JP2002313410A - Seal type lead acid battery - Google Patents
Seal type lead acid batteryInfo
- Publication number
- JP2002313410A JP2002313410A JP2001116335A JP2001116335A JP2002313410A JP 2002313410 A JP2002313410 A JP 2002313410A JP 2001116335 A JP2001116335 A JP 2001116335A JP 2001116335 A JP2001116335 A JP 2001116335A JP 2002313410 A JP2002313410 A JP 2002313410A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- colloidal silica
- separator
- battery
- acid battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はシール型鉛蓄電池に
関する。The present invention relates to a sealed lead-acid battery.
【0002】[0002]
【従来の技術】近年、自動車用途において、従来の開放
型鉛蓄電池に代えて、シール型鉛蓄電池を適用する例が
増えてきた。というのは、シール型鉛蓄電池は正極板で
発生した酸素ガスが負極板で吸収されるため、電解液の
減少が少なく補水する必要がない、あるいは電池を横置
きにするなどポジションフリーに使用することができる
など、種々のメリットがあるからである。2. Description of the Related Art In recent years, in automotive applications, a sealed lead-acid battery has been increasingly used in place of a conventional open lead-acid battery. This is because in sealed lead-acid batteries, the oxygen gas generated in the positive electrode plate is absorbed by the negative electrode plate, so there is no need to refill the electrolyte with a small amount of electrolyte solution, or use it position-free, such as by placing the battery horizontally. This is because there are various merits such as the ability to do so.
【0003】シール型鉛蓄電池には図1に示すように3
種類の方式が知られている。それは電解液を微細なシリ
カでゲル化したゲル式、微細な吸液性ガラス繊維をマッ
トにしたガラスマットに電解液を保持させたリテーナ
式、そして正極板と負極板の隙間や極板群と電槽との隙
間に充填した顆粒状シリカの内部およびシリカの粒子間
隙に電解液を保持させた顆粒シリカ式の3種類である。[0003] As shown in FIG.
Different types are known. It is a gel type in which the electrolyte is gelled with fine silica, a retainer type in which the electrolyte is held in a glass mat made of fine liquid-absorbing glass fibers, There are three types, a granular silica type in which an electrolytic solution is held inside the granular silica filled in the gap with the battery case and in the gap between the silica particles.
【0004】[0004]
【発明が解決しようとする課題】ゲル式では電解液をゲ
ル化してしまうため電解液の拡散性能が低下し、電池の
性能が低下してしまうという欠点があった。リテーナ式
は電解液の拡散性能は良いものの、電解液量が少なくな
るとともに、電槽に電解液が接触する面積が小さいた
め、使用中の電池の温度の上昇が大きいという欠点があ
った。そのため格子腐食や電解液の減少量が多すぎるな
どの問題があった。また顆粒シリカ式は、電解液の拡散
が良く、電解液の熱容量も多いため性能上の問題はなか
ったが、シリカの充填や電解液の注入に時間がかかりす
ぎる、コストが高くなってしまうという欠点があった。The gel type has a drawback that the electrolyte is gelled because the electrolyte is gelled, so that the diffusion performance of the electrolyte is reduced and the performance of the battery is reduced. Although the retainer type has good diffusion performance of the electrolytic solution, it has a drawback that the amount of the electrolytic solution is small and the area of the electrolytic solution in contact with the battery case is small, so that the temperature of the battery during use is greatly increased. Therefore, there are problems such as lattice corrosion and an excessive decrease in the amount of the electrolytic solution. Also, the granular silica method has no problem in performance because the diffusion of the electrolytic solution is good and the heat capacity of the electrolytic solution is large, but it takes too much time to fill the silica or inject the electrolytic solution, which increases the cost. There were drawbacks.
【0005】そこで、低コストでかつ、電解液の拡散が
速く、しかも電池温度の上昇を抑制できる電池として、
図2に示すリテーナ式シール電池の極板群と電槽との隙
間にゲル電解液を注入する方式のゲルーリテーナハイブ
リッドシール型鉛蓄電池が近年検討されている。しかし
この電池にもいくつかの背反事項がある。極板群の周囲
に注入したゲル電解液はある程度の硬さがないと、極板
で発生した熱を電槽壁に伝えることができないのであ
る。ゲルを硬くするにはコロイダルシリカ量を増やせば
良いが、そうすると電解液の移動が遅くなり、かえって
寿命性能をそこなってしまう。[0005] Therefore, as a battery that is low in cost, rapidly diffuses the electrolyte, and can suppress a rise in battery temperature,
In recent years, a gel-retainer hybrid sealed lead-acid battery of a type in which a gel electrolyte is injected into a gap between an electrode group and a battery case of the sealed sealed battery shown in FIG. 2 has been studied. However, this battery has some contradictions. If the gel electrolyte injected around the electrode plate group does not have a certain degree of hardness, the heat generated in the electrode plate cannot be transmitted to the battery case wall. To make the gel harder, the amount of colloidal silica should be increased, but this would slow down the movement of the electrolyte, which would impair the life performance.
【0006】種々の試験の結果、セパレータに保持した
電解液中のコロイダルシリカ重量%と極板群周囲のゲル
電解液中のコロイダルシリカ重量%との和が5.5以上
でかつ、極板群周囲のゲル電解液中のコロイダルシリカ
重量%がセパレータに保持された電解液中のコロイダル
シリカ重量%と同等かそれ以上の場合に寿命性能が大き
く向上することがわかった。As a result of various tests, the sum of the weight percent of colloidal silica in the electrolyte held by the separator and the weight percent of colloidal silica in the gel electrolyte around the electrode group is 5.5 or more, and the electrode group is It was found that when the weight% of colloidal silica in the surrounding gel electrolyte was equal to or higher than the weight% of colloidal silica in the electrolyte held by the separator, the life performance was greatly improved.
【0007】[0007]
【課題を解決するための手段】請求項1に記載の発明
は、吸液性のセパレータを用いて電解液を保持させると
ともに、極板群と電槽との隙間にゲル化した電解液を配
置させた構造のシール型鉛蓄電池であって、セパレータ
に保持されている電解液中のコロイダルシリカ重量%と
極板群の周囲のゲル電解液中のコロイダルシリカ重量%
との和が5.5以上であって、かつ極板群の周囲のゲル
電解液中のコロイダルシリカ重量%がセパレータに保持
されている電解液中のコロイダルシリカ重量%と同等ま
たはそれ以上であることを特徴とするシール型鉛蓄電池
である。According to the first aspect of the present invention, an electrolytic solution is held using a liquid-absorbing separator, and a gelled electrolytic solution is disposed in a gap between an electrode plate group and a battery case. A sealed lead-acid battery having a structure in which colloidal silica is contained in the electrolyte held by the separator and colloidal silica is contained in the gel electrolyte around the electrode assembly.
Is 5.5 or more, and the weight percent of colloidal silica in the gel electrolyte around the electrode plate group is equal to or greater than the weight percent of colloidal silica in the electrolyte held by the separator. It is a sealed type lead storage battery characterized by the above-mentioned.
【0008】[0008]
【発明の実施の形態】本発明によるシール型鉛蓄電池
は、ゲル−リテーナハイブリッドシール型鉛蓄電池であ
って、セパレータに保持されている電解液中のコロイダ
ルシリカ重量%と極板群の周囲のゲル電解液中のコロイ
ダルシリカ重量%との和が5.5以上になるようにし、
かつ極板群の周囲のゲル電解液中のコロイダルシリカ重
量%がセパレータに保持されている電解液中のコロイダ
ルシリカ重量%と同じかそれ以上になるようにする。こ
のようにすることにより、寿命性能を著しく向上するこ
とができ、優れたシール型鉛蓄電池を得ることができ
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The sealed lead-acid battery according to the present invention is a gel-retainer hybrid sealed lead-acid battery, wherein the weight percent of colloidal silica in the electrolyte held by the separator and the gel around the electrode plate group are measured. The sum with the colloidal silica weight% in the electrolytic solution is 5.5 or more,
In addition, the weight percent of colloidal silica in the gel electrolyte around the electrode group is equal to or greater than the weight percent of colloidal silica in the electrolyte held by the separator. By doing so, the life performance can be significantly improved, and an excellent sealed lead-acid battery can be obtained.
【0009】[0009]
【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.
【0010】まず、基材である厚み10mmのPb−
0.07wt%Ca−1.3wt%Sn合金の連続鋳造
板を圧延ローラで圧延することによって一体化された厚
み1.0mmの圧延シートを作製した後、この圧延シー
トを網目状に展開してエキスパンド格子を得た。これら
の格子に、鉛粉と鉛丹と希硫酸とを練合して製作したペ
ーストを充填し、熟成、乾燥して正極板を作製した。こ
れらの正極板5枚と、厚み1.0mmのPb−0.07
wt%Ca−1.3wt%Sn合金圧延シートを同様に
網目状に展開したエキスパンド格子に、リグニンスルホ
ン酸、BaSO4およびカーボンを混合した鉛粉と希硫
酸とを練合して製作したペーストを充填し、熟成、乾燥
して作製した負極板6枚とを微細ガラス繊維セパレータ
を介して交互に積層し、極板群を形成した。First, a base material of Pb-
After rolling a continuous cast plate of 0.07 wt% Ca-1.3 wt% Sn alloy with a rolling roller to produce an integrated rolled sheet having a thickness of 1.0 mm, the rolled sheet is developed into a mesh shape. An expanded grid was obtained. These lattices were filled with a paste produced by kneading lead powder, lead red and dilute sulfuric acid, aged and dried to produce a positive electrode plate. Five of these positive electrode plates and a 1.0 mm thick Pb-0.07
the wt% Ca-1.3wt% Sn alloy rolled expanded grid obtained by expanding a sheet similar to the mesh-like, lignin sulfonic acid, a BaSO 4 and a mixture of carbon was lead powder and paste manufactured kneaded and dilute sulfuric acid Six negative electrode plates prepared by filling, aging and drying were alternately laminated via a fine glass fiber separator to form an electrode group.
【0011】これらの極板群を電槽に挿入し、所定量の
カーボンと微量のコロイダルシリカ(0〜4重量%)を
含む希硫酸を所定量注液して化成し、2V30Ahのシ
ール型鉛蓄電池を製作した。化成終了後、電池内に希硫
酸と所定量(1.5〜12重量%)のコロイダルシリカ
とを混合したゾル溶液を注入し、電池内でゲル化させる
ことにより、種々のゲル−リテーナハイブリッドシール
型鉛蓄電池を作製した。These electrode plates are inserted into a battery case, and a predetermined amount of dilute sulfuric acid containing a predetermined amount of carbon and a small amount of colloidal silica (0 to 4% by weight) is injected to form a 2V30Ah sealed lead. A storage battery was manufactured. After the formation, a sol solution in which dilute sulfuric acid and a predetermined amount (1.5 to 12% by weight) of colloidal silica are mixed is injected into the battery and gelled in the battery, so that various gel-retainer hybrid seals are obtained. A lead-acid battery was fabricated.
【0012】この電池に通常の安全弁を装着した後、こ
れらの電池を10A(1/3CA)で2.4時間放電
し、10Aの定電流で放電量の90%を充電した後、
1.5Aの定電流で放電量の20%を充電するという2
段定電流方式で充電をおこなった。なお、試験は40℃
の気槽中にて実施した。また、50サイクル毎に10A
(1/3CA)の電流で放電容量の確認をおこなった。
比較のため、極板群の周囲にゲルを注入しない、従来の
リテーナ式電池も合わせて製作して評価をおこなった。After attaching a normal safety valve to the batteries, the batteries were discharged at 10 A (1 / CA) for 2.4 hours, and charged at a constant current of 10 A to 90% of the discharged amount.
Charge 20% of the discharge amount with a constant current of 1.5A.
Charging was performed by the step constant current method. The test was performed at 40 ° C.
Was carried out in an air tank. 10A every 50 cycles
The discharge capacity was confirmed at a current of (1 / CA).
For comparison, a conventional retainer-type battery in which no gel was injected around the electrode group was also manufactured and evaluated.
【0013】寿命試験結果を表1に示す。表1中の数値
はそれぞれの場合の寿命サイクル数である。Table 1 shows the results of the life test. The numerical values in Table 1 are the number of life cycles in each case.
【0014】[0014]
【表1】 [Table 1]
【0015】本発明請求項1に示したように、ゲルーリ
テーナハイブリッドシール型鉛蓄電池において、セパレ
ータに保持されている電解液中のコロイダルシリカ重量
%と極板群の周囲のゲル電解液中のコロイダルシリカ重
量%との和が5.5以上になるようにし、かつ極板群の
周囲のゲル電解液中のコロイダルシリカ重量%がセパレ
ータに保持されている電解液中のコロイダルシリカ重量
%と同じかそれ以上になるようにした場合に著しく寿命
性能が向上した。As set forth in claim 1 of the present invention, in the gel-retainer hybrid sealed lead-acid battery, the colloidal silica weight% in the electrolytic solution held by the separator and the colloidal silica in the gel electrolytic solution around the electrode plate group. The sum with the silica weight% is 5.5 or more, and the colloidal silica weight% in the gel electrolyte around the electrode group is the same as the colloidal silica weight% in the electrolyte held by the separator. When it was made longer than that, the life performance was remarkably improved.
【0016】[0016]
【発明の効果】以上述べたように、本発明を用いること
によって、寿命性能を著しく延伸することができ、優れ
たシール型鉛蓄電池を得ることができる。As described above, by using the present invention, the life performance can be significantly extended, and an excellent sealed lead-acid battery can be obtained.
【図1】各種シール型鉛蓄電池の概略構成を示す模式図FIG. 1 is a schematic diagram showing a schematic configuration of various sealed lead-acid batteries.
【図2】ゲルーリテーナハイブリッドシール型鉛蓄電池
の概略構成を示す模式図FIG. 2 is a schematic view showing a schematic configuration of a gel-retainer hybrid sealed lead-acid battery.
Claims (1)
持させるとともに、極板群と電槽との隙間にゲル化した
電解液を配置させた構造のシール型鉛蓄電池であって、
セパレータに保持されている電解液中のコロイダルシリ
カ重量%と極板群の周囲のゲル電解液中のコロイダルシ
リカ重量%との和が5.5以上であって、かつ極板群の
周囲のゲル電解液中のコロイダルシリカ重量%がセパレ
ータに保持されている電解液中のコロイダルシリカ重量
%と同等またはそれ以上であることを特徴とするシール
型鉛蓄電池。1. A sealed lead-acid battery having a structure in which an electrolytic solution is retained using a liquid-absorbing separator and a gelled electrolytic solution is disposed in a gap between an electrode plate group and a battery case,
The sum of the weight% of colloidal silica in the electrolyte held by the separator and the weight% of colloidal silica in the gel electrolyte around the electrode group is 5.5 or more, and the gel around the electrode group A sealed lead-acid battery in which the weight percent of colloidal silica in the electrolyte is equal to or greater than the weight percent of colloidal silica in the electrolyte held by the separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116335A JP4857481B2 (en) | 2001-04-16 | 2001-04-16 | Method for manufacturing retainer-gel hybrid sealed lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001116335A JP4857481B2 (en) | 2001-04-16 | 2001-04-16 | Method for manufacturing retainer-gel hybrid sealed lead-acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002313410A true JP2002313410A (en) | 2002-10-25 |
JP4857481B2 JP4857481B2 (en) | 2012-01-18 |
Family
ID=18967084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001116335A Expired - Fee Related JP4857481B2 (en) | 2001-04-16 | 2001-04-16 | Method for manufacturing retainer-gel hybrid sealed lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4857481B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60235366A (en) * | 1984-05-08 | 1985-11-22 | Yuasa Battery Co Ltd | Manufacture of sealed-type lead storage battery |
JPH0675406B2 (en) * | 1987-04-03 | 1994-09-21 | 日本電池株式会社 | Sealed lead acid battery |
JPH0864227A (en) * | 1994-08-29 | 1996-03-08 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
-
2001
- 2001-04-16 JP JP2001116335A patent/JP4857481B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60235366A (en) * | 1984-05-08 | 1985-11-22 | Yuasa Battery Co Ltd | Manufacture of sealed-type lead storage battery |
JPH0675406B2 (en) * | 1987-04-03 | 1994-09-21 | 日本電池株式会社 | Sealed lead acid battery |
JPH0864227A (en) * | 1994-08-29 | 1996-03-08 | Shin Kobe Electric Mach Co Ltd | Sealed lead-acid battery |
Also Published As
Publication number | Publication date |
---|---|
JP4857481B2 (en) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050084762A1 (en) | Hybrid gelled-electrolyte valve-regulated lead-acid battery | |
JP3936157B2 (en) | Manufacturing method for sealed lead-acid batteries | |
JP4325153B2 (en) | Control valve type lead acid battery | |
JP3388265B2 (en) | Lead-acid battery separator | |
JPH06251759A (en) | Separator for lead-acid battery | |
JPWO2011077640A1 (en) | Control valve type lead acid battery | |
JP2002313410A (en) | Seal type lead acid battery | |
JP2003178794A (en) | Production process of sealed lead acid storage battery | |
JP3555177B2 (en) | Sealed lead-acid battery | |
JP4857894B2 (en) | Lead acid battery | |
JP4812257B2 (en) | Sealed lead-acid battery for cycle use | |
JPH10302783A (en) | Sealed lead-acid battery and manufacture thereof | |
JP4887590B2 (en) | Sealed lead acid battery | |
JP3146438B2 (en) | Sealed lead-acid battery | |
JP2949839B2 (en) | Negative gas absorption sealed lead-acid battery | |
JP2573082B2 (en) | Sealed lead-acid battery | |
JP3163510B2 (en) | Sealed lead-acid battery | |
JP2003178795A (en) | Sealed lead acid storage battery | |
JP2586249B2 (en) | Sealed lead-acid battery | |
JP4984786B2 (en) | Lead acid battery | |
JP2002343412A (en) | Seal type lead-acid battery | |
JP3518123B2 (en) | Anode plate for lead-acid battery | |
JP2002343359A (en) | Sealed type lead storage battery | |
JP2002313409A (en) | Seal type lead acid battery device | |
JPH09245847A (en) | Storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051213 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080311 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100507 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4857481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |