JP2002363625A - 表面被覆還元鉄、その製造方法および溶解方法 - Google Patents

表面被覆還元鉄、その製造方法および溶解方法

Info

Publication number
JP2002363625A
JP2002363625A JP2001169828A JP2001169828A JP2002363625A JP 2002363625 A JP2002363625 A JP 2002363625A JP 2001169828 A JP2001169828 A JP 2001169828A JP 2001169828 A JP2001169828 A JP 2001169828A JP 2002363625 A JP2002363625 A JP 2002363625A
Authority
JP
Japan
Prior art keywords
reduced iron
coated
tar
iron
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001169828A
Other languages
English (en)
Inventor
Naoto Watanabe
直人 渡辺
Masahiro Shimizu
正宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001169828A priority Critical patent/JP2002363625A/ja
Priority to US10/160,004 priority patent/US20020178864A1/en
Publication of JP2002363625A publication Critical patent/JP2002363625A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture Of Iron (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

(57)【要約】 【課題】 簡単な表面処理で確実かつ長期的に還元鉄の
再酸化防止を図ることのできる表面被覆還元鉄およびそ
の製造方法を提供する。 【解決手段】 還元炉1で製造された還元鉄Aを250
℃以下に冷却3し、この還元鉄Aを、石油系天然ター
ル、コールタール、ピッチ、アスファルト、石炭液化
油、石油精製残渣油等の炭化水素系物質60〜80質量
%と、界面活性剤0.1〜1質量%と、残部実質的に水
とからなるタール乳剤B中に浸漬して還元鉄A表面にタ
ール乳剤Bを塗布した後、このタール乳剤B中の水分を
乾燥・除去5して還元鉄A表面に均一で緻密な炭化水素
系物質の被膜を形成する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば直接還元法
等によって製造された還元鉄を保管しあるいは搬送する
際における再酸化を防止するとともに、還元鉄を効率的
に溶解する技術に関するものである。
【0002】
【従来の技術】直接還元法によって製造される還元鉄
(スポンジ鉄)には、直接還元工程で形成される開気孔
が無数に存在しており、これを大気雰囲気中に長期間曝
すとその開気孔内表面が容易に酸化(再酸化)を受け
る。この再酸化された還元鉄を鉄原料として溶融する
と、溶湯表面には高酸化鉄含有スラグが生成して鉄歩留
りが悪くなるほか、スポンジ鉄などのように無数の開気
孔を有するものでは、加熱溶解時に溶湯が突沸現象を起
こしたり、還元鉄中の酸化鉄やスラグ中酸化鉄の還元に
より炭素分が消費されて溶湯中の炭素濃度が不安定にな
るという問題が生じ、さらにはスラグ中の酸化鉄濃度が
高くなるとスラグの粘性が低下し、溶解炉内張り耐火物
の損失も大きくなるなど、さまざまな障害が起こってく
る。
【0003】そこで、こうした還元鉄の再酸化を防止す
る方法として種々の方法が提案されている。例えば、適
量の酸素を含む媒体によって還元鉄表面を処理して表面
に緻密な酸化物よりなる不動態被膜を形成する方法(特
開平50−116343号)、黒鉛をアルコールや水で
希釈した分散液を還元鉄表面に塗布して酸化を防止する
方法(特開昭52−107248号)、さらには、Ca
Oと鉄酸化物を還元鉄表面に付着させ、CaOの水和物
によって被覆する方法(特公昭60−17803号、同
58−3003号、同60−15681号等)、空気や
窒素にアンモニアを添加して還元鉄に接触させる方法
(特開昭47−5806号)、アルカリ金属珪酸塩の水
溶液に浸漬して加熱乾燥する方法(特公昭59−171
64号)、水硬性セメントを塗布する方法(特公昭60
−12404号)、クロム酸塩を塗布する方法(特開昭
55−128515号)、溶融塩中で冷却させる方法
(特開昭52−123312号)、さらには、還元後の
排出温度を制御することによって赤熱発火を防止する方
法(特開昭58−71315号)、還元鉄をダイスで熱
間プレス成形(ホットブリケッティング)して比表面積
を小さくし酸化を抑制する方法(特開昭59−1702
13号、同52−78610号等)、連続圧延すること
により酸化を抑える方法(特開昭55−119116
号)などが提案されている。
【0004】しかしながら、上記従来法のうち、熱間プ
レス(ホットブリケッティング)法以外の方法はその効
果が不安定であり、船舶輸送や長期保存に十分耐えるも
のとはいえず、また熱間プレス(ホットブリケッティン
グ)法では、該方法の遂行に専用設備を必要とし、しか
も800〜900℃といった高温加熱処理が必要となる
ため設備の損耗が激しく、維持費を含めた設備面や操業
面の問題がある。
【0005】また、常温で再酸化防止用の保護被膜を形
成する方法では、CaOや仮焼石灰、セメント、水ガラ
ス、黒鉛等の無機酸化物を使用する方法が採用されてお
り、このうち水ガラスや黒鉛を用いる方法以外は、水和
反応を利用して表面に強固な酸化防止被膜を形成すると
ともにアルカリ性環境を維持することによって鉄の酸化
抑制を図るものであるが、水ガラスは吸湿性が強く、し
かも大気中の二酸化炭素と反応して中和するため効力の
持続性に問題がある。
【0006】また黒鉛を用いる方法は、還元鉄の表面を
緻密な黒鉛被膜によって覆うことにより酸素の侵入を阻
止して酸化防止を図るものであるが、実際には黒鉛によ
って緻密な被膜を形成することは非常に困難であり、被
膜には少なからず隙間ができるため満足のいく酸化防止
効果を得ることはできない。
【0007】なお、上記黒鉛被膜は導電性であるため還
元鉄の溶解に電気炉を用いた場合でも支障なく溶解させ
ることができるが、その他の無機質被膜法を採用したも
のでは、該被膜が不導電性であるため還元鉄の溶解反応
を著しく阻害し、溶解効率を低下させるという難点も指
摘される。
【0008】これらを解決する手段として、本出願人
は、ピッチ、アスファルト、コールタール、石炭液化
油、石炭残渣油等の有機質造膜物質で還元鉄を被覆する
方法(特開平8−260172号)を提案した。ところ
が、これらはそのほとんどが常温で高粘性の物質であ
り、そのままあるいは適度に加熱したとしても還元鉄の
表面に薄く均一に塗布することは困難であるので、通常
はこれを適当な溶媒に溶解もしくは分散させて粘度を低
下させてから含浸法やスプレー法等の方法で還元鉄の表
面に塗布し、減圧乾燥や加熱乾燥などにより溶媒を揮発
除去して酸化防止被膜を形成する必要があった。これら
の物質は溶媒に溶解しても依然として粘性が高く、完全
には還元鉄表面に均一な被膜を形成することができず十
分に再酸化を防止することができなかった。さらには、
溶媒コストが高いことおよび安全性の確保のため、揮発
除去した溶媒を回収する設備を必要とすることから設備
コストが上昇する問題もあった。
【0009】
【発明が解決しようとする課題】そこで本発明の目的
は、熱間プレス(ホットブリケッティング)法に指摘さ
れる設備面や操業面の問題を解決するとともに、表面被
覆法に指摘される酸化防止効果や持続性の不足を改善
し、確実かつ長期的な酸化防止効果を備えた表面被覆還
元鉄を提供し、また簡単な表面処理で確実かつ長期的に
還元鉄の再酸化防止を図ることのできる方法を確立し、
さらにこのような表面被覆還元鉄を効率的に溶解する方
法を提供することにある。
【0010】
【課題を解決するための手段】請求項1の発明は、還元
鉄の表面が、タール乳剤によって被覆されたものである
ことを特徴とする表面被覆還元鉄である。
【0011】請求項2の発明は、前記タール乳剤が、石
油系天然タール、コールタール、ピッチ、アスファル
ト、石炭液化油、石油精製残渣油よりなる群から選ばれ
る炭化水素系物質の1種又は2種以上のものと、界面活
性剤と、水とを含むものである請求項1に記載の表面被
覆還元鉄である。
【0012】請求項3の発明は、前記タール乳剤が、前
記炭化水素系物質60〜80質量%、前記界面活性剤
0.1〜1質量%、及び残部実質的に水からなるもので
ある請求項2に記載の表面被覆還元鉄である。
【0013】請求項4の発明は、還元鉄の表面を、ター
ル乳剤によって被覆することを特徴とする表面被覆還元
鉄の製造方法である。
【0014】請求項5の発明は、前記タール乳剤が、石
油系天然タール、コールタール、ピッチ、アスファル
ト、石炭液化油、石油精製残渣油よりなる群から選ばれ
る炭化水素系物質の1種又は2種以上のものと、界面活
性剤と、水とを含むものである請求項4に記載の表面被
覆還元鉄の製造方法である。
【0015】請求項6の発明は、前記タール乳剤が、前
記炭化水素系物質60〜80質量%、前記界面活性剤
0.1〜1質量%、及び残部実質的に水からなるもので
ある請求項5に記載の表面被覆還元鉄の製造方法であ
る。
【0016】請求項7の発明は、還元鉄が、水素及び/
又は一酸化炭素を含有するガス状還元媒体、又は炭素質
物質を含む固体還元剤により還元されて製造されたもの
である請求項4〜6のいずれかに記載の表面被覆還元鉄
の製造方法である。
【0017】請求項8の発明は、還元鉄の温度が250
℃以下において前記被覆処理を行う請求項4〜7のいず
れかに記載の表面被覆還元鉄の製造方法である。
【0018】請求項9の発明は、タール乳剤によって表
面が被覆された表面被覆還元鉄であって、粉状、及び/
又は小片状のものを含む表面被覆還元鉄を、精錬炉内で
溶解して溶鉄を製造するに際し、前記粉状及び/又は小
片状のものを、当該精錬炉内に形成された鉄浴中及び/
又は当該鉄浴上に形成されたスラグ中に吹き込んで溶解
することを特徴とする表面被覆還元鉄の溶解方法であ
る。
【0019】請求項10の発明は、前記表面被覆還元鉄
の吹込みをガス状媒体により行う請求項9に記載の表面
被覆還元鉄の溶解方法である。 〔作用〕上記のように本発明では、還元鉄の酸化を防止
するため、その表面をタール乳剤(エマルジョン化ター
ル)で被覆するところに特徴を有している。
【0020】タール乳剤とは、石油系天然タール、コー
ルタール、ピッチ、アスファルト、石炭液化油、石油精
製残渣油などの炭化水素系物質に少量の界面活性剤と適
量の水とを加えて懸濁化(エマルジョン化)したもので
あり、該炭化水素系物質そのものに比べ大幅に粘度を低
下させたものである。したがってタール乳剤は、前述し
た黒鉛や無機物質に比べると薄肉であっても均質で欠陥
のない保護被膜を形成し、しかもスポンジ状還元鉄等に
見られる多数の開気孔内にまで侵入してその開気孔壁面
に被膜を形成し、該還元鉄の表面酸化を極めて効果的に
防止する。また前述した有機質造膜物質を用いる場合に
は溶媒に溶解もしくは分散させて粘度を低下させる必要
があったが、タール乳剤では界面活性剤と水を用いるの
で取り扱いが大幅に容易になるとともにコストも大幅に
低減される。タール乳剤としては、上記炭化水素系物質
のうち1種のみを使用し得る他、必要により2種以上を
併用することも可能である。またタール乳剤の粘度を低
下させる一方これら炭化水素系物質濃度をある程度高く
維持しつつエマルジョン化するため、炭化水素系物質6
0〜80質量%、界面活性剤0.1〜1質量%、及び残
部実質的に水からなるものを用いることが好ましい。
【0021】タール乳剤により被覆される還元鉄は、そ
の製造法により限定されるものではなく、シャフト還元
炉、固定層還元炉、流動層還元炉などで水素及び/又は
一酸化炭素を含有するガス状還元媒体により還元された
ものであっても、回転炉床還元炉やロータリーキルン還
元炉などで炭素質物質を含む固体還元剤により還元され
たものであってもよい。またその還元鉄の形状は特に限
定されるものではなく、ペレット状、塊状、板状など還
元された際のそのままの形状であってもよいし、還元後
熱間プレス(ホットブリケッティング)された団塊状で
あってもよいし、還元の際もしくは還元後のハンドリン
グにより生じた粉状、小片状(チップ状)などいずれの
形状であってもよく、またこれらのうち2種以上の混合
物であってもかまわない。
【0022】タール乳剤を還元鉄表面に塗布する方法と
しては、タール乳剤は常温においても十分粘度が低くそ
のまま用いても還元鉄の表面に薄く均一に塗布できるの
で、タール乳剤中に還元鉄を浸漬する方法や、還元鉄表
面にタール乳剤を散布する方法等通常用いられる任意の
方法により行えばよい。そしてタール乳剤塗布後、必要
により加熱乾燥、天日乾燥等によりタール乳剤中の水分
を除去すればよい。
【0023】タール乳剤を塗布する際の還元鉄の温度は
250℃以下とすることが好ましく、100〜250℃
とすることがさらに好ましい。還元鉄の温度を250℃
以下とすることにより、塗布されたタール乳剤中の水分
が還元鉄の顕熱により直ちに蒸発除去されることがなく
タール乳剤の粘度が一定時間低く維持されるので、その
間に還元鉄表面に薄く均一に被覆されやすい。また還元
鉄の温度を100℃以上とすることにより、タール乳剤
が被覆された後、タール乳剤中の水分の全部または一部
が蒸発除去されるので、塗布後の加熱乾燥、天日乾燥等
が不要となる、もしくは乾燥時間が短縮される効果があ
る。
【0024】このように水分が除去されて炭化水素系物
質により表面が被覆された還元鉄は、薄肉であっても均
質で欠陥のない保護被膜を形成し、多数の開気孔内壁面
にも被膜を形成し、該還元鉄の表面酸化を極めて効果的
に防止する。
【0025】タール乳剤中の炭化水素系物質の付着量
は、還元鉄の開気孔率や運搬・保存時の温度条件等を加
味してその都度適正に調整すればよいが、通常は還元鉄
の質量に対して0.01〜10質量%程度、より一般的
には0.1〜5質量%程度の範囲から選定される。つま
り付着量が不足する場合は、酸化防止被膜としての機能
が十分に発揮されず、また過度に付着量を増大してもそ
れ以上の酸化防止効果は得られず、還元鉄の溶解工程で
熱ロスを生じたり分解ガスの多量発生といった問題が生
じてくるからである。
【0026】該表面被覆還元鉄を転炉、電気炉等の精錬
炉で溶解して溶鉄(溶銑、溶鋼など)を製造するに際
し、炭化水素系物質の被膜は容易に熱分解してその残留
炭素が還元鉄中の残留酸化鉄の還元や溶鉄への加炭に寄
与する一方、熱分解ガスは排ガス中に除去されるので溶
鉄成分に悪影響を及ぼすことはない。また該被膜は導電
性を有しているので、電気炉等を用いた溶解にもまった
く悪影響を及ぼすことがない。
【0027】該表面被覆還元鉄が粉状、小片状(チップ
状)のものを含む場合、その粉状、小片状(チップ状)
の部分を鉄浴中や鉄浴上に形成されたスラグ中に吹き込
んで溶解することが好ましく、これにより通常行われて
いる精錬炉上方からの全量重力装入で問題となる排ガス
中へのダスト飛散ロスが防止されることに加え、前記残
留炭素による酸化鉄の還元で生成するCOガスが鉄浴を
攪拌したりスラグをフォーミングさせて溶解反応を著し
く促進し、溶解時間が大幅に短縮される。前記吹込み
は、例えば、ガス状媒体により、精錬炉に設けたランス
や羽口を介して鉄浴中やスラグ中に吹き込むことが好ま
しく、これにより、前記還元生成COガスにガス状媒体
が加わるので溶鉄の攪拌やスラグのフォーミングをさら
に活発化できる。該ガス状媒体として、例えば、N2
Ar等の不活性ガスや、CO、H2、CH4もしくはこれ
らの混合ガス等の還元性ガスを用いることが好ましく、
これにより溶鉄が脱炭されることを防止しつつ上記溶解
促進の効果が得られる。
【0028】
【発明の実施の形態】本発明の実施の一形態を示す工程
図を図1に示す。図1に示すように、還元工程1で例え
ばシャフト還元炉1aや回転炉床還元炉1bにより還元
して製造したペレット状等の還元鉄Aを、そのまま(ペ
レット状等のまま)、もしくは団鉱化工程2で熱間プレ
ス(ホットブリケッティング)して団鉱状とし、これを
還元鉄冷却工程3で不活性ガス吹き付け、間接水冷、直
接散水等により250℃以下まで冷却する。なお、還元
工程1においてシャフト還元炉1aや回転炉床還元炉1
bなどの替わりに流動層還元炉(図示せず)を用いて粉
状の還元鉄を製造し、これを団鉱化工程2で熱間プレス
(ホットブリケッティング)して団鉱状としてもよい。
【0029】250℃以下まで冷却したペレット状等ま
たは団鉱状の還元鉄Aをタール乳剤被覆工程4に送り、
そこで還元鉄A表面にタール乳剤Bの被覆を行う。ター
ル乳剤被覆工程4は、例えば図1に示すように、スクリ
ューフィーダ4bを備えた細長い容器4a内にタール乳
剤Bを適量満たし、この容器4aの入口側から還元鉄A
を連続的に投入してスクリューフィーダ4bにより還元
鉄Aをタール乳剤B中に所定時間浸漬した後、容器4a
の出口側から取り出す。タール乳剤Bとしては、例えば
火力発電の燃料用として市販されている、石油系天然タ
ール約70質量%、界面活性剤0.3〜0.5質量%、
残部水からなるエマルジョン化石油系天然タール等を用
いることができ、必要により、これにさらに適量の水を
添加してタール乳剤B中の炭化水素系物質の濃度を調整
することができる。
【0030】そして、このタール乳剤Bの濃度、タール
乳剤Bへ浸漬する際の還元鉄Aの温度、浸漬時間等を適
宜変更することにより、還元鉄Aへのタール乳剤Bの被
覆量を調整できる。
【0031】なお、上記浸漬法に替えて、250℃以下
に冷却された還元鉄Aを例えばベルトコンベア上に載置
して移動させつつタール乳剤Bをスプレーにて吹き付け
る方法を用いてもよい。この方法を用いた場合、還元鉄
Aへのタール乳剤Bの被覆量は、タール乳剤Bの濃度、
還元鉄温度、スプレー時間等により調整できる。
【0032】なお、還元鉄冷却工程3とタール乳剤被覆
工程4とは必ずしも連続的である必要はなく、還元鉄A
を還元鉄冷却工程3で一旦完全に常温まで冷却して一定
期間保管あるいは輸送後、タール乳剤被覆工程4で被覆
処理を行ってもよい。
【0033】次いで、タール乳剤を被覆した還元鉄(表
面被覆還元鉄)A1を乾燥工程5に移送し、タール乳剤
中の水分を乾燥・除去する。乾燥工程5としては、例え
ばエンドレスに移動するグレート上に表面被覆還元鉄A
1を層状に載置し、この表面被覆還元鉄A1の層に90〜
200℃程度に温度調節した乾燥用ガスを流通させる方
法を用いることができる。乾燥用ガスとしては、例えば
天然ガス、重油、微粉炭などの燃料を燃焼した排ガスや
還元工程1の還元炉からの排ガスに空気を混合して温度
調節するなどして用いればよい。なお、還元鉄冷却工程
3における還元鉄Aの冷却温度を250℃以下でできる
だけ高めの温度とすることにより、タール乳剤被覆工程
4で還元鉄A表面へタール乳剤Bを被覆する際にタール
乳剤中の水分を還元鉄顕熱により乾燥・除去できるので
乾燥工程5を省略もしくは縮小できる。
【0034】以上のようにして、被覆されたタール乳剤
から水分を乾燥除去することにより、還元鉄表面に石油
系天然タールなどの炭化水素系物質が残留して均一な保
護被膜を形成するため、大気中で長期に保存・輸送して
も再酸化を防止することができる。
【0035】上記の還元工程1からタール乳剤被覆工程
5に順次移送される間に、還元鉄Aは種々の機械的ハン
ドリングを受け、その一部が割れて粉や小片(チップ)
となる。表面被覆処理を行わない従来の還元鉄において
は、これら粉や小片(チップ)の存在は、その比表面積
が大きいため再酸化されやすく、金属化率が低下して品
質劣化するのみでなく、酸化による発熱で発火や火災に
至るおそれも高いため、貯蔵や輸送に先立って篩等によ
り予め除去する必要があり、還元鉄の歩留りが低下する
こと及びこの除去した粉や小片(チップ)を再利用する
ための手段・装置を別に必要とすること等の問題があっ
た。一方、本発明においては、こうした篩分け等を必要
とせず全量タール乳剤被覆工程に送ることができる。す
なわち、タール乳剤被覆工程5を経て製造された表面被
覆還元鉄には、塊状のもの(ペレット、ブリケットな
ど)の他に粉状や小片状(チップ状)のものが混在する
が、これらの表面も緻密な被膜で覆われるため再酸化が
防止されこのような問題は生じない。
【0036】そして、このようにして製造した表面被覆
還元鉄を転炉や電気炉などの精錬炉で溶解して溶銑や溶
鋼を製造するに際し、従来法と同様、粉や小片(チッ
プ)ごと精錬炉上方から全量落とし込みや流し込みなど
重力装入してもよいが、ダスト飛散ロスが多い問題があ
る。そこで、事前に粉および小片(チップ)を篩分け等
しておいて塊状のもののみ精錬炉上方から重力装入し、
粉および小片(チップ)は精錬炉内に保持した鉄浴やス
ラグ層内に塊状のものとは別個に吹き込むことが好まし
い。具体的な吹込み方法としては、例えば粉および小片
(チップ)を貯蔵しておく貯蔵ビンから一定量の粉およ
び小片(チップ)を切り出してインジェクションホッパ
ーに移送し、そこから高圧N2や還元炉用の還元ガスの
一部を冷却後加圧した高圧還元ガスを用いて、精錬炉内
に保持した鉄浴中またはスラグ層内に浸漬したインジェ
クションランスや、精錬炉側壁や底部に設けた羽口から
鉄浴中またはスラグ層内に直接吹き込む方法や、スラグ
層上方に吹込み口を配したインジェクションランスから
スラグ層に吹き付ける方法などが推奨される。鉄浴また
はスラグ層へ直接吹込んだり高速で吹き付けることによ
り粉状のものであっても鉄浴やスラグ層に効果的に捕捉
されダスト飛散ロスが著しく減少する。また、このよう
にして鉄浴中やスラグ層内に吹き込まれた粉状および小
片状(チップ状)の表面被覆還元鉄は、前述した如く、
鉄浴を攪拌したりスラグをフォーミングさせて還元鉄の
溶解速度を著しく促進して溶解時間を大幅に短縮し、そ
の結果生産性が大幅に上昇する。
【0037】以下実施例によって本発明をさらに具体的
に詳述する。
【0038】
【実施例】〔実施例1〕本発明の再酸化防止効果を確認
するため、本発明例1としてエマルジョン化石油系天然
タールを用いて表面被覆した還元鉄と、比較例1として
有機質造膜物質で表面被覆した還元鉄と、比較例2とし
て表面被覆を行わない未処理の還元鉄とを同一条件下に
て耐候性試験を行った。
【0039】エマルジョン化石油系天然タールとして、
ビチューメンズ オリノコ エスエイ社製のオリマルジ
ョン(登録商標)を用いた。このエマルジョン化石油系
天然タールは、質量%で、石油系天然タール71±1
%、界面活性剤0.3〜0.5%、残部水とからなり、
元素分析でC:59.0〜60.5%、H:7.2〜
7.8%、N:0.43〜0.56%、S:2.1〜
2.9%であり、粘度が30℃で0.9Pa・s以下の
ものである。このエマルジョン化石油系天然タールを満
たした容器中に、シャフト還元炉で製造された常温の還
元鉄ペレット(平均粒径12mm、粒径6mm以下の粉
および小片(チップ)は事前に除去したもの)を浸漬し
た後、取り出して90℃に温度調節した乾燥器中に10
分間保持して水分を乾燥・除去した。乾燥後の炭化水素
系物質の付着量は還元鉄の質量に対して約3質量%であ
った。
【0040】一方、有機質造膜物質による表面被覆は、
灯油50質量部にピッチ50質量部を加えて均一に溶解
させた溶液に上記と同じ還元鉄ペレットを浸漬した後、
取り出して減圧乾燥し灯油を揮発除去することにより行
った。有機質造膜物質の付着量は還元鉄の質量に対して
上記と同様の約3質量%であった。
【0041】耐候性試験は、実際の長期保管状況と同様
の状況とすべく、ベネズエラ国の還元鉄製造工場にて日
照・降雨に曝される屋外に上記各試験材(還元鉄ペレッ
ト)を、底に水抜き穴を有するバットに1層に並べて保
管することによって行った。気象条件は平均年間降雨量
911mm、平均湿度76%、気温17〜41℃であ
る。各試験材から5日ごとに少量ずつサンプルを取り出
して化学分析で全鉄分(T.Fe)および金属鉄分
(M.Fe)を測定し、これより金属化率(=M.Fe
/T.Fe×100%)を計算し、各試験材の金属化率
の経時変化を求めた。その結果を図2に示す。図2から
明らかなように、比較例2の未処理の還元鉄ペレットに
比べ、比較例1の有機質造膜物質を表面被覆した還元鉄
ペレットは、その金属化率の低下度合いが小さくなり再
酸化防止効果が認められるが、本発明例1のエマルジョ
ン化石油系天然タールを表面被覆した還元鉄では、さら
に金属化率の低下度合いが小さくなっており再酸化防止
効果が一段と大きいことが確認された。また図2より、
耐候性試験開始時における各試験材の金属化率92%に
対し、試験開始30日後において、比較例2では金属化
率62%、比較例1では金属化率78%まで低下してい
るのに比べ、本発明例1では後工程の精錬炉で使用する
のに十分な金属化率87%を維持していることが分か
る。 〔実施例2〕本発明の表面被覆還元鉄の溶解方法の効果
を確認するため、精錬炉として電気アーク炉を用いて表
面被覆還元鉄の溶解実験を実施した。
【0042】前記実施例1の本発明例1で用いたものと
同じエマルジョン化石油系天然タールを満たした容器中
に、シャフト還元炉で製造された常温の還元鉄を粉およ
び小片(チップ)ごと浸漬した後、取り出して90℃に
温度調節した乾燥器中に10分間保持して水分を乾燥・
除去したもの(試料1)を準備した。また、試料1の半
量を篩により6mm未満の粉および小片(チップ)と6
mm以上の塊状還元鉄(主にペレット状)とに篩い分け
したもの(試料2)も準備した。
【0043】そして、電気アーク炉中に事前に鉄浴およ
びスラグ層を形成しておき、その鉄浴上方から試料1の
篩分けしていない還元鉄を連続的に重力装入した場合
(比較例3)と、試料2の篩上部分である6mm以上の
塊状還元鉄を鉄浴上方から連続的に重力装入するととも
に篩下部分である6mm未満の粉および小片(チップ)
をN2ガスにより鉄浴中に浸漬したインジェクションラ
ンスで連続的に吹き込んだ場合(本発明例2)とのそれ
ぞれの場合において、装入した試料が全量溶解するまで
の溶解時間と消費電力を測定した。
【0044】その結果、比較例3の溶解時間と消費電力
に比べ、本発明例2の溶解時間および消費電力はそれぞ
れ大幅に減少することが確認できた。また目視観察によ
り、ダスト飛散ロスは、比較例3の溶解方法に比べ、本
発明例2の溶解方法により顕著に減少することが確認で
きた。
【0045】
【発明の効果】請求項1〜7の発明によれば、タール乳
剤中の炭化水素系物質により還元鉄の表面および多数の
開気孔内壁面に均質で欠陥のない保護被膜を形成するの
で、該還元鉄の表面酸化を極めて効果的に防止できる。
【0046】請求項8の発明によれば、還元鉄の顕熱に
よりタール乳剤中の水分が蒸発・除去され、タール乳剤
塗布後の加熱乾燥、天日乾燥等が不要となる、もしくは
乾燥時間が短縮されるので、乾燥設備のコスト低減や天
日乾燥のためのヤード面積の縮小等が可能となる。
【0047】請求項9、10の発明によれば、精錬炉に
おけるダスト飛散ロスが低減して鉄歩留りが改善され、
還元鉄の溶解時間が大幅に短縮されて生産性が向上する
とともに、溶解所要熱(電力)も大幅に減少するので、
溶鉄(溶銑、溶鋼など)の製造コストが低減できる。
【図面の簡単な説明】
【図1】本発明の実施の一形態である、表面被覆還元鉄
を製造する工程を説明する工程図である。
【図2】耐候性試験における各還元鉄の金属化率の経時
変化を示す図である。
【符号の説明】
1…還元工程、1a…シャフト還元炉、1b…回転炉床
還元炉 2…団鉱化工程 3…還元鉄冷却工程 4…タール乳剤被覆工程、4a…容器、4b…スクリュ
ーフィーダ 5…乾燥工程 A…還元鉄、A1…表面被覆還元鉄 B…タール乳剤
フロントページの続き Fターム(参考) 4D075 BB23X BB93X CA33 DA11 DA25 DB02 EA06 EA13 EB09 EB56 EC35 EC54 4K012 DA00 4K044 AA02 BA21 BC02 CA53 CA62

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 還元鉄の表面が、タール乳剤によって被
    覆されたものであることを特徴とする表面被覆還元鉄。
  2. 【請求項2】 前記タール乳剤が、石油系天然タール、
    コールタール、ピッチ、アスファルト、石炭液化油、石
    油精製残渣油よりなる群から選ばれる炭化水素系物質の
    1種又は2種以上のものと、界面活性剤と、水とを含む
    ものである請求項1に記載の表面被覆還元鉄。
  3. 【請求項3】 前記タール乳剤が、前記炭化水素系物質
    60〜80質量%、前記界面活性剤0.1〜1質量%、
    及び残部実質的に水からなるものである請求項2に記載
    の表面被覆還元鉄。
  4. 【請求項4】 還元鉄の表面を、タール乳剤によって被
    覆することを特徴とする表面被覆還元鉄の製造方法。
  5. 【請求項5】 前記タール乳剤が、石油系天然タール、
    コールタール、ピッチ、アスファルト、石炭液化油、石
    油精製残渣油よりなる群から選ばれる炭化水素系物質の
    1種又は2種以上のものと、界面活性剤と、水とを含む
    ものである請求項4に記載の表面被覆還元鉄の製造方
    法。
  6. 【請求項6】 前記タール乳剤が、前記炭化水素系物質
    60〜80質量%、前記界面活性剤0.1〜1質量%、
    及び残部実質的に水からなるものである請求項5に記載
    の表面被覆還元鉄の製造方法。
  7. 【請求項7】 還元鉄が、水素及び/又は一酸化炭素を
    含有するガス状還元媒体、又は炭素質物質を含む固体還
    元剤により還元されて製造されたものである請求項4〜
    6のいずれかに記載の表面被覆還元鉄の製造方法。
  8. 【請求項8】 還元鉄の温度が250℃以下において前
    記被覆処理を行う請求項4〜7のいずれかに記載の表面
    被覆還元鉄の製造方法。
  9. 【請求項9】 タール乳剤によって表面が被覆され、粉
    状、及び/又は小片状のものを含む表面被覆還元鉄を精
    錬炉内で溶解する方法であって、前記粉状及び/又は小
    片状のものを、当該精錬炉内に形成された鉄浴中及び/
    又は当該鉄浴上に形成されたスラグ中に吹き込んで溶解
    することを特徴とする表面被覆還元鉄の溶解方法。
  10. 【請求項10】 前記表面被覆還元鉄の吹込みをガス状
    媒体により行う請求項9に記載の表面被覆還元鉄の溶解
    方法。
JP2001169828A 2001-06-05 2001-06-05 表面被覆還元鉄、その製造方法および溶解方法 Pending JP2002363625A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001169828A JP2002363625A (ja) 2001-06-05 2001-06-05 表面被覆還元鉄、その製造方法および溶解方法
US10/160,004 US20020178864A1 (en) 2001-06-05 2002-06-04 Surface-coated reduced iron, method for making the same, and method for melting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169828A JP2002363625A (ja) 2001-06-05 2001-06-05 表面被覆還元鉄、その製造方法および溶解方法

Publications (1)

Publication Number Publication Date
JP2002363625A true JP2002363625A (ja) 2002-12-18

Family

ID=19011853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169828A Pending JP2002363625A (ja) 2001-06-05 2001-06-05 表面被覆還元鉄、その製造方法および溶解方法

Country Status (2)

Country Link
US (1) US20020178864A1 (ja)
JP (1) JP2002363625A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528701A (ja) * 2010-04-16 2013-07-11 ヴァーレ、ソシエダージ、アノニマ 粒子状物質の排出を阻害するための熱処理されたペレット上へのアルコール誘導体の適用方法、および粒子状物質の排出を阻害するための熱処理されたペレット上へのアルコール誘導体の適用システム
WO2013169673A1 (en) * 2012-05-05 2013-11-14 Nu-Iron Technology, Llc Reclaiming and inhibiting activation of dri fines
US11198914B2 (en) 2013-07-29 2021-12-14 Nippon Steel Corporation Raw material for direct reduction, method of producing raw material for direct reduction, and method of producing reduced iron

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059379B2 (ja) * 2006-11-16 2012-10-24 株式会社神戸製鋼所 高炉装入原料用ホットブリケットアイアンおよびその製造方法
CA2661419A1 (en) * 2008-04-03 2009-10-03 Nu-Iron Technology, Llc System and method for producing metallic iron
US11427877B2 (en) 2017-09-21 2022-08-30 Nucor Corporation Direct reduced iron (DRI) heat treatment, products formed therefrom, and use thereof
DE102021115807A1 (de) * 2021-06-18 2022-12-22 Thyssenkrupp Steel Europe Ag Verfahren zum Behandeln von Eisenschwamm

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628986A (en) * 1969-08-22 1971-12-21 Exxon Research Engineering Co Water-repellent reduced iron ore
US4069015A (en) * 1975-09-19 1978-01-17 Midrex Corporation Method of inhibiting rusting of sponge iron
AT350600B (de) * 1977-08-25 1979-06-11 Voest Ag Verfahren zur behandlung von eisenschwamm zum verhindern der reoxidation und vorrichtung zur durchfuehrung dieses verfahrens
AT367097B (de) * 1980-06-11 1982-05-25 Voest Alpine Ag Verfahren zum behandeln von metallischen huetteneinsatzstoffen, insbesondere eisenschwammteilchen
AT367804B (de) * 1980-10-01 1982-08-10 Voest Alpine Ag Verfahren zur behandlung von eisenschwamm
US4388116A (en) * 1981-08-04 1983-06-14 Hylsa, S.A. Passivation of sponge iron
JPS6169910A (ja) * 1984-09-12 1986-04-10 Kobe Steel Ltd 鉄鉱石の流動層還元方法
US4923483A (en) * 1986-06-17 1990-05-08 Intevep, S.A. Viscous hydrocarbon-in-water emulsions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013528701A (ja) * 2010-04-16 2013-07-11 ヴァーレ、ソシエダージ、アノニマ 粒子状物質の排出を阻害するための熱処理されたペレット上へのアルコール誘導体の適用方法、および粒子状物質の排出を阻害するための熱処理されたペレット上へのアルコール誘導体の適用システム
WO2013169673A1 (en) * 2012-05-05 2013-11-14 Nu-Iron Technology, Llc Reclaiming and inhibiting activation of dri fines
US11198914B2 (en) 2013-07-29 2021-12-14 Nippon Steel Corporation Raw material for direct reduction, method of producing raw material for direct reduction, and method of producing reduced iron

Also Published As

Publication number Publication date
US20020178864A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
AU2010274316B2 (en) Apparatus and method for producing reduced iron using alkali-containing iron production dust as the raw material
CN103114206B (zh) 从铜冶炼的铅银铋渣中回收有价元素的方法及其装置
US20010025550A1 (en) Process for manufacturing molten metal iron
RU2484145C2 (ru) Способ производства гранулированного железа
JP2002363625A (ja) 表面被覆還元鉄、その製造方法および溶解方法
CN100588721C (zh) 涂层颗粒镁脱硫剂及其制备方法
JP5303727B2 (ja) 製鋼用還元鉄塊成鉱の製造方法
JPS6164807A (ja) 鉄鉱石の溶融還元方法
US3153586A (en) Slag coated ore compacts and process for making the same
KR20010074502A (ko) 강력한 산화철 직접환원 및 고상 폐기물 최소화에 의한제강방법
CN103993118B (zh) 一种含钒钛铁矿的冶炼方法
JPH1053820A (ja) 鋼ダスト、スラッジ及び/又は鉱石の金属化合物類の処理方法
JP6648711B2 (ja) 溶銑の脱硫方法
JP4779585B2 (ja) 竪型スクラップ溶解炉用固体燃料及び竪型スクラップ溶解炉の操業方法
JP6954481B2 (ja) 加炭材およびそれを用いた加炭方法
JP4762420B2 (ja) ロータリーキルンを用いた酸化鉄の溶融還元方法
JPH10251723A (ja) 還元鉄の製造方法
KR101918363B1 (ko) 휘발물질을 포함하는 탄재를 포함하는 탄재 내장 브리켓 및 산화분위기에서의 이의 환원방법
US3764301A (en) Operation of a blast furnace
JPH1129806A (ja) 溶銑製造方法
US3319949A (en) Apparatus for making pallet of iron ore and flux
CN115652083B (zh) 一种含铁物料多级进风均热还原方法
KR100302398B1 (ko) 벤토나이트를피복하여미분탄브리케트의이산화탄소반응성을억제하는방법
GB1572566A (en) Process for producing reduced iron pellets from iron-containing dust
WO2023171486A1 (ja) 直接還元製鉄に用いる被覆原料およびその製造方法