JPH0330889A - Water purifier and water purifying method - Google Patents

Water purifier and water purifying method

Info

Publication number
JPH0330889A
JPH0330889A JP16251489A JP16251489A JPH0330889A JP H0330889 A JPH0330889 A JP H0330889A JP 16251489 A JP16251489 A JP 16251489A JP 16251489 A JP16251489 A JP 16251489A JP H0330889 A JPH0330889 A JP H0330889A
Authority
JP
Japan
Prior art keywords
water
diaphragm
hollow fiber
treated
water purifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16251489A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
穴沢 孝典
Toshio Kanbe
神戸 利夫
Masayoshi Takatake
正義 高武
Makoto Miyashita
真 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP16251489A priority Critical patent/JPH0330889A/en
Publication of JPH0330889A publication Critical patent/JPH0330889A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high deodorizing effect and high harmful matter removing effect by allowing water to be treated to branch from a raw water flow passage to supply the same to one surface of the diaphragm in a hollow fiber-like diaphragm type gas- liquid contact module which is hydrophobic and has au oxygen transmission rate of a specific value or more and removing harmful matter out of the system along with the water supplied to a water flow aspirator. CONSTITUTION:In a bellow fiber-like diaphragm type gas-liquid contact module 1 wherein a diaphragm is hydrophobic and an oxygen transmission rate is 1X10<-5>[cm<3>/cm<2>, sec, cmHg] or more, water to be treated is allowed to branch from a raw water flow passage to be supplied to one surface of the diaphragm and a part of the water to be treated is allowed to branch from the raw water flow passage to be supplied to the water flow aspirator 2 connected to the module 1 in order to reduce pressure on the other side of the diaphragm and the malodorous matter or harmful matter in the water to be treated is removed out of the water purifier system through the diaphragm along with the water supplied to the water flow aspirator 2. Therefore, excellent deodorizing capacity of water is developed and high removing capacity to the malodorous substance or volatile harmful matter apt to be mixed with tap water or ground water is provided. Maintenance cost is reduced as compared with an adsorbing type water purifier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、飲用水の脱臭方法並びに装置に関し、また水
中に含有する揮発性有害物質の除去方法及び装置に関し
、そしてまた、消耗部品の頻繁な交換や保守管理が不要
で、取扱の容易な隔膜気液接触式浄水器に関する。特に
、家庭用、飲食業向け、食品製造業向けなどの上水の浄
水器として好適である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for deodorizing drinking water, and also relates to a method and apparatus for removing volatile harmful substances contained in water, and also relates to a method and apparatus for deodorizing drinking water. This invention relates to a diaphragm gas-liquid contact type water purifier that does not require extensive replacement or maintenance and is easy to handle. It is particularly suitable as a water purifier for household use, the restaurant industry, the food manufacturing industry, and the like.

〔従来の技術〕[Conventional technology]

近年、都市への人口集中や、排水の富栄養化などにより
上水道の水質が悪化し、機具などの悪臭や塩素臭の増加
が甚だしい、一方、1億総グルメ化などといわれる様に
国民の食生活は豊になシ、飲用水についても所謂「おい
しい水」に対する要求が強まっている。また、上水への
塩素添加量の増加に伴う、発癌性と云われるトリハロメ
タンの増加や、地下水のトリクロロエチレン汚染が問題
になっておシ、「安心して飲める水」に対する要望が強
い。
In recent years, the quality of tap water has deteriorated due to population concentration in cities and eutrophication of wastewater, resulting in a significant increase in foul odors from equipment and chlorine smells. People's lives are becoming richer, and there is a growing demand for so-called "tasty water" when it comes to drinking water. Furthermore, with the increase in the amount of chlorine added to tap water, trihalomethanes, which are said to be carcinogenic, are increasing, and trichlorethylene contamination of underground water has become a problem, and there is a strong demand for ``water that is safe to drink.''

このような背景のもとに、家庭用浄水器の普及が目覚し
いが、現在発売されている家庭用浄水器は全て活性炭な
どによる吸着タイプか、吸着と濾過などを組み合わせた
タイプである。しかしながらこれらのタイプは、吸着剤
の寿命が短く、1ケ月程度で脱臭効果が無くなるため、
吸着剤の頻繁な交換が必要であシ、維持管理に手間がか
かる上、維持コストも高くつくという欠点を有していた
Against this background, the popularity of household water purifiers has been remarkable, but all household water purifiers currently on the market are either adsorption types using activated carbon or the like, or types that combine adsorption and filtration. However, these types have a short adsorbent life and lose their deodorizing effect after about a month.
This method requires frequent replacement of the adsorbent, is time-consuming to maintain, and has the drawbacks of high maintenance costs.

また、無味無臭の有害物質に対しては、気が付かないう
ちに除去能力が落ち、知らずに摂取を続ける危険があっ
た。
In addition, there was a risk that the ability to remove tasteless and odorless harmful substances would decrease without people noticing, and they would continue to ingest them without realizing it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、高い脱臭効果と有害物除去効果をもち、しか
も維持管理に手間がかからず、維持コストが安価であシ
、隔膜気液接触方式により脱臭が可能である浄水器を提
供することにある。
An object of the present invention is to provide a water purifier that has high deodorizing effects and harmful substance removal effects, requires no maintenance and management costs, is inexpensive, and is capable of deodorizing using a diaphragm gas-liquid contact method. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は、中空糸状隔膜を備え、その内側または
外側に被処理水を流す如くされ、該隔膜が疎水性で酸素
透過速度I X 10−5[国3/32.畠・Clal
IHgコ以上である中空糸状隔膜型気液接触モジュール
と、前記中空糸状隔膜に隔てられた被処理水の反対側を
減圧する如く、該モジュールに接続された水流アスピレ
ータと、被処理水を原水流路より個別に分流して、前記
モジ凰−ルと7スビレータに供給する如くそれぞれに接
続された管路とにより構成された、隔膜気液接触型浄水
器にあp、特にモジュールが、中空糸状隔膜が特徴的な
構造で組み込まれた上記浄水器にあル、また、中空糸状
隔膜型気液接触モジ為−ルにおける隔膜の一方の側に被
処理水を原水流路より分流して供給し、前記隔膜の他方
の側を減圧する如く前記モジュールに接続された水流ア
スピレータに1原水流路より被処理水の一部を分流して
供給し、隔膜を介して被処理水中の悪臭物質や有害物質
を水流アスピレータ供給水と共に浄水器系外に除去する
ことを特徴とする浄水方法にある。
That is, the present invention includes a hollow fiber-like diaphragm, through which water to be treated flows inside or outside, and the diaphragm is hydrophobic and has an oxygen permeation rate of I x 10-5 [National 3/32. Clal Hatake
A hollow fiber diaphragm type gas-liquid contact module having a pressure of IHg or higher, a water flow aspirator connected to the module so as to reduce the pressure on the opposite side of the water to be treated separated by the hollow fiber diaphragm, and a water flow aspirator connecting the water to be treated to the raw water flow. A diaphragm gas-liquid contact type water purifier is constructed of a diaphragm gas-liquid contact type water purifier, which is configured with pipes connected to the module tube and the seven subilators, each branched from the pipe separately, and in particular, the module is a hollow fiber-shaped water purifier. In the above-mentioned water purifier in which a diaphragm is incorporated in a characteristic structure, the water to be treated is supplied to one side of the diaphragm in a hollow fiber diaphragm type gas-liquid contact module by dividing it from the raw water flow path. , a part of the water to be treated is divided and supplied from one raw water flow path to a water aspirator connected to the module so as to reduce the pressure on the other side of the diaphragm, and odor substances and harmful substances in the water to be treated are removed through the diaphragm. A water purification method characterized in that substances are removed from the water purifier system together with water supplied by a water aspirator.

本発明を、その要部についてさらに詳しく論じると、本
発F!AK使用する中空糸状隔膜は、気体の透過速度の
代表値である酸素透過速度が、25℃においてI X 
16=、5 [3(8TP)/am”、 m*e 、a
*Hg ]以上であることが必要である。水からの除去
対象が酸素や炭酸ガスなどの気体の場合には、該膜の酸
素透過速度がI X 10−’[cflI3(STP)
/J # l@ e 、 cynHgコ程度であつても
実用的レベルの除去が可能であるが、本発明の目的には
不十分であjl)、lXl0”−5[m3(8TP)/
J、 1ull 、 mHg ]未満の場合には、揮発
性物質の除去速度が非実用的な程度に遅くなる。
Discussing the main parts of the present invention in more detail, the F! The hollow fiber diaphragm used in AK has an oxygen permeation rate, which is a representative value of gas permeation rate, at 25°C.
16=, 5 [3(8TP)/am”, m*e, a
*Hg] or more. When the object to be removed from water is a gas such as oxygen or carbon dioxide, the oxygen permeation rate of the membrane is I
/J#l@e, cynHgAlthough it is possible to remove at a practical level, it is insufficient for the purpose of the present inventionjl), lXl0''-5[m3(8TP)/
J, 1 ull, mHg], the removal rate of volatile substances becomes impractically slow.

又、本発明の膜は、疎水性であることが必要である。膜
が親水性である場合には、膜内部に水が浸入して悪臭物
質などの除去速度が激減する上、水が膜を買通透過する
ため、隔膜の用を成さない。
Furthermore, the membrane of the present invention needs to be hydrophobic. If the membrane is hydrophilic, water will enter the inside of the membrane, drastically reducing the rate of removal of malodorous substances, etc., and water will also permeate through the membrane, rendering the diaphragm useless.

即ち、本発明に用いる膜は、部分的には親水性部を含ん
で良いが、水が液体のまま透過すること無く、揮発性物
質のみが透過する膜である。このエラな材質としては、
例えばポリ4−メチルペンテン−1、ポリプロピレン、
ポリエチレン等のポリオレフィンや、ポリフッ化ビニリ
デン、ポリテトラ70ロエチレン、フッ化エチレン・ノ
臂−70ロアルキルピエルエーテル共重合体等のフッ素
系ポリマー Iリアセタール、ppo%PPs等のポリ
エーテルやイリチオエーテル、ポリ塩化ビニル、ポリ塩
化ビニリデン等の含塩素ポリマー、その他、ポリエーテ
ルケトン、ポリスルホン、ポリエーテルスルホンなどが
例示できる。
That is, although the membrane used in the present invention may partially contain a hydrophilic portion, it is a membrane through which only volatile substances can pass through without allowing water to pass therethrough in the form of a liquid. This unique material is
For example, poly4-methylpentene-1, polypropylene,
Polyolefins such as polyethylene, fluorine-based polymers such as polyvinylidene fluoride, polytetra-70-roethylene, fluorinated ethylene-no-70-roalkylpierrether copolymer, polyethers such as I-lyacetal, ppo%PPs, ilithioether, polyester, etc. Examples include chlorine-containing polymers such as vinyl chloride and polyvinylidene chloride, as well as polyetherketone, polysulfone, and polyethersulfone.

本発明に好ましい膜タイプは、まず、酸素/窒素の分離
係数が1.0以上の不均質膜または複合膜である。酸素
/窒素の分離係数とは、酸素透過速度を窒素透過速度で
除したものである。隔膜が連通孔型の多孔質膜であれば
、酸素/窒素の分離係数の値は0.935となる。酸素
/窒素の分離係数が1、0以上であることは、膜に非多
孔質層が存在することを意味する。隔膜を長期間使用し
ても水の漏洩が生じないという点で、多孔質膜よりネ均
質膜または複合膜が優れている。このような膜は、例え
ば特開昭59−196706、特開昭59−59209
、特開昭57−122906、特開昭63−27443
3などに記載の方法で製造することができる。
Preferred membrane types for the present invention are firstly heterogeneous membranes or composite membranes having an oxygen/nitrogen separation coefficient of 1.0 or more. The oxygen/nitrogen separation factor is the oxygen permeation rate divided by the nitrogen permeation rate. If the diaphragm is a porous membrane of continuous pore type, the value of the oxygen/nitrogen separation coefficient will be 0.935. An oxygen/nitrogen separation coefficient of 1.0 or more means that a non-porous layer is present in the membrane. Homogeneous membranes or composite membranes are superior to porous membranes in that water does not leak even after long-term use of the diaphragm. Such films are disclosed in, for example, Japanese Patent Application Laid-open No. 59-196706 and Japanese Patent Laid-open No. 59-59209.
, JP-A-57-122906, JP-A-63-27443
It can be manufactured by the method described in 3.

本発明に好ましいもう一つの膜のタイプは、連通孔型の
多孔質膜であシ、バブルポイントが1.0[kli’/
m2G ]以上のものである。ここで云うバブルポイン
トは、 ASTM、F −316に準じ、湿潤液として
、表面張力が17〜19 dyn/ct11  の低粘
度シリコンオイルを使用して測定した値である。バブル
ポイントが1.0 [kg/cfR2Gコ未満であると
、膜材質が疎水性であっても水が細孔内に侵入し易くな
る。膜が連通孔型の多孔質膜である場合には、膜の気体
透過速度は不均質膜や複合膜に比べて高いことが必要で
あシ、I X 10−’[m’ (STP)7’m”、
 as c 。
Another preferred membrane type for the present invention is a continuous pore type porous membrane, with a bubble point of 1.0 [kli'/
m2G ] or more. The bubble point referred to here is a value measured according to ASTM F-316 using a low viscosity silicone oil having a surface tension of 17 to 19 dyn/ct11 as a wetting liquid. If the bubble point is less than 1.0 kg/cfR2G, water will easily enter the pores even if the membrane material is hydrophobic. When the membrane is a porous membrane with open pores, the gas permeation rate of the membrane needs to be higher than that of a heterogeneous membrane or a composite membrane, and I x 10-'[m' (STP)7 'm'',
asc.

mHgコ以上であることが好ましい。このような膜は、
例えば特公昭56−52123、特公昭60−1484
4、特開昭56−56202などに記載されてrる方法
によって製造することができる。
It is preferable that it is more than mHg. Such a membrane is
For example, Special Publication No. 56-52123, Special Publication No. 60-1484
4. It can be manufactured by the method described in JP-A-56-56202 and the like.

本発明の膜の形状は中空糸状である。中空糸膜はフィル
ム状の膜に比べて装置体積当シの膜面積が大きく取れる
ため装置が小皺化できるなどの長所がある。中空糸の寸
法は、内部に水を流す場合(内部潅流型)には内径が3
0〜300μmが好ましく、80〜200μmが特に好
ましい。30μm未満では製造に困難をきたすし、30
0μmを越えると膜面積当シの除去効率が悪化する。中
空糸外部に水を流す場合(外部潅流)には、中空糸の外
径50〜1000μmが好ましい。50μm未満では製
造に困難を来たすし、1000μmt−越えると体積効
率が悪化する。
The membrane of the present invention has a hollow fiber shape. Compared to film-like membranes, hollow fiber membranes have the advantage of allowing a larger membrane area per device volume, allowing the device to have smaller wrinkles. The dimensions of the hollow fiber are as follows: When water is allowed to flow inside (internal perfusion type), the inner diameter is 3.
The thickness is preferably 0 to 300 μm, particularly preferably 80 to 200 μm. If it is less than 30 μm, it will be difficult to manufacture;
When it exceeds 0 μm, the removal efficiency per membrane area deteriorates. When water is allowed to flow outside the hollow fiber (external perfusion), the outer diameter of the hollow fiber is preferably 50 to 1000 μm. If it is less than 50 μm, it will be difficult to manufacture, and if it exceeds 1000 μm, the volumetric efficiency will deteriorate.

中空糸膜はハウジングに組み込んだ形状(モジュールと
称する)で用いる。中空糸内部に水を流す使用法(内部
潅流)の場合には、モジュールの形状は特に限定されず
、例えば第2図に示したような、人口腎臓に一般的な形
状のものが使用できる。即ち、原水は給水口(8)より
モジェールに導入され、樹脂で封止(6)された中空糸
膜の端面から束状に装填された中空糸膜(5)の内側に
接して流れ、排出口(9)より処理水となって排出され
る。一方、中空糸膜の外側とハウジング(7)の間の空
間を、吸引口(10)よりアスピレータにより減圧する
The hollow fiber membrane is used in the form of a housing (referred to as a module). In the case of a usage method in which water is allowed to flow inside the hollow fiber (internal perfusion), the shape of the module is not particularly limited, and for example, a shape commonly used for artificial kidneys as shown in FIG. 2 can be used. That is, raw water is introduced into the module from the water supply port (8), flows from the end face of the hollow fiber membrane sealed with resin (6) to the inside of the hollow fiber membranes (5) loaded in a bundle, and is discharged. The treated water is discharged from the outlet (9). On the other hand, the space between the outside of the hollow fiber membrane and the housing (7) is depressurized by an aspirator through the suction port (10).

中空糸外部に水を流す使用法(外部潅流)の場合には、
中空糸の充填ムラなどの原因による水の偏流(チャンネ
リング)が生じて除去効率が低下するのを防ぐために、
中空糸を、中空糸同士または他の糸条とによりて組織さ
れたシート状物の重畳体または収束体の状態、もしくは
中空糸同士または他の糸条とによって組織された3次元
編組体の状態でハウジング内に組み込むことが好ましい
In the case of usage in which water flows outside the hollow fiber (external perfusion),
In order to prevent the removal efficiency from decreasing due to uneven water flow (channeling) caused by uneven filling of hollow fibers, etc.
Hollow fibers are in the state of a stack or convergence of sheet-like objects organized by hollow fibers or with other threads, or in the state of a three-dimensional braided body organized by hollow fibers or with other threads. It is preferable that the housing be incorporated into the housing.

この具体例は、例えば特願昭63−255938、*m
昭63−257364.特開昭52−143974など
に記載されている。−例t−第3図に示す。給水口(8
)よりモジ具−ルに導入された原水は、第4図のように
簾状に編組され、積層して充填された中空糸膜(5)の
外表面に接して流れ、排出口(9)より処理水となりて
排出される。一方、中空糸膜の内側を、吸引口(10)
よりアスピレータにより減圧する。
A specific example of this is, for example, Japanese Patent Application No. 63-255938, *m
Showa 63-257364. It is described in Japanese Patent Application Laid-Open No. 52-143974. - Example t - Shown in FIG. Water supply port (8
) The raw water introduced into the module flows through the outer surface of the hollow fiber membrane (5), which is braided in a blind shape and packed in layers as shown in Fig. 4, and flows through the outlet (9). It is then discharged as treated water. On the other hand, connect the inside of the hollow fiber membrane to the suction port (10).
Reduce the pressure further using an aspirator.

本発明の浄水器の原理は、膜を介して水相と減圧された
気相とを接触させることによ多水中に含有される揮発性
の悪臭物質や有害物質を気相側へ除去するものである。
The principle of the water purifier of the present invention is to remove volatile malodorous substances and harmful substances contained in high-concentration water to the gas phase by bringing the water phase into contact with the reduced pressure gas phase through a membrane. It is.

本発明では、減圧手段として水流アスピレータを用いる
。一般に減圧手段としては、油回転真空ボンデ、ピスト
ン型真空ボンデ、水封式真空ボンデ、蒸気エジェクタな
どが知られているが、これらは高価でありたシ、オイル
交換や注油などの保守が必要であシ、浄水器が多く設置
される一般家庭や小規模飲食店には適当でない。
In the present invention, a water aspirator is used as the pressure reducing means. In general, oil rotary vacuum bonders, piston type vacuum bonders, water ring vacuum bonders, steam ejectors, etc. are known as pressure reduction means, but these are expensive and require maintenance such as oil changes and lubrication. It is not suitable for general households or small restaurants where many reeds and water purifiers are installed.

水流アスピレータは、排気量が小さい、減圧度に限界が
ある、多量の水流が必要である、などの欠点をもつため
、大規模な用途には不向きであるものの、家庭用機器と
しては、小型、軽量、安価、無振動、無電源、メンテナ
ンスフリーといった長所が最大限に発揮される。本発明
の隔jll[t−用いれば、アスピレータの排気量や減
圧度でも十分脱臭効果を発揮する。
Water aspirators have drawbacks such as a small displacement, limited depressurization, and the need for a large amount of water flow, so they are not suitable for large-scale applications, but as household equipment they are small and The advantages of being lightweight, inexpensive, vibration-free, power-free, and maintenance-free are maximized. If the spacing of the present invention is used, sufficient deodorizing effects can be achieved regardless of the displacement amount of the aspirator or the degree of pressure reduction.

また、水中から除去された悪臭物質や有害物質は、アス
ピレータの排水と共に排出されるため、空気中に撒き散
らされることがなく、一般の真空ポンプを用いる場合の
ように、これらの洗浄、トラップ、吸着操作などが不要
になる。このように、小型浄水器(は、アスピレータは
特に適した減圧手段である。
In addition, malodorous and harmful substances removed from the water are discharged together with the aspirator drainage, so they are not dispersed into the air and cannot be washed, trapped, or There is no need for suction operations. Thus, a small water purifier (aspirator) is a particularly suitable pressure reducing means.

アスピレータ駆動用の加圧水として、非処理給水を分流
して用いるのが本発明の一つの特徴である。即ち、一般
家庭における上水道水を浄化する場合には、アスピレー
タの駆動源としても、同じ上水道水を特別な加圧手段を
設けずにそのまま使用する。排出された水はリサイクル
せず、そのまま廃棄する。このようなアスピレータの使
用方法は非効率的である為、工業的には通常用いられな
いが、家庭用など小規模な浄水器には、水の損失より取
扱の容易さ、メンテナンスフリー、装置コストの低下な
どのメリットのほうが大きい。本発明の浄水器は、この
点から処理速度が毎分10リツトル以下の小型浄水器の
場合に特にメリットが大きい。
One feature of the present invention is that untreated feed water is divided and used as pressurized water for driving the aspirator. That is, when purifying tap water in a general household, the same tap water is used as a drive source for an aspirator without providing any special pressurizing means. The discharged water will not be recycled, but will be disposed of as is. This method of using an aspirator is inefficient, so it is not usually used industrially, but for small-scale water purifiers such as those for home use, it is easier to handle, maintenance-free, and equipment cost is better than water loss. The benefits, such as the reduction in From this point of view, the water purifier of the present invention is particularly advantageous in the case of a small water purifier with a processing speed of 10 liters per minute or less.

理論的考察によれば、本発明のように7スピレータ駆動
源として被処理給水を用いた場合には、アスピレータ部
分に於ても除去対象の揮発性物質が水中から気相へ移行
するため、膜の表裏における分圧差が生じず、膜を透過
して除去されないことが推定される。しかしながら、実
際には有効に除去されることは予想されざる驚くべきこ
とである。
According to theoretical considerations, when the feed water to be treated is used as the driving source for the 7 aspirators as in the present invention, the volatile substances to be removed in the aspirator part also transfer from water to the gas phase, so the membrane It is presumed that there is no difference in partial pressure between the front and back sides of the membrane, so that it is not removed through the membrane. However, it is unexpected and surprising that it is actually effectively removed.

本浄水器の構成は、原水を分岐し、一方は膜モジュール
(1)に導き、他方はアスピレータ(2)に供給する。
The configuration of this water purifier branches raw water, one of which is guided to a membrane module (1), and the other of which is supplied to an aspirator (2).

必要に応じ、シャットパルプ(3)又は/及び流量調節
バルブ(4)を設けることができる。本浄水器からの浄
化水出口は、蛇口、ホースその他、利用に適した形態と
することができる。
A shut pulp (3) and/or a flow rate regulating valve (4) can be provided as necessary. The purified water outlet from the water purifier can be in the form of a faucet, hose, or other suitable form for use.

本発明の浄水方法による供給水は飲用に適する物が適当
である。しかしながら本発明の方法による処理水を煮沸
などにより消毒する場合にはこのかぎシではない。
The water supplied by the water purification method of the present invention is suitably water that is suitable for drinking. However, this is not the case when water treated by the method of the present invention is sterilized by boiling or the like.

本発明で水から除去される対象物質は、揮発性物質であ
る。例えば、悪臭物質として、塩素、オゾン、2メチル
イソゲルネオール、ジオスミン、アミン類、アンモニア
等が挙げられる。これらの中で、上水の悪臭の主原因で
ある塩素臭が有効に除去できる点が本発明の特長である
。また有害物質として、例えばクロロホルムに代表され
るトリハロメタンや、トリクロロエチレン、テトラクロ
ロエチレン、1.1.1− )リクロロエタン、四塩化
炭素、クロ冒ピクリンなどを挙げることができる。これ
らの物質は吸着型の浄水器では除去効率が悪いものであ
りたが、本発明は、これらの物質も有効に除去すること
ができる。除去対象物はこれらの既知の物質に限らず、
物質名が同定されていない揮発性物質も含まれる。除去
され得る物質には、沸点が水より高いものも含まれるが
、本発明の装置により有効に除去されることは驚くべき
ことである。
The target substances removed from water in the present invention are volatile substances. For example, malodorous substances include chlorine, ozone, 2-methylisogelneol, diosmin, amines, ammonia, and the like. Among these, the feature of the present invention is that it can effectively remove chlorine odor, which is the main cause of bad odor in tap water. Examples of harmful substances include trihalomethane represented by chloroform, trichloroethylene, tetrachloroethylene, 1.1.1-)lichloroethane, carbon tetrachloride, and chloropicrin. Although adsorption-type water purifiers have poor removal efficiency for these substances, the present invention can also effectively remove these substances. The objects to be removed are not limited to these known substances.
It also includes volatile substances whose names have not been identified. It is surprising that the substances that can be removed, including those with boiling points higher than water, are effectively removed by the apparatus of the present invention.

隔膜式の気液接触装置により、上記のような揮発性物質
が水中よ)除去され得ることは、−見したところ容易に
推察され得るように見える。しかしながら、悪臭物質を
検知限界以下にまで除去するためには、多くの場合残留
濃度がppmオーダー以下、物によってはppt(10
)オーダー徨度にまで除去する必要がある。これまで知
られていた隔膜式気液接触装置においては、液体中の揮
発性溶存物、特に常温で液体である様な物質t ppm
オーダー以下の極めて低残留量にまで除去することは困
難な技術であ〕、このような用途に使用し得ることは知
られていなかった。本発明は、隔膜や装置の構成その他
の条件によっては、水のような比較的高粘度の液体から
、常温で液体であるような低蒸気圧物質をppmオーダ
ー以下にまで除去し得ることを見出し、完成させたもの
である。
At first glance, it seems easy to infer that volatile substances such as those mentioned above can be removed (from water) by means of a diaphragm-type gas-liquid contacting device. However, in order to remove malodorous substances to below the detection limit, in many cases the residual concentration is on the order of ppm or less, and depending on the substance, the residual concentration is on the order of ppm (10 ppm).
) must be removed to the order of magnitude. In the diaphragm type gas-liquid contact device known so far, volatile dissolved substances in the liquid, especially substances that are liquid at room temperature, t ppm
[It is a difficult technique to remove the residual amount to an extremely low level of less than an order of magnitude], and it was not known that it could be used for such purposes. The present invention has found that depending on the configuration of the diaphragm, the device, and other conditions, it is possible to remove low vapor pressure substances that are liquid at room temperature from a relatively high viscosity liquid such as water to a ppm order or less. , has been completed.

〔実施例〕〔Example〕

以下実施例により、本発明をさらに具体的に説明するが
、これらの例により本発明が限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

実施例1 メルトインデックス26のポリ4−メチルインテン−1
を用いて紡糸温度290℃、ドラフト200で溶融紡糸
を行い、得られた中空糸状中間体を、200℃、定長、
60秒の熱処理、25℃、延伸倍率(DR)1.2の冷
延伸、150℃、DR=1.5の熱延伸、および180
℃、D R= 0.9の熱固定を行うことにより、外径
252μm、内径200μmの中空糸膜を得た。この膜
を走査型電子顕微鏡観察したところ、中空糸膜の内外両
表面共に、直径的0.1μmの細孔が多数観測された。
Example 1 Poly4-methylinthene-1 with melt index 26
Melt spinning was performed using a spinning temperature of 290°C and a draft of 200, and the obtained hollow fiber intermediate was heated at 200°C with a fixed length
Heat treatment for 60 seconds, cold stretching at 25 °C, draw ratio (DR) 1.2, hot stretching at 150 °C, DR = 1.5, and 180 °C
By performing heat fixation at ℃ and D R = 0.9, a hollow fiber membrane having an outer diameter of 252 μm and an inner diameter of 200 μm was obtained. When this membrane was observed under a scanning electron microscope, many pores with a diameter of 0.1 μm were observed on both the inner and outer surfaces of the hollow fiber membrane.

水銀ポロシメータにより測定した平均孔径は、O,OS
μmであった。この膜の内側に、70%エタノール(水
溶液) f 0.5 kg/cts2G の圧力で導入
すると、エタノールは200 cP!1/m 、 mi
n  の速度で透過した。このことから、この膜は内外
表面を連結する細孔を有することが分かる。湿潤液とし
てシリコンオイ/l/ (PITRARCHSYSTK
MS社製、Plil −036、表面張力18 dyn
2に扁、粘度1.5eSt)をもちいて測定したバブル
ポイント(ASTM、F−316K !る)は、10 
kg7am2G (測定限界)以上であった。
The average pore diameter measured by a mercury porosimeter is O,OS
It was μm. When 70% ethanol (aqueous solution) is introduced into the inside of this membrane at a pressure of f 0.5 kg/cts2G, ethanol has a pressure of 200 cP! 1/m, mi
It penetrated at a rate of n. This shows that this membrane has pores that connect the inner and outer surfaces. Silicone oil/l/ as a wetting liquid (PITRACHSYSTK
Manufactured by MS, Plil-036, surface tension 18 dyn
The bubble point (ASTM, F-316K!) measured using a viscosity of 1.5eSt) is 10
kg7am2G (measurement limit) or more.

またこの膜の気体−気体系での気体透過速度(A8TM
、 F −316、Dry法による)は、酸素透過速度
(QO2) 3.20 X 10−3[m3(STP)
7cm”、 see、zHgコ、’Iil素透過素度過
速度2) 3.42 X 10−s[同単位]、酸素/
窒素の分離係数は0.936であった。
Also, the gas permeation rate of this membrane in the gas-gas system (A8TM
, F-316, by Dry method) has an oxygen permeation rate (QO2) of 3.20 x 10-3 [m3 (STP)
7cm", see, zHg, 'Iil elementary permeability overrate 2) 3.42 X 10-s [same unit], oxygen/
The nitrogen separation coefficient was 0.936.

この膜を第2図に示した形の、内表面積3.2 m2の
モジ為−ルに組み、第1図に示した浄水器を構成した。
This membrane was assembled into a module having an inner surface area of 3.2 m2 as shown in FIG. 2 to construct the water purifier shown in FIG.

アスピレータにはニシデヮラメラトリー製MA−2mを
用いた。この浄水器を、水圧3.5に9/m”GO上水
道に接続し、パルプ4にて処理水量が毎分0.5リツト
ルになるよう調節した。原水で感じられた塩素臭は処理
水では感じられず、DPD比色分析法によれば、原水の
塩素濃度0.7ppmが約0.2Ppmに減少していた
As an aspirator, MA-2m manufactured by Nishidewara Melatory was used. This water purifier was connected to a 9/m" GO water supply with a water pressure of 3.5, and the amount of treated water was adjusted to 0.5 liters per minute using Pulp 4.The chlorine odor felt in the raw water was According to the DPD colorimetric analysis method, the chlorine concentration in the raw water was reduced from 0.7 ppm to about 0.2 ppm.

実施例2 実施例1で用いたものと同じ浄水器を用い、原水として
、20pptの2−メチルイソゲルネオールを添加した
蒸留水をポンプにて5 kg/a112Gに加圧して用
いた。毎分0.51Jツトルで処理した水の官能試験の
結果は、原水の機具は、処理水では1/2になっていた
Example 2 Using the same water purifier as that used in Example 1, distilled water to which 20 ppt of 2-methylisogelneol was added was pressurized to 5 kg/a112G with a pump and used as raw water. The results of a sensory test on water treated at 0.51 J/min showed that the equipment used for raw water was halved for treated water.

実施例3 中空糸膜として、ポリプロピレン多孔質膜(1eリデラ
スチックス社、X−10、孔径0.2〜0.3X0.4
μm)を用いたほかは、実施例1と同様の試験を行った
。この膜の実測値は、外径268μm。
Example 3 As a hollow fiber membrane, a polypropylene porous membrane (1e Riderastics Co., Ltd., X-10, pore size 0.2 to 0.3 x 0.4
The same test as in Example 1 was conducted except that µm) was used. The actual measured value of this membrane is 268 μm in outer diameter.

内径2074m、バブルポイント3.5 kg/1ys
2G 、気体透過特性はQO2= 5.77 X 10
−’[cm’(STP)/!112.see。
Inner diameter 2074m, bubble point 3.5 kg/1ys
2G, gas permeation characteristics are QO2 = 5.77 x 10
-'[cm'(STP)/! 112. See.

mHg ] 、酸素/窒素分離係数は0.933であっ
た。
mHg], and the oxygen/nitrogen separation coefficient was 0.933.

原水で感じられた塩素臭は処理水ではほとんど感じられ
ず、 DPD比色分析の結果も、原水の塩素濃度0.7
 ppmが約0.2 ppmに減少していた。また実施
例2と同様の試験を行ったところ、原水で感じられた機
具は、処理水では1/2になっていた。
The chlorine odor that was felt in the raw water was hardly felt in the treated water, and the results of DPD colorimetric analysis showed that the chlorine concentration in the raw water was 0.7.
ppm had decreased to about 0.2 ppm. Further, when a test similar to that in Example 2 was conducted, the amount of equipment felt in the raw water was reduced to 1/2 in the treated water.

実施例4 実施例1で用いたものと同じ浄水器を用い、原水として
、クロロホルム及びトリクロ四エタンを添加した蒸留水
を、ボンデにて5 kg/an2Gに加圧して用いた。
Example 4 Using the same water purifier as that used in Example 1, distilled water to which chloroform and trichlorotethane had been added was used as raw water after being pressurized to 5 kg/an2G using a bonder.

原水及び毎分0.5!jツトルで処理した水をガスクロ
マドグツ7法(上水試験方法1985年版、岩本敬治編
集、日本水道協会発行、482頁)で測定し九ところ、
クロロホルムは、0.15ppmが0.03 ppmに
、トリクロロエチレンは0.19ppmが0.04 p
pmに減少していた。
Raw water and 0.5 per minute! Water treated with J-Tuttle was measured using the Gas Chroma Dogs 7 method (Water Test Methods 1985 edition, edited by Keiji Iwamoto, published by Japan Water Works Association, p. 482).
For chloroform, 0.15 ppm becomes 0.03 ppm, and for trichlorethylene, 0.19 ppm becomes 0.04 ppm.
It had decreased to pm.

実施例5 メルトインデックス26のポリ4−メチルペンテン−1
t−用いて紡糸温度290℃、ドラフト300で溶融紡
糸を行い、得られた中空糸状中間体を、210℃、延伸
倍率(DR)1.1、処理時間5秒の熱処理、25℃、
D R= 1.2の冷延伸、150℃、DR=1.4の
熱延伸、および180℃、D R= 0.9の熱固定を
行うことにより、外径213srH1内径167μmの
中空糸膜をえた。この膜を走査型電子顕微鏡観察したと
ころ、中空糸膜の内表面に、直径的0.1μmの細孔が
多数観測されたが外表面にはほとんど存在しなかった。
Example 5 Poly 4-methylpentene-1 with melt index 26
Melt spinning was carried out using T-T at a spinning temperature of 290°C and a draft of 300°C, and the obtained hollow fiber intermediate was heat-treated at 210°C, a draw ratio (DR) of 1.1, and a treatment time of 5 seconds at 25°C.
By performing cold stretching at DR = 1.2, hot stretching at 150 °C, DR = 1.4, and heat setting at 180 °C, DR = 0.9, a hollow fiber membrane with an outer diameter of 213srH1 and an inner diameter of 167 μm was obtained. I got it. When this membrane was observed under a scanning electron microscope, many pores with a diameter of 0.1 μm were observed on the inner surface of the hollow fiber membrane, but almost none were present on the outer surface.

この膜の内側に、70%エタノール(水溶液)を0.5
 kg/c!112Gの圧力で導入したが、エタノール
の透過は認められなかった。このことから、この膜は内
外表面を連結する細孔を有しないことが分かる。またこ
の膜の気体−気体系での気体透過速度は、酸素透過速度
 (O02)  1.5 1  X  1 0−5[m
3(STP)//−III2.sea、mHgコ、窒素
透過速度(QN2) 3.80 X 10−’ [同隼
位]、rIIX/窒素の分離係数は3.97であワた。
Add 0.5% of 70% ethanol (aqueous solution) to the inside of this membrane.
kg/c! Although it was introduced at a pressure of 112G, no permeation of ethanol was observed. This shows that this membrane does not have pores connecting the inner and outer surfaces. In addition, the gas permeation rate of this membrane in a gas-gas system is oxygen permeation rate (O02) 1.5 1 X 1 0-5 [m
3(STP)//-III2. sea, mHg, nitrogen permeation rate (QN2) 3.80 x 10-' [same level], rIIX/nitrogen separation coefficient was 3.97.

この膜を用いて、実施例1と同じ形の浄水器を構成し、
実施例1と同じ試験を行ったところ、DPD法では原水
の0.7 ppmが0.5 ppmまで減少したに留ま
ったが、原水で感じられた塩素臭は、処理水では感じら
れなかった。さらに、この膜を用いて実施例4と同じ試
験を行ったところ、クロロホルムは、0.15 ppm
が0.03 ppmに、トリクロロエチレンは0.19
 ppmが0.05 ppmに減少していた。
Using this membrane, a water purifier of the same type as in Example 1 was constructed,
When the same test as in Example 1 was conducted, the DPD method only reduced the 0.7 ppm in the raw water to 0.5 ppm, but the chlorine odor felt in the raw water was not felt in the treated water. Furthermore, when the same test as in Example 4 was conducted using this membrane, chloroform was found to be 0.15 ppm.
is 0.03 ppm, and trichlorethylene is 0.19 ppm.
ppm had decreased to 0.05 ppm.

実施例6 実施例5で用いたものと同じ中空糸膜を、第4図に示す
ように、30デニールのポリエステル糸を経糸として、
絡み織りにより、中空糸密度25本15I、経糸密度1
本/αの、第4図のような簾状シートを形成した。この
シートを多数の穴を設けたノ4イブに積層して巻き付け
、ハウジングに装填し、端部をIリウレタン樹脂により
封止することにより、第3図に示したモジュールとした
。モジー−ルの有効膜面積(中空糸外表面積)は4.2
 m2であった。この七ジ為−ルを用い、処理水量が毎
分1リツトルとなるようにパルプ4を調節した他は実施
例4と同様の試験をおこなった。その結果、原水中のク
ロロホルム(0,15ppm )は0.O2ppmに、
トリクロロエチレン(0,19ppm )は0.03p
pmtで除去された。また、実施例1と同じ試験を行っ
たところ、塩素濃度は0.7 ppmが0.5 ppm
に低下したに留まったが、官能試験では明らかな塩素臭
の減少が認められた。
Example 6 The same hollow fiber membrane as that used in Example 5 was used, as shown in FIG. 4, using 30 denier polyester yarn as the warp.
Due to entwined weaving, the hollow fiber density is 25 15I, and the warp density is 1.
A screen-like sheet of book/α as shown in FIG. 4 was formed. This sheet was laminated and wound around a nozzle having many holes, loaded into a housing, and the end portions were sealed with I-urethane resin to form the module shown in FIG. 3. The effective membrane area (hollow fiber outer surface area) of the module is 4.2
It was m2. The same test as in Example 4 was conducted using this 7-dimer, except that Pulp 4 was adjusted so that the amount of water treated was 1 liter per minute. As a result, chloroform (0.15 ppm) in the raw water was found to be 0. O2ppm,
Trichlorethylene (0.19ppm) is 0.03p
removed by pmt. In addition, when the same test as in Example 1 was conducted, the chlorine concentration was 0.7 ppm to 0.5 ppm.
However, a clear reduction in chlorine odor was observed in the sensory test.

〔発明の効果〕〔Effect of the invention〕

本発明は、吸着型の浄水器に比べて、トリハロメタンな
どの有害物質を有効に除去することが可能であシ、細菌
繁殖を防ぐために吸着剤に添加された銀イオンの溶出が
生じることもない。また、気が付かないうちに吸着剤の
除去能力が落ち、無味無臭の有害物質を知らずに摂取し
続けると云った危険性もない、このように、本発明は安
全面においてこれまでの浄水器に比べて優れたものであ
る。
Compared to adsorption-type water purifiers, the present invention can effectively remove harmful substances such as trihalomethane, and does not cause elution of silver ions added to the adsorbent to prevent bacterial growth. . In addition, there is no danger that the removal ability of the adsorbent will decrease without you noticing and you will continue to ingest tasteless and odorless harmful substances.In this way, the present invention is safer than conventional water purifiers. It is excellent.

そのため、本発明の浄水器は、水の脱臭に優れた性能を
もち、通常上水や地下水に混入しがちな悪臭物質や揮発
性の有害物質に対して高い除去能力を有する。
Therefore, the water purifier of the present invention has excellent performance in deodorizing water, and has a high ability to remove foul-smelling substances and volatile harmful substances that tend to be mixed into tap water or underground water.

本発明の浄水器はまた、吸着型の浄水器に比べて吸着剤
などの消耗部品を頻繁に取シ替える手間がかからず、消
耗部品の費用も不要であシ維持コストがかからないとい
った特長を持つ。また隔膜気液接触証の浄水器であυな
がら無電源で使用できる為、電力コストが不要、配線が
不要、電源のない場所でも使用可能というのも特長であ
る。
The water purifier of the present invention also has the advantage that, compared to adsorption type water purifiers, there is no need to frequently replace consumable parts such as adsorbents, there is no cost for consumable parts, and there is no maintenance cost. have In addition, although it is a diaphragm gas-liquid contact water purifier, it can be used without a power source, so there are no electricity costs, no wiring, and it can be used in places without a power source.

これらの特長により、本発明の浄水器は、特に家庭用の
浄水器や飲食店向きの浄水器として好適なものである。
Due to these features, the water purifier of the present invention is particularly suitable as a water purifier for home use or a water purifier for restaurants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すもので、浄水器の構成を
示す概念図、第2図は実施例で用いる内部潅流型の膜モ
ジュールの、部分縦断面正面図、第3図は実施例で用い
る外部潅流型の膜モジュールの、縦断面正面図、第4図
は中空糸シートの形状の概念図である。 図中の符号は以下のとおシである。 l・・・膜モジュール、2・・・アスピレータ、3・・
・・々ルプ、4・・・流量調節バルブ、5・・・中空糸
膜、6・・・樹脂封止部、7・・・ハウジング、8・・
・給水口、9・・・処理水排出口、10・・・吸引口、
11・・・多孔・ぐイブ、12・・・網、13・・・経
Fig. 1 shows an embodiment of the present invention, and is a conceptual diagram showing the configuration of a water purifier, Fig. 2 is a partial vertical cross-sectional front view of an internal perfusion type membrane module used in the embodiment, and Fig. 3 is an implementation example. FIG. 4, a vertical cross-sectional front view of the external perfusion type membrane module used in the example, is a conceptual diagram of the shape of the hollow fiber sheet. The symbols in the figure are as follows. l... Membrane module, 2... Aspirator, 3...
. . . Lup, 4 . . Flow rate adjustment valve, 5 . . Hollow fiber membrane, 6 . . Resin sealing part, 7 . . Housing, 8 .
・Water supply port, 9... Treated water outlet, 10... Suction port,
11... Porous/Guib, 12... Net, 13... Warp

Claims (1)

【特許請求の範囲】 1、中空糸状隔膜を備え、その内側または外側に被処理
水を流す如くされ、該隔膜が疎水性で酸素透過速度1×
10^−5[cm^3/cm^2、sec,cmHg]
以上である中空糸状隔膜型気液接触モジュールと、前記
中空糸状隔膜に隔てられた被処理水の反対側を減圧する
如く、該モジュールに接続された水流アスピレータと、
被処理水を原水流路より個別に分流して、前記モジュー
ルとアスピレータに供給する如くそれぞれに接続された
管路とにより構成された隔膜気液接触型浄水器。 2、中空糸状隔膜が、中空糸状隔膜同士または他の糸条
とによって組織されたシート状物の重畳体または収束体
の状態、もしくは中空糸状隔膜同士または他の糸条とに
よって組織された3次元編組体の状態でハウジング内に
組み込まれた請求項1記載の浄水器。 3、被処理水が中空糸状隔膜の内側を流れる内部潅流型
である請求項1記載の浄水器。 4、被処理水が中空糸状隔膜の外側を流れる外部潅流型
である請求項1記載の浄水器。 5、中空糸状隔膜がバブルポイント1.0[kg/cm
^2G]以上である連通孔型の多孔質膜である請求項1
、2、3または4記載の浄水器。 6、中空糸状隔膜が酸素/窒素の分離系数が1.0以上
である不均質膜または複合膜である請求項1、2、3ま
たは4記載の浄水器。 7、中空糸状隔膜型気液接触モジュールにおける隔膜の
一方の側に被処理水を原水流路より分流して供給し、前
記隔膜の他方の側を減圧する如く前記モジュールに接続
された水流アスピレータに、原水流路より被処理水の一
部を分流して供給し、隔膜を介して被処理水中の悪臭物
質や有害物質を水流アスピレータ供給水と共に浄水器系
外に除去することを特徴とする浄水方法。
[Claims] 1. A hollow fiber-like diaphragm is provided, the water to be treated is allowed to flow inside or outside the diaphragm, and the diaphragm is hydrophobic and has an oxygen permeation rate of 1×.
10^-5 [cm^3/cm^2, sec, cmHg]
The above-mentioned hollow fiber diaphragm type gas-liquid contact module; a water aspirator connected to the module so as to reduce the pressure on the opposite side of the water to be treated separated by the hollow fiber diaphragm;
A diaphragm gas-liquid contact type water purifier configured by a diaphragm gas-liquid contact type water purifier, which separates the water to be treated from a raw water flow path and includes pipes connected to the module and the aspirator. 2. Hollow fiber diaphragms are in the state of a stack or convergence of sheet-like materials organized by hollow fiber diaphragms or with other threads, or in a three-dimensional state in which hollow fiber diaphragms are organized with each other or with other threads. The water purifier according to claim 1, which is incorporated into the housing in the form of a braided body. 3. The water purifier according to claim 1, wherein the water purifier is of an internal perfusion type in which the water to be treated flows inside the hollow fiber diaphragm. 4. The water purifier according to claim 1, wherein the water purifier is of an external perfusion type in which the water to be treated flows outside the hollow fiber diaphragm. 5. Hollow fiber diaphragm has a bubble point of 1.0 [kg/cm
Claim 1, which is a continuous pore type porous membrane having a diameter of ^2G] or more.
The water purifier according to , 2, 3 or 4. 6. The water purifier according to claim 1, 2, 3 or 4, wherein the hollow fiber diaphragm is a heterogeneous membrane or a composite membrane having an oxygen/nitrogen separation coefficient of 1.0 or more. 7. In a hollow fiber diaphragm type gas-liquid contact module, the water to be treated is supplied by branching from the raw water flow path to one side of the diaphragm, and the water flow aspirator connected to the module is depressurized on the other side of the diaphragm. , water purification characterized by supplying a part of the water to be treated by dividing it from the raw water flow path, and removing malodorous substances and harmful substances in the water to be treated through a diaphragm to the outside of the water purifier system together with the water supplied to the water flow aspirator. Method.
JP16251489A 1989-06-27 1989-06-27 Water purifier and water purifying method Pending JPH0330889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16251489A JPH0330889A (en) 1989-06-27 1989-06-27 Water purifier and water purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16251489A JPH0330889A (en) 1989-06-27 1989-06-27 Water purifier and water purifying method

Publications (1)

Publication Number Publication Date
JPH0330889A true JPH0330889A (en) 1991-02-08

Family

ID=15756070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16251489A Pending JPH0330889A (en) 1989-06-27 1989-06-27 Water purifier and water purifying method

Country Status (1)

Country Link
JP (1) JPH0330889A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698161A (en) * 1996-08-26 1997-12-16 Michigan Critical Care Consultants, Inc. Hollow, multi-dimensional array membrane
US6797212B2 (en) 2002-04-18 2004-09-28 Medarray, Inc. Method for forming hollow fibers
CN102580542A (en) * 2011-01-11 2012-07-18 旭化成医疗株式会社 Filtering assembly
US8557159B2 (en) 2009-11-08 2013-10-15 Medarray, Inc. Method for forming hollow fiber bundles
US8580184B2 (en) 2010-06-21 2013-11-12 Jean Patrick Montoya Hollow fiber mat with soluble warps and method of making hollow fiber bundles
US9925730B2 (en) 2009-11-08 2018-03-27 Medarray, Inc. Method for forming hollow fiber bundles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698161A (en) * 1996-08-26 1997-12-16 Michigan Critical Care Consultants, Inc. Hollow, multi-dimensional array membrane
WO1998008591A1 (en) * 1996-08-26 1998-03-05 Michigan Critical Care Consultants, Inc. Hollow, multi-dimensional array membrane
US6797212B2 (en) 2002-04-18 2004-09-28 Medarray, Inc. Method for forming hollow fibers
USRE41870E1 (en) * 2002-04-18 2010-10-26 Medarray, Inc. Method for forming hollow fibers
US8557159B2 (en) 2009-11-08 2013-10-15 Medarray, Inc. Method for forming hollow fiber bundles
US9925730B2 (en) 2009-11-08 2018-03-27 Medarray, Inc. Method for forming hollow fiber bundles
US8580184B2 (en) 2010-06-21 2013-11-12 Jean Patrick Montoya Hollow fiber mat with soluble warps and method of making hollow fiber bundles
CN102580542A (en) * 2011-01-11 2012-07-18 旭化成医疗株式会社 Filtering assembly
CN102580542B (en) * 2011-01-11 2015-02-25 旭化成医疗株式会社 Filtering assembly

Similar Documents

Publication Publication Date Title
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
JP5395166B2 (en) Wafer-shaped hollow fiber module for serial use in piping systems
JPH11319501A (en) Hollow fiber membrane module and use applications thereof
JPH06327905A (en) Degassing membrane module and its operation
JPH119902A (en) Module for liquid deaeration
JP2000084369A (en) Hallow fiber membrane type gas-liquid gas exchanging device and gas exchange
JPH0330889A (en) Water purifier and water purifying method
JPH11114381A (en) Spiral type membrane element
JPH05208120A (en) Spiral separation membrane element
JPH0768103A (en) Membrane deaerating method
JPH06335623A (en) Deaerating film and deaerating method
JPH06134210A (en) Deaeration film module
JPH09299947A (en) Reverse osmotic membrane spiral element and treating system using the same
JPH02303587A (en) Device and method for cleaning water
JPH0380983A (en) Gas-liquid contact type water purifying apparatus and method
JPH0386217A (en) Water purifier
JPH07313972A (en) Portable water purifier and usage of the same
JPH03118802A (en) Deoxidizing device
JP2000084375A (en) Hollow fiber membrane module and treatment of water
JPH0632239Y2 (en) Small boiler with separation membrane treatment device
JPH10296005A (en) Method for ultradeaeration of liquid and deaeration apparatus thereof
JP2949732B2 (en) Degassing method using pervaporation membrane module
KR200284400Y1 (en) Oxygen generator
CN213294795U (en) Water purification RO membrane
JPH04156903A (en) Degasification membrane device