JP2002290197A - 圧電共振子およびこの圧電共振子を用いたfm検波回路 - Google Patents

圧電共振子およびこの圧電共振子を用いたfm検波回路

Info

Publication number
JP2002290197A
JP2002290197A JP2001089064A JP2001089064A JP2002290197A JP 2002290197 A JP2002290197 A JP 2002290197A JP 2001089064 A JP2001089064 A JP 2001089064A JP 2001089064 A JP2001089064 A JP 2001089064A JP 2002290197 A JP2002290197 A JP 2002290197A
Authority
JP
Japan
Prior art keywords
temperature
characteristic
temperature range
temperature characteristic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001089064A
Other languages
English (en)
Other versions
JP3661602B2 (ja
Inventor
Yoshihiro Ikeda
吉宏 池田
Kunio Sawai
久仁雄 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001089064A priority Critical patent/JP3661602B2/ja
Priority to US10/090,150 priority patent/US6717328B2/en
Priority to CNB021075905A priority patent/CN1167194C/zh
Priority to KR10-2002-0014926A priority patent/KR100500356B1/ko
Publication of JP2002290197A publication Critical patent/JP2002290197A/ja
Application granted granted Critical
Publication of JP3661602B2 publication Critical patent/JP3661602B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/02Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal
    • H03D3/06Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal by combining signals additively or in product demodulators
    • H03D3/16Demodulation of angle-, frequency- or phase- modulated oscillations by detecting phase difference between two signals obtained from input signal by combining signals additively or in product demodulators by means of electromechanical resonators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

(57)【要約】 (修正有) 【課題】圧電材料の種々の温度特性を最適化すること
で、温度特性を安定とし、動作保証温度範囲を広げる。 【解決手段】圧電材料の容量の温度特性εTC、比帯域幅
Δf/fo、共振周波数の温度特性FrTC、反共振周波
数の温度特性FaTC、および中心周波数の温度特性の目
標値αの間に、I式が成立する圧電共振子である。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は圧電共振子およびこ
の圧電共振子を用いたFM検波回路に関するものであ
る。
【0002】
【従来の技術】従来、FM波の周波数変化を電圧変化と
して検出するFM検波回路の移送器にディスクリミネー
タが用いられている。このディスクリミネータ用の圧電
材料としては、一般的に、広い復調出力帯域幅を得るた
めに、低いQ、広帯域ΔF(=Fa−Fr)の材料が用
いられている。しかし、これまで圧電材料の各種温度特
性の関係が適当でなく、完成品の温度特性(foTC)が
比較的大きかった。このため、セット機器での動作保証
温度範囲がFM用セラミックフィルタよりも狭く、使用
可能なセット機器も限定されていた。
【0003】
【発明が解決しようとする課題】従来の場合、完成品の
ディスクリミネータの温度特性(foTC)は25ppm
/℃程度であり、fo=10.7MHzのディスクリミ
ネータであれば、100℃の温度範囲で約28kHz、
150℃の温度範囲で約40kHzの周波数変化に相当
する。また、従来品では20℃よりも高温の領域で周波
数変化が大きくなる傾向にあったため、一般的に使われ
るfoTCの規格、すなわちfoの変化量±30kHzを
満足するために、動作保証温度の上限を60℃とする場
合が多かった。
【0004】このような問題に対処するため、特開昭6
3−283215号公報には、ディスクリミネータ(圧
電共振子)にコンデンサを直列接続するとともに、ディ
スクリミネータの容量の温度係数とコンデンサの容量の
温度係数とを所定の関係に設定することで、ディスクリ
ミネータの温度変化による周波数−インピーダンス特性
の変化をコンデンサの温度特性によって打ち消し、周波
数ずれを回避するようにしたものが提案されている。
【0005】また、実用新案登録第2501521号公
報には、3辺に抵抗が接続され、残りの1辺にディスク
リミネータ(圧電共振子)が接続されたブリッジ回路に
おいて、いずれか1辺の抵抗と並列に、ディスクリミネ
ータと同等な温度特性を持つコンデンサを接続したもの
が知られている。
【0006】しかしながら、いずれの場合も、ディスク
リミネータの他にコンデンサを用いる必要があり、コン
デンサ自身の温度特性を制御しなければならないので、
不確定要素が多く、所望の温度特性を持つFM検波回路
を得るのが難しかった。
【0007】そこで、本発明の目的は、コンデンサを用
いることなく、圧電材料の種々の温度特性を最適化する
ことで、完成品の温度特性を安定なものとし、動作保証
温度範囲を広げることができる圧電共振子およびこの圧
電共振子を用いたFM検波回路を提供することにある。
【0008】
【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、圧電材料の容量の温度特性
ε TC、比帯域幅Δf/fo、共振周波数の温度特性Fr
TC、反共振周波数の温度特性FaTC、および中心周波数
の温度特性の目標値αの間に、次式が成立することを特
徴とする圧電共振子を提供する。 |(FrTC+FaTC)/2+K×εTC×(Δf/fo)|≦α・・・(1) ただし、K=FrとFaの中点におけるインピーダンス
により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
(基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
/(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
(基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
(基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
なる係数
【0009】請求項6に係る発明は、圧電材料の容量の
温度特性をεTC、比帯域幅をΔf/fo、共振周波数の
温度特性をFrTC、反共振周波数の温度特性をFaTC
したとき、中心周波数の温度特性foTCを次の近似式に
より求めたことを特徴とする圧電共振子の温度特性演算
方法を提供する。 foTC=(FrTC+FaTC)/2+K×εTC×(Δf/fo)・・・(3) ただし、K=FrとFaの中点におけるインピーダンス
により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
(基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
/(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
(基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
(基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
なる係数
【0010】ここで、本発明に至った経緯を以下に説明
する。一般に、圧電セラミックスにおいては、端子間容
量の温度特性εTCは正の傾向を持ち、温度が上昇すると
容量が大きくなる。つまり、温度上昇すると、図1に破
線で示すように、容量の温度特性のために圧電共振子の
インピーダンスが低下し、中心周波数foが高周波側
(fo’で示す)へずれる。なお、ここではインピーダ
ンス値が1kΩと一致するところをfoとした。一方、
共振周波数の温度特性FrTCや反共振周波数の温度特性
FaTCは負の傾向を有するので、温度が上昇すると、図
1に二点鎖線で示すように周波数Fr,Faは低下し、
中心周波数foが低周波側(fo''で示す)へずれる。
このずれを互いにキャンセルさせれば、温度変化に伴う
中心周波数foの変化量が少なくなり、その温度特性f
TCを改善することが可能となる。
【0011】そこで、本発明者は、種々の圧電材料につ
いて、その容量の温度特性εTC、比帯域幅Δf/fo、
共振周波数の温度特性FrTC、反共振周波数の温度特性
FaTC、中心周波数の温度特性foTCを測定したとこ
ろ、そこに一定の相関関係があることを発見した。すな
わち、中心周波数の温度特性foTCと共振周波数の温度
特性FrTCおよび反共振周波数の温度特性FaTCの平均
値との差と、容量の温度特性εTCと比帯域幅Δf/fo
との積との間に、比例関係が存在することを発見した。
つまり、中心周波数の温度特性foTCを、共振周波数の
温度特性FrTC、反共振周波数の温度特性FaTC、容量
の温度特性εTCおよび比帯域幅Δf/foから近似的に
求めることが可能である。したがって、中心周波数の温
度特性の目標値をαとしたとき、上記比例関係に応じて
容量の温度特性εTC、比帯域幅Δf/fo、共振周波数
の温度特性FrTC、反共振周波数の温度特性FaTCを決
定すれば、完成品の温度特性foTCを目標値以内に収め
ることが可能となる。
【0012】表1は、A〜Eの5種類のPZT系の圧電
材料を使用した厚みすべり振動モードの圧電共振子につ
いて、その温度特性および比帯域幅を求めたものであ
る。なお、ここではインピーダンス値が1kΩと一致す
るところをfoとする圧電共振子(fo=10.7MH
z)とした。
【表1】 なお、表1において、Aは既存のディスクリミネータ用
圧電材料を用いた圧電共振子であり、B〜Eは今回実験
のために新たに作成した圧電共振子である。
【0013】表2は、表1における温度特性および比帯
域幅を用いて、A〜Eの各試料について、容量の温度特
性εTCと比帯域幅との積、および中心周波数の温度特性
foTCと共振周波数の温度特性FrTCおよび反共振周波
数の温度特性FaTCの平均値との差を求めたものであ
る。
【表2】
【0014】図2は表2における容量の温度特性εTC
比帯域幅Δf/foとの積を横軸にとり、中心周波数の
温度特性foTCと共振周波数の温度特性FrTCおよび反
共振周波数の温度特性FaTCの平均値との差を縦軸にと
り、A〜Eの各試料についてプロットしたものである。
図2から明らかなように、全ての試料の値は1本の直線
y=0.225xにのっていることが分かる。つまり、
中心周波数の温度特性foTCは、 foTC=(FrTC+FaTC)/2+0.225×εTC×
(Δf/fo) で近似できる。ここで、中心周波数の温度特性foTC
目標値をαとすれば、 |(FrTC+FaTC)/2+0.225×εTC×(Δf
/fo)|≦α の式を満足するように容量の温度特性εTC、比帯域幅Δ
f/fo、共振周波数の温度特性FrTCおよび反共振周
波数の温度特性FaTCを決定すれば、温度特性の安定し
た圧電共振子を得ることができる。上記計算式を一般化
したものが(3) 式および(1) 式である。
【0015】上記の場合には、インピーダンス値が1k
Ωと一致するところをfoとする圧電共振子を用いたの
で、係数K=0.225としたが、これとは異なるイン
ピーダンス値をfoとする圧電共振子の場合には、係数
Kの値は異なる。ブリッジバランス回路を用いたFM検
波回路の場合、検波用ICの内部にあるR 1 ,R2 ,R
3 の抵抗値によりfoとするインピーダンス値が決定さ
れる。逆に言えば、ICによってfoとするインピーダ
ンス値が異なる。ただ、FM検波用ICの多くは、ほぼ
1kΩ付近(200〜300Ω程度のバラツキあり)で
Rが設定されているので、Z=1kΩとなる周波数を安
定させれば、殆どのICで温度特性が良好になる。
【0016】表3は上記計算式により求めたfoTCと、
実測したfoTCとを比較したものである。表3から明ら
かなように、計算値と実測値とはよく近似しており、本
発明による計算式(1) 式および(3) 式が高い精度を持つ
ことがわかる。また、既存の材料を用いた圧電共振子A
に比べて、新たに作成した材料を用いた圧電共振子B〜
Eは良好な温度特性を持ち、特にB〜Dが好ましい特性
を有する。
【表3】
【0017】圧電共振子を外装樹脂で封止した場合、圧
電共振子そのものの温度特性の他に、外装樹脂の温度特
性の影響を受ける。そこで、請求項2および7では、請
求項1および6における要件に加え、外装樹脂の応力に
よる中心周波数の温度特性RfoTCを加算することで、
中心周波数の温度特性foTCを求めるようにしたもので
ある。
【0018】目標とする中心周波数の温度特性αとして
は、請求項3のように、18ppm/℃とするのが望ま
しい。すなわち、完成品の圧電共振子のfoTCを±18
ppm/℃以内とすれば、fo=10.7MHzの場
合、150℃の温度範囲で約±29kHzの周波数変化
に相当することから、これを満足すれば、例えば−40
℃〜105℃の動作保証も可能になる。つまり、従来の
動作保証温度の上限が60℃であるのに対し、本発明で
は105℃まで上げることができる。
【0019】請求項4のように、FrとFaの中点にお
けるインピーダンスにより決まる係数Kを0.225と
してもよい。インピーダンス値が1kΩと一致するとこ
ろをfoとする圧電共振子の場合、係数K=0.225
にすることで、中心周波数の温度特性foTCと共振周波
数の温度特性FrTCおよび反共振周波数の温度特性Fa
TCの平均値との差と、容量の温度特性εTCと比帯域幅と
の積とがほぼ完全に比例関係となり、中心周波数の温度
特性foTCを正確に求めることができる。
【0020】請求項5のように、3辺に抵抗が接続さ
れ、残りの1辺に圧電共振子が接続されたブリッジ回路
よりなり、このブリッジ回路の対向する一方の接続点間
にFM中間周波信号が入力され、他方の接続点間から出
力を取り出すように構成したFM検波回路において、そ
の圧電共振子として請求項1ないし4のいずれかに記載
の圧電共振子を用いるのが望ましい。すなわち、請求項
1ないし4の圧電共振子をFM検波用ディスクリミネー
タに用いれば、中心周波数foの温度特性が安定し、動
作保証温度範囲が広いFM検波回路を得ることができ
る。
【0021】
【発明の実施の形態】図3は本発明にかかる圧電共振子
をチップ型ディスクリミネータDとして構成した一例を
示す。このディスクリミネータDは、絶縁性の基板1、
基板1の上に枠状に形成されたガラスペーストなどから
なる絶縁層5、基板1上に形成された電極2,3上に導
電ペースト4を介して接続固定された圧電素子6、圧電
素子6の上面および両側面に塗布されたシリコーンゴム
などからなるダンピング材7,8、基板1の絶縁層5の
上に接着剤(図示せず)を介して接着固定され、圧電素
子6を封止する金属キャップ9などで構成されている。
【0022】上記圧電素子6はエネルギー閉じ込め型厚
みすべり振動モードの素子であり、短冊形の圧電基板6
aを有する。圧電基板6aの表裏主面には、中央部で対
向するように電極6b,6cが形成され、これら電極6
b,6cは圧電基板6aの異なる端部の端面を介して反
対側の主面まで引き出されている。ここでは、圧電基板
6aの材料としてPZTを使用した。
【0023】図4の(a)はFM検波回路に用いられる
移相回路の一例であり、3辺に抵抗R 1 ,R2 ,R3
接続され、残りの1辺に上記ディスクリミネータDが接
続されたブリッジバランス回路よりなる。R1 ,R2
3 の抵抗値はそれぞれ1kΩに設定され、ディスクリ
ミネータDは、そのインピーダンスが1kΩとなるとこ
ろをfoとしている。この実施例では、foを10.7
MHzとした。図4の(b)は出力電圧Eoの位相変化
を示す。図から明らかなように、foにおいて出力電圧
Eoが入力電圧Eiよりも位相が90°遅れて取り出さ
れるよう設計されている。
【0024】上記圧電素子6を構成するPZTの材料特
性を次に示す。 共振周波数の温度特性FrTC=−90ppm/℃ 反共振周波数の温度特性FaTC=−25ppm/℃ 容量の温度特性εTC=+2430ppm/℃ 比帯域幅Δf/fo=10% ただし、FrTC,FaTC,εTCおよびΔf/foは以下
の計算式で、測定温度範囲を−20℃〜+85℃とし、
基準温度を+20℃として測定した。 FrTC=A×(測定温度範囲内におけるFr変化幅)/
(基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
(基準温度時のFa×測定温度範囲) εTC=A×(測定温度範囲内における容量変化幅)/
(基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
/(基準温度時のfo) A=温度特性が正傾向のとき+1、負傾向のとき−1と
なる係数
【0025】上記材料特性の値を(3) 式に代入し、中心
周波数の温度係数foTCを求めると次のようになる。 foTC=(FrTC+FaTC)/2+K×εTC×(Δf/
fo)=(−90−25)/2+K×2430×0.1 となる。インピーダンス値が1kΩと一致するところを
foとする圧電共振子の場合、K=0.225であるか
ら、foTC=−2.83ppm/℃となる。いま、中心
周波数の温度係数の目標値α=18ppm/℃とした場
合、|foTC|=2.83ppm/℃は目標値αよりか
なり小さく、(1) 式を満足している。完成品である図3
のFM検波用チップ型ディスクリミネータについて、そ
の温度特性foTCを実際に測定したところ、約−3pp
m/℃となっており、温度特性が非常に良好なものとな
っている。
【0026】図5は図3に示した本発明品の−30℃,
20℃,85℃におけるインピーダンス特性図および位
相特性図である。また、図6は従来品の−30℃,20
℃,85℃におけるインピーダンス特性図および位相特
性図である。従来品とは、例えば実開昭61−1366
30号公報に開示されたような公知の積層接着構造のチ
ップ型圧電共振子であり、ここでは圧電素子の振動モー
ドとして厚み縦振動モードを用いた。図6に示すよう
に、従来品では温度変化により、インピーダンスZ=1
kΩとなる周波数が変化していることがわかる。これが
foTCを大きくしている要因である。これに対し、本発
明品では、図5に示すように温度変化によってもZ=1
kΩとなる周波数は殆ど変化していない。
【0027】図7の(a)は図5に示す本発明品の温度
特性foTCを示し、(b)は図6に示す従来品の温度特
性foTCを示す。図7から明らかなように、従来品では
温度上昇に伴ってfoTCが大きく変化していることがわ
かる。これに対し、本発明品では温度が105℃まで上
昇してもfoTCが殆ど変化しておらず、温度特性が非常
に良好である。
【0028】図8は本発明にかかる圧電共振子の第2実
施例を示す。この圧電共振子は、樹脂封止形のリード付
き圧電共振子であり、第1実施例と同じくFM検波用デ
ィスクリミネータとして用いられる。圧電共振子は、f
o=10.7MHzの短冊形の厚みすべり振動モードの
圧電素子10を備えている。圧電素子10の表裏面中央
部には振動電極10a,10bが形成され、両端部には
端子電極10c,10dが形成され、これら端子電極1
0c,10dにリード端子11,12が半田付け13さ
れている。なお、一方のリード端子11は圧電素子10
の裏面側から表面側へ折り返されている。圧電素子10
の振動電極10a,10bの周囲はシリコーンゴムより
なる弾性材14で覆われており、圧電素子10の周囲全
体がエポキシ樹脂よりなる外装樹脂15で覆われてい
る。さらに、その周囲が、透明なエポキシ樹脂よりなる
表皮樹脂16で覆われている。
【0029】上記圧電素子10を構成するPZTの材料
特性を次に示す。 共振周波数の温度特性FrTC=−90ppm/℃ 反共振周波数の温度特性FaTC=−25ppm/℃ 容量の温度特性εTC=+2430ppm/℃ 比帯域幅Δf/fo=10% また、実験により、外装樹脂14,15,16の締付応
力によるRfoTCを求めたところ、+15ppm/℃程
度であった。なお、FrTC,FaTC,εTCおよびΔf/
foの計算方法は、第1実施例と同様である。
【0030】ここで、上記材料特性の値を(2) 式にあて
はめ、中心周波数の温度係数foTCを求めた。但し、係
数K=0.225とした。 foTC=(FrTC+FaTC)/2+0.225 ×εTC×(Δf/fo)+RfoTC =(−90−25)/2+0.225 ×2430×0.1+15 =12.17ppm/℃ 中心周波数の温度係数の目標値α=18ppm/℃とす
ると、|foTC|=12.17ppm/℃は目標値αよ
り十分に小さい。図8のFM検波用チップ型ディスクリ
ミネータについて、その温度特性foTCを実際に測定し
たところ、完成品のfoTCは約+12ppm/℃となっ
ており、上記計算式と非常によく一致している。そし
て、上記材料を用いてディスクリミネータを製作すれ
ば、極めて温度特性のよいディスクリミネータを得るこ
とができる。
【0031】上記実施例では、本発明にかかる圧電共振
子をFM検波用ディスクリミネータに適用した例につい
て説明したが、これに限らず、FrとFaとの中点を利
用した圧電共振子、例えばFrとFaとの中点を発振ポ
イントとする発振子にも同様に適用できる。また、本発
明の圧電共振子の封止構造は、図3のようなキャップ封
止構造や、図8のような樹脂封止構造に限らず、従来品
と同様な積層接着構造であってもよい。この場合には、
外装樹脂を使用していないので、(3) 式を用いてfoTC
を計算できる。さらに、本発明の圧電共振子の振動モー
ドは厚みすべり振動モードに限らず、厚み縦振動モード
であってもよい。
【0032】
【発明の効果】以上の説明で明らかなように、請求項1
に係る発明によれば、容量の温度特性と共振周波数およ
び反共振周波数の温度特性とを相殺するよう、圧電材料
を選定したので、温度変化に伴う中心周波数foの変化
量を少なくでき、その温度特性foTCを小さくすること
ができる。そのため、この圧電共振子を用いれば、動作
保証温度範囲を広げることができ、セット機器での動作
保証温度範囲を広げることができる。また、温度特性を
改善するためのコンデンサなどを別に接続する必要がな
いので、構造が簡単であり、所望の温度特性に制御しや
すい。
【0033】また、請求項2に係る発明では、請求項1
に加えて、外装樹脂の温度特性による影響を解消あるい
は低減できるようにしたので、樹脂封止型の圧電共振子
であっても、その温度特性を安定させることができる。
【0034】請求項6または7における式(3) ,(4) を
用いて圧電共振子の温度特性foTCを演算する方法を用
いれば、圧電材料の容量の温度特性、比帯域幅、共振周
波数の温度特性、反共振周波数の温度特性がわかれば、
圧電共振子の温度特性foTCを簡単に求めることができ
るので、回路の設計が容易になる。
【図面の簡単な説明】
【図1】本発明の原理を説明するための周波数−インピ
ーダンス特性図である。
【図2】本発明に係る計算式を求めるための特性図であ
る。
【図3】本発明に係る圧電共振子の第1実施例の分解斜
視図である。
【図4】ブリッジ回路を構成した移相器の回路図および
その位相特性図である。
【図5】図3に示す圧電共振子のインピーダンス特性図
および位相特性図である。
【図6】従来例の圧電共振子のインピーダンス特性図お
よび位相特性図である。
【図7】本発明品の温度特性図および従来品の温度特性
図である。
【図8】本発明に係る圧電共振子の第2実施例の正面断
面図および側面断面図である。
【符号の説明】
D 圧電共振子(ディスクリミネータ) 1 基板 6 圧電素子 9 キャップ
─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成13年12月20日(2001.12.
20)
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正内容】
【0013】表2は、表1における温度特性および比帯
域幅を用いて、A〜Eの各試料について、容量の温度特
性εTCと比帯域幅との積、および中心周波数の温度特性
foTCと共振周波数の温度特性FrTCおよび反共振周波
数の温度特性FaTCの平均値との差を求めたものであ
る。
【表2】

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】圧電材料の容量の温度特性εTC、比帯域幅
    Δf/fo、共振周波数の温度特性FrTC、反共振周波
    数の温度特性FaTC、および中心周波数の温度特性の目
    標値αの間に、次式が成立することを特徴とする圧電共
    振子。 |(FrTC+FaTC)/2+K×εTC×(Δf/fo)|≦α・・・(1) ただし、K=FrとFaの中点におけるインピーダンス
    により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
    (基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
    /(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
    (基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
    (基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
    なる係数
  2. 【請求項2】外装樹脂によって封止された圧電共振子で
    あって、圧電材料の容量の温度特性εTC、比帯域幅Δf
    /fo、共振周波数の温度特性FrTC、反共振周波数の
    温度特性FaTC、外装樹脂の応力による中心周波数の温
    度特性RfoTC、および中心周波数の温度特性の目標値
    αの間に、次式が成立することを特徴とする圧電共振
    子。 |(FrTC+FaTC)/2+K×εTC×(Δf/fo)+RfoTC|≦α ・・(2) ただし、K=FrとFaの中点におけるインピーダンス
    により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
    (基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
    /(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
    (基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
    (基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
    なる係数
  3. 【請求項3】上記α=18ppm/℃としたことを特徴
    とする請求項1または2に記載の圧電共振子。
  4. 【請求項4】上記K=0.225としたことを特徴とす
    る請求項1ないし3のいずれかに記載の圧電共振子。
  5. 【請求項5】3辺に抵抗が接続され、残りの1辺に請求
    項1ないし4のいずれかに記載の圧電共振子が接続され
    たブリッジ回路よりなり、このブリッジ回路の対向する
    一方の接続点間にFM中間周波信号が入力され、他方の
    接続点間から出力を取り出すように構成したFM検波回
    路。
  6. 【請求項6】圧電材料の容量の温度特性をεTC、比帯域
    幅をΔf/fo、共振周波数の温度特性をFrTC、反共
    振周波数の温度特性をFaTCとしたとき、中心周波数の
    温度特性foTCを次の近似式により求めたことを特徴と
    する圧電共振子の温度特性演算方法。 foTC=(FrTC+FaTC)/2+K×εTC×(Δf/fo)・・・(3) ただし、K=FrとFaの中点におけるインピーダンス
    により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
    (基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
    /(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
    (基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
    (基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
    なる係数
  7. 【請求項7】外装樹脂によって封止された圧電共振子で
    あって、圧電材料の容量の温度特性をεTC、比帯域幅を
    Δf/fo、共振周波数の温度特性をFrTC、反共振周
    波数の温度特性をFaTC、外装樹脂の応力による中心周
    波数の温度特性をRfoTCとしたとき、中心周波数の温
    度特性foTCを次の近似式により求めたことを特徴とす
    る圧電共振子の温度特性演算方法。 foTC=(FrTC+FaTC)/2+K×εTC×(Δf/fo)+RfoTC ・・(4) ただし、K=FrとFaの中点におけるインピーダンス
    により決まる係数 εTC=A×(測定温度範囲内における容量変化幅)/
    (基準温度時の容量×測定温度範囲) Δf/fo=(基準温度時のFa−基準温度時のFr)
    /(基準温度時のfo) FrTC=A×(測定温度範囲内におけるFr変化幅)/
    (基準温度時のFr×測定温度範囲) FaTC=A×(測定温度範囲内におけるFa変化幅)/
    (基準温度時のFa×測定温度範囲) A=温度特性が正傾向のとき+1、負傾向のとき−1と
    なる係数
  8. 【請求項8】上記K=0.225としたことを特徴とす
    る請求項6または7に記載の圧電共振子の温度特性演算
    方法。
JP2001089064A 2001-03-27 2001-03-27 圧電共振子の温度特性演算方法 Expired - Fee Related JP3661602B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001089064A JP3661602B2 (ja) 2001-03-27 2001-03-27 圧電共振子の温度特性演算方法
US10/090,150 US6717328B2 (en) 2001-03-27 2002-03-05 Piezoelectric resonator and FM detection circuit incorporating the same
CNB021075905A CN1167194C (zh) 2001-03-27 2002-03-18 压电晶体谐振器和包含该谐振器的调频检测电路
KR10-2002-0014926A KR100500356B1 (ko) 2001-03-27 2002-03-20 압전공진자 및 이 압전공진자를 이용한 에프엠 검파회로

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001089064A JP3661602B2 (ja) 2001-03-27 2001-03-27 圧電共振子の温度特性演算方法

Publications (2)

Publication Number Publication Date
JP2002290197A true JP2002290197A (ja) 2002-10-04
JP3661602B2 JP3661602B2 (ja) 2005-06-15

Family

ID=18944054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001089064A Expired - Fee Related JP3661602B2 (ja) 2001-03-27 2001-03-27 圧電共振子の温度特性演算方法

Country Status (4)

Country Link
US (1) US6717328B2 (ja)
JP (1) JP3661602B2 (ja)
KR (1) KR100500356B1 (ja)
CN (1) CN1167194C (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290993B2 (en) * 2004-04-02 2007-11-06 Adaptivenergy Llc Piezoelectric devices and methods and circuits for driving same
US20050225201A1 (en) * 2004-04-02 2005-10-13 Par Technologies, Llc Piezoelectric devices and methods and circuits for driving same
US7312554B2 (en) * 2004-04-02 2007-12-25 Adaptivenergy, Llc Piezoelectric devices and methods and circuits for driving same
US7287965B2 (en) * 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
US20070129681A1 (en) * 2005-11-01 2007-06-07 Par Technologies, Llc Piezoelectric actuation of piston within dispensing chamber
CN103235200B (zh) * 2013-04-18 2015-06-17 上海理工大学 一种测量压电材料压电系数d15的动态谐振方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384229A (en) * 1980-02-14 1983-05-17 Nippon Electric Co., Ltd. Temperature compensated piezoelectric ceramic resonator unit
JPS59181585A (ja) * 1983-03-31 1984-10-16 Toshiba Corp 変位発生装置
JPH0666630B2 (ja) * 1984-09-06 1994-08-24 日本電気株式会社 エネルギー閉じ込め形振動子
JPS61136630A (ja) 1984-12-04 1986-06-24 Mitsubishi Electric Corp 鉄心片の焼鈍方法
JPS62261208A (ja) * 1986-05-07 1987-11-13 Fujitsu Ltd 電気機械式フイルタの位相回転量変動抑圧方法
JPS63283215A (ja) 1987-05-14 1988-11-21 Murata Mfg Co Ltd 圧電部品
JPH01189531A (ja) * 1988-01-23 1989-07-28 Tokin Corp 力検出装置
JP2501521Y2 (ja) 1989-08-10 1996-06-19 株式会社村田製作所 Fm復調回路
JPH0417579A (ja) * 1990-05-07 1992-01-22 Nissan Motor Co Ltd 超音波モータ用圧電素子
EP0469193A1 (en) * 1990-08-03 1992-02-05 Koninklijke Philips Electronics N.V. Temperature stabilized crystal oscillator
US5747857A (en) * 1991-03-13 1998-05-05 Matsushita Electric Industrial Co., Ltd. Electronic components having high-frequency elements and methods of manufacture therefor
JPH0738365A (ja) * 1993-07-26 1995-02-07 Murata Mfg Co Ltd エネルギー閉じ込め型共振子およびその製造方法
JPH0818369A (ja) * 1994-06-27 1996-01-19 Murata Mfg Co Ltd 圧電共振部品の製造方法
JPH0918234A (ja) * 1995-04-27 1997-01-17 Seiko Epson Corp 温度補償圧電発振器
JP2002090197A (ja) * 2000-09-12 2002-03-27 Mitsubishi Heavy Ind Ltd 粉体流量計測装置

Also Published As

Publication number Publication date
KR100500356B1 (ko) 2005-07-11
JP3661602B2 (ja) 2005-06-15
CN1377134A (zh) 2002-10-30
KR20020075724A (ko) 2002-10-05
US6717328B2 (en) 2004-04-06
US20020185938A1 (en) 2002-12-12
CN1167194C (zh) 2004-09-15

Similar Documents

Publication Publication Date Title
US20080179313A1 (en) Acoustic wave resonator with integrated temperature control for oscillator purposes
JP2007158486A (ja) 水晶振動素子、水晶振動子、及び水晶発振器
US6590315B2 (en) Surface mount quartz crystal resonators and methods for making same
US20040036380A1 (en) Crystal unit
JP2007208771A (ja) 圧電振動素子、圧電振動子及び圧電発振器
US4205248A (en) Quartz crystal vibrator electrode configuration
JP4756426B2 (ja) 水晶振動子と水晶ユニットと水晶発振器の各製造方法
US20040164645A1 (en) Surface acoustic wave device, method of manufacturing the same, and electronic apparatus
WO2005074130A1 (ja) 音叉型振動片、圧電振動子、角速度センサ、及び電子機器
JP3661602B2 (ja) 圧電共振子の温度特性演算方法
EP0620640B1 (en) Piezoelectric filter
JP4178804B2 (ja) 移相器の温度特性演算方法及び移相器の設計方法
US4607239A (en) Adjustment of the frequency-temperature characteristics of crystal oscillators
JP2743701B2 (ja) 発振回路
Ralib et al. Silicon compatible Acoustic wave resonators: Design, fabrication and performance
JP3155113B2 (ja) 温度補償型水晶発振回路
JP2002368573A (ja) 超薄板圧電振動子及びその製造方法
JP2006033181A (ja) 水晶振動子
JP2001017916A (ja) 超音波回路
JP2000091878A (ja) 圧電振動子及び圧電発振器
JP2005094733A (ja) 振動子と振動子ユニットと発振器と電子機器とそれらの製造方法
JP2003115741A (ja) 圧電振動子とオーバトーン周波数調整方法
JPH07122964A (ja) 弾性表面波共振子
JPS62220012A (ja) 圧電振動素子
JP2001060844A (ja) 複合圧電振動子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees