JP2000322936A - Conductive micro particle and conductive connection structure - Google Patents

Conductive micro particle and conductive connection structure

Info

Publication number
JP2000322936A
JP2000322936A JP13153499A JP13153499A JP2000322936A JP 2000322936 A JP2000322936 A JP 2000322936A JP 13153499 A JP13153499 A JP 13153499A JP 13153499 A JP13153499 A JP 13153499A JP 2000322936 A JP2000322936 A JP 2000322936A
Authority
JP
Japan
Prior art keywords
resin
fine particles
particles
plating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13153499A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kamiyoshi
和彦 神吉
Yoshiaki Kodera
嘉秋 小寺
Kazuo Ukai
和男 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP13153499A priority Critical patent/JP2000322936A/en
Publication of JP2000322936A publication Critical patent/JP2000322936A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29409Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29413Bismuth [Bi] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29401Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29416Lead [Pb] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29417Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29418Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29439Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29464Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29463Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29469Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Chemically Coating (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro particle having a metallic coating layer where crack or wrinkle is not developed and no break-away or separation from a resin base material particle, by forming a metallic coating layer around a complex layer that is composed of metal and resin and is formed in and/or around the resin base material particle. SOLUTION: In this conductive micro particle, an interface complex layer 12 composed of metal and resin formed around the resin base material particle 11, and further a metallic coating layer 13 is formed around it. Thickness of the interface complex layer 12 is 0.01 to 1000 μm, preferably 0.1 to 10 μm. The interface complex layer 12 has a complex structure of the metal and the resin, may be a structure where the metal and the resin mutually intricate, and may be a structure where micro-spherical metals are dispersed in the resin. A gradient material structure is preferable where metal concentration increases from the inside to the outside of the interface complex layer 12. In addition, thickness of the metallic coating layer 13 is 0.05-100 μm, preferably 0.1-50 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極間の接続に用
いられる導電性微粒子及び該導電性微粒子が用いられた
導電接続構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive fine particles used for connection between electrodes and a conductive connection structure using the conductive fine particles.

【0002】[0002]

【従来の技術】液晶ディスプレイ、パーソナルコンピュ
ータ、携帯通信機器等のエレクトロニクス製品におけ
る、フリップチップ・ボンディングやボールグリッドア
レイ(BGA)等を用いた接続等、電子部品や電子部品
素子と電極基板との導電接続においては、はんだ、ニッ
ケル、銅等からなる金属微粒子が用いられてきた。しか
しながら、これらの金属微粒子は、硬すぎたり、弾力性
に乏しいという欠点を有しており、これらの金属微粒子
を用いた導電接続構造体は、冷熱サイクル試験を行った
際に接続部にクラックが発生し易い等の問題点を有して
いた。
2. Description of the Related Art In electronic products such as a liquid crystal display, a personal computer, and a portable communication device, the electrical connection between an electronic component or an electronic component element and an electrode substrate, such as flip-chip bonding or connection using a ball grid array (BGA). In connection, metal fine particles made of solder, nickel, copper, or the like have been used. However, these metal fine particles have the drawback of being too hard or poor in elasticity, and the conductive connection structure using these metal fine particles has cracks in the connection part when a cooling / heating cycle test is performed. There were problems such as easy occurrence.

【0003】このような問題点を解決するために、樹脂
基材粒子の周囲に無電解メッキにより金属被覆層を設け
た導電性微粒子を用いて異方性導電膜を作製し、この異
方性導電膜を電子部品や電子部品素子と電極基板との導
電接続に用いることが提案されている。(特開昭61−
064882号公報、特開昭61−277105号公
報、特開昭63−190204号公報、特開平01−2
42782号公報及び特開平09−137289号公報
参照)。しかしながら、従来の樹脂基材粒子の周囲に無
電解メッキや電解メッキにより金属被覆層を設けた導電
性微粒子は以下のような問題点を有していた。
In order to solve such a problem, an anisotropic conductive film is prepared by using conductive fine particles having a metal coating layer provided around the resin base particles by electroless plating. It has been proposed to use a conductive film for conductive connection between an electronic component or an electronic component element and an electrode substrate. (Japanese Patent Laid-Open No. 61-
JP-A-664882, JP-A-61-277105, JP-A-63-190204, JP-A-01-2
No. 42782 and JP-A-09-137289). However, the conventional conductive fine particles provided with a metal coating layer around the resin base particles by electroless plating or electrolytic plating have the following problems.

【0004】即ち、従来の導電性微粒子においては、ニ
ッケル、金等からなる金属被覆層と樹脂基材粒子との密
着性が不足しているため、例えば、導電性微粒子により
接続された2枚の基板間に圧力を加えたり、ずり応力を
加えたりした場合に金属被覆層が、樹脂基材粒子表面か
ら剥離したり、脱離したりしやすかった。
That is, in the conventional conductive fine particles, the adhesion between the metal coating layer made of nickel, gold or the like and the resin base material particles is insufficient. When pressure was applied between the substrates or shear stress was applied, the metal coating layer was easily peeled off or detached from the surface of the resin base material particles.

【0005】また、従来の導電性微粒子を用いた導電接
続構造体を用いて、冷熱サイクル試験を行った際には、
金属被覆層にひび割れが生じたり、皺が発生したりしや
すかった。更に、従来の導電性微粒子は、上記のような
問題点を有するため、導電接続構造体の接合部におい
て、導電性微粒子の抵抗値が増大し、得られた導電接続
構造体は充分な信頼性を有していなかった。
[0005] Further, when a thermal cycle test is performed using a conventional conductive connection structure using conductive fine particles,
Cracks and wrinkles were easily generated in the metal coating layer. Further, since the conventional conductive fine particles have the above-described problems, the resistance value of the conductive fine particles increases at the junction of the conductive connection structure, and the obtained conductive connection structure has a sufficient reliability. Did not have.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記に鑑
み、ひび割れや皺が発生せず、樹脂基材粒子からの剥離
や脱離のない金属被覆層を有する導電性微粒子を提供す
ることを目的とする。また、上記導電性微粒子を用いて
作製された信頼性の高い導電接続構造体を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has as its object to provide conductive fine particles having a metal coating layer which does not crack or wrinkle and which does not peel off or detach from resin base particles. Aim. Another object is to provide a highly reliable conductive connection structure manufactured using the conductive fine particles.

【0007】[0007]

【課題を解決するための手段】本発明は、樹脂基材粒子
の内部及び/又は周囲に金属と樹脂とからなる複合層が
形成され、上記複合層の周囲に更に金属被覆層が形成さ
れていることを特徴とする導電性微粒子である。以下に
本発明を詳述する。
According to the present invention, a composite layer comprising a metal and a resin is formed inside and / or around resin base particles, and a metal coating layer is further formed around the composite layer. Conductive fine particles. Hereinafter, the present invention will be described in detail.

【0008】本発明の導電性微粒子に用いられる樹脂基
材粒子としては、樹脂材料、又は、有機・無機ハイブリ
ット材料からなる粒子が挙げられる。上記樹脂材料とし
ては、例えば、ポリスチレン、ポリメチルメタクリレー
ト、ポリエチレン、ポリプロピレン、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート、ポリスルホ
ン、ポリカーボネート、ポリアミド等の線状重合体;ジ
ビニルベンゼン、ヘキサトリエン、ジビニルエーテル、
ジビニルスルホン、ジアリルカルビノール、アルキレン
ジアクリレート、オリゴ又はポリアルキレングリコール
ジアクリレート、オリゴ又はポリアルキレングリコール
ジメタクリレート、アルキレントリアクリレート、アル
キレンテトラアクリレート、アルキレントリメタクリレ
ート、アルキレンテトラメタクリレート、アルキレンビ
スアクリルアミド、アルキレンビスメタクリルアミド、
両末端アクリル変性ポリブタジエンオリゴマー等を単独
又は他の重合性モノマーと重合させて得られる網状重合
体;フェノールホルムアルデヒド樹脂、メラミンホルム
アルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹
脂、尿素ホルムアルデヒド樹脂等の熱硬化性樹脂等が挙
げられる。
The resin base particles used for the conductive fine particles of the present invention include particles made of a resin material or an organic / inorganic hybrid material. Examples of the resin material include linear polymers such as polystyrene, polymethyl methacrylate, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polysulfone, polycarbonate, and polyamide; divinylbenzene, hexatriene, divinyl ether,
Divinyl sulfone, diallyl carbinol, alkylene diacrylate, oligo or polyalkylene glycol diacrylate, oligo or polyalkylene glycol dimethacrylate, alkylene triacrylate, alkylene tetraacrylate, alkylene trimethacrylate, alkylene tetramethacrylate, alkylene bisacrylamide, alkylene bismethacryl Amide,
Reticulated polymers obtained by polymerizing an acrylic-modified polybutadiene oligomer at both ends alone or with another polymerizable monomer; and thermosetting resins such as phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, and urea formaldehyde resin. .

【0009】上記有機・無機ハイブリット材料として
は、例えば、側鎖にシリル基を有する(メタ)アクリレ
ートとスチレン、メチルメタクリレート等のビニルモノ
マーとの共重合体を作製した後、上記シリル基を縮合反
応させたもの;有機重合体共存下でテトラエトキシシラ
ン、トリエトキシシラン、ジエトキシシラン等をゾル−
ゲル反応させたもの;テトラエトキシシラン、トリエト
キシシラン、ジエトキシシラン等をゾル−ゲル反応させ
た後、低温で焼成を行うことにより有機成分を残留させ
たもの等が挙げられる。
As the organic / inorganic hybrid material, for example, a copolymer of (meth) acrylate having a silyl group in a side chain with a vinyl monomer such as styrene or methyl methacrylate is prepared, and then the silyl group is subjected to a condensation reaction. What was made; tetraethoxysilane, triethoxysilane, diethoxysilane, etc. in the presence of an organic polymer
Gel-reacted ones include those obtained by performing a sol-gel reaction of tetraethoxysilane, triethoxysilane, diethoxysilane, and the like, and then firing at low temperature to leave organic components.

【0010】上記樹脂材料や有機・無機ハイブリット材
料の合成方法としては特に限定されず、懸濁重合法、シ
ード重合法、分散重合法、ゾル−ゲル反応によるステー
バー法等の従来公知の合成方法を適宜選択して用いれば
よい。
The method for synthesizing the resin material and the organic / inorganic hybrid material is not particularly limited, and a conventionally known synthesis method such as a suspension polymerization method, a seed polymerization method, a dispersion polymerization method, and a Steber method by a sol-gel reaction is used. It may be appropriately selected and used.

【0011】上記樹脂基材粒子の形状は、球状又は回転
楕円体状である。上記樹脂基材粒子の平均粒子径、即
ち、上記樹脂基材粒子が球状の場合はその直径、回転楕
円体状の場合はその長直径は、1〜1000μmが好ま
しく、2〜500μmがより好ましい。平均粒子径が1
μm未満では、樹脂基材粒子に均一な被覆層を形成しに
くくなり、1000μmを超えると、微細電極間の接合
がしにくくなるからである。上記平均粒子径は、任意の
樹脂基材粒子300個を電子顕微鏡で観察・測定するこ
とにより得られる値である。
The shape of the resin base particles is spherical or spheroidal. The average particle diameter of the resin base particles, that is, the diameter when the resin base particles are spherical, and the long diameter when the resin base particles are spheroidal are preferably from 1 to 1000 μm, more preferably from 2 to 500 μm. Average particle size is 1
If it is less than μm, it is difficult to form a uniform coating layer on the resin base particles, and if it is more than 1000 μm, it is difficult to bond the fine electrodes. The average particle diameter is a value obtained by observing and measuring 300 arbitrary resin base material particles with an electron microscope.

【0012】上記樹脂基材粒子の粒子径分布の変動係数
(CV値)は5%以下が好ましく、3%以下がより好ま
しい。上記CV値が5%を超えると、樹脂基材粒子の粒
子径が不揃いとなるため、この樹脂基材粒子を用いて製
造した導電性微粒子を介して電極同士を接続させる際
に、接続に関与しない導電性微粒子が発生して、隣接電
極間でのリーク現象が生じる場合がある。
The coefficient of variation (CV value) of the particle size distribution of the resin base particles is preferably 5% or less, more preferably 3% or less. If the CV value is more than 5%, the particle diameter of the resin base particles becomes uneven. Therefore, when the electrodes are connected via the conductive fine particles produced using the resin base particles, the electrodes are involved in the connection. Undesired conductive fine particles may be generated, and a leak phenomenon may occur between adjacent electrodes.

【0013】上記CV値とは、下記の式(1); CV値(%)=(σ/Dn)×100・・・・(1) (式中、σは、粒子径の標準偏差を表し、Dnは、数平
均粒子径を表す)で表される値である。上記標準偏差及
び上記数平均粒子径は、任意の樹脂基材粒子300個を
電子顕微鏡で観察・測定することにより得られる値であ
る。
The CV value is defined by the following formula (1): CV value (%) = (σ / Dn) × 100 (1) (where σ represents the standard deviation of the particle diameter) , Dn represent the number average particle diameter). The standard deviation and the number average particle diameter are values obtained by observing and measuring 300 arbitrary resin base particles with an electron microscope.

【0014】上記樹脂基材粒子は、表面に近い部分に開
孔を有するものであってもよいし、上記開孔を有さない
ものであってもよい。まず、上記樹脂基材粒子が開孔を
有さないものである場合について、図面を参照しながら
説明する。
The resin base particles may have pores near the surface or may not have the pores. First, the case where the resin base particles have no pores will be described with reference to the drawings.

【0015】この場合、本発明の導電性微粒子は、図1
(a)及び(b)に断面図として示すように、樹脂基材
粒子11の周囲に金属と樹脂とからなる界面複合層12
が形成されており、更に、その周囲に金属被覆層13が
形成されている。界面複合層12の厚さは、0.01〜
1000μmが好ましく、0.1〜10μmがより好ま
しい。
In this case, the conductive fine particles of the present invention can
As shown in the cross-sectional views of (a) and (b), an interface composite layer 12 made of a metal and a resin is provided around resin base particles 11.
Is formed, and a metal coating layer 13 is further formed around it. The thickness of the interface composite layer 12 is 0.01 to
1000 μm is preferable, and 0.1 to 10 μm is more preferable.

【0016】界面複合層12は、金属と樹脂との複合構
造を有している。上記複合構造は、金属と樹脂とが互い
に入り組んだ構造であってもよく、微球状の金属が樹脂
中に分散された構造であってもよい。また、これらの複
合構造が混在したものであってもよい。このような界面
複合層においては、界面複合層12の内側から外側に向
かって金属濃度が増加する傾斜材料構造が好ましい。こ
のような傾斜材料構造とすることにより、界面複合層の
内側の部分は樹脂比率が高く、樹脂基材粒子と組成的に
差がなくなるため、樹脂基材粒子と強固に結合し、一
方、界面複合層の外側の部分は金属比率が高く、金属被
覆層との強固な結合を形成することができるからであ
る。
The interface composite layer 12 has a composite structure of a metal and a resin. The composite structure may be a structure in which a metal and a resin are intertwined with each other, or a structure in which fine spherical metals are dispersed in a resin. Further, these composite structures may be mixed. In such an interface composite layer, a gradient material structure in which the metal concentration increases from the inside to the outside of the interface composite layer 12 is preferable. By adopting such a gradient material structure, the inner portion of the interface composite layer has a high resin ratio, and there is no difference in composition with the resin base particles. This is because the outer portion of the composite layer has a high metal ratio and can form a strong bond with the metal coating layer.

【0017】界面複合層12を構成する金属としては、
例えば、周期律表におけるVIII族、IB族、IVB
族等に属する金属が挙げられる。これらのなかでは、V
III族としては、パラジウム、白金、IB族として
は、金、銀、銅が好ましく、パラジウムがより好まし
い。
The metal constituting the interface composite layer 12 includes:
For example, groups VIII, IB, IVB in the periodic table
Metals belonging to a group or the like. Of these, V
Group III is preferably palladium or platinum, and Group IB is preferably gold, silver or copper, and more preferably palladium.

【0018】また、界面複合層12を構成する金属と、
後述する金属被覆層13を構成する金属とには、同一の
金属が含まれていることが好ましい。同一の金属を用い
ることにより、界面複合層と金属被覆層との密着強度を
増加させることができるからである。
Further, a metal constituting the interface composite layer 12 includes:
It is preferable that the same metal is contained in the metal forming the metal coating layer 13 described later. By using the same metal, the adhesion strength between the interface composite layer and the metal coating layer can be increased.

【0019】界面複合層12を形成する方法としては、
例えば、以下の方法を用いることができる。樹脂基材粒
子の表面に、硬化前の熱硬化型樹脂又は光硬化型樹脂を
塗布し、これを硬化させた後、樹脂基材粒子をアルカリ
液、酸性液又は酸化剤溶液で処理し、更に、硬化樹脂層
に塩化パラジウム溶液を接触させた後、塩酸により還元
させて金属パラジウムを析出させる方法(以下、方法1
という)である。
The method for forming the interface composite layer 12 is as follows.
For example, the following method can be used. On the surface of the resin substrate particles, apply a thermosetting resin or a photocurable resin before curing, and after curing this, treat the resin substrate particles with an alkali solution, an acid solution or an oxidizing agent solution, A method in which a palladium chloride solution is brought into contact with the cured resin layer, and then reduced with hydrochloric acid to precipitate metallic palladium (hereinafter referred to as Method 1).
It is).

【0020】上記熱硬化型樹脂又は光硬化型樹脂として
は、例えば、アミン系、アミド系又はイミダゾール系の
加熱硬化剤や光カチオン系硬化剤等を含有するビスフェ
ノールA型エポキシ、ノボラック型エポキシ、レゾール
型エポキシ、脂環型エポキシ、アクリル変性エポキシ等
のエポキシ樹脂が挙げられる。これらの樹脂は単独で用
いてもよいし、2種以上併用してもよい。また、他の熱
硬化性樹脂とブレンドして用いてもよい。上記他の熱硬
化性樹脂としては、例えば、アクリル酸エステル樹脂、
ポリエステル樹脂、ポリスルホン、ポリフェニレンオキ
サイド、酢酸セルロース、ブチラール樹脂等が挙げられ
る。
Examples of the thermosetting resin or photocurable resin include bisphenol A type epoxy, novolak type epoxy, resol and the like containing an amine-based, amide-based or imidazole-based heat-curing agent and a photocationic-based curing agent. Epoxy resins such as type epoxy, alicyclic epoxy, and acryl-modified epoxy. These resins may be used alone or in combination of two or more. Further, it may be used by blending with another thermosetting resin. As the other thermosetting resin, for example, acrylate resin,
Examples include polyester resin, polysulfone, polyphenylene oxide, cellulose acetate, and butyral resin.

【0021】また、樹脂基材粒子の表面を、ナノ粒子サ
イズのパラジウム微球体を分散させた熱硬化型樹脂又は
光硬化型樹脂で被覆し、これを硬化させた後、このパラ
ジウム微球体分散硬化樹脂層をアルカリ液、酸性液又は
酸化剤溶液で処理する方法(方法2)を用いることもで
きる。ここでは、上記アルカリ液、酸性液又は酸化剤溶
液での処理が終了した後、更に、塩化パラジウム溶液を
接触させ、その後、塩酸により還元させて金属パラジウ
ムを表面に析出させてもよい。
The surface of the resin base particles is coated with a thermosetting resin or a photocurable resin in which nano-sized palladium microspheres are dispersed, and after curing, the palladium microspheres are dispersed and hardened. A method (method 2) of treating the resin layer with an alkali solution, an acid solution or an oxidizing agent solution can also be used. Here, after the treatment with the alkali solution, the acid solution or the oxidizing agent solution is completed, a palladium chloride solution may be further brought into contact with the solution, and then reduced with hydrochloric acid to deposit metal palladium on the surface.

【0022】上記熱硬化型樹脂又は光硬化型樹脂として
は、例えば、方法1で用いたものと同様のものが挙げら
れる。なお、ここでは、パラジウムを例に界面複合層1
2を形成する方法を例示したが、これらの形成方法を用
いることのできる金属はパラジウムに限定されるわけで
はない。
As the thermosetting resin or the photocurable resin, for example, the same resins as those used in the method 1 can be used. Here, palladium is used as an example for the interface composite layer 1.
Although the method of forming No. 2 has been illustrated, the metal that can be used in these methods is not limited to palladium.

【0023】次に、上記樹脂基材粒子が表面に近い部分
に開孔を有する場合について、説明する。
Next, the case where the resin base particles have an opening near the surface will be described.

【0024】この場合、本発明の導電性微粒子は、上記
樹脂基材粒子の内部に金属と樹脂とからなる複合層が形
成されており、更に、その周囲に金属被覆層が形成され
ている。上記導電性微粒子では、樹脂基材粒子が表面に
近い部分に開孔を有しているため、該開孔に金属が入り
込むことができる。そのため、樹脂基材粒子の内部に金
属と樹脂とからなる複合層を形成することができる。
In this case, in the conductive fine particles of the present invention, a composite layer composed of a metal and a resin is formed inside the resin base particles, and a metal coating layer is further formed around the composite layer. In the conductive fine particles, since the resin base particles have openings near the surface, metal can enter the openings. Therefore, a composite layer composed of a metal and a resin can be formed inside the resin base particles.

【0025】上記表面に近い部分に開孔を有する樹脂基
材粒子を作製する方法としては、例えば、以下の方法等
を用いることができる。まず、開孔径に近い粒子径を有
する重合体(以下、開孔形成用重合体という)と上記樹
脂基材粒子の作製に用いる単量体組成物と重合開始剤と
を均一に混合した後、重合反応を行うことにより、上記
開孔形成用重合体の分散した微粒子を得る。次に、得ら
れた微粒子を上記開孔形成用重合体は溶解するが、上記
単量体組成物から得られる重合体は溶解しない溶剤に浸
漬する。
As a method for producing the resin base particles having an opening at a portion close to the surface, for example, the following method can be used. First, after uniformly mixing a polymer having a particle size close to the pore size (hereinafter, referred to as a polymer for forming pores), a monomer composition used for preparing the resin base material particles, and a polymerization initiator, By carrying out the polymerization reaction, fine particles in which the polymer for forming pores are dispersed are obtained. Next, the obtained fine particles are immersed in a solvent in which the polymer for forming pores is dissolved but the polymer obtained from the monomer composition is not dissolved.

【0026】このような方法を用いることにより、樹脂
基材粒子の表面層を細かい空洞部をもつスポンジ状に形
成することができる。即ち、表面に近い部分に開孔を有
する樹脂基材粒子を作製することができる。
By using such a method, the surface layer of the resin base particles can be formed in a sponge shape having a fine cavity. That is, resin base particles having an opening in a portion close to the surface can be produced.

【0027】上記複合層の厚さは、上記界面複合層12
の厚さと同様であり、また、複合層の構造やその構成金
属も界面複合層12と同様である。
The thickness of the composite layer depends on the thickness of the interface composite layer 12.
And the structure of the composite layer and the constituent metals thereof are the same as those of the interface composite layer 12.

【0028】上記樹脂基材粒子の内部に複合層を形成す
る方法としては、例えば、以下の方法を用いることがで
きる。即ち、上記した方法により樹脂基材粒子の表面層
を予め細かい空洞部をもつスポンジ状に形成し、次に、
樹脂基材粒子を塩化パラジウム溶液に浸漬した後、塩酸
により還元させて金属パラジウムを上記空洞部に析出さ
せる方法を用いることができる。このとき、上記塩化パ
ラジウム溶液に代えて塩化錫を共存させた塩化パラジウ
ム溶液を用いてもよい。なお、上記空洞部は、樹脂基材
粒子の表面側で空隙率が大きく、中心側で空隙率が小さ
くなっている。ここでも、パラジウムを例に複合層を形
成する方法を例示したが、これらの形成方法を用いるこ
とのできる金属はパラジウムに限定されるわけではな
い。
As a method for forming the composite layer inside the resin base particles, for example, the following method can be used. That is, the surface layer of the resin base particles is formed in advance into a sponge shape having fine cavities by the method described above,
A method can be used in which the resin base particles are immersed in a palladium chloride solution, and then reduced with hydrochloric acid to deposit metal palladium in the above-mentioned cavity. At this time, a palladium chloride solution in which tin chloride coexists may be used instead of the above palladium chloride solution. In the cavity, the porosity is large on the surface side of the resin base material particles, and the porosity is small on the center side. Here also, the method of forming the composite layer is described using palladium as an example, but the metal that can be used for these formation methods is not limited to palladium.

【0029】また、本発明の導電性微粒子は、上記した
ように樹脂基材粒子の周囲に複合層が形成されていても
よいし、樹脂基材粒子の内部に複合層が形成されていて
もよいが、更に、樹脂基材粒子の内部に複合層が形成さ
れるとともに、その周囲に更に複合層が形成されていて
もよい。この場合も、複合層の形成は、上記した方法と
同様の方法を用いて行うことができる。
The conductive fine particles of the present invention may have a composite layer formed around the resin base particles as described above, or may have a composite layer formed inside the resin base particles. Preferably, a composite layer may be formed inside the resin base particles, and a composite layer may be further formed around the composite layer. Also in this case, the formation of the composite layer can be performed using the same method as the method described above.

【0030】本発明の導電性微粒子では、樹脂基材粒子
の内部及び/又は周囲に形成された複合層の周囲に更に
金属被覆層が形成されている。上記金属被覆層は、樹脂
基材粒子の内部に形成された複合層の周囲に形成された
ものであっても、樹脂基材粒子の周囲に形成された界面
複合層の周囲に形成されたものであっても、樹脂基材粒
子の内部及び周囲に形成された複合層の周囲に形成され
たものであっても、その構造や構成材料、及び、その形
成方法等に差はない。そこで、以下、上記金属被覆層に
ついては、樹脂基材粒子の周囲に形成された界面複合層
の周囲に形成された金属被覆層を例に説明する。
In the conductive fine particles of the present invention, a metal coating layer is further formed around the composite layer formed inside and / or around the resin base particles. The metal coating layer may be formed around the composite layer formed inside the resin base particles, or may be formed around the interface composite layer formed around the resin base particles. However, even if it is formed around the composite layer formed inside and around the resin base particles, there is no difference in the structure, constituent material, forming method and the like. Therefore, the metal coating layer will be described below by taking a metal coating layer formed around an interface composite layer formed around resin base particles as an example.

【0031】上記金属被覆層13の厚さは特に限定され
ないが、0.05〜100μmが好ましく、0.1〜5
0μmがより好ましい。金属被覆層13の厚さが0.0
5μm未満であると、導電性微粒子の抵抗値が高くな
り、充分な導電性が得られない場合がある。一方、金属
被覆層13の厚さは100μmを超えても導電性微粒子
の抵抗値はほとんど変化しないため、コスト面で不利に
なる。
The thickness of the metal coating layer 13 is not particularly limited, but is preferably 0.05 to 100 μm, and 0.1 to 5 μm.
0 μm is more preferred. The thickness of the metal coating layer 13 is 0.0
If the thickness is less than 5 μm, the resistance value of the conductive fine particles may increase, and sufficient conductivity may not be obtained. On the other hand, even if the thickness of the metal coating layer 13 exceeds 100 μm, the resistance value of the conductive fine particles hardly changes, which is disadvantageous in cost.

【0032】金属被覆層13の構造は、単層構造であっ
てもよいし、2層以上の複層構造であってもよい。金属
被覆層が図1(b)に示すように2層からなる複層構造
の場合には、外側の金属被覆層13bは、基板等への融
着の点から低融点金属からなる金属被覆層であることが
好ましい。また、金属被覆層が3層以上からなる複層構
造の場合も最外層は低融点金属からなる金属被覆層であ
ることが好ましい。なお、上記低融点金属とは、内側の
金属被覆層を構成する金属よりも融点の低い金属を意味
する。
The structure of the metal coating layer 13 may be a single-layer structure or a multi-layer structure of two or more layers. In the case where the metal coating layer has a multilayer structure composed of two layers as shown in FIG. 1B, the outer metal coating layer 13b is formed of a metal coating layer made of a low melting point metal from the viewpoint of fusion to a substrate or the like. It is preferred that Also in the case of a multilayer structure having three or more metal coating layers, the outermost layer is preferably a metal coating layer made of a low melting point metal. The low-melting-point metal means a metal having a lower melting point than the metal constituting the inner metal coating layer.

【0033】金属被覆層13を形成させる際に用いる金
属としては、例えば、周期律表におけるIB族、VII
I族、IIB族、IIIB族、IVB族、VB族等に属
する金属が挙げられる。これらのなかでは、IB族とし
ては、銅、銀、金、VIII族としては、ニッケル、パ
ラジウム、白金、IIB族としては、亜鉛、IIIB族
としては、ガリウム、アルミニウム、インジウム、IV
B族としては、錫、鉛、VB族としては、ビスマスがそ
れぞれ好ましい。これらの金属は単独で用いてもよい
し、2種以上の合金として用いてもよい。
The metal used for forming the metal coating layer 13 is, for example, a group IB or VII in the periodic table.
Examples include metals belonging to Group I, Group IIB, Group IIIB, Group IVB, Group VB, and the like. Among them, group IB includes copper, silver and gold, group VIII includes nickel, palladium and platinum, group IIB includes zinc, group IIIB includes gallium, aluminum, indium, and IV.
As group B, tin and lead are preferable, and as group VB, bismuth is preferable. These metals may be used alone or as two or more alloys.

【0034】金属被覆層13を形成する方法としては特
に限定されず、従来公知の方法を用いることができる。
具体的には、例えば、無電解メッキ法、電解メッキ法、
真空蒸着法、スパッタリングによる物理蒸着法等が挙げ
られる。
The method for forming the metal coating layer 13 is not particularly limited, and a conventionally known method can be used.
Specifically, for example, electroless plating, electrolytic plating,
Examples thereof include a vacuum evaporation method and a physical evaporation method using sputtering.

【0035】以下に、このような方法を用いて形成する
金属被覆層の一例であるニッケル−金メッキについて説
明する。上記ニッケル−金メッキでは、界面複合層が形
成された樹脂基材粒子の表面に、無電解ニッケルメッキ
を行った後、その表面部分に置換メッキにより金メッキ
層を形成する。上記無電解ニッケルメッキは触媒付与工
程とニッケル還元メッキ工程とからなる。
Hereinafter, nickel-gold plating which is an example of a metal coating layer formed by using such a method will be described. In the above-described nickel-gold plating, after electroless nickel plating is performed on the surface of the resin substrate particles on which the interface composite layer is formed, a gold plating layer is formed on the surface by displacement plating. The electroless nickel plating includes a catalyst application step and a nickel reduction plating step.

【0036】上記触媒付与工程においては、界面複合層
が形成された樹脂基材粒子の表面に、メッキの核となる
触媒を析出又は吸着させるが、この際、白金族の金属化
合物を用いることが好ましい。具体的には塩化第一錫の
塩酸溶液に界面複合層を有する樹脂基材粒子を浸漬した
後、更に、塩化パラジウムの塩酸溶液に浸漬加熱し、水
洗する。このようにして得た粒子では、パラジウムが界
面複合層中及び界面複合層表面に粒子径50nm以下の
超微粒子として析出している。
In the catalyst application step, a catalyst serving as a nucleus for plating is deposited or adsorbed on the surface of the resin substrate particles on which the interface composite layer is formed. In this case, a platinum group metal compound may be used. preferable. Specifically, after immersing the resin base material particles having the interface composite layer in a hydrochloric acid solution of stannous chloride, the resin substrate is further immersed in a hydrochloric acid solution of palladium chloride, heated and washed. In the particles thus obtained, palladium is precipitated as ultrafine particles having a particle diameter of 50 nm or less in the interface composite layer and on the surface of the interface composite layer.

【0037】また、塩化錫と塩化パラジウムとの混合溶
液に界面複合層を有する樹脂基材粒子を浸漬し、その
後、塩酸又は硫酸水溶液を用いて錫を溶出、除去しても
よい。この場合も上記と同様、界面複合層中及び界面複
合層表面にパラジウムの超微粒子が析出している。
Alternatively, the resin base particles having the interfacial composite layer may be immersed in a mixed solution of tin chloride and palladium chloride, and then tin may be eluted and removed using an aqueous hydrochloric acid or sulfuric acid solution. Also in this case, similarly to the above, ultrafine particles of palladium are precipitated in the interface composite layer and on the surface of the interface composite layer.

【0038】更に、塩化パラジウムと、ポリビニルピロ
リドン、ポリアクリルアミド、ポリビニルピリジン等の
水溶性モノマーと、アスコルビン酸との混合水溶液に界
面複合層を有する樹脂基材粒子を浸漬してもよい(特開
昭61−166977号公報参照)。この場合も上記と
同様、界面複合層中及び界面複合層表面にパラジウムの
超微粒子が析出している。
Further, resin base particles having an interface composite layer may be immersed in a mixed aqueous solution of ascorbic acid and palladium chloride, a water-soluble monomer such as polyvinylpyrrolidone, polyacrylamide and polyvinylpyridine, and the like (Japanese Patent Laid-Open No. 61-166977). Also in this case, similarly to the above, ultrafine particles of palladium are precipitated in the interface composite layer and on the surface of the interface composite layer.

【0039】なお、上記触媒付与工程は、上記の方法に
より行うことができるが、界面複合層が形成された樹脂
基材粒子にニッケル−金メッキを行う場合には、上記触
媒付与工程を省略してもよい。これは、上記界面複合層
を構成する金属が触媒の役割を果たすことが可能だから
である。
The above-described catalyst application step can be performed by the above-described method. However, when nickel-gold plating is performed on the resin substrate particles on which the interface composite layer is formed, the above-described catalyst application step is omitted. Is also good. This is because the metal constituting the interface composite layer can serve as a catalyst.

【0040】次に、上記の方法により触媒の付与された
界面複合層を有する樹脂基材粒子を用いて、ニッケル還
元メッキを行う。上記ニッケル還元メッキを行う方法と
しては、従来公知の方法(「最新無電解めっき技術」
発行;総合技術センター、1986年、43頁等)を用
いることができ、酸性メッキ、アルカリ性メッキのいず
れをも用いることができる。上記ニッケル還元メッキと
して、酸性メッキを用いる場合には、塩化ニッケル又は
硫酸ニッケル溶液に触媒処理された粒子を浸漬し、PH
4〜6の条件下で次亜リン酸ナトリウム溶液を滴下しな
がらニッケルの還元を行うことにより、粒子表面にニッ
ケルメッキ層を形成することができる。
Next, nickel reduction plating is performed using the resin base particles having the interface composite layer provided with the catalyst by the above method. As a method for performing the nickel reduction plating, a conventionally known method ("Latest electroless plating technology") is used.
Published by Sogo Gijutsu Center, 1986, p. 43), and either acidic plating or alkaline plating can be used. When the acidic plating is used as the nickel reduction plating, the catalyst-treated particles are immersed in a nickel chloride or nickel sulfate solution, and the pH is reduced.
By performing nickel reduction while dripping the sodium hypophosphite solution under the conditions of 4 to 6, a nickel plating layer can be formed on the particle surface.

【0041】また、アルカリ性メッキを用いる場合に
は、PH8〜10の条件下でホウ酸又はホウ砂溶液を滴
下しながらニッケルの還元を行うことにより、粒子表面
にニッケルメッキ層を形成することができる。これらの
ニッケル還元メッキにおけるニッケル還元反応は、界面
複合層及び界面複合層表面に存在するパラジウムの超微
粒子上で進行し、これによりニッケルメッキ層が形成さ
れる。
When alkaline plating is used, a nickel plating layer can be formed on the particle surface by performing nickel reduction while dropping a boric acid or borax solution under conditions of pH 8 to 10. . The nickel reduction reaction in the nickel reduction plating proceeds on the interface composite layer and the ultrafine particles of palladium present on the surface of the interface composite layer, thereby forming a nickel plating layer.

【0042】次に、ニッケルメッキ層の形成された粒子
に、置換メッキにより金メッキ層を形成する。上記金メ
ッキは、ニッケルを部分的に溶出させると同時に金をニ
ッケルメッキ層の表面部に析出させることにより行う。
具体的には、シアン化合金カリウム、EDTA及び塩化
アンモニウムからなる溶液にニッケルメッキ層が形成さ
れた粒子を投入し、加熱することにより行う。
Next, a gold plating layer is formed on the particles having the nickel plating layer formed thereon by displacement plating. The gold plating is performed by partially eluting nickel and simultaneously depositing gold on the surface of the nickel plating layer.
Specifically, the method is carried out by charging the particles having the nickel plating layer formed therein into a solution comprising potassium cyanide alloy, EDTA and ammonium chloride, and heating the solution.

【0043】このような構成からなる導電性微粒子10
では、金属被覆層13が界面複合層12に食い込んだ状
態で形成されているため、樹脂基材粒子と金属被覆層と
の密着性は極めて良好であり、両者が容易に剥離するこ
とがない。また、樹脂基材粒子の内部に複合層が形成さ
れ、更にその周囲に金属被覆層が形成された導電性微粒
子や、樹脂基材粒子の内部及び周囲に複合層が形成さ
れ、更にその周囲に金属被覆層が形成された導電性微粒
子も同様に、金属被覆層が複合層に食い込んだ状態で形
成されているため、樹脂基材粒子と金属被覆層との密着
性は極めて良好であり、両者が容易に剥離することがな
い。そのため、本発明の導電性微粒子を用いることによ
り、信頼性の高い導電接続構造体を作製することができ
る。
The conductive fine particles 10 having such a configuration
In this case, since the metal coating layer 13 is formed so as to bite into the interface composite layer 12, the adhesion between the resin base particles and the metal coating layer is extremely good, and the two are not easily separated. In addition, a composite layer is formed inside the resin base particles, and further, conductive fine particles having a metal coating layer formed therearound, and a composite layer is formed inside and around the resin base particles, and further around the periphery thereof. Similarly, the conductive fine particles on which the metal coating layer is formed are also formed in a state in which the metal coating layer is cut into the composite layer, so that the adhesion between the resin base particles and the metal coating layer is extremely good. Is not easily peeled off. Therefore, a highly reliable conductive connection structure can be manufactured by using the conductive fine particles of the present invention.

【0044】上記導電接続構造体とは、基板若しくは電
子部品素子の電極部に導電性微粒子を固定することによ
り、又は、基板若しくは電子部品素子の電極部と他の基
板若しくは電子部品素子の電極部との間を導電性微粒子
を用いて接続することにより形成されたものである。
The above-mentioned conductive connection structure may be obtained by fixing conductive fine particles to an electrode portion of a substrate or an electronic component element, or by connecting an electrode portion of a substrate or an electronic component element to an electrode portion of another substrate or an electronic component element. Are formed by using conductive fine particles to connect between them.

【0045】上記導電接続構造体に用いる基板として
は、例えば、紙フェノール樹脂、ガラスエポキシ樹脂、
ガラスポリイミド樹脂等をベースとするプリント配線基
板、ポリイミド、飽和ポリエステル樹脂等からなるフレ
キシブルプリント配線基板、セラミック基板等が挙げら
れる。上記基板の構造としては、単層構造であってもよ
いし、複層構造であってもよい。
As the substrate used for the conductive connection structure, for example, paper phenol resin, glass epoxy resin,
Examples include a printed wiring board based on a glass polyimide resin or the like, a flexible printed wiring board made of polyimide, a saturated polyester resin, or the like, a ceramic substrate, and the like. The structure of the substrate may be a single-layer structure or a multi-layer structure.

【0046】上記基板には、金、銀、銅、アルミニウ
ム、カーボン等の材料からなる配線が設けられており、
この配線の特定の位置に電極部が形成されている。上記
電極部は、これに接続する電子部品素子や他の基板の電
極部に対応した位置に形成されている。
The substrate is provided with wiring made of a material such as gold, silver, copper, aluminum, and carbon.
An electrode portion is formed at a specific position of this wiring. The electrode portion is formed at a position corresponding to an electrode portion of an electronic component element or another substrate connected thereto.

【0047】また、上記電極部には、本発明の導電性微
粒子が固定されていてもよい。上記導電性微粒子を上記
電極部に固定するには、ボールマウンターや粒子散布機
を用いて、導電性微粒子を電極部に載置又は散布した
後、導電性微粒子の金属被覆層と基板の電極部とをはん
だ等の低融点金属を溶融させて接合したり、金、銀、イ
ンジウム等の軟質金属を圧接接合したり、樹脂ペース
ト、導電ペースト等を用いることにより固定する方法な
どを用いることができる。
Further, the conductive fine particles of the present invention may be fixed to the electrode portion. In order to fix the conductive fine particles to the electrode portion, using a ball mounter or a particle disperser, the conductive fine particles are placed or sprayed on the electrode portion, and then the metal coating layer of the conductive fine particles and the electrode portion of the substrate are used. And a method in which a low-melting metal such as solder is melted and joined, a soft metal such as gold, silver, and indium is pressed and joined, or a resin paste, a conductive paste, or the like is used for fixing. .

【0048】上記導電接続構造体に用いる電子部品素子
としては、例えば、半導体素子、抵抗素子、コンデンサ
ー素子、薄膜メモリー素子、水晶発振子等が挙げられ
る。上記半導体素子の具体例としては、例えば、ダイオ
ード、トランジスター、IC、LSI、SCR、光電素
子、大陽電池、LED等が挙げられる。更に、上記IC
の具体例としては、ベアーチップ、パッケージタイプI
C、チップサイズパッケージ(CSP)等が挙げられ
る。
Examples of the electronic component element used for the conductive connection structure include a semiconductor element, a resistance element, a capacitor element, a thin film memory element, a crystal oscillator, and the like. Specific examples of the semiconductor element include a diode, a transistor, an IC, an LSI, an SCR, a photoelectric element, a solar cell, an LED, and the like. Further, the above IC
Specific examples of bare chip, package type I
C, a chip size package (CSP), and the like.

【0049】本発明の導電接続構造体における電子回路
素子の電極作製は、蒸着法、スパッタ法等を用いて行う
ことができる。上記電子回路素子の電極の材質として
は、例えば、アルミニウム、銅、ニッケルクロム−金
(又は銅)、クロム−金、ニッケルクロム−パラジウム
−金、ニッケルクロム−銅−パラジウム−金、モリブテ
ン−金、チタン−パラジウム−金、チタン−白金−金等
の組合せが挙げられる。上記電子回路素子の電極の配置
としては、ペリフェラル型、エリア型、これらの混在型
が挙げられる。
The electrodes of the electronic circuit element in the conductive connection structure of the present invention can be manufactured by a vapor deposition method, a sputtering method, or the like. Examples of the material of the electrodes of the electronic circuit element include aluminum, copper, nickel chrome-gold (or copper), chromium-gold, nickel chromium-palladium-gold, nickel chromium-copper-palladium-gold, molybdenum-gold, Combinations of titanium-palladium-gold, titanium-platinum-gold and the like can be mentioned. Examples of the arrangement of the electrodes of the electronic circuit element include a peripheral type, an area type, and a mixed type thereof.

【0050】また、上記電子部品素子の電極部には、本
発明の導電性微粒子が固定されていてもよい。上記導電
性微粒子を上記電極部に固定する方法としては、上記基
板上の電極部に導電性微粒子を固定する方法と同様の方
法を用いることができる。
Further, the conductive fine particles of the present invention may be fixed to the electrode part of the electronic component element. As a method of fixing the conductive fine particles to the electrode portion, a method similar to the method of fixing the conductive fine particles to the electrode portion on the substrate can be used.

【0051】このような構成からなる導電接続構造体を
作製する方法としては、例えば、以下の方法を用いるこ
とができる。即ち、上述した方法により基板又は電子部
品素子の電極部に導電性微粒子を固定させた後、上記導
電性微粒子と他の基板又は電子部品素子の電極部とを接
続することにより作製することができる。なお、接続の
際には、補助的にクリームはんだ、樹脂ペースト、導電
ペースト等を用いてもよい。
As a method for manufacturing the conductive connection structure having such a configuration, for example, the following method can be used. That is, after the conductive fine particles are fixed to the electrode portion of the substrate or the electronic component element by the above-mentioned method, the conductive fine particles can be manufactured by connecting the conductive fine particles to the electrode portion of another substrate or the electronic component element. . At the time of connection, cream solder, resin paste, conductive paste, or the like may be used as an auxiliary.

【0052】また、ボールマウンター又は粒子散布機を
用いて、導電性微粒子を少なくとも基板又は電子部品素
子の電極部に載置又は散布した後、もう一方の基板又は
電子部品素子を互いの電極部が相対向する位置におき、
重ね合わせる。その後、ボンディングマシーンを用い
て、熱及び/又は圧力を加えることにより、導電性微粒
子の金属被覆層を形成する低融点金属を溶融させたり、
金、銀、インジウム等の軟質金属を圧接させたりするこ
とにより作製することができる。なお、接続の際には、
補助的にクリームはんだ、樹脂ペースト、導電ペースト
等を用いてもよい。
Further, after the conductive fine particles are placed or sprayed on at least the substrate or the electrode portion of the electronic component element using a ball mounter or a particle disperser, the other substrate or the electronic component element is connected to the other electrode section. At opposite positions,
Overlap. Then, using a bonding machine, by applying heat and / or pressure, to melt the low melting point metal forming the metal coating layer of the conductive fine particles,
It can be produced by pressing a soft metal such as gold, silver or indium. When connecting,
A cream solder, a resin paste, a conductive paste, or the like may be used as an auxiliary.

【0053】更に、導電性微粒子を樹脂バインダー溶液
に分散させた後、これをキャスティング成型することに
より膜を得、この膜を基板又は電子部品素子に載せた
後、もう一方の基板又は電子部品素子を互いの電極部が
相対向する位置に置き、重ね合わせる。なお、上記膜の
代わりに、導電性微粒子を液状樹脂バインダーに混合、
分散させて導電ペーストを作製し、これを基板又は電子
部品素子の電極側表面に塗布して用いてもよい。次に、
この状態でボンディングマシーンを用いて、熱及び/又
は圧力を加えることにより導電接続構造体を作製するこ
とができる。なお、通常、基板又は電子部品素子の何れ
か一方の電極部にバンプと称される導電突起物が予め形
成されるが、このようなバンプがなくても差し支えな
い。
Further, after dispersing the conductive fine particles in a resin binder solution, the film is cast by casting, and the film is placed on a substrate or an electronic component, and then the other substrate or the electronic component is mounted. Are placed at positions where the electrode portions face each other, and are superposed. In addition, instead of the above film, conductive fine particles are mixed with a liquid resin binder,
A conductive paste may be prepared by dispersing the paste, and the paste may be used by applying it to the substrate or the electrode side surface of the electronic component element. next,
In this state, a conductive connection structure can be manufactured by applying heat and / or pressure using a bonding machine. In general, a conductive protrusion called a bump is formed in advance on one of the electrodes of the substrate or the electronic component element, but such a bump may be omitted.

【0054】これらの導電接続構造体のパッケージ方式
としては、図2に断面図で示すフリップチップや図3に
断面図で示すボールグリッドアレイが好適に用いられ
る。図2に示すフリップチップでは、半導体素子22に
設けられた電極部24aと基板23に設けられた電極部
24bとが導電性微粒子21を介して接続されており、
半導体素子22と基板23との間隙には樹脂バインダー
であるアンダーフィル材25が充填されている。
As a package system of these conductive connection structures, a flip chip shown in a sectional view in FIG. 2 and a ball grid array shown in a sectional view in FIG. 3 are preferably used. In the flip chip shown in FIG. 2, an electrode portion 24a provided on a semiconductor element 22 and an electrode portion 24b provided on a substrate 23 are connected via conductive fine particles 21,
The gap between the semiconductor element 22 and the substrate 23 is filled with an underfill material 25 as a resin binder.

【0055】図3に示すボールグリッドアレイでは、基
板33の一面には、上記フリップチップ等のパッケージ
方式により半導体素子32が接続され、半導体素子32
は封止樹脂36により覆われており、基板33の他面に
は、導電性微粒子31の固定された電極部34が設けら
れている。なお、導電性微粒子31は他の基板の電極部
等と接続されるが、ここでは図示していない。
In the ball grid array shown in FIG. 3, a semiconductor element 32 is connected to one surface of a substrate 33 by a package method such as the above-mentioned flip chip.
Is covered with a sealing resin 36, and the other surface of the substrate 33 is provided with an electrode portion 34 to which the conductive fine particles 31 are fixed. Note that the conductive fine particles 31 are connected to an electrode portion of another substrate or the like, but are not illustrated here.

【0056】上記導電接続構造体に用いる導電性微粒子
としては、上記フリップチップの場合には、粒子径が1
〜200μmのものが好ましく、上記ボールグリッドア
レイの場合には、粒子径が50〜700μmのものが好
ましい。
The conductive fine particles used in the conductive connection structure may have a particle diameter of 1 in the case of the flip chip.
In the case of the ball grid array, those having a particle diameter of 50 to 700 μm are preferable.

【0057】上記導電接続構造体において、上記導電性
微粒子は、電極部あたり1個又は複数個配置される。ま
た、通常、電子部品素子と基板との間の隙間には、樹脂
バインダーであるアンダーフィル材が充填されるが、上
記アンダーフィル材の使用は省略しても特に問題はな
い。
In the conductive connection structure, one or a plurality of the conductive fine particles are arranged for each electrode portion. Usually, the gap between the electronic component element and the substrate is filled with an underfill material as a resin binder. However, there is no particular problem even if the use of the underfill material is omitted.

【0058】このようにして得られる導電接続構造体
は、ひび割れや皺が発生せず、樹脂基材粒子からの剥離
や脱離のない金属被覆層を有する導電性微粒子を用いて
作製されているため、その信頼性が高い。上記導電接続
構造体もまた本発明の1つである。
The conductive connection structure thus obtained is manufactured using conductive fine particles having a metal coating layer which does not generate cracks or wrinkles and does not peel off or detach from the resin base material particles. Therefore, its reliability is high. The above-described conductive connection structure is also one aspect of the present invention.

【0059】[0059]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0060】実施例1樹脂基材粒子の作製 重量平均分子量11000のポリスチレン10g及び過
酸化ベンゾイル2gを、ジビニルベンゼン70g及びス
チレンモノマー30gに添加した後、この混合液を攪拌
して均一なモノマー溶液を作製した。次に、ポリビニル
アルコールの3%溶液800gに、上記モノマー溶液を
加え、緩やかに攪拌を行い、モノマー液滴の中心粒子径
がほぼ50μmになるように粒度調整を行った。その
後、攪拌しながら80℃まで昇温し、15時間反応を行
うことにより微粒子を得た。得られた微粒子を熱水によ
り洗浄した後、分級した。その結果、平均粒子径50μ
m、標準偏差0.7μmのほぼ正規分布の粒径分布を有
する微粒子を得た。上記操作で得られた微粒子を樹脂基
材粒子として、次の操作を行った。
Embodiment 1Preparation of resin base particles  10 g of polystyrene having a weight average molecular weight of 11,000 and excess
2 g of benzoyl oxide was added to 70 g of divinylbenzene and
After adding to 30 g of Tylene monomer, the mixture is stirred.
As a result, a uniform monomer solution was prepared. Next, polyvinyl
The above monomer solution is added to 800 g of a 3% solution of alcohol.
In addition, gently agitate to reduce the center particle diameter of the monomer droplet.
Was adjusted to about 50 μm. That
Thereafter, the temperature was raised to 80 ° C. while stirring, and the reaction was carried out for 15 hours.
To obtain fine particles. The obtained fine particles are
After washing, it was classified. As a result, the average particle diameter was 50 μm.
m, having a substantially normal particle size distribution with a standard deviation of 0.7 μm
Fine particles were obtained. The fine particles obtained by the above operation are
The following operation was performed as material particles.

【0061】複合層を有する樹脂基材粒子の作製 上記樹脂基材粒子を熱トルエンで煮沸した後、エタノー
ルで洗浄し、乾燥させた。乾燥終了後、この基材粒子の
表面層には、ポリスチレンが溶出した後の細かな孔が形
成されていた。乾燥終了後、この樹脂基材粒子5gを硫
酸パラジウム0.02%からなる酸性水溶液に浸漬し、
70℃で加熱した。その結果、上記樹脂基材粒子の表面
層中にはパラジウムが析出していた。
[0061]Preparation of resin base particles having composite layer  After boiling the above resin base particles with hot toluene, ethanol
And dried. After drying, the base particles
Fine pores are formed in the surface layer after polystyrene elutes.
Had been formed. After drying is completed, 5 g of the resin base particles are sulfurized.
Immersed in an acidic aqueous solution composed of 0.02% of palladium acid,
Heated at 70 ° C. As a result, the surface of the resin base particles
Palladium was deposited in the layer.

【0062】メッキ触媒の付与 上記複合層の形成された樹脂基材粒子5gを錫及びパラ
ジウムの複塩からなる触媒溶液(奥野製薬社製、キャタ
リストC液)10ml、37%塩酸10ml及びメタノ
ール10mlに浸漬した後、濾過した。濾過終了後、濾
紙上の残渣を5%硫酸で洗浄し、更に、水洗することに
よりメッキ触媒の付与された微粒子を得た。
[0062]Applying plating catalyst  5 g of the resin base particles on which the composite layer is formed are mixed with tin and para.
Catalyst solution consisting of double salt of dium (catalyst manufactured by Okuno Chemical Co., Ltd.
List C solution) 10 ml, 37% hydrochloric acid 10 ml and methano
And then filtered. After filtration is complete,
Wash the residue on paper with 5% sulfuric acid and then with water.
Fine particles to which a plating catalyst was added were obtained.

【0063】ニッケル還元メッキ 硫酸ニッケル17g/100ml及びピロリン酸ナトリ
ウム34g/100mlからなる組成のニッケルメッキ
液を調整し、この液に上記メッキ触媒の付与された微粒
子を投入し、70℃で60分間、攪拌しながら次亜リン
酸ナトリウム17g/100mlを滴下しつつニッケル
メッキを行うことにより、表面がニッケルメッキされた
微粒子を得た。ニッケルメッキ層の厚さは0.15μm
であった。
[0063]Nickel reduction plating  Nickel sulfate 17g / 100ml and sodium pyrophosphate
Plating with a composition of 34g / 100ml
Adjust the solution and add the fine particles with the plating catalyst
And then stirred at 70 ° C. for 60 minutes while stirring
While dropping 17g / 100ml of sodium acid, nickel
The surface was nickel-plated by plating
Fine particles were obtained. Nickel plating layer thickness is 0.15μm
Met.

【0064】電気メッキによるニッケル及び共晶はんだ
層の形成 次に、得られた表面がニッケルメッキされた微粒子10
gをとり、図4に断面図で示す電気メッキ装置40を用
いて、その表面に厚膜ニッケルメッキを行った。電気メ
ッキ装置40は、垂直な駆動軸50の上端部に固定され
た円盤状の底板47と、底板47の外周上面に配され、
メッキ液のみを通す円環形状の多孔体49と、多孔体4
9上面に配された通電用の接触リング48と、円環形状
の下部外周部が接触リング48上に配された中央に開口
部46を有する略円錐形状の中空カバー41と、中空カ
バー41の下部外周部と底板47との間に、多孔体49
と接触リング48とを狭持して形成された回転可能なメ
ッキ槽51と、メッキ槽51の開口部46から挿入され
てメッキ液に接触する電極42と、開口部46よりメッ
キ液を上記メッキ槽51に供給する供給管44と、多孔
体49の孔から飛散したメッキ液を受ける容器43と、
容器43に溜まったメッキ液を排出する排出管45とを
有している。
[0064]Nickel and eutectic solder by electroplating
Layer formation  Next, the obtained fine particles 10 whose surface is nickel-plated
g, and use an electroplating apparatus 40 shown in a sectional view in FIG.
Then, a thick film nickel plating was performed on the surface. Electric mail
The locking device 40 is fixed to the upper end of the vertical drive shaft 50.
A disk-shaped bottom plate 47 and an outer peripheral upper surface of the bottom plate 47,
An annular porous body 49 through which only the plating solution passes, and a porous body 4
9, a contact ring 48 for energization arranged on the upper surface, and an annular shape
Is opened at the center where the lower outer peripheral portion is arranged on the contact ring 48.
A substantially conical hollow cover 41 having a portion 46;
A porous body 49 is provided between the lower peripheral portion of the bar 41 and the bottom plate 47.
And a contact ring 48 to be held.
And inserted through the opening 46 of the plating tank 51.
Through the electrode 42 that contacts the plating solution and the opening 46.
A supply pipe 44 for supplying the plating solution to the plating tank 51;
A container 43 for receiving the plating solution scattered from the holes of the body 49;
A discharge pipe 45 for discharging the plating solution stored in the container 43;
Have.

【0065】電気メッキ装置40では、微粒子をメッキ
槽51に投入し、供給管44からメッキ槽51内にメッ
キ液を供給する。メッキ液は駆動軸50の回転に伴って
多孔体49を通してメッキ槽51の外部へ出ていくの
で、その減少量を供給管44から補給する。
In the electroplating apparatus 40, fine particles are put into a plating tank 51, and a plating solution is supplied from the supply pipe 44 into the plating tank 51. Since the plating solution flows out of the plating tank 51 through the porous body 49 with the rotation of the drive shaft 50, the reduced amount is supplied from the supply pipe 44.

【0066】微粒子は、メッキ槽51の回転による遠心
力の作用により接触リング48に押しつけられた状態で
通電されメッキされる。通電停止と同時に回転も減速
し、停止するため、微粒子は重力とメッキ液の慣性によ
る流れに引きずられて、底板47中央部方向へ移動する
が、次にメッキ槽51が回転すると、微粒子は、メッキ
液と混ざり合いながら別の姿勢で接触リング48に押さ
えつけられメッキされる。このサイクルを繰り返すこと
によって、メッキ槽51に存在する全ての微粒子に均一
な厚さのメッキ層が形成される。
The fine particles are energized and plated while being pressed against the contact ring 48 by the action of centrifugal force due to the rotation of the plating tank 51. Since the rotation is also decelerated and stopped simultaneously with the stop of energization, the fine particles are dragged by the flow due to gravity and the inertia of the plating solution and move toward the center of the bottom plate 47. While being mixed with the plating solution, it is pressed against the contact ring 48 in another posture and plated. By repeating this cycle, a plating layer having a uniform thickness is formed on all the fine particles present in the plating tank 51.

【0067】この操作におけるメッキ条件としては、メ
ッキ液の温度を50℃、電流を36A、電流密度を0.
36A/dm2 、電圧を15〜16Vとし、両電極間に
20分間通電した。また、メッキ槽51の周速は250
m/分とし、11秒毎に回転方向を逆転させた。なお、
上記メッキ液はワット浴であり、その組成は、ニッケル
濃度42g/l、硫酸ニッケル150g/l、ホウ酸3
1g/lである。この電気メッキを行うことにより、ニ
ッケル膜厚2.0μmのニッケルメッキ層の形成された
微粒子を得た。
The plating conditions in this operation were as follows: the temperature of the plating solution was 50 ° C., the current was 36 A, and the current density was 0.
36 A / dm 2 , voltage was set to 15 to 16 V, and current was applied between both electrodes for 20 minutes. The peripheral speed of the plating tank 51 is 250
m / min, and the rotation direction was reversed every 11 seconds. In addition,
The plating solution is a Watt bath, and has a composition of nickel concentration 42 g / l, nickel sulfate 150 g / l, boric acid 3
1 g / l. By performing this electroplating, fine particles having a nickel plating layer having a nickel film thickness of 2.0 μm were obtained.

【0068】次に、得られたニッケルメッキ微粒子10
gをとり、電気メッキ装置40を用いて、共晶はんだメ
ッキを行った。
Next, the obtained nickel-plated fine particles 10
g, and eutectic solder plating was performed using an electroplating apparatus 40.

【0069】この操作におけるメッキ条件としては、電
極42に錫(Sn):鉛(Pb)=6:4の合金を用
い、メッキ液として、酸性浴(石原薬品社製、537
A)を用いた。また、メッキ液の温度を20℃、電流を
24.8A、電流密度を0.5A/dm2 とした。な
お、上記メッキ液は、トータル金属濃度21.39g/
l、浴中の金属比率Sn%=65.3%、アルカノール
スルホン酸106.4g/l、添加剤40mLを含有す
る。
The plating conditions in this operation were as follows. An alloy of tin (Sn): lead (Pb) = 6: 4 was used for the electrode 42, and an acidic bath (537 manufactured by Ishihara Chemical Co., Ltd.) was used as a plating solution.
A) was used. The temperature of the plating solution was 20 ° C., the current was 24.8 A, and the current density was 0.5 A / dm 2 . The plating solution had a total metal concentration of 21.39 g /
1, containing 65.3% of metal ratio Sn% in the bath, 106.4 g / l of alkanolsulfonic acid, and 40 mL of additive.

【0070】メッキ終了後、はんだ被膜を有する導電性
微粒子が得られた。この導電性微粒子のはんだ被膜を原
子吸光法で分析したところ、Snが61.5%であり、
融点は186℃であった。また、この微粒子に5%圧縮
歪みを与えた条件での抵抗を測定したところ0.02Ω
であり、良好な導電性を示した。
After plating was completed, conductive fine particles having a solder coating were obtained. When the solder coating of the conductive fine particles was analyzed by an atomic absorption method, Sn was 61.5%,
Melting point was 186 ° C. The resistance under the condition where 5% compression strain was applied to the fine particles was 0.02Ω.
And showed good conductivity.

【0071】金属被覆層の樹脂基材粒子表面への密着性
評価 得られた導電性微粒子を、厚さ1.1mmの2枚のガラ
ス板の間に、1平方mmあたり60個並べた状態で挟
み、ガラス板の端部をテープでシールした。次に、ガラ
ス板の表面を5kgの荷重を掛けたゴムローラを50回
往復させることによりしごきを与えた。しごき終了後、
倍率が50倍の拡大鏡で導電性微粒子を観察したとこ
ろ、導電性微粒子の金属被覆層はなんら損傷を受けてお
らず、剥離もみられず、樹脂基材粒子に対して強固な密
着性を有していた。
[0071]Adhesion of metal coating layer to resin substrate particle surface
Evaluation  The obtained conductive fine particles were placed in two pieces of glass having a thickness of 1.1 mm.
60 pieces per square mm between
The end of the glass plate was sealed with tape. Next, the gala
50 times of rubber roller with a load of 5 kg applied to the surface of the plate
Ironing was given by reciprocating. After ironing,
Observation of conductive fine particles with a magnifying glass of 50x magnification
Of course, the metal coating layer of conductive fine particles is not damaged at all.
And no peeling was observed.
It had adhesive properties.

【0072】比較例1重量平均分子量11000のポリ
スチレン10gを用いなかった以外は、実施例1と同様
にして樹脂基材粒子を作製した。得られた樹脂基材粒子
は、平均粒子径50μm、標準偏差0.60μmであ
り、ほぼ正規分布に近い粒子径分布を有していた。次
に、この樹脂基材粒子を用いて、実施例1と同様のメッ
キ触媒の付与、及び、ニッケル還元メッキを行い、更
に、電気メッキによるニッケル及び共晶はんだ層の形成
を行うことにより導電性微粒子を得た。得られた導電性
微粒子について、実施例1と同様にして金属被覆層の樹
脂基材粒子表面への密着性評価を行ったところ金属被覆
層の剥離がみられた。
Comparative Example 1 Resin base particles were prepared in the same manner as in Example 1 except that 10 g of polystyrene having a weight average molecular weight of 11,000 was not used. The obtained resin base particles had an average particle size of 50 μm and a standard deviation of 0.60 μm, and had a particle size distribution almost close to a normal distribution. Next, using the resin base particles, the same plating catalyst as in Example 1 was applied, nickel reduction plating was performed, and further, nickel and a eutectic solder layer were formed by electroplating to obtain a conductive property. Fine particles were obtained. With respect to the obtained conductive fine particles, the adhesion of the metal coating layer to the resin base material particle surface was evaluated in the same manner as in Example 1, and peeling of the metal coating layer was observed.

【0073】実施例2樹脂基材粒子の作製 比較例1と同様にして、平均粒子径20μm、標準偏差
0.60μmの樹脂基材粒子を作製した。界面複合層の形成 固形エポキシ(油化シェルエポキシ製エピコート100
1)2gをアセトン40ml中に加え、溶解させた後、
水を6ml、上記基材粒子5g及び硬化剤として2−エ
チル−4−メチルイミダゾール(四国化成工業社製、キ
ュアゾール2E4MZ)0.4gを添加し、充分に混合
した後、攪拌しながらアセトンを蒸発させた。蒸発後、
乾燥物を解砕し、塊をほぐした。この粒子をポリビニル
アルコール1.5%水溶液に懸濁させた状態で70℃に
加熱し、樹脂基材粒子の周囲に被覆されているエポキシ
樹脂層を硬化させた。更に、この粒子5gを硫酸パラジ
ウム0.02%からなる酸性水溶液に浸漬した後、70
℃で加熱した。その結果、上記エポキシ被覆層中にはパ
ラジウムの超微粒子が析出しており、界面複合層が形成
されていた。
Embodiment 2Preparation of resin base particles  In the same manner as in Comparative Example 1, the average particle diameter is 20 μm, and the standard deviation is
0.60 μm resin base particles were produced.Formation of interfacial composite layer  Solid epoxy (Epicoat 100 made of oiled shell epoxy)
1) 2 g was added and dissolved in 40 ml of acetone,
6 ml of water, 5 g of the base particles and 2-E as a curing agent
Cyl-4-methylimidazole (manufactured by Shikoku Chemicals,
0.4 g of azole 2E4MZ) and mix well
After that, the acetone was evaporated while stirring. After evaporation
The dried product was crushed and the lumps were loosened. These particles are
70 ° C suspended in 1.5% aqueous alcohol solution
Epoxy that is heated and coated around the resin base particles
The resin layer was cured. Further, 5 g of the particles were added to palladium sulfate.
Immersed in an acidic aqueous solution consisting of 0.02%
Heated at ° C. As a result, the epoxy coating layer
Ultra-fine particles of radium are precipitated, forming an interfacial composite layer
It had been.

【0074】メッキ触媒の付与 得られた界面複合層の形成された樹脂基材粒子を用いた
以外は、実施例1と同様にしてメッキ触媒の付与を行
い、メッキ触媒の付与された微粒子を得た。
[0074]Applying plating catalyst  Using the resin substrate particles on which the obtained interface composite layer was formed
Except for the above, the plating catalyst was applied in the same manner as in Example 1.
Thus, fine particles provided with a plating catalyst were obtained.

【0075】ニッケル還元メッキ 得られたメッキ触媒の付与された微粒子を用いた以外
は、実施例1と同様にしてニッケル還元メッキを行い、
表面がニッケルメッキされた微粒子を得た。
[0075]Nickel reduction plating  Except using the obtained fine particles to which the plating catalyst was applied.
Performs nickel reduction plating in the same manner as in Example 1,
Fine particles having a nickel-plated surface were obtained.

【0076】金置換メッキ 得られた表面がニッケルメッキされた微粒子を水に懸濁
させ、攪拌しながらシアン化金カリウム5%からなる金
置換メッキ液を滴下しながら70℃に加温することによ
り金置換反応を行い、導電性微粒子を得た。なお、金置
換反応の進行は、粒子が黒灰色から金色に変化すること
により確認した。金置換反応終了後、得られた導電性微
粒子の断面を電子顕微鏡で観察したところ、厚さ0.1
5μmのニッケルメッキ層と、厚さ0.06μmの金メ
ッキ層が形成されていた。また、この微粒子に5%圧縮
歪みを与えた条件での抵抗を測定したところ0.06Ω
であり、良好な導電性を示した。
[0076]Gold displacement plating  The resulting nickel-plated particles are suspended in water
And with stirring, gold consisting of potassium gold cyanide 5%
By heating to 70 ° C while dropping the displacement plating solution
A metal replacement reaction was performed to obtain conductive fine particles. In addition,
The progress of the conversion reaction is when the particles change from black gray to gold
Confirmed by After completion of the gold substitution reaction, the resulting conductive fine
When the cross section of the particles was observed with an electron microscope, the thickness was 0.1
5μm nickel plating layer and 0.06μm thick gold plating
A stick layer was formed. In addition, 5% compression
It was 0.06Ω when the resistance was measured under the strained condition.
And showed good conductivity.

【0077】金属被覆層の樹脂基材粒子表面への密着性
評価 得られた導電性微粒子について、実施例1と同様にして
金属被覆層の樹脂基材粒子表面への密着性評価を行った
ところ、導電性微粒子の金属被覆層はなんら損傷を受け
ておらず、剥離もみられず、樹脂基材粒子に対して強固
な密着性を有していた。
[0077]Adhesion of metal coating layer to resin substrate particle surface
Evaluation  About the obtained conductive fine particles, it carried out similarly to Example 1.
Evaluation of adhesion of metal coating layer to resin substrate particle surface
However, the metal coating layer of conductive fine particles is not damaged at all.
No peeling was observed, strong against resin base particles
Had good adhesion.

【0078】比較例2 界面複合層の形成を行わなかった以外は、実施例2と同
様にして導電性微粒子を作製した。得られた導電性微粒
子について、実施例1と同様にして金属被覆層の樹脂基
材粒子表面への密着性評価を行ったところ金属被覆層の
剥離がみられた。
Comparative Example 2 Conductive fine particles were produced in the same manner as in Example 2 except that the formation of the interface composite layer was not performed. With respect to the obtained conductive fine particles, the adhesion of the metal coating layer to the resin base material particle surface was evaluated in the same manner as in Example 1, and peeling of the metal coating layer was observed.

【0079】[0079]

【発明の効果】本発明の導電性微粒子は、上述の構成か
らなるので、ひび割れや皺が発生せず、樹脂基材粒子か
らの剥離や脱離のない金属被覆層を有する。また、本発
明の導電接続構造体は、上記導電性微粒子を用いて作製
されており、接続信頼性が高い。
Since the conductive fine particles of the present invention have the above-mentioned structure, they do not have cracks or wrinkles and have a metal coating layer which does not peel off or detach from the resin base particles. Further, the conductive connection structure of the present invention is manufactured using the conductive fine particles, and has high connection reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)は、本発明の導電性微粒子の一
実施形態を示す断面図である。
FIGS. 1A and 1B are cross-sectional views showing one embodiment of the conductive fine particles of the present invention.

【図2】本発明の導電接続構造体の一例を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing an example of the conductive connection structure of the present invention.

【図3】本発明の導電接続構造体の一例を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing an example of the conductive connection structure of the present invention.

【図4】本発明の実施例で使用した電気メッキ装置を示
す断面図である。
FIG. 4 is a sectional view showing an electroplating apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 導電性微粒子 11 樹脂基材粒子 12 界面複合層 13、13a、13b 金属被覆層 21 導電性微粒子 22 半導体素子 23 基板 31 導電性微粒子 32 半導体素子 33 基板 REFERENCE SIGNS LIST 10 conductive fine particles 11 resin base particles 12 interface composite layer 13, 13 a, 13 b metal coating layer 21 conductive fine particles 22 semiconductor element 23 substrate 31 conductive fine particles 32 semiconductor element 33 substrate

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K022 AA26 AA35 AA41 BA01 BA02 BA03 BA08 BA10 BA14 BA17 BA18 BA21 BA28 DA01 5E319 AA03 AB05 BB04 BB16 BB20 GG11 5G307 AA02 HA02 HB06 HC01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K022 AA26 AA35 AA41 BA01 BA02 BA03 BA08 BA10 BA14 BA17 BA18 BA21 BA28 DA01 5E319 AA03 AB05 BB04 BB16 BB20 GG11 5G307 AA02 HA02 HB06 HC01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 樹脂基材粒子の内部及び/又は周囲に金
属と樹脂とからなる複合層が形成され、前記複合層の周
囲に更に金属被覆層が形成されていることを特徴とする
導電性微粒子。
1. A conductive layer, wherein a composite layer comprising a metal and a resin is formed inside and / or around resin base particles, and a metal coating layer is further formed around the composite layer. Fine particles.
【請求項2】 複合層中の金属濃度が、前記複合層の内
側から外側に向かって増加することを特徴とする請求項
1記載の導電性微粒子。
2. The conductive fine particles according to claim 1, wherein the metal concentration in the composite layer increases from the inside to the outside of the composite layer.
【請求項3】 複合層を構成する金属は、パラジウムで
あることを特徴とする請求項1又は2記載の導電性微粒
子。
3. The conductive fine particles according to claim 1, wherein the metal constituting the composite layer is palladium.
【請求項4】 請求項1、2又は3記載の導電性微粒子
を用いて作製されたことを特徴とする導電接続構造体。
4. A conductive connection structure produced using the conductive fine particles according to claim 1, 2 or 3.
JP13153499A 1999-05-12 1999-05-12 Conductive micro particle and conductive connection structure Pending JP2000322936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13153499A JP2000322936A (en) 1999-05-12 1999-05-12 Conductive micro particle and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13153499A JP2000322936A (en) 1999-05-12 1999-05-12 Conductive micro particle and conductive connection structure

Publications (1)

Publication Number Publication Date
JP2000322936A true JP2000322936A (en) 2000-11-24

Family

ID=15060331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13153499A Pending JP2000322936A (en) 1999-05-12 1999-05-12 Conductive micro particle and conductive connection structure

Country Status (1)

Country Link
JP (1) JP2000322936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066319A1 (en) * 2003-01-24 2004-08-05 Toho Titanium Co., Ltd. Platinum-coated powder, method for producing same, and conductive paste
JP2004238730A (en) * 2002-12-13 2004-08-26 Nippon Chem Ind Co Ltd Electroconductive electroless plated powder
JP2007012378A (en) * 2005-06-29 2007-01-18 Fujikura Kasei Co Ltd Conductive particulate
JP2010278170A (en) * 2009-05-28 2010-12-09 Fujikura Ltd Connection structure of wiring board and connection method of the same
CN112309604A (en) * 2019-07-31 2021-02-02 德山金属株式会社 Conductive particle and method for producing same, conductive material, contact structure, and electric and electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238730A (en) * 2002-12-13 2004-08-26 Nippon Chem Ind Co Ltd Electroconductive electroless plated powder
WO2004066319A1 (en) * 2003-01-24 2004-08-05 Toho Titanium Co., Ltd. Platinum-coated powder, method for producing same, and conductive paste
JP2007012378A (en) * 2005-06-29 2007-01-18 Fujikura Kasei Co Ltd Conductive particulate
JP2010278170A (en) * 2009-05-28 2010-12-09 Fujikura Ltd Connection structure of wiring board and connection method of the same
CN112309604A (en) * 2019-07-31 2021-02-02 德山金属株式会社 Conductive particle and method for producing same, conductive material, contact structure, and electric and electronic component

Similar Documents

Publication Publication Date Title
KR100574215B1 (en) Conductive particles
US5958590A (en) Dendritic powder materials for high conductivity paste applications
US5837119A (en) Methods of fabricating dendritic powder materials for high conductivity paste applications
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
KR100602726B1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
US6059952A (en) Method of fabricating coated powder materials and their use for high conductivity paste applications
US20060223231A1 (en) Packing method for electronic components
TWI255001B (en) Metal wiring substrate, semiconductor device and the manufacturing method thereof
JP2000204228A (en) Electroconductive composition
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
KR20040019089A (en) Method for Producing Electroconductive Particles
CN104480455B (en) A kind of method that anisotropic conductive film conducting polymer microsphere is prepared by dopamine
CN101760147A (en) Solvent type aeolotropic nano conductive adhesive and manufacturing method thereof
JP2000315425A (en) Conductive particulate and conductive connection structure
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2000322936A (en) Conductive micro particle and conductive connection structure
TWI509638B (en) Conductive particles, anisotropic conductive materials and connecting structures
JP3694249B2 (en) Fine particle plating method, conductive fine particles, and connection structure
KR100819524B1 (en) Insulated conductive particle and anisotropic conductive film using the same
CN105593947B (en) Solar cell module electroconductive particle, conductive material and the solar cell module of back-contact
JPH09306231A (en) Conductive particulate and substrate
JP5421667B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP6897038B2 (en) Connection structure and its manufacturing method, manufacturing method of electrode with terminal, and conductive particles, kit and transfer type used for this
JPH10308121A (en) Conductive particulate, anisotropic conductive adhesive and conductive connecting structure body
JP2005317270A (en) Conductive fine particulate and conductive connection structure