JP2002322591A - Method for plating fine particle, electrically conductive fine particle and connected structure - Google Patents

Method for plating fine particle, electrically conductive fine particle and connected structure

Info

Publication number
JP2002322591A
JP2002322591A JP2001128125A JP2001128125A JP2002322591A JP 2002322591 A JP2002322591 A JP 2002322591A JP 2001128125 A JP2001128125 A JP 2001128125A JP 2001128125 A JP2001128125 A JP 2001128125A JP 2002322591 A JP2002322591 A JP 2002322591A
Authority
JP
Japan
Prior art keywords
particles
plating
plated
fine particles
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001128125A
Other languages
Japanese (ja)
Other versions
JP3694249B2 (en
Inventor
Yasuhiko Nagai
康彦 永井
Nobuyuki Okinaga
信幸 沖永
Manabu Matsubara
学 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001128125A priority Critical patent/JP3694249B2/en
Publication of JP2002322591A publication Critical patent/JP2002322591A/en
Application granted granted Critical
Publication of JP3694249B2 publication Critical patent/JP3694249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for plating fine particles by which the flocculation of plated particles can be suppressed and fine particles free from flaws or peeling on the plating layer in the surface can be obtained. SOLUTION: The method for plating fine particles uses a rotary type plating apparatus which is provided with a cathode 12 on the outer circumferential part, a rotatable dome 1 having a filter part 13 through which a plating solution passes to be exhausted, and an anode 2a set so as not to contact with the cathode in the dome, and which repeats energizing and stirring while allowing the fine particles to contact with the cathode by the centrifugal force due to rotation of the dome. Dummy particles which have a hardness equal to that of the base material particles to be plated and have a particle size of 1.5 to 30 times that of the base material particles to be plated are simultaneously added, and plating is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電極間を接続するの
に使用され、回路中にかかる力を緩和することにより、
接続信頼性が向上した導電性微粒子及び導電接続構造体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used to connect electrodes, and reduces the force applied in a circuit.
The present invention relates to a conductive fine particle and a conductive connection structure having improved connection reliability.

【0002】[0002]

【従来の技術】従来、電子回路基盤において、ICやL
SIを接続するためには、それぞれのピンをプリント基
板上にハンダ付けする方法が用いられてきたが、この方
法は生産効率が悪く、また高密度化には適さないもので
あった。
2. Description of the Related Art Conventionally, ICs and Ls have been used in electronic circuit boards.
In order to connect the SI, a method of soldering each pin on a printed circuit board has been used, but this method has a low production efficiency and is not suitable for high density.

【0003】また、接続信頼性を解決するためにハンダ
を球状にした、いわゆるハンダボールで基板と接続する
BGA(ボールグリッドアレイ)等の技術が開発され
た。この技術によれば、基板とチップ及び基板上に実装
されたハンダボールを高温で溶融しながら接続すること
で、高生産性、高接続信頼性を両立した電子回路を構成
できる。
Further, in order to solve the connection reliability, a technique such as a ball grid array (BGA) in which solder is made spherical, that is, a solder ball is used to connect to a substrate, has been developed. According to this technique, an electronic circuit that achieves both high productivity and high connection reliability can be configured by connecting the substrate and the chip and the solder balls mounted on the substrate while melting them at a high temperature.

【0004】しかしながら、近年、基板の多層化が進
み、基板自体の外環境変化による歪みや伸縮が発生し、
結果としてその力が基板間の接続部にかかることによる
断線が発生することが問題となっていた。また多層化に
よって、基板間の距離がほとんどとれなくなり、これを
維持するために別途スペーサー等を置かなければならず
手間や費用がかかることが問題となっていた。
However, in recent years, the number of substrates has been increased, and distortion and expansion and contraction have occurred due to changes in the external environment of the substrates themselves.
As a result, there has been a problem that disconnection occurs due to the application of the force to the connection between the substrates. In addition, due to the multi-layer structure, the distance between the substrates can hardly be secured, and a spacer or the like must be separately provided to maintain the distance, which is troublesome and costly.

【0005】これらを解決する手段として、基板等の回
路に掛かる力の緩和については、基板接続部に樹脂等を
塗布することにより補強することが行われており、接続
信頼性の向上には一定の効果を示したが、手間がかか
り、また塗布工程が増えることによる費用の増大が問題
である。
[0005] As means for solving these problems, in order to reduce the force applied to the circuit such as the substrate, it is reinforced by applying a resin or the like to the substrate connection portion. However, there is a problem that it takes much time and costs increase due to an increase in the number of coating steps.

【0006】上記の問題を解決するために、基板間の距
離の維持や基板等の回路にかかる力を緩和する能力を与
えるために、銅をコアとしてハンダをコーティングした
粒子(特開平11−74311号公報)や、樹脂をコア
としてハンダをめっきした粒子(特開平05−0363
06号公報)が提案されている。
In order to solve the above-mentioned problem, in order to maintain the distance between substrates and to reduce the force applied to a circuit such as a substrate, particles coated with solder using copper as a core (Japanese Patent Laid-Open No. 11-74311). JP-A No. 05-0363) and particles obtained by plating solder with a resin as a core (Japanese Patent Laid-Open No. 05-0363).
No. 06 publication) has been proposed.

【0007】また上記のハンダ層を有した微粒子の製造
方法として、外周部に陰極を有し、めっき液を通過させ
て排出するフィルター部を有する回転可能なドームと、
該ドームの中に該陰極と接触しないように設置された陽
極とを有しており、ドームの回転による遠心力の効果で
微粒子を陰極に接触させて通電、撹拌を繰り返す回転型
めっき装置を用いた微粒子のめっき方法が提案されてい
る(特開平9−137289号公報)。この方法では、
通常のバレルめっきに比べるとめっき粒子の凝集が少な
く、均一にめっきできることが知られている。
[0007] Further, as a method for producing the fine particles having a solder layer, a rotatable dome having a cathode at an outer peripheral portion and having a filter portion through which a plating solution is passed and discharged,
The dome has an anode installed so as not to contact the cathode, and uses a rotary plating apparatus that repeats energization and stirring by bringing fine particles into contact with the cathode by the effect of centrifugal force due to rotation of the dome. There has been proposed a method for plating fine particles (JP-A-9-137289). in this way,
It is known that plating particles are less agglomerated and can be plated uniformly as compared with ordinary barrel plating.

【0008】しかし、この回転型めっき装置を用いて
も、めっき基材の粒子径が小さくなり、かつめっき被膜
の厚みが大きくなると凝集が発生してくる。これに対し
て、ステンレスやジルコニア等の硬くて、粒子径の大き
なダミー粒子を加えて、解砕効果を与えながらめっきを
行うと凝集が抑制されることが知られている。しかしダ
ミー粒子を用いると、解砕の際に基材粒子と激しく衝突
するため、めっき剥がれや割れなどが発生し、表面状態
が大きく劣化するという問題があった。
However, even with this rotary plating apparatus, agglomeration occurs when the particle diameter of the plating base material becomes small and the thickness of the plating film becomes large. On the other hand, it is known that aggregation is suppressed when plating is performed while adding a crushing effect by adding hard, large-diameter dummy particles such as stainless steel or zirconia. However, when the dummy particles are used, they violently collide with the base particles at the time of crushing, so that there is a problem that plating peeling or cracking occurs and the surface state is largely deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記に鑑
み、めっき粒子の凝集を抑制することができ、かつ、表
面のめっき層にキズや剥がれがない微粒子を得るための
微粒子のめっき方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a method of plating fine particles for suppressing aggregation of plated particles and obtaining fine particles having no scratches or peeling on a surface plating layer. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明は、これら問題点
を解決するためになされたもので、上記回転型めっき装
置を用いて微粒子をめっきする際に、この基材粒子と同
等の硬さを有しており、かつ粒子径がめっきする基材粒
子の1.5〜30倍であるダミー粒子を同時に加えてめ
っきを行うことを特徴とする微粒子のめっき方法であ
る。以下に本発明を詳述する。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and has the same hardness as that of the base particles when plating fine particles using the rotary plating apparatus. And plating is performed by simultaneously adding dummy particles having a particle size of 1.5 to 30 times the size of the base particles to be plated. Hereinafter, the present invention will be described in detail.

【0011】本発明の導電性微粒子は樹脂及び金属ボー
ルからなる基材粒子の表面が1層以上の金属層に覆われ
てなるものである。これら基材粒子の組成は特に限定さ
れないが、実装時の応力緩和機能を持たせる機能を考え
ると樹脂であることが好ましい。該樹脂としては、例え
ばポリスチレン、ポリスチレン共重合体、ポリアクリル
酸エステル、ポリアクリル酸エステル重合体、フェノー
ル樹脂、ポリエステル樹脂、ポリ塩化ビニル等が挙げら
れる。これらは単独で用いられても良く、2種以上が併
用されても良い。上記基材粒子の形状は球状であれば特
に限定されず、例えば中空状のものであっても良い。ま
た金属ボールとしては、銀、銅、ニッケル、珪素、金、
チタン等の高融点の金属が挙げられる。
The conductive fine particles of the present invention are obtained by covering the surface of base particles composed of resin and metal balls with one or more metal layers. The composition of these base particles is not particularly limited, but is preferably resin in consideration of the function of imparting a stress relaxation function during mounting. Examples of the resin include polystyrene, a polystyrene copolymer, a polyacrylate, a polyacrylate polymer, a phenol resin, a polyester resin, and polyvinyl chloride. These may be used alone or in combination of two or more. The shape of the base particles is not particularly limited as long as they are spherical, and may be, for example, hollow. The metal balls include silver, copper, nickel, silicon, gold,
A high melting point metal such as titanium is used.

【0012】またこれら基材粒子の粒子径は特に限定さ
れないが、BGAやCSPといった実装材料の使用用途
を考えると、1〜1000μmのものが有用であり、さ
らに回転型めっき装置での凝集のしやすさから、1〜5
00μmの粒子に対して有効である。
Although the particle size of these base particles is not particularly limited, considering the usage of mounting materials such as BGA and CSP, those having a particle size of 1 to 1000 μm are useful, and furthermore, aggregation in a rotary plating apparatus is difficult. 1-5 for ease
It is effective for particles of 00 μm.

【0013】本発明の導電性微粒子は、上記基材粒子を
1層以上の金属で被覆したものである。被覆する金属と
しては金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニ
ウム、コバルト、インジウム、ニッケル、クロム、チタ
ン、アンチモン、ビスマス、ゲルマニウム、カドミウ
ム、珪素等が挙げられる。これら金属は1種でも良く、
2種以上からなる合金組成としてめっき層を形成しても
良い。例えば、ポリスチレン樹脂の基材粒子に、ニッケ
ル層をめっきし、更にその上に銅や錫をめっきするとい
った構成が挙げられる。
The conductive fine particles of the present invention are obtained by coating the above-mentioned base particles with one or more layers of metal. Examples of the metal to be coated include gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and silicon. These metals may be one kind,
The plating layer may be formed as an alloy composition of two or more types. For example, a configuration in which a nickel layer is plated on polystyrene resin base particles, and copper or tin is further plated thereon.

【0014】上記金属層の厚みは特に限定されないが、
導電接合や基盤接合という用途を考えた場合には、0.
01〜500μmであることが好ましい。0.01μm
未満では好ましい導電性が得られにくく、500μmを
越えると粒子同士の合着が起こったり、基板間の距離維
持や基板等の回路にかかる力を緩和する機能が低下する
ことがある。
Although the thickness of the metal layer is not particularly limited,
Considering applications such as conductive bonding and substrate bonding, it is preferable to use 0.
It is preferably from 01 to 500 μm. 0.01 μm
If it is less than 500 μm, it is difficult to obtain a favorable conductivity. If it exceeds 500 μm, the particles may coalesce, or the function of maintaining the distance between substrates or reducing the force applied to a circuit such as a substrate may be reduced.

【0015】本発明の微粒子のめっき方法においては、
めっき液を通過させて排出するフィルター部を有する回
転可能なドームと、該ドームの中に該陰極と接触しない
ように設置された陽極とを有しており、ドームの回転に
よる遠心力の効果で微粒子を陰極に接触させて通電、撹
拌を繰り返す回転型めっき装置を用いる。
In the method for plating fine particles of the present invention,
It has a rotatable dome having a filter part for passing and discharging the plating solution, and an anode provided in the dome so as not to contact the cathode, by the effect of centrifugal force due to the rotation of the dome. A rotary plating apparatus is used in which fine particles are brought into contact with a cathode and current is repeatedly applied and stirred.

【0016】この回転型めっき装置の一例の概略図を図
1に示す。該めっき装置Aは垂直な駆動軸3の上端部に
固定された円盤状のプラスチックの底板11と、この底
板11の外周上面に、処理液のみを通すフィルター部と
して多孔質リング13を配し、この多孔質リング13上
面に陰極として通電用の接触リング12を配し、上部中
央に開口8を有する円錐台形状のプラスチックの中空カ
バー1の外周部で多孔質リング13と接触リング12と
を底板11との間で狭持してなる処理室4を形成し、開
口8より処理液等を処理室4に供給する供給管6と、多
孔体窓から飛散した処理液を受けるプラスチックの容器
5と、容器5にたまった処理液を排出する排出管7と、
開口8から挿入されてめっき液に接触する陽極2aとを
有する。
FIG. 1 shows a schematic view of an example of this rotary plating apparatus. The plating apparatus A has a disc-shaped plastic bottom plate 11 fixed to the upper end of the vertical drive shaft 3, and a porous ring 13 as a filter portion for passing only the processing liquid on the outer peripheral upper surface of the bottom plate 11. An energizing contact ring 12 is arranged on the upper surface of the porous ring 13 as a cathode, and the porous ring 13 and the contact ring 12 are connected to the bottom plate at the outer peripheral portion of the truncated cone-shaped plastic hollow cover 1 having an opening 8 at the upper center. A processing chamber 4 sandwiched between the processing chamber 4 and a supply pipe 6 for supplying a processing liquid or the like to the processing chamber 4 through an opening 8 and a plastic container 5 for receiving the processing liquid scattered from a porous window. A discharge pipe 7 for discharging the processing liquid accumulated in the container 5,
And an anode 2a inserted through the opening 8 and in contact with the plating solution.

【0017】駆動軸3を回転させながら処理室4内に、
導電性下地層が形成された微粒子をめっき液に浸した状
態で存在させ、接触リング12(陰極)と陽極2aの両
電極間に通電する。微粒子は遠心力の作用で接触リング
12に押しつけられ、陽極2aに面した微粒子にめっき
層ができる。駆動軸3が停止すると、微粒子は重力の作
用とめっき液の慣性による流れに引きずられて、底板中
央部の平坦面に流れ落ち、混ざり合いながら、別の姿勢
で遠心力の作用により、接触リング12に押しつけられ
るので、陽極2aに面した別の微粒子にめっき層ができ
る。このように駆動軸3の回転と停止とを繰り返すこと
により、処理室4に存在する全ての微粒子に対して均一
にめっきが行われる。
While rotating the drive shaft 3, the processing chamber 4
The fine particles having the conductive underlayer formed thereon are immersed in the plating solution, and current is applied between the contact ring 12 (cathode) and the anode 2a. The fine particles are pressed against the contact ring 12 by the action of the centrifugal force to form a plating layer on the fine particles facing the anode 2a. When the drive shaft 3 stops, the fine particles are dragged by the action of gravity and the inertia of the plating solution, flow down to the flat surface at the center of the bottom plate, and mix with each other while being centrifugally acting in another position by the action of the centrifugal force. Therefore, a plating layer is formed on another fine particle facing the anode 2a. By repeating the rotation and stop of the drive shaft 3 in this manner, plating is uniformly performed on all the fine particles present in the processing chamber 4.

【0018】本発明においては、この際、めっきする基
材粒子と同等の硬さをもち、かつその粒子径がめっきす
る基材粒子の1.5〜30倍であるダミー粒子を同時に
加えてめっきを行う。
In the present invention, the dummy particles having the same hardness as the base particles to be plated and having a particle diameter of 1.5 to 30 times the base particles to be plated are simultaneously added. I do.

【0019】上記ダミー粒子の硬さは、通常樹脂微粒子
の硬さは、圧縮弾性率で100〜600kgf/mm2
であるので、これと同等の硬さを有するものが望まし
い。圧縮弾性率が100kgf/mm2未満であると、
めっき基材との重さが異なりすぎるため、ダミーの解砕
効果が不十分である。また600kgf/mm2を超え
ると、基材粒子の表面に剥がれやキズをつけるため好ま
しくない。
The hardness of the above-mentioned dummy particles is usually in the range of 100 to 600 kgf / mm 2 in terms of compression elastic modulus.
Therefore, those having the same hardness are desirable. If the compression modulus is less than 100 kgf / mm 2 ,
Since the weight with the plating substrate is too different, the crushing effect of the dummy is insufficient. On the other hand, if it exceeds 600 kgf / mm 2 , the surface of the base particles is undesirably peeled or scratched.

【0020】すなわち、ステンレスや鉄等の金属、ジル
コニアやアルミナ等の無機物を使わず、樹脂組成のダミ
ー粒子を使うのが好ましい。樹脂組成としては特に限定
されないが、例えばポリスチレン、ポリスチレン共重合
体、ポリアクリル酸エステル、ポリアクリル酸エステル
共重合体、フェノール樹脂、ポリエステル樹脂、ポリ塩
化ビニル、ナイロン等が挙げられる。これらは単独で用
いられても良く、2種以上が併用されても良い。
That is, it is preferable to use dummy particles having a resin composition without using metals such as stainless steel and iron, and inorganic substances such as zirconia and alumina. The resin composition is not particularly limited, and examples thereof include polystyrene, a polystyrene copolymer, a polyacrylate, a polyacrylate copolymer, a phenol resin, a polyester resin, polyvinyl chloride, and nylon. These may be used alone or in combination of two or more.

【0021】ダミー粒子の粒子径はめっきする基材粒子
の1.5〜30倍程度が好ましい。ダミー粒子の粒子径
が1.5倍より小さいと、めっきした粒子とダミー粒子
とを分離するのが困難になるため好ましくない。また3
0倍より大きいと、ダミー粒子間のすきまにめっきする
基材粒子が入り込み、実質的な解砕効果が出にくいため
好ましくない。
The particle size of the dummy particles is preferably about 1.5 to 30 times that of the base particles to be plated. If the particle diameter of the dummy particles is smaller than 1.5 times, it becomes difficult to separate the plated particles from the dummy particles, which is not preferable. 3
If it is larger than 0 times, the base particles to be plated enter into the gap between the dummy particles, and it is difficult to obtain a substantial crushing effect, which is not preferable.

【0022】本発明の微粒子のめっき方法によってめっ
きされた微粒子は、電極間を接続するために用いられる
導電性微粒子として用いることができる。上記導電性微
粒子は、回路中にかかる力を緩和することにより、接続
の信頼性を向上させることができる。上記導電性微粒子
を用いた導電接続構造体もまた、本発明の一つである。
The fine particles plated by the fine particle plating method of the present invention can be used as conductive fine particles used for connecting between electrodes. The conductive fine particles can improve connection reliability by reducing the force applied in the circuit. A conductive connection structure using the conductive fine particles is also one aspect of the present invention.

【0023】[0023]

【実施例】以下に実施例を掲げて本発明をさらに詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0024】実施例1 セパラブルフラスコにて、ジビニルベンゼン20重量部
に重合開始剤として過酸化ベンゾイル1.3重量部を均
一に混合し、これにポリビニルアルコールの3%水溶液
20重量部、ドデシル硫酸ナトリウム0.5重量部を投
入しよく攪拌した後、イオン交換水140重量部を添加
した。この溶液を攪拌しながら窒素気流下80℃で15
時間反応を行った。得られた微粒子を熱水及びアセトン
にて洗浄後、篩いにて粒子選別を行い、中心粒子径30
0μmの粒子を得た。これに導電下地層としてニッケル
めっきを無電解めっきにより形成させた。同様な処方に
て、中心粒子径800μmのニッケルめっきしたダミー
粒子を合成した。
Example 1 In a separable flask, 1.3 parts by weight of benzoyl peroxide as a polymerization initiator were uniformly mixed with 20 parts by weight of divinylbenzene, 20 parts by weight of a 3% aqueous solution of polyvinyl alcohol, and dodecyl sulfate. After adding 0.5 parts by weight of sodium and stirring well, 140 parts by weight of ion-exchanged water was added. The solution was stirred at 80 ° C. for 15
A time reaction was performed. After the obtained fine particles are washed with hot water and acetone, the particles are selected with a sieve, and the center particle diameter is 30%.
0 μm particles were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same prescription, nickel-plated dummy particles having a center particle diameter of 800 μm were synthesized.

【0025】ついで回転式めっき装置にニッケルめっき
処理した300μmの粒子40gと800μmのダミー
粒子20mLとを投入し、銅めっきを行った。めっき時
の条件は、浴温度30℃、電流密度0.5A/dm2
周速18Hzとして、40秒毎に回転方向を逆転させ
た。
Next, 40 g of nickel-plated particles and 20 mL of 800 μm dummy particles were charged into a rotary plating apparatus, and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 ,
The rotation direction was reversed every 40 seconds at a peripheral speed of 18 Hz.

【0026】得られた粒子を、700μmの目開きの篩
いにてふるい、800μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は3μmであった。また得
られた粒子を、さらに350μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の1%以
下であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の2%程度であった。
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, less than 1% of the total weight remained on the sieve, and no large aggregation was observed. Observation with a microscope of 2,000 of these particles revealed that the appearance was a glossy copper color, and that about 2% of the particles had cracks or peeling.

【0027】実施例2 基材粒子に、ジビニルベンゼンと4官能のアクリルモノ
マーを使って実施例1と同様に重合し、中心粒子径30
0μmの粒子を得た。これに導電下地層としてニッケル
めっきを無電解めっきにより形成させた。同様な処方に
て、ジビニルベンゼンと4官能のアクリルモノマーで合
成された中心粒子径800μmのニッケルめっきしたダ
ミー粒子を得た。
Example 2 Polymerization was carried out in the same manner as in Example 1 by using divinylbenzene and a tetrafunctional acrylic monomer on the base particles, and the center particle diameter was 30%.
0 μm particles were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same formulation, nickel-plated dummy particles having a center particle diameter of 800 μm and synthesized with divinylbenzene and a tetrafunctional acrylic monomer were obtained.

【0028】ついで回転式めっき装置にニッケルめっき
処理した300μmの粒子40gと800μmのダミー
粒子20mLとを投入し、銅めっきを行った。めっき時
の条件は、浴温度30℃、電流密度0.5A/dm2
周速18Hzとして、40秒毎に回転方向を逆転させ
た。
Then, 40 g of nickel-plated particles and 20 mL of 800 μm dummy particles were charged into a rotary plating apparatus and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 ,
The rotation direction was reversed every 40 seconds at a peripheral speed of 18 Hz.

【0029】得られた粒子を、700μmの目開きの篩
いにてふるい、800μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は3μmであった。また得
られた粒子を、さらに350μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の1%以
下であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の2%程度であった。
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, less than 1% of the total weight remained on the sieve, and no large aggregation was observed. Observation with a microscope of 2,000 of these particles revealed that the appearance was a glossy copper color, and that about 2% of the particles had cracks or peeling.

【0030】実施例3 実施例1と同様にして中心粒子径300μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。同様な処方にて、中心粒子径2
000μmのニッケルめっきしたダミー粒子を合成し
た。ついで回転式めっき装置にニッケルめっき処理した
300μmの粒子40gと2000μmのダミー粒子3
0mLとを投入し、銅めっきを行った。めっき時の条件
は、浴温度30℃、電流密度0.5A/dm2、周速1
8Hzとして、40秒毎に回転方向を逆転させた。
Example 3 In the same manner as in Example 1, particles having a central particle diameter of 300 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same formulation, the central particle size 2
000 μm nickel-plated dummy particles were synthesized. Next, 40 g of 300 μm particles and 2000 μm dummy particles 3 nickel-plated in a rotary plating apparatus.
0 mL and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 1
At 8 Hz, the rotation direction was reversed every 40 seconds.

【0031】得られた粒子を、1500μmの目開きの
篩いにてふるい、2000μmのダミー粒子とめっき粒
子とを分離した。このようにして得られためっき粒子を
断面観察したところ、銅層の膜厚は3μmであった。ま
た得られた粒子を、さらに350μmの目開きの篩いに
てふるったところ、篩いの上に残ったのは全体重量の約
1%であり、大きな凝集は認められなかった。これらの
粒子のうち2000個を顕微鏡で観察したところ、外観
は光沢のある銅色を示し、割れや剥がれのある粒子は、
全体の2%程度であった。
The obtained particles were sieved with a sieve having an opening of 1500 μm to separate 2000 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, about 1% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance showed a glossy copper color, and the particles with cracks and peeling were:
It was about 2% of the whole.

【0032】実施例4 実施例1と同様にして中心粒子径300μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。同様な処方にて、中心粒子径5
00μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した30
0μmの粒子40gと500μmのダミー粒子20mL
とを投入し、銅めっきを行った。めっき時の条件は、浴
温度30℃、電流密度0.5A/dm2、周速18Hz
として、40秒毎に回転方向を逆転させた。
Example 4 In the same manner as in Example 1, particles having a central particle diameter of 300 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same formulation, the central particle size is 5
00 μm nickel-plated dummy particles were synthesized.
Then, nickel plating was applied to the rotary plating apparatus.
40 g of 0 μm particles and 20 mL of 500 μm dummy particles
And copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 18 Hz.
The rotation direction was reversed every 40 seconds.

【0033】得られた粒子を、450μmの目開きの篩
いにてふるい、500μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は3μmであった。また得
られた粒子を、さらに350μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の1%以
下であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の2%程度であった。
The obtained particles were sieved with a sieve having an opening of 450 μm to separate 500 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, less than 1% of the total weight remained on the sieve, and no large aggregation was observed. Observation with a microscope of 2,000 of these particles revealed that the appearance was a glossy copper color, and that about 2% of the particles had cracks or peeling.

【0034】実施例5 実施例1と同様にして、中心粒子径500μmの粒子を
得た。これに導電下地層としてニッケルめっきを無電解
めっきにより形成させた。同様な処方にて、中心粒子径
800μmのニッケルめっきしたダミー粒子を合成し
た。ついで回転式めっき装置にニッケルめっき処理した
500μmの粒子40gと800μmのダミー粒子20
mLとを投入し、銅めっきを行った。めっき時の条件
は、浴温度30℃、電流密度0.5A/dm2、周速1
8Hzとして、40秒毎に回転方向を逆転させた。
Example 5 In the same manner as in Example 1, particles having a center particle diameter of 500 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same prescription, nickel-plated dummy particles having a center particle diameter of 800 μm were synthesized. Next, 40 g of 500 μm particles and 800 μm dummy particles 20 which were nickel-plated on a rotary plating apparatus.
mL, and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 1
At 8 Hz, the rotation direction was reversed every 40 seconds.

【0035】得られた粒子を、700μmの目開きの篩
いにてふるい、800μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は2μmであった。また得
られた粒子を、さらに450μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の1%程
度であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の2%程度であった。
The obtained particles were sieved with a sieve having an opening of 700 μm to separate 800 μm dummy particles and plating particles. Observation of the cross section of the plating particles obtained in this way revealed that the thickness of the copper layer was 2 μm. When the obtained particles were further sieved with a sieve having an opening of 450 μm, only about 1% of the total weight remained on the sieve, and no large aggregation was observed. Observation with a microscope of 2,000 of these particles revealed that the appearance was a glossy copper color, and that about 2% of the particles had cracks or peeling.

【0036】実施例6 実施例1と同様にして、中心粒子径100μmの粒子を
得た。これに導電下地層としてニッケルめっきを無電解
めっきにより形成させた。同様な処方にて、中心粒子径
500μmのニッケルめっきしたダミー粒子を合成し
た。ついで回転式めっき装置にニッケルめっき処理した
100μmの粒子40gと500μmのダミー粒子20
mLとを投入し、銅めっきを行った。めっき時の条件
は、浴温度30℃、電流密度0.5A/dm2、周速1
8Hzとして、40秒毎に回転方向を逆転させた。
Example 6 In the same manner as in Example 1, particles having a central particle diameter of 100 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same formulation, nickel-plated dummy particles having a center particle diameter of 500 μm were synthesized. Next, 40 g of 100 μm particles and 500 μm dummy particles 20 which were nickel-plated in a rotary plating apparatus.
mL, and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 1
At 8 Hz, the rotation direction was reversed every 40 seconds.

【0037】得られた粒子を、450μmの目開きの篩
いにてふるい、500μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は2μmであった。また得
られた粒子を、さらに150μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の1%程
度であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の1%程度であった。
The obtained particles were sieved with a sieve having an opening of 450 μm to separate 500 μm dummy particles and plating particles. Observation of the cross section of the plating particles obtained in this way revealed that the thickness of the copper layer was 2 μm. When the obtained particles were further sieved with a sieve having an opening of 150 μm, only about 1% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance was a glossy copper color, and particles having cracks or peeling were about 1% of the whole.

【0038】実施例7 実施例6と同様にして、中心粒子径100μmの粒子を
得た。これに導電下地層としてニッケルめっきを無電解
めっきにより形成させた。同様な処方にて、中心粒子径
2000μmのニッケルめっきしたダミー粒子を合成し
た。ついで回転式めっき装置にニッケルめっき処理した
100μmの粒子40gと2000μmのダミー粒子3
0mLとを投入し、銅めっきを行った。めっき時の条件
は、浴温度30℃、電流密度0.5A/dm2、周速1
8Hzとして、40秒毎に回転方向を逆転させた。
Example 7 In the same manner as in Example 6, particles having a central particle diameter of 100 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same prescription, nickel-plated dummy particles having a center particle diameter of 2000 μm were synthesized. Next, 40 g of 100 μm particles and 2000 μm dummy particles 3 which were nickel-plated in a rotary plating apparatus.
0 mL and copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 1
At 8 Hz, the rotation direction was reversed every 40 seconds.

【0039】得られた粒子を、1500μmの目開きの
篩いにてふるい、2000μmのダミー粒子とめっき粒
子とを分離した。このようにして得られためっき粒子を
断面観察したところ、銅層の膜厚は2μmであった。ま
た得られた粒子を、さらに150μmの目開きの篩いに
てふるったところ、篩いの上に残ったのは全体重量の2
%程度であり、大きな凝集は認められなかった。これら
の粒子のうち2000個を顕微鏡で観察したところ、外
観は光沢のある銅色を示し、割れや剥がれのある粒子
は、全体の1%程度であった。
The obtained particles were sieved with a sieve having an opening of 1500 μm to separate 2000 μm dummy particles and plating particles. Observation of the cross section of the plating particles obtained in this way revealed that the thickness of the copper layer was 2 μm. When the obtained particles were further sieved with a sieve having an opening of 150 μm, 2% of the total weight remained on the sieve.
%, And no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance was a glossy copper color, and particles having cracks or peeling were about 1% of the whole.

【0040】実施例8 実施例1と同様にして、中心粒子径50μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。同様な処方にて、中心粒子径5
00μmのニッケルめっきしたダミー粒子を合成した。
ついで回転式めっき装置にニッケルめっき処理した50
μmの粒子40gと500μmのダミー粒子30mLと
を投入し、銅めっきを行った。めっき時の条件は、浴温
度30℃、電流密度0.5A/dm2、周速18Hzと
して、40秒毎に回転方向を逆転させた。
Example 8 In the same manner as in Example 1, particles having a central particle diameter of 50 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. With the same formulation, the central particle size is 5
00 μm nickel-plated dummy particles were synthesized.
Then, nickel plating was applied to the rotary plating apparatus.
Then, 40 g of the μm particles and 30 mL of the 500 μm dummy particles were charged, and copper plating was performed. The plating conditions were as follows: the bath temperature was 30 ° C., the current density was 0.5 A / dm 2 , the peripheral speed was 18 Hz, and the rotation direction was reversed every 40 seconds.

【0041】得られた粒子を、450μmの目開きの篩
いにてふるい、500μmのダミー粒子とめっき粒子と
を分離した。このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は2μmであった。また得
られた粒子を、さらに100μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の4%程
度であり、大きな凝集は認められなかった。これらの粒
子のうち2000個を顕微鏡で観察したところ、外観は
光沢のある銅色を示し、割れや剥がれのある粒子は、全
体の1%程度であった。
The obtained particles were sieved with a sieve having an opening of 450 μm to separate 500 μm dummy particles and plating particles. Observation of the cross section of the plating particles obtained in this way revealed that the thickness of the copper layer was 2 μm. When the obtained particles were further sieved with a sieve having an opening of 100 μm, only about 4% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance was a glossy copper color, and particles having cracks or peeling were about 1% of the whole.

【0042】実施例9 実施例1で得られた中心粒子径304μmの銅めっきし
た粒子40gと、同じく実施例1で得られた中心粒子径
800μmのニッケルめっきしたダミー粒子20mLと
を投入し、共晶ハンダめっきを行った。めっき時の条件
は、浴温度30℃、電流密度0.5A/dm2、周速1
8Hzとして、20秒毎に回転方向を逆転させた。得ら
れた粒子を、700μmの目開きの篩いにてふるい、8
00μmのダミー粒子とめっき粒子とを分離した。この
ようにして得られためっき粒子を断面観察したところ、
共晶ハンダ層の膜厚は6μmであった。また得られた粒
子を、さらに350μmの目開きの篩いにてふるったと
ころ、篩いの上に残ったのは全体重量の2%程度であ
り、大きな凝集は認められなかった。これらの粒子のう
ち2000個を顕微鏡で観察したところ、外観は光沢の
ある銅色を示し、割れや剥がれのある粒子は、全体の2
%程度であった。
Example 9 40 g of copper-plated particles having a central particle diameter of 304 μm obtained in Example 1 and 20 mL of nickel-plated dummy particles having a central particle diameter of 800 μm also obtained in Example 1 were charged. Crystal solder plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 1
At 8 Hz, the rotation direction was reversed every 20 seconds. The obtained particles are sieved with a sieve having an opening of 700 μm,
00 μm dummy particles and plating particles were separated. Upon observing the cross section of the plating particles thus obtained,
The thickness of the eutectic solder layer was 6 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, only about 2% of the total weight remained on the sieve, and no large aggregation was observed. When 2,000 of these particles were observed with a microscope, the appearance was shiny copper color, and the particles with cracks and peeling were 2% of the total.
%.

【0043】比較例1 実施例1と同様にして中心粒子径300μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。ついで回転式めっき装置にニッ
ケルめっき処理した300μmの粒子40gだけを投入
し、銅めっきを行った。めっき時の条件は、浴温度30
℃、電流密度0.5A/dm2、周速18Hzとして、
40秒毎に回転方向を逆転させた。
Comparative Example 1 In the same manner as in Example 1, particles having a central particle diameter of 300 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, only 40 g of nickel-plated 300 μm particles were charged into a rotary plating apparatus, and copper plating was performed. The plating conditions were bath temperature 30.
° C, current density 0.5A / dm 2 , peripheral speed 18Hz
The rotation direction was reversed every 40 seconds.

【0044】このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は3μmであった。また得
られた粒子を、さらに350μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の約10
%であり、2mm角程度の大きな凝集が認められた。こ
れらの粒子のうち2000個を顕微鏡で観察したとこ
ろ、外観は光沢のある銅色を示し、割れや剥がれのある
粒子は、全体の1%程度であった。
When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, about 10% of the total weight remained on the sieve.
%, And large aggregation of about 2 mm square was observed. When 2,000 of these particles were observed with a microscope, the appearance was a glossy copper color, and particles having cracks or peeling were about 1% of the whole.

【0045】比較例2 実施例6と同様にして中心粒子径100μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。ついで回転式めっき装置にニッ
ケルめっき処理した100μmの粒子40gだけを投入
し、銅めっきを行った。めっき時の条件は、浴温度30
℃、電流密度0.5A/dm2、周速18Hzとして、
40秒毎に回転方向を逆転させた。
Comparative Example 2 In the same manner as in Example 6, particles having a central particle diameter of 100 μm were obtained. Nickel plating was formed thereon by electroless plating as a conductive underlayer. Subsequently, only 40 g of nickel-plated 100 μm particles were charged into a rotary plating apparatus, and copper plating was performed. The plating conditions were bath temperature 30.
° C, current density 0.5A / dm 2 , peripheral speed 18Hz
The rotation direction was reversed every 40 seconds.

【0046】このようにして得られためっき粒子を断面
観察したところ、銅層の膜厚は2μmであった。また得
られた粒子を、さらに350μmの目開きの篩いにてふ
るったところ、篩いの上に残ったのは全体重量の約20
%であり、5mm角程度の大きな凝集が認められた。こ
れらの粒子のうち2000個を顕微鏡で観察したとこ
ろ、外観は光沢のある銅色を示し、割れや剥がれのある
粒子は、全体の1%程度であった。
When the plating particles thus obtained were observed in cross section, the thickness of the copper layer was 2 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, about 20% of the total weight remained on the sieve.
%, And large aggregation of about 5 mm square was observed. When 2,000 of these particles were observed with a microscope, the appearance was a glossy copper color, and particles having cracks or peeling were about 1% of the whole.

【0047】比較例3 実施例1と同様にして中心粒子径300μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。ついで回転式めっき装置にニッ
ケルめっき処理した中心粒子径100μmの粒子40g
と中心粒子径1000μmのジルコニアボール20mL
とを投入し、銅めっきを行った。めっき時の条件は、浴
温度30℃、電流密度0.5A/dm2、周速18Hz
として、40秒毎に回転方向を逆転させた。
Comparative Example 3 Particles having a central particle diameter of 300 μm were obtained in the same manner as in Example 1. Nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, 40 g of particles having a central particle diameter of 100 μm and subjected to nickel plating in a rotary plating apparatus.
And 20 mL of zirconia balls with a central particle diameter of 1000 μm
And copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 18 Hz.
The rotation direction was reversed every 40 seconds.

【0048】得られた粒子を、900μmの目開きの篩
いにてふるい、1000μmのダミー粒子とめっき粒子
とを分離した。このようにして得られためっき粒子を断
面観察したところ、銅層の膜厚は3μmであった。また
得られた粒子を、さらに350μmの目開きの篩いにて
ふるったところ、篩いの上に残ったのは全体重量の1%
程度であり、大きな凝集は認められなかった。これらの
粒子のうち2000個を顕微鏡で観察したところ、外観
は艶消しの銅色を示し、割れや剥がれのある粒子は、全
体の40%程度であった。
The obtained particles were sieved with a sieve having an opening of 900 μm to separate 1000 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, 1% of the total weight remained on the sieve.
And no large aggregation was observed. Observation of 2,000 of these particles with a microscope revealed that the appearance was matte copper color, and that about 40% of the particles had cracks or peeling.

【0049】比較例4 実施例1と同様にして中心粒子径300μmの粒子を得
た。これに導電下地層としてニッケルめっきを無電解め
っきにより形成させた。ついで回転式めっき装置にニッ
ケルめっき処理した中心粒子径300μmの粒子40g
と中心粒子径1000μmのステンレスボール20mL
とを投入し、銅めっきを行った。めっき時の条件は、浴
温度30℃、電流密度0.5A/dm2、周速18Hz
として、40秒毎に回転方向を逆転させた。
Comparative Example 4 Particles having a central particle diameter of 300 μm were obtained in the same manner as in Example 1. Nickel plating was formed thereon by electroless plating as a conductive underlayer. Next, 40 g of particles having a central particle diameter of 300 μm and plated with nickel in a rotary plating apparatus.
And 20 mL of stainless steel balls with a central particle diameter of 1000 μm
And copper plating was performed. The plating conditions were as follows: bath temperature 30 ° C., current density 0.5 A / dm 2 , peripheral speed 18 Hz.
The rotation direction was reversed every 40 seconds.

【0050】得られた粒子を、900μmの目開きの篩
いにてふるい、1000μmのダミー粒子とめっき粒子
とを分離した。このようにして得られためっき粒子を断
面観察したところ、銅層の膜厚は3μmであった。また
得られた粒子を、さらに350μmの目開きの篩いにて
ふるったところ、篩いの上に残ったのは全体重量の1%
程度であり、大きな凝集は認められなかった。これらの
粒子のうち2000個を顕微鏡で観察したところ、外観
は艶消しの銅色を示し、割れや剥がれのある粒子は、全
体の40%程度であった。
The obtained particles were sieved with a sieve having an opening of 900 μm to separate 1000 μm dummy particles and plating particles. When the cross section of the plating particles thus obtained was observed, the thickness of the copper layer was 3 μm. When the obtained particles were further sieved with a sieve having an opening of 350 μm, 1% of the total weight remained on the sieve.
And no large aggregation was observed. Observation of 2,000 of these particles with a microscope revealed that the appearance was matte copper color, and that about 40% of the particles had cracks or peeling.

【0051】[0051]

【発明の効果】本発明は、上述の構成よりなるので、1
〜1000μmの導電性微粒子を、凝集が無く、めっき
の表面状態が良好なまま合成でき、これを用いて導電性
に優れた導電接続構造体を提供することができる。
Since the present invention has the above-described structure,
Conductive fine particles of up to 1000 μm can be synthesized without aggregation and with good plating surface conditions, and a conductive connection structure having excellent conductivity can be provided using this.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられるめっき装置の一例を示す概
略図である。
FIG. 1 is a schematic view showing an example of a plating apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 カバー 2 電極 2a 陽極 3 回転軸 5 容器 6 めっき液供給管 7 めっき液排出管 8 開口部 11 底板 12 接触リング 13 多孔質リング DESCRIPTION OF SYMBOLS 1 Cover 2 Electrode 2a Anode 3 Rotation axis 5 Container 6 Plating solution supply pipe 7 Plating solution discharge pipe 8 Opening 11 Bottom plate 12 Contact ring 13 Porous ring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 21/10 302 C25D 21/10 302 Fターム(参考) 4K024 AA09 AA22 AB02 AB17 BA12 BB10 BC08 CA15 CB01 CB02 CB06 CB08 GA16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C25D 21/10 302 C25D 21/10 302 F term (reference) 4K024 AA09 AA22 AB02 AB17 BA12 BB10 BC08 CA15 CB01 CB02 CB06 CB08 GA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微粒子のめっき方法であって、外周部に
陰極を有し、めっき液を通過させて排出するフィルター
部を有する回転可能なドームと、該ドームの中に該陰極
と接触しないように設置された陽極とを有し、ドームの
回転による遠心力によって微粒子を陰極に接触させなが
ら通電と撹拌とを繰り返す回転型めっき装置を用いる方
法であり、めっきする基材粒子と同等の硬さを有してお
り、かつその粒子径がめっきする基材粒子の1.5〜3
0倍であるダミー粒子を同時に加えてめっきを行うこと
を特徴とする微粒子のめっき方法。
1. A method for plating fine particles, comprising: a rotatable dome having a cathode on an outer periphery thereof and having a filter portion for passing and discharging a plating solution; And a rotating plating apparatus that repeats energization and stirring while contacting the fine particles with the cathode by centrifugal force due to the rotation of the dome, and has the same hardness as the base particles to be plated. Having a particle size of 1.5 to 3 of the base particles to be plated.
A plating method of fine particles, wherein plating is performed by simultaneously adding dummy particles of 0 times.
【請求項2】 めっきする基材粒子が樹脂であり、その
粒子径が1〜1000μmであることを特徴とする請求
項1記載の微粒子のめっき方法。
2. The method for plating fine particles according to claim 1, wherein the base particles to be plated are resin, and the particle diameter is 1 to 1000 μm.
【請求項3】 ダミー粒子が樹脂からなることを特徴と
する請求項1記載の微粒子のめっき方法。
3. The method according to claim 1, wherein the dummy particles are made of a resin.
【請求項4】 請求項1、2又は3記載の微粒子のめっ
き方法によりめっきしたことを特徴とする導電性微粒
子。
4. A conductive fine particle plated by the method for plating fine particles according to claim 1, 2 or 3.
【請求項5】 請求項4記載の導電性微粒子により接続
されてなることを特徴とする導電接続構造体。
5. A conductive connection structure which is connected by the conductive fine particles according to claim 4.
JP2001128125A 2001-04-25 2001-04-25 Fine particle plating method, conductive fine particles, and connection structure Expired - Fee Related JP3694249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128125A JP3694249B2 (en) 2001-04-25 2001-04-25 Fine particle plating method, conductive fine particles, and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128125A JP3694249B2 (en) 2001-04-25 2001-04-25 Fine particle plating method, conductive fine particles, and connection structure

Publications (2)

Publication Number Publication Date
JP2002322591A true JP2002322591A (en) 2002-11-08
JP3694249B2 JP3694249B2 (en) 2005-09-14

Family

ID=18976876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128125A Expired - Fee Related JP3694249B2 (en) 2001-04-25 2001-04-25 Fine particle plating method, conductive fine particles, and connection structure

Country Status (1)

Country Link
JP (1) JP3694249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116483A (en) * 2003-10-10 2005-04-28 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP2006045619A (en) * 2004-08-04 2006-02-16 Murata Mfg Co Ltd Plating method
KR100784902B1 (en) * 2004-12-30 2007-12-11 주식회사 동부하이텍 Manufacturing method of plastic conductive particles
WO2011027528A1 (en) * 2009-09-04 2011-03-10 日立金属株式会社 Plating device
JP2011179064A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Plating device
JP2011195849A (en) * 2010-03-17 2011-10-06 Hitachi Metals Ltd Plating device
WO2018121526A1 (en) * 2016-12-28 2018-07-05 汉玛科技股份有限公司 Electroplating device for small component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106884198B (en) * 2017-04-18 2019-02-05 湖南省鎏源新能源有限责任公司 A kind of electroplanting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159995A (en) * 1983-03-01 1984-09-10 Matsushita Electric Ind Co Ltd Method for partially electroplating electronic parts
JPH032392A (en) * 1989-05-26 1991-01-08 Nisshin Steel Co Ltd Method and device for coating powder
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH05222595A (en) * 1992-02-07 1993-08-31 Murata Mfg Co Ltd Method for controlling plating thickness in barrel plating
JPH09137289A (en) * 1995-04-03 1997-05-27 Sekisui Finechem Co Ltd Production of conductive particulate
JPH11317416A (en) * 1998-03-05 1999-11-16 Tokyo Tungsten Co Ltd Composite microball, and manufacture of the same and device thereof
JPH11329059A (en) * 1998-05-12 1999-11-30 Sekisui Finechem Co Ltd Conductive corpuscle for probe, its manufacture and conductive inspection probe
JP2000309895A (en) * 1999-04-22 2000-11-07 Sekisui Chem Co Ltd Device for producing electrically conductive fine particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159995A (en) * 1983-03-01 1984-09-10 Matsushita Electric Ind Co Ltd Method for partially electroplating electronic parts
JPH032392A (en) * 1989-05-26 1991-01-08 Nisshin Steel Co Ltd Method and device for coating powder
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH05222595A (en) * 1992-02-07 1993-08-31 Murata Mfg Co Ltd Method for controlling plating thickness in barrel plating
JPH09137289A (en) * 1995-04-03 1997-05-27 Sekisui Finechem Co Ltd Production of conductive particulate
JPH11317416A (en) * 1998-03-05 1999-11-16 Tokyo Tungsten Co Ltd Composite microball, and manufacture of the same and device thereof
JPH11329059A (en) * 1998-05-12 1999-11-30 Sekisui Finechem Co Ltd Conductive corpuscle for probe, its manufacture and conductive inspection probe
JP2000309895A (en) * 1999-04-22 2000-11-07 Sekisui Chem Co Ltd Device for producing electrically conductive fine particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116483A (en) * 2003-10-10 2005-04-28 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
JP2006045619A (en) * 2004-08-04 2006-02-16 Murata Mfg Co Ltd Plating method
KR100784902B1 (en) * 2004-12-30 2007-12-11 주식회사 동부하이텍 Manufacturing method of plastic conductive particles
WO2011027528A1 (en) * 2009-09-04 2011-03-10 日立金属株式会社 Plating device
CN102666942A (en) * 2009-09-04 2012-09-12 日立金属株式会社 Plating device
JP2011179064A (en) * 2010-03-01 2011-09-15 Hitachi Metals Ltd Plating device
JP2011195849A (en) * 2010-03-17 2011-10-06 Hitachi Metals Ltd Plating device
WO2018121526A1 (en) * 2016-12-28 2018-07-05 汉玛科技股份有限公司 Electroplating device for small component
CN110139949A (en) * 2016-12-28 2019-08-16 汉玛科技股份有限公司 The electroplanting device of small parts
CN110139949B (en) * 2016-12-28 2021-12-21 汉玛科技股份有限公司 Electroplating device for small parts

Also Published As

Publication number Publication date
JP3694249B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
TW511099B (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JP3874911B2 (en) Plating method for micro plastic balls
WO1998046811A1 (en) Conductive particles and method and device for manufacturing the same, anisotropic conductive adhesive and conductive connection structure, and electronic circuit components and method of manufacturing the same
JP4812834B2 (en) Conductive fine particles comprising a composite metal layer having a density gradient, a method for producing the conductive fine particles, and an anisotropic conductive adhesive composition comprising the conductive fine particles
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP3694249B2 (en) Fine particle plating method, conductive fine particles, and connection structure
KR20130122730A (en) Conductive particles, anisotropic conductive material and connection structure
JP2020095966A (en) Conductive particle, conductive material, and connecting structure
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
WO2007099965A1 (en) Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP5108456B2 (en) Conductive fine particles
JP2013229240A (en) Conductive particle and method for producing the same
JP4387653B2 (en) Metal fine particles and adhesive, film and electric circuit board using the fine particles
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JP2017188482A (en) Conductive particles for touch screen panel, and conductive materials including the same
JPS6391903A (en) Conducting particle
JP2003247083A (en) Conductive fine particle with flux, and conductive connecting structure
JP4068980B2 (en) Conductive fine particles, method for producing conductive fine particles, and conductive connection structure
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
EP1329911A1 (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JP2000322936A (en) Conductive micro particle and conductive connection structure
JP2005175308A (en) Conductive particulate
JP2011070943A (en) Conductive particulates, anisotropic conductive material, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050623

R151 Written notification of patent or utility model registration

Ref document number: 3694249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees