing apparatus and degassing method Pending JPH0463104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17193490A JPH0463104A (en) 1990-06-29 1990-06-29 Diaphragm degassing apparatus and degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17193490A JPH0463104A (en) 1990-06-29 1990-06-29 Diaphragm degassing apparatus and degassing method

Publications (1)

Publication Number Publication Date
JPH0463104A true JPH0463104A (en) 1992-02-28

Family

ID=15932541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17193490A Pending JPH0463104A (en) 1990-06-29 1990-06-29 Diaphragm degassing apparatus and degassing method

Country Status (1)

Country Link
JP (1) JPH0463104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596076B1 (en) 1998-06-30 2003-07-22 Director-General Of Agency Of Industrial Science And Technology Apparatus and method for altering the apparent effects of gravity
WO2017110781A1 (en) * 2015-12-24 2017-06-29 Dic株式会社 Beverage and method for manufacturing same
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596076B1 (en) 1998-06-30 2003-07-22 Director-General Of Agency Of Industrial Science And Technology Apparatus and method for altering the apparent effects of gravity
WO2017110781A1 (en) * 2015-12-24 2017-06-29 Dic株式会社 Beverage and method for manufacturing same
JP2017112900A (en) * 2015-12-24 2017-06-29 Dic株式会社 Natural pigment-containing beverage and production method thereof
JPWO2017110781A1 (en) * 2015-12-24 2018-08-09 Dic株式会社 Beverage and production method thereof

Similar Documents

Publication Publication Date Title
JP4587428B2 (en) Deaerator
CN1039739C (en) Method and apparatus in a fluid-operating system
US20160008739A1 (en) Pump with water management
JP4041799B2 (en) Sealing system
JP2009536576A (en) Capillary flow restriction device
JPH0463104A (en) Diaphragm degassing apparatus and degassing method
KR970000334B1 (en) Gas removal pump for liquid
JP2003062403A (en) Operating method for membrane degasifier
KR100814421B1 (en) portable reverse osmosis water purification system
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
WO1989012170A1 (en) Method and apparatus for processing fluids
BE1017442A3 (en) Liquid gas separator device, contains rotary tubular gas permeable membrane with space inside connected to gas outlet
JP3600259B2 (en) Improvement of vacuum pump
CN211677770U (en) Vacuumizing device and oil gas recovery system
WO1996004978A1 (en) Pressure swing adsorption apparatus and process for recovery of organic vapors
JPH0568808A (en) Equipment and method for diaphragm vacuum deaeration
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
CN208943521U (en) A kind of deformer of vacuum separating chamber of oil filter
WO2002062452A1 (en) Method and device for processing gases, and use thereof
US6149393A (en) Air lift pump
WO2002018032A2 (en) A method of treating an effluent gas stream, and apparatus for use in such method
JPH03118802A (en) Deoxidizing device
KR200429132Y1 (en) portable water purification system
CN110975850A (en) Vacuumizing device and method and oil gas recovery system
KR200428286Y1 (en) portable reverse osmosis water purification system