JP3409863B2 - Removal device for dissolved organic matter in water - Google Patents

Removal device for dissolved organic matter in water

Info

Publication number
JP3409863B2
JP3409863B2 JP20539492A JP20539492A JP3409863B2 JP 3409863 B2 JP3409863 B2 JP 3409863B2 JP 20539492 A JP20539492 A JP 20539492A JP 20539492 A JP20539492 A JP 20539492A JP 3409863 B2 JP3409863 B2 JP 3409863B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
aqueous solution
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20539492A
Other languages
Japanese (ja)
Other versions
JPH0647371A (en
Inventor
誠 内田
広 田阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP20539492A priority Critical patent/JP3409863B2/en
Publication of JPH0647371A publication Critical patent/JPH0647371A/en
Application granted granted Critical
Publication of JP3409863B2 publication Critical patent/JP3409863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水道水や井戸水中に溶存
する揮発性の有機物(特にクロロホルム、ジクロロブロ
モホルム、クロロジブロモホルム、ブロロホルム等のト
リハロメタンや1,1,1−トリクロロエタン、1,2
−ジクロロエタン、トリクロロエチレン、テトラクロロ
エチレン等の揮発性の有機ハロゲン物質)を除去し、安
全な飲料水を提供する或いは純度の高い水を提供する装
置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to volatile organic substances dissolved in tap water or well water (particularly trihalomethanes such as chloroform, dichlorobromoform, chlorodibromoform and broloform, 1,1,1-trichloroethane, 1,2,1).
A volatile organic halogen substance such as dichloroethane, trichloroethylene, tetrachloroethylene, etc.) to provide safe drinking water or high-purity water.

【0002】[0002]

【従来の技術】近年河川水中の有機物濃度の増加にとも
ない殺菌あるいは浄化用の塩素を多量に用いる傾向にあ
り、有機物と塩素が反応することにより生成される発癌
性あるいは変異原生のトリハロメタン(クロロホルム等
炭素にハロゲン物質が3つ結合した有機物)の濃度が増
大し水道水中に微量ながら溶存することが問題となって
いる。
2. Description of the Related Art In recent years, there has been a tendency to use a large amount of chlorine for sterilization or purification as the concentration of organic substances in river water increases. There is a problem that the concentration of organic matter in which three halogen substances are bonded to carbon increases and that the organic matter is dissolved in tap water in a small amount.

【0003】またドライクリーニングや機械類の脱脂剤
として1,1,1−トリクロロエタン、1,2−ジクロ
ロエタン、トリクロロエチレン、テトラクロロエチレン
等発癌性の有機ハロゲン物質が工場廃液として地下に浸
透し井戸水中に含まれる事も同時に問題となっている。
また食品や薬品関係の工業用水中にはこれらの有機ハロ
ゲン物質が微量でも存在する事は非常に危険であり、こ
の分野の業界では水中に溶存する微量の有機ハロゲン物
質を除去する技術が待望されている。
Further, carcinogenic organic halogen substances such as 1,1,1-trichloroethane, 1,2-dichloroethane, trichloroethylene, and tetrachloroethylene permeate underground as industrial waste liquid and are contained in well water as a degreasing agent for dry cleaning and machinery. Things are also a problem at the same time.
In addition, it is extremely dangerous that even a trace amount of these organic halogen substances is present in industrial water for foods and chemicals, and a technology for removing a trace amount of organic halogen substances dissolved in water is highly desired in the industry in this field. ing.

【0004】従来水中に溶存する揮発性の有機物(特に
有機ハロゲン物質)を除去する方法としては、(イ)活
性炭等に有機物を吸着させる吸着処理方法、(ロ)酸化
チタンのような半導体触媒を用いて光により分解する光
分解方法、(ハ)鉄などの金属粉が還元触媒となり例え
ばトリクロロエチレンを塩素イオンと化学的に安定なエ
チレンガスに変換する還元処理方法、(ニ)活性汚泥等
の生物により分解する生物処理方法、(ホ)水中に多量
のガスを送り込み液相中に溶存する揮発性の有機物を気
相側へガス分圧差より移動させガスとして追い出す曝気
方法あるいは、煮沸する事によって水中に溶存する揮発
性の有機物を気相側へ追い出す煮沸法が知られている。
Conventionally, as a method for removing volatile organic substances (in particular, organic halogen substances) dissolved in water, (a) an adsorption treatment method of adsorbing an organic substance on activated carbon or the like, (b) a semiconductor catalyst such as titanium oxide is used. Photodecomposition method of using light to decompose, (c) Metal powder such as iron serves as a reduction catalyst, for example, reduction treatment method of converting trichlorethylene into chlorine ion and chemically stable ethylene gas, (d) organisms such as activated sludge (E) Aeration method in which a large amount of gas is sent into water and volatile organic substances dissolved in the liquid phase are moved to the gas phase side from the gas partial pressure difference to expel it as gas, or by boiling the water A boiling method is known in which volatile organic substances dissolved in the water are expelled to the gas phase side.

【0005】一方水溶液中に溶存する酸素を効率よく除
去する方法として(ヘ)チューブもしくは中空糸膜を用
いて脱気する方法が特開昭57−165007号、特開
昭60−25514号、特開平2−303587号、実
公平2−48003号、また(ト)複合膜を用いた脱気
方法及び装置が実開平3−7908号、特開平3−16
9303号各公報に提案されている。
On the other hand, as a method for efficiently removing oxygen dissolved in an aqueous solution, (f) a method of degassing by using a tube or a hollow fiber membrane is disclosed in JP-A-57-165007, JP-A-60-25514, and Kaihei 2-303587, Jitsuhei 2-48003, and (g) Degassing method and apparatus using composite membrane are Jaikaihei 3-7908 and JP-A-3-16.
It is proposed in each publication of 9303.

【0006】前記方法の内、(イ)の吸着処理方法は吸
着剤の吸着能力以上に吸着することができず、多量に用
いる必要性あるいは再賦活させる必要性がありコスト高
になるばかりでなく、目的とする除去物質よりも吸着能
力の高い物質が吸着剤近傍に存在するときは目的とする
除去物質を放出し、より吸着力の高い物質と吸着してし
まう危険性も考えられる。
Of the above-mentioned methods, the adsorption treatment method (a) cannot adsorb more than the adsorption capacity of the adsorbent, and it is necessary to use a large amount or to reactivate it, which not only increases the cost. When a substance having a higher adsorption capacity than the target removal substance is present in the vicinity of the adsorbent, there is a risk that the target removal substance is released and may be adsorbed with a substance having a higher adsorption power.

【0007】(ロ)の光分解方法は水中の汚泥物質が光
の透過を遮り揮発性有機物質に均一に光を当て分解する
ためには長い反応時間を要する。(ハ)の還元処理方法
は触媒である金属粉の触媒活性を維持することが困難で
あるばかりでなく水中に触媒である金属粉が混入する危
険性もある。
In the photodecomposition method (b), a long reaction time is required for the sludge substance in the water to block the transmission of light and uniformly apply the light to the volatile organic substance to decompose it. In the reduction treatment method of (c), it is difficult to maintain the catalytic activity of the metal powder which is the catalyst, and there is also a risk that the metal powder which is the catalyst is mixed in water.

【0008】また(ニ)の生物処理方法は均一に分解
し、処理後の物質も化学的に安定した物質となる利点は
あるが処理速度が遅く実用的ではない。唯一実用化に近
い(ホ)の曝気方法も気相側へ追い出すためのガスを大
量に必要とするため装置が大型となってしまうだけでな
く、例えばテトラクロロエチレンなどの揮発性の低い有
機物を除去する事は困難である。
The biological treatment method (d) has the advantage that it decomposes uniformly and the substance after treatment becomes a chemically stable substance, but the treatment speed is slow and it is not practical. The only practical (a) aeration method that requires a large amount of gas to drive to the gas phase side is not only large in size, but also removes low-volatile organic substances such as tetrachloroethylene. Things are difficult.

【0009】一方(ヘ)のチューブもしくは中空糸膜も
しくは(ト)の複合膜を用いた脱気方法及び装置のどの
方法にも容器あるいは中空糸中空部を減圧にする手法し
か記されておらず、この方法のまま通常の水封式真空ポ
ンプなどの減圧ポンプを用いてもトリハロメタンのよう
な揮発性が高く水溶液中の水との相互作用の強い有機物
を除去することは困難である。
On the other hand, in any of the degassing methods and apparatuses using the tube (f) or the hollow fiber membrane or the composite membrane (g), only the method of depressurizing the container or the hollow portion of the hollow fiber is described. However, it is difficult to remove an organic substance such as trihalomethane having a high volatility and a strong interaction with water in an aqueous solution, even if a vacuum pump such as an ordinary water-sealed vacuum pump is used in this method.

【0010】また中空糸膜モジュールは、中空糸の長さ
が長いほど水と膜が接触する時間が長く効果的である
が、糸長が長くなれば中空糸のたるみが出やすく製造時
に欠陥が生じやすいこと、また、境膜抵抗が大きくなり
ある長さ以上では膜を介したガス交換が有効に働かない
ことなどの欠点を有す。これらのことから、脱気法は従
来の技術よりは小型ではあるが、目標とする除去性能を
達成し、且つ家庭用として普及するサイズには至ってい
ない。
In the hollow fiber membrane module, the longer the length of the hollow fiber is, the longer the contact time of the membrane with water is effective, but the longer the fiber length is, the slack of the hollow fiber is liable to occur and defects occur during production. It has the drawbacks that it is likely to occur and that gas exchange through the membrane does not work effectively if the membrane resistance becomes large and the length exceeds a certain length. For these reasons, although the degassing method is smaller than the conventional technology, it does not reach the size that achieves the target removal performance and is popular for household use.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は水中に
溶存する有機ハロゲン物質を効率よく除き、長期間安定
に除去性能を発揮し、且つコンパクトな水中溶存有機物
を除去する装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact apparatus for removing organic halogenated substances dissolved in water efficiently, exhibiting stable removal performance for a long time, and removing dissolved organic substances in water. It is in.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、 1)容器と該容器内に位置する中空糸膜と、該中空糸膜
の端部を支持し、中空糸膜の中空部に連通する空間と中
空糸膜の外表面に連通する空間とを隔離する隔壁とを有
し、中空糸膜の中空部に揮発性の溶存有機物を含む水溶
液を流すための導入口と水の導出口及び中空糸膜の外表
面と容器の内壁面とで構成される空間内のガスを排気す
る複数の排気口と中空糸膜を挟んで排気口に対向し、中
空糸膜の外表面と容器の内壁面とで構成される空間内に
外部空気を取り込む複数の吸気口とが設けられてなる水
中溶存有機物除去モジュールaの水溶液を流すための導
出口と該モジュールaと同一構造のモジュールbの水溶
液を流すための導入口とを連結し、更にモジュールaの
ガスを排気する排気口とモジュールbの空気を取り込む
吸気口をそれぞれ連結してなる水中の溶存有機物除去装
にある。
Means for Solving the Problems The gist of the present invention is as follows: 1) Support a container, a hollow fiber membrane located in the container, an end of the hollow fiber membrane, and communicate with the hollow portion of the hollow fiber membrane. An inlet for introducing an aqueous solution containing a volatile dissolved organic substance into the hollow portion of the hollow fiber membrane and a water outlet and a hollow having a partition wall separating the space and the space communicating with the outer surface of the hollow fiber membrane. An outer surface of the hollow fiber membrane and an inner wall surface of the container, which face the exhaust opening with a plurality of exhaust ports for exhausting gas in a space formed by the outer surface of the fiber membrane and the inner wall surface of the container, and the hollow fiber membrane. And a plurality of inlets for taking in external air are provided in a space constituted by and an outlet for flowing an aqueous solution of a water-dissolved organic substance removal module a and an aqueous solution of a module b having the same structure as the module a. And an exhaust port for exhausting the gas of the module a. It is an apparatus for removing dissolved organic matter in water, which is formed by connecting the intake ports of the module b for taking in air .

【0013】[0013]

【0014】水中溶存有機物の中でも除去できる有機物
は特にとらわれないが、気/液平衡における気相の濃度
が高い揮発性の有機物が効率的に除去できる。さらに揮
発性の有機物の中でも特に極性の強い有機ハロゲン物質
が均質層に用いられる高分子素材と親和性が高く効率的
に除去できる。
The organic matter which can be removed among the dissolved organic matter in water is not particularly limited, but the volatile organic matter having a high gas phase concentration in the gas / liquid equilibrium can be efficiently removed. Further, among volatile organic substances, particularly highly polar organic halogen substances have high affinity with the polymer material used for the homogeneous layer and can be efficiently removed.

【0015】水中の溶存有機物除去モジュールに使用す
る中空糸膜は細孔径が0.05μm以下の疎水性多孔質
膜を用いることもできるが、長時間使用すると水蒸気が
漏れてしまい、その結果水が多孔質膜から漏れてしまう
危険性があることから、8μm以下の膜厚の均質膜
(A)及び補強機能を受け持つ多孔質膜(B)からなる
多層複合中空糸膜であって、均質膜(A)と多孔質膜
(B)は交互に積層され、該多層複合中空糸膜の水溶液
と接する側の層が均質膜(A)或いは多孔質膜(B)で
あり、水溶液と接しない側の層が多孔質膜(B)である
構造を有し、且つ、複合中空糸膜のクロロホルム透過速
度が1×10-3(cm3 (STP)/cm2 /sec/
cmHg)以上の透過性能を有する中空糸膜であること
が好ましい。
The hollow fiber membrane used in the module for removing dissolved organic matters in water may be a hydrophobic porous membrane having a pore size of 0.05 μm or less, but if it is used for a long time, water vapor will leak, resulting in the formation of water. A multilayer composite hollow fiber membrane comprising a homogeneous membrane (A) having a membrane thickness of 8 μm or less and a porous membrane (B) having a reinforcing function, since it has a risk of leaking from the porous membrane. A) and the porous membrane (B) are alternately laminated, and the layer of the multilayer composite hollow fiber membrane which is in contact with the aqueous solution is the homogeneous membrane (A) or the porous membrane (B), and the layer which is not in contact with the aqueous solution is The layer has a structure of a porous membrane (B), and the chloroform permeation rate of the composite hollow fiber membrane is 1 × 10 −3 (cm 3 (STP) / cm 2 / sec /
A hollow fiber membrane having a permeation performance of not less than cmHg) is preferable.

【0016】クロロホルム透過速度が1×10-3(cm
3 (STP)/cm2 /sec/cmHg)未満では水
中に溶存する有機物の複合膜を透過する透過速度が遅く
効率的に有機物を除去することができない。
Chloroform transmission rate is 1 × 10 -3 (cm
If it is less than 3 (STP) / cm 2 / sec / cmHg), the permeation rate of permeation through the composite film of the organic substance dissolved in water is slow and the organic substance cannot be removed efficiently.

【0017】このような複合膜の多孔質層を形成する素
材としては、ポリエチレン、ポリプロピレン、ポリ3−
メチルブテン−1、ポリ4−メチルペンテン−1等のポ
リオレフィンやフッ化ビニリデン、ポリテトラフロロエ
チレン等のF素系ポリマー、ポリスルフォンやポリエー
テルエーテルケトン、ポリエーテルケトン等のポリマー
を用いることができるが、好ましくは容易に多孔質形成
が可能な結晶性のポリマーであるポリオレフィンが好ま
しい。
As a material for forming the porous layer of such a composite film, polyethylene, polypropylene, poly 3-
Polyolefins such as methylbutene-1, poly-4-methylpentene-1 and vinylidene fluoride, F-based polymers such as polytetrafluoroethylene, and polymers such as polysulfone, polyetheretherketone and polyetherketone can be used. Polyolefin, which is a crystalline polymer capable of easily forming a porosity, is preferable.

【0018】また該複合膜の均質層に用いられる素材と
してはセグメント化ポリウレタン、シリコン系ポリマ
ー、低密度ポリエチレンや、ポリ4−メチルペンテン−
1等のポリオレフィンや、ポリアクリルアミド等が考え
られるが、有機ハロゲン物質と親和性の高いポリマーが
好ましい。
The materials used for the homogeneous layer of the composite membrane include segmented polyurethane, silicone polymer, low density polyethylene, and poly-4-methylpentene-
Polyolefins such as 1 and polyacrylamides are considered, but polymers having high affinity with organic halogen substances are preferable.

【0019】このような複合膜は例えば特公平3−44
811号公報等に記載された方法により、多重円筒形の
紡糸ノズルを用いて均質膜Aを形成するポリマーと多孔
質膜Bを形成するポリマーとを交互に配置し溶融紡糸
し、次いで均質膜Aを多孔質化することなく多孔質膜B
だけを多孔質化する条件で延伸する方法により製造され
る。
Such a composite membrane is disclosed, for example, in Japanese Patent Publication No. 3-44.
According to the method described in Japanese Patent No. 811 and the like, a polymer forming a homogeneous film A and a polymer forming a porous film B are alternately arranged by using a multi-cylindrical spinning nozzle, and melt-spun, and then the homogeneous film A. Porous Membrane B Without Making Porous
It is produced by a method of stretching under the condition that only the material is made porous.

【0020】また該装置に組み込む吸気装置は該複合中
空糸膜の水と接する側と反対側の多孔質層のガスを中空
糸膜面積あたり3Nl/min/m2 以上(好ましくは
4Nl/min/m2 以上)の換気速度で容器外部の空
気と交換することが可能な装置であることが必要条件で
ある。中空糸膜面積あたり3Nl/min未満の排気速
度では中空糸膜を透過する有機ガスと排気される有機ガ
スのモル量差が小さく有機ガス除去性能が大きく低下す
る。
Further, in the air intake device incorporated in the device, the gas in the porous layer on the side opposite to the side in contact with water of the composite hollow fiber membrane is 3 Nl / min / m 2 or more per hollow fiber membrane area (preferably 4 Nl / min / It is a necessary condition that the device can exchange with the air outside the container at a ventilation rate of m 2 or more). At an exhaust rate of less than 3 Nl / min per hollow fiber membrane area, the difference in the molar amount between the organic gas that permeates the hollow fiber membrane and the exhausted organic gas is small, and the organic gas removal performance is greatly reduced.

【0021】3Nl/min以上の排気量で排気する方
法としては、高真空下で大きな排気量を有するルーツ型
真空ポンプを用いるなど排気量の大きい真空ポンプを用
いることもできるが、装置が大型化し好ましくない。該
容器空隙内のガスを排気するにあたり外気を取り込む吸
気口を設置することにより、低真空下で排気することが
可能となりトルクの小さな小型の減圧機で容易に3Nl
/min/m2 以上を排気をすることができる。
As a method of evacuating with an evacuating rate of 3 Nl / min or more, it is possible to use a vacuum pump with a large evacuating rate such as using a roots type vacuum pump having a large evacuating rate under high vacuum, but the apparatus becomes large in size. Not preferable. By installing an intake port that takes in outside air when exhausting the gas in the container void, it is possible to exhaust under a low vacuum, and it is easy to use a small pressure reducer with a small torque to generate 3 Nl.
The gas can be exhausted at a rate of / min / m 2 or more.

【0022】また外気と空気を交換する方法として、外
気を吸い込むのではなく例えばコンプレッサーのような
装置で外気を加圧し送り込む方法もあるが、該複合中空
糸膜のガス側の表面の境膜抵抗が大きくなること、また
中空糸が束状になって空気のチャンネリングが起こる危
険性があることなどから、外気を吸い込む方式が好まし
い。
As a method of exchanging air with the outside air, there is a method of pressurizing the outside air with a device such as a compressor instead of sucking the outside air and sending it. The method of sucking the outside air is preferable because of the large size and the danger that the hollow fibers are bundled to cause channeling of air.

【0023】さらにモジュールの水溶液を流すための導
出口に、該モジュールと同一構造のモジュールの水溶液
を流すための導入口を連結する方法として、単独したモ
ジュールをチューブ、ホース等で連結する他モジュール
端面をキャップ等により分割する方法等がある。またこ
のとき中空糸膜の水と接する側と反対側の多孔質層のガ
スが、3Nl/min/m2 以上で換気されるように連
結されていなければならない。
Further, as a method of connecting an outlet for flowing an aqueous solution of a module to an inlet for flowing an aqueous solution of a module having the same structure as that of the module, another module end surface for connecting a single module with a tube, a hose or the like is used. There is a method of dividing the same with a cap or the like. At this time, the gas in the porous layer on the side of the hollow fiber membrane opposite to the side in contact with water must be connected so as to be ventilated at 3 Nl / min / m 2 or more.

【0024】図1は、本発明の水中溶存有機物を除去装
置における揮発性有機物また水蒸気が蒸発する部の一態
様を示しており、例えば容器1は外気を吸い込む複数の
吸気口2及び中空糸膜4を挟んで吸気口2に対向した複
数の脱揮発性有機物及び水蒸気口3を有し、該容器の内
部には多数本の中空糸膜4が所定の間隔をおいてその両
端部がポッティング剤からなる隔壁5により支持固定さ
れるように配設されている。また容器1の両端には前記
ポッティング剤により支持固定された中空糸膜4と容器
1の内壁間に形成される空間部にそれぞれ連通する揮発
性有機物を含む水溶液の導入口6及び導出口7が設けて
ある。
FIG. 1 shows one mode of a portion where a volatile organic substance or water vapor is evaporated in a device for removing dissolved organic matter in water according to the present invention. For example, a container 1 has a plurality of intake ports 2 for sucking outside air. And a plurality of hollow fibers that face the intake port 2 across the hollow fiber membrane 4.
It has a number of devolatilizing organic substances and water vapor ports 3, and a large number of hollow fiber membranes 4 are supported and fixed inside the container at predetermined intervals by partition walls 5 made of potting agent. It is installed in. Further, at both ends of the container 1, there are provided an inlet port 6 and an outlet port 7 for an aqueous solution containing a volatile organic substance, which communicate with the hollow fiber membrane 4 supported and fixed by the potting agent and the space formed between the inner walls of the container 1, respectively. It is provided.

【0025】前記ポッティング剤により、前記多数本の
中空糸膜4,4,・・・・、4間に形成される空間と前
記揮発性有機物を含む水溶液の導入口6及び導出口7と
を遮断する隔壁を形成する。さらに、容器1の周囲の一
部には、前記中空糸膜4,4,・・・・,4間に形成さ
れる空間とを連通する脱揮発性有機物及び水蒸気口3は
減圧機(吸気ブロワー)8と接続されている。
The potting agent blocks the space formed between the large number of hollow fiber membranes 4, 4, ... 4 from the inlet 6 and outlet 7 of the aqueous solution containing the volatile organic substance. A partition wall is formed. Further, in a part of the periphery of the container 1, a devolatilizing organic substance and a water vapor port 3 which communicate with a space formed between the hollow fiber membranes 4, 4, ... ) 8 is connected.

【0026】図2は、同一構造のモジュールを2本、チ
ューブ、ホース等により連結した場合の図である。例え
ば容器1は、外気を吸い込む吸気口2及び脱揮発性有機
物及び水蒸気口3を有しており、モジュールaの脱揮発
性有機物及び水蒸気口3は、チューブ、ホース等連結部
9により、モジュールbの外気を吸い込む吸気口2と連
結されている。
FIG. 2 is a diagram showing a case where two modules having the same structure are connected by a tube, a hose and the like. For example, the container 1 has an intake port 2 for sucking the outside air and a devolatilizing organic substance and water vapor port 3, and the devolatilizing organic substance and vapor port 3 of the module a are connected to a module b by a connecting portion 9 such as a tube and a hose. Is connected to the intake port 2 that sucks in the outside air.

【0027】このとき外気は、外気を吸い込む吸気口2
を通り、容器1内に、所定の間隔をおいて配設された多
数本の複合中空糸膜4の外壁と、容器1の内壁からなる
空間を通り、連結部9を通じモジュールbの複合中空糸
膜4と容器1の内壁からなる空間に導かれ、さらにモジ
ュールbの脱揮発性有機物及び水蒸気口3に導かれる。
At this time, the outside air is the intake port 2 for sucking the outside air.
Through the outer wall of a large number of composite hollow fiber membranes 4 and the inner wall of the container 1, which are arranged at a predetermined interval in the container 1, and through the connecting portion 9 to the composite hollow fiber of the module b. It is introduced into the space formed by the membrane 4 and the inner wall of the container 1, and is further introduced into the devolatilizing organic substance and water vapor port 3 of the module b.

【0028】モジュールBの脱揮発性有機物及び水蒸気
口3は、減圧機(吸気ブロワー)8と接続されている。
また、複合中空糸膜4を支持固定するポッティング剤か
らなる隔壁5は容器1の両端に配設され、容器1の内壁
と複合中空糸膜4の外壁からなる空間と、揮発性有機物
を含む水溶液の導入口6あるいは導出口7と複合中空糸
膜4の内壁からなる空間の隔壁5となる。
The devolatilizing organic substance and water vapor port 3 of the module B are connected to a pressure reducer (intake blower) 8.
Further, partition walls 5 made of a potting agent for supporting and fixing the composite hollow fiber membrane 4 are arranged at both ends of the container 1, and a space composed of an inner wall of the container 1 and an outer wall of the composite hollow fiber membrane 4 and an aqueous solution containing a volatile organic substance. It becomes the partition wall 5 of the space consisting of the inlet 6 or outlet 7 and the inner wall of the composite hollow fiber membrane 4.

【0029】揮発性有機物を含む水溶液は、水溶液導入
口6より導入され、導入口6と隔壁5からなる空間Aに
導入され、複合中空糸膜4の内部を通過した空間Bに導
出される。空間Bに導出された水溶液はモジュールbの
空間Cに、チューブ、ホース等連結部10を介して導か
れる。空間Cに導かれた水溶液はモジュールbの容器1
内に配設された複合中空糸膜4の内部を通過し空間Dを
通って導出口7より導出される。
The aqueous solution containing a volatile organic substance is introduced from the aqueous solution inlet 6, introduced into the space A composed of the inlet 6 and the partition wall 5, and led out into the space B passing through the inside of the composite hollow fiber membrane 4. The aqueous solution led to the space B is led to the space C of the module b via the connecting portion 10 such as a tube and a hose. The aqueous solution introduced into the space C is stored in the container 1 of the module b.
It passes through the inside of the composite hollow fiber membrane 4 arranged inside, passes through the space D, and is led out from the outlet 7.

【0030】図3は、一本のモジュールの端面を分割す
るための隔壁を設けたキャップを用いた場合の例であ
る。外気を吸い込む吸入口2及び脱揮発性有機物及び水
蒸気口3を有する容器1と、脱揮発性有機物及び水蒸気
口3に接続された減圧機(吸気ブロワー)と、容器1の
内部に所定の間隔をおいて配設された多数本の複合中空
糸膜4と、複合中空糸膜4を支持固定しているポッティ
ング剤からなる隔壁5は、図1のそれぞれと同じ機能を
有するものである。
FIG. 3 shows an example in which a cap provided with a partition for dividing the end face of one module is used. A container 1 having a suction port 2 for sucking outside air and a devolatilizing organic substance and a steam port 3, a decompressor (intake blower) connected to the devolatilizing organic substance and a steam port 3, and a predetermined space inside the container 1. The large number of composite hollow fiber membranes 4 arranged in this way and the partition wall 5 made of a potting agent that supports and fixes the composite hollow fiber membranes 4 have the same functions as in FIG.

【0031】揮発性有機物を含む水溶液は導入口6よ
り、モジュール端面を分割するための隔壁12を有する
キャップ11により隔離された空間Eに導入される。空
間Eに導入された水溶液は、隔壁12により分割された
モジュール端面に存在する複合中空糸膜4の内部を通過
しモジュール端面と隔壁12を有するキャップ11によ
り隔離された空間Fに導かれ、さらに複合中空糸膜4の
内部を通過し隔離された空間Gに至る。
An aqueous solution containing a volatile organic substance is introduced from an introduction port 6 into a space E isolated by a cap 11 having a partition wall 12 for dividing the module end face. The aqueous solution introduced into the space E passes through the inside of the composite hollow fiber membrane 4 existing on the module end surface divided by the partition wall 12, is guided to the space F isolated by the cap 11 having the partition wall and the module end surface, and further, It passes through the inside of the composite hollow fiber membrane 4 and reaches the isolated space G.

【0032】この時空間Fのモジュール端面に存在する
複合中空糸膜4は、一方が空間Eに存在していれば水溶
液導出口となり、空間Gに存在していれば水溶液導入口
となる。このようにして空間Gに導入された水溶液は、
次に空間Hに導入され、さらに空間Iに至り水溶液導出
口7より導出される。
At this time, the composite hollow fiber membrane 4 existing on the module end surface of the space F becomes an aqueous solution outlet if one exists in the space E and becomes an aqueous solution inlet if one exists in the space G. The aqueous solution thus introduced into the space G is
Next, it is introduced into the space H, further reaches the space I, and is led out from the aqueous solution outlet 7.

【0033】本発明者らは、水中の溶存有機物除去装置
を用いて鋭意検討を行った結果、同一の膜面積であって
も中空糸が長くなれば、流速が速くなり、そのため境膜
抵抗が低下する事等により、除去効率が向上する事を発
見した。またモジュール形状が細長い形状から、短くな
ったため装置設計が容易になり、小型化が可能となっ
た。
The inventors of the present invention have made earnest studies using a device for removing dissolved organic matter in water, and as a result, even if the membrane area is the same, if the hollow fiber becomes long, the flow velocity becomes high, and therefore the membrane resistance is increased. It was discovered that the removal efficiency is improved due to the decrease. Moreover, since the module shape is shorter than the elongated shape, the device design becomes easier and the size can be reduced.

【0034】[0034]

【作用】本発明によれば揮発性有機物を含む水溶液は中
空糸膜の中空部(または外表面)を流れると同時に中空
糸膜の外表面(または中空部)が有機ガスをほとんど外
気の空気と交換されているため前記水中溶存揮発性有機
物はガスとなって中空糸膜を透過し外部に排気される。
According to the present invention, the aqueous solution containing a volatile organic substance flows through the hollow portion (or outer surface) of the hollow fiber membrane, and at the same time, the outer surface (or hollow portion) of the hollow fiber membrane converts the organic gas into almost ambient air. Since it is exchanged, the volatile organic matter dissolved in water becomes a gas, permeates the hollow fiber membrane, and is exhausted to the outside.

【0035】従って本発明の有機物除去装置を流れる水
には外気の侵入や薬品の投入がないので空気中の細菌や
薬物が混入することがない。また曝気法のように、大量
のガスを送り込む必要がないために省エネルギーであ
り、更に中空糸膜を用いるために水のガス側との接触面
積が大きく装置を小型化することが可能である。
Therefore, the water flowing through the organic substance removing apparatus of the present invention is free from the invasion of outside air and the introduction of chemicals, so that bacteria and drugs in the air are not mixed. Further, unlike the aeration method, it is not necessary to send in a large amount of gas, which saves energy, and since a hollow fiber membrane is used, the contact area with the gas side of water is large and the apparatus can be downsized.

【0036】更にモジュールサイズが、一本のモジュー
ルを数本に分割することにより細長いモジュールが短く
なったため、水中溶存揮発性有機物除去装置が家庭用と
して普及するに至るサイズを実現することが可能となっ
た。また長時間使用しても有機ハロゲン物質などの揮発
性有機物の除去性能は活性炭吸着のように低下せず安定
して揮発性有機物濃度の低い水を供給できる。
Furthermore, since the elongated module is shortened by dividing one module into several modules, it is possible to realize a module size of the water-dissolved volatile organic substance removal device which is widely used in households. became. Further, even if it is used for a long time, the removal performance of volatile organic substances such as organic halogen substances does not deteriorate unlike the adsorption of activated carbon, and water with a low concentration of volatile organic substances can be stably supplied.

【0037】[0037]

【実施例】以下、本発明を実施例に基づき具体的に説明
する。 参考例1 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して高密度ポリエチレン(三井石油化学(株)製 Hi
zex2200j)を、中間層に供給するポリマー素材
としてセグメント化ポリウレタン(Thermedic
s Ink.製 TecoflexEG80A)を用
い、吐出温度165℃、巻き取り速度180m/min
で紡糸した。得られた中空糸未延伸糸を100℃で1時
間アニール処理をした。次いでアニール処理糸を室温下
で80%延伸し、引き続き105℃に加熱された加熱炉
中で熱延伸倍率130%になるまで熱延伸を行って、複
合中空糸膜を得た。
EXAMPLES The present invention will be specifically described below based on examples. Reference Example 1 A high-density polyethylene (Mitsui Petrochemical Co., Ltd., Hi, manufactured by Mitsui Petrochemical Co., Ltd.) was used as a polymer material for supplying the inner layer and the outer layer to a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically.
segmented polyurethane (Thermedic)
s Ink. Manufactured by Tecoflex EG80A), discharge temperature 165 ° C., winding speed 180 m / min
Spun in. The obtained undrawn hollow fiber was annealed at 100 ° C. for 1 hour. Next, the annealed yarn was stretched by 80% at room temperature, and subsequently, was thermally stretched in a heating furnace heated to 105 ° C. until the thermal stretch ratio reached 130% to obtain a composite hollow fiber membrane.

【0038】得られた複合中空糸膜は、図4に示すよう
な最内層から順次多孔質層、均質層、多孔質層の三層構
造であり、内径が200μmで最内層から各々25μ
m,1μm,30μmの厚さを有する同心円状に配され
ていた。該複合中空糸膜4の多孔質層表面を走査型電子
顕微鏡により観察した結果、幅0.06〜0.09μ
m、長さ0.1〜0.5μmのスリット状の孔が形成さ
れていた。この複合中空糸膜4のクロロホルム透過速度
は、2×10-3(cm3 (STP)/cm2 ・sec/
cmHg)であった。
The resulting composite hollow fiber membrane has a three-layer structure of a porous layer, a homogeneous layer and a porous layer in order from the innermost layer as shown in FIG. 4, the inner diameter is 200 μm and each 25 μm from the innermost layer.
They were arranged in concentric circles having a thickness of m, 1 μm, and 30 μm. As a result of observing the surface of the porous layer of the composite hollow fiber membrane 4 with a scanning electron microscope, the width was 0.06 to 0.09 μm.
m, and a slit-shaped hole having a length of 0.1 to 0.5 μm was formed. The chloroform permeation rate of this composite hollow fiber membrane 4 was 2 × 10 −3 (cm 3 (STP) / cm 2 · sec /
cmHg).

【0039】実施例1 参考例1より得られた複合中空糸膜を用い、図1に示さ
れるモジュール形態をもち同一膜面積でありながら、複
合中空糸膜長の異なるモジュールを作製し、水中溶存揮
発性有機物としてクロロホルムを100ppb含んだ水
溶液を、0.2〜1.0l/min/m2 の流量で流
し、水溶液中に溶存するクロロホルムの除去率を次に示
す式より計算し評価した。
Example 1 Using the composite hollow fiber membrane obtained in Reference Example 1, modules having the module form shown in FIG. 1 and having the same membrane area but different composite hollow fiber membrane lengths were prepared and dissolved in water. An aqueous solution containing 100 ppb of chloroform as a volatile organic substance was caused to flow at a flow rate of 0.2 to 1.0 l / min / m 2 , and the removal rate of chloroform dissolved in the aqueous solution was calculated by the following formula and evaluated.

【0040】クロロホルム除去率(%)={1−(Ci
−Co)/Ci}×100 Ci;モジュールに入る水溶液中に含まれるクロロホル
ム濃度 Co;モジュールから出る水溶液中に含まれるクロロホ
ルム濃度
Chloroform removal rate (%) = {1- (Ci
−Co) / Ci} × 100 Ci; Chloroform concentration contained in the aqueous solution entering the module Co; Chloroform concentration contained in the aqueous solution leaving the module

【0041】各種モジュールを用いた評価結果を図5
に、参考例1により得られた複合中空糸膜を用い図1に
示されるモジュールを複合中空糸膜長を変化させ作製
し、各流量における除去率を示した。図5に示すよう
に、同一の膜面積であっても中空糸が長くなれば、除去
効率が向上することがわかる。本発明は、このような除
去効率が向上したモジュールを数本に分割することによ
り細長いモジュールを短くし、家庭用として普及するに
至るサイズを実現している。
The evaluation results using various modules are shown in FIG.
The composite hollow fiber membrane obtained in Reference Example 1 was used to fabricate the module shown in FIG. 1 by changing the length of the composite hollow fiber membrane, and the removal rate at each flow rate was shown. As shown in Figure 5
In addition, even if the membrane area is the same, if the hollow fiber becomes long, it can be removed.
It can be seen that the efficiency is improved. The present invention is such
By dividing the module with improved removal efficiency into several
To shorten the long and slender module and spread it for household use
Achieved in all sizes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用するモジュールの一例を示す概念
図。
FIG. 1 is a conceptual diagram showing an example of a module used in the present invention.

【図2】モジュールを2本結合した本発明の一例を示す
概念図。
FIG. 2 is a conceptual diagram showing an example of the present invention in which two modules are combined.

【図3】一本のモジュールの端面を分割するための隔壁
を設けた本発明の一例を示す概念図。
FIG. 3 is a conceptual diagram showing an example of the present invention in which a partition wall for dividing an end face of one module is provided.

【図4】複合多孔質膜の概念図。FIG. 4 is a conceptual diagram of a composite porous membrane.

【図5】クロロホルム含有水の流量でクロロホルム除去
率を示すグラフ。
FIG. 5 is a graph showing the removal rate of chloroform with the flow rate of water containing chloroform.

【符号の説明】[Explanation of symbols]

1 容器 2 外気を吸い込む吸気口 3 脱揮発性有機物及び水蒸気口 4 中空糸膜 5 ポッティング剤からなる隔壁 6 水溶液の導入口 7 水溶液の導出口 8 減圧機(吸気ブロアー) 9 上記2,3の連結部 10 上記6,7の連結部 11 モジュール端面分割キャップ 12 モジュール端面分割隔壁 1 container 2 Intake port that sucks in outside air 3 Volatile organic matter and water vapor port 4 hollow fiber membranes 5 Septa made of potting agent 6 Aqueous solution inlet 7 Water solution outlet 8 Pressure reducer (intake blower) 9 Connection part of the above 2 and 3 10 Connection part of 6 and 7 above 11 Module end face split cap 12 module end face partition wall

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−80983(JP,A) 特開 昭50−20989(JP,A) 特開 昭52−56795(JP,A) 特開 平3−169303(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/20 B01D 19/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-80983 (JP, A) JP-A-50-20989 (JP, A) JP-A-52-56795 (JP, A) JP-A-3- 169303 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 1/20 B01D 19/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器と該容器内に位置する中空糸膜と、
該中空糸膜の端部を支持し、中空糸膜の中空部に連通す
る空間と中空糸膜の外表面に連通する空間とを隔離する
隔壁とを有し、中空糸膜の中空部に揮発性の溶存有機物
を含む水溶液を流すための導入口と水の導出口及び中空
糸膜の外表面と容器の内壁面とで構成される空間内のガ
スを排気する複数の排気口と中空糸膜を挟んで排気口に
対向し、中空糸膜の外表面と容器の内壁面とで構成され
る空間内に外部空気を取り込む複数の吸気口とが設けら
れてなる水中溶存有機物除去モジュールaの水溶液を流
すための導出口と該モジュールaと同一構造のモジュー
ルbの水溶液を流すための導入口とを連結し、更にモジ
ュールaのガスを排気する排気口とモジュールbの空気
を取り込む吸気口をそれぞれ連結してなる水中の溶存有
機物除去装置。
1. A container and a hollow fiber membrane located in the container,
The hollow fiber membrane has a partition wall that supports the end portion of the hollow fiber membrane and separates a space communicating with the hollow portion of the hollow fiber membrane from a space communicating with the outer surface of the hollow fiber membrane. Inlet for flowing an aqueous solution containing a soluble organic substance, outlet for water, and a plurality of outlets for exhausting gas in a space formed by the outer surface of the hollow fiber membrane and the inner wall surface of the container, and the hollow fiber membrane Aqueous solution of water-dissolved organic matter removal module a, which is provided with a plurality of air intake ports for taking in external air into a space formed by the outer surface of the hollow fiber membrane and the inner wall surface of the container, facing the exhaust port across Is connected to an inlet for flowing an aqueous solution of the module b having the same structure as the module a, and an outlet for exhausting gas of the module a and an inlet for taking air of the module b are respectively connected. Dissolved organic matter removal device in water that is connected.
【請求項2】 水溶液中に溶存する有機物が揮発性の有
機ハロゲン物質であることを特徴とする請求項1記載の
水中の溶存有機物除去装置。
2. Organic matter dissolved in an aqueous solution is volatile.
The organic halogen substance according to claim 1, characterized in that
Dissolved organic matter removal device in water.
【請求項3】 均質層をその両側から多孔質層で挟み込
んだ三層構造の複合中空糸膜を用いて、水溶液と接する
多孔質層と反対側の多孔質層側のガスを中空糸膜面積あ
たり3Nl/min/m 2 以上の換気速度で容器外部の
空気と交換することにより、水溶液中の溶存有機物を除
去する請求項1記載の水中の溶存有機物除去装置。
3. A homogeneous layer is sandwiched by porous layers from both sides thereof.
Contact with an aqueous solution using a complex hollow fiber membrane with a three-layer structure
The gas on the porous layer side opposite to the porous layer side is fed to the hollow fiber membrane area.
Or outside the container at a ventilation rate of 3 Nl / min / m 2 or more.
Dissolved organic matter in the aqueous solution is removed by exchanging with air.
The device for removing dissolved organic matter in water according to claim 1, which is removed.
【請求項4】 複合中空糸膜の有機ハロゲン透過速度が
1×10 -3 (cm 3 (STP)/cm 2 /sec/cm
Hg)以上の透過性能を有する中空糸膜であることを特
徴とする請求項3記載の水中の溶存有機物除去装置。
4. The organic halogen permeation rate of the composite hollow fiber membrane is
1 × 10 -3 (cm 3 (STP) / cm 2 / sec / cm
It is a hollow fiber membrane with a permeation performance of Hg) or higher.
The dissolved organic matter removing device in water according to claim 3, which is used as a characteristic.
JP20539492A 1992-07-31 1992-07-31 Removal device for dissolved organic matter in water Expired - Lifetime JP3409863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20539492A JP3409863B2 (en) 1992-07-31 1992-07-31 Removal device for dissolved organic matter in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20539492A JP3409863B2 (en) 1992-07-31 1992-07-31 Removal device for dissolved organic matter in water

Publications (2)

Publication Number Publication Date
JPH0647371A JPH0647371A (en) 1994-02-22
JP3409863B2 true JP3409863B2 (en) 2003-05-26

Family

ID=16506102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20539492A Expired - Lifetime JP3409863B2 (en) 1992-07-31 1992-07-31 Removal device for dissolved organic matter in water

Country Status (1)

Country Link
JP (1) JP3409863B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007008950A2 (en) * 2005-07-13 2007-01-18 Systec, Llc Integrated degassing and debubbling apparatus

Also Published As

Publication number Publication date
JPH0647371A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
JP5869038B2 (en) Degassing liquid with membrane contactor
JP5633576B2 (en) Method for producing porous hollow fiber membrane
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
JP3685289B2 (en) Liquid degassing module
JPH06327905A (en) Degassing membrane module and its operation
JP2725311B2 (en) Hollow fiber membrane type gas-liquid contactor
JP2001149918A (en) Treating apparatus of wastewater including volatile organic substance and treating method thereof
US7332017B2 (en) Method and apparatus for separation of moisture from fluids
JP3409863B2 (en) Removal device for dissolved organic matter in water
JPH0768103A (en) Membrane deaerating method
JP3540417B2 (en) Removal method of dissolved gas in liquid
JP3283072B2 (en) Underwater dissolved organic matter removal equipment
JPH07116405A (en) Module for removing organic matter dissolved in water
JP3283068B2 (en) Underwater dissolved organic matter removal equipment
JP3540804B2 (en) Removal system for dissolved organic matter in water
JP2949732B2 (en) Degassing method using pervaporation membrane module
JPH0760234A (en) Apparatus for removal of dissolved organic substance in aqueous solution
JPH07710A (en) Operation of deaeration membrane module
JP3502402B2 (en) Removal system for dissolved organic matter in water
JPH0760235A (en) Apparatus for removal of organic substance dissolved in water
JPH05169051A (en) Method and device for removing organic matter dissolved in aqueous solution
JPH0330889A (en) Water purifier and water purifying method
JPH08243545A (en) Device for eliminating volatile organic substance dissolved in water
JPH07116649A (en) System for removing dissolved organic matter in aqueous solution
KR200284400Y1 (en) Oxygen generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10