JP2002280604A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2002280604A
JP2002280604A JP2001082294A JP2001082294A JP2002280604A JP 2002280604 A JP2002280604 A JP 2002280604A JP 2001082294 A JP2001082294 A JP 2001082294A JP 2001082294 A JP2001082294 A JP 2001082294A JP 2002280604 A JP2002280604 A JP 2002280604A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor device
resin
aging
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001082294A
Other languages
Japanese (ja)
Inventor
Hironori Shizuhata
弘憲 賤機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Chemical Corp
Original Assignee
Toshiba Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Chemical Corp filed Critical Toshiba Chemical Corp
Priority to JP2001082294A priority Critical patent/JP2002280604A/en
Publication of JP2002280604A publication Critical patent/JP2002280604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical semiconductor device having excellent solder heat resistance, solder re-flow resistance and high reliability without changing the constituting member of a conventional optical semiconductor device by thermally aging in the final step of assembling. SOLUTION: The optical semiconductor device is obtained by mounting an optical semiconductor element of a IIIB-VB compound semiconductor with a resin composition, molding the element with a transparent sealing resin, and then passing the element through a step of aging the element at 80 to 200 deg.C for 8 to 48 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体素子を樹
脂マウントしてなる光半導体装置に関し、半田耐熱性に
優れ、半田リフロー前後で電圧変動の少ないことを利点
とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device in which an optical semiconductor element is mounted on a resin, and has an advantage that it has excellent solder heat resistance and has little voltage fluctuation before and after solder reflow.

【0002】[0002]

【従来の技術】種々の表示用などに実用化されている発
光ダイオード(LED)などを用いた光半導体装置は、
金属薄板(リードフレーム)や金属製の皿、樹脂基板上
の所定部分に光半導体素子を導電性ペースト等で接合
後、透明封止樹脂等で封止して製造される。この光半導
体素子を接続する工程は、デバイスとしての長期信頼
性、特にLEDにおいてはV−F特性や輝度劣化にに影
響を与える重要な工程の一つである。
2. Description of the Related Art An optical semiconductor device using a light emitting diode (LED) or the like which has been put to practical use for various displays, etc.
It is manufactured by bonding an optical semiconductor element to a predetermined portion of a thin metal plate (lead frame), a metal dish, or a resin substrate with a conductive paste or the like, and then sealing it with a transparent sealing resin or the like. The step of connecting the optical semiconductor element is one of the important steps that affect the long-term reliability of the device, particularly the VF characteristic and the luminance deterioration of the LED.

【0003】[0003]

【発明が解決しようとする課題】近年の鉛フリー化の流
れに伴い半田接合の温度が従来の200〜240℃から
260〜280℃に上昇する動きがある。これに伴い、
光半導体装置にも従来以上の耐半田リフロー性が強く求
められるようになった。特に、光半導体素子の電極と導
電性ペーストとの界面には、導電ペースト硬化時に発生
した内部応力が残留しているため、高い温度での半田リ
フロー等による外部ストレスにより、界面クラックや素
子の剥離が発生して、光半導体装置のV−F特性不良や
電気的オープンの原因となる。
With the recent trend toward lead-free soldering, there has been a movement to raise the temperature of the solder joint from the conventional 200 to 240 ° C. to 260 to 280 ° C. Along with this,
Optical semiconductor devices have also been required to have higher solder reflow resistance than ever before. In particular, at the interface between the electrode of the optical semiconductor element and the conductive paste, internal stress generated during curing of the conductive paste remains, so that an external stress due to solder reflow at a high temperature or the like causes interface cracks or element peeling. Is generated, which causes VF characteristic failure and electrical open of the optical semiconductor device.

【0004】これらの対策として、光半導体素子をマウ
ントする導電性ペーストの耐熱性、特に熱時の密着性を
高める手法が従来からとられてきたが、耐熱性の向上は
樹脂の架橋密度の上昇を伴う場合が多く、その結果とし
て吸水率も高くなり、耐湿信頼性に劣る傾向がみられ
た。加えて、耐熱性の高い樹脂は概して高弾性になりや
すく、かえって内部応力を大きくしてしまうため、アッ
センブリ工程や実装工程中の熱履歴によるチップ剥離が
問題となる可能性が高かった。
[0004] As a countermeasure against this, a method of increasing the heat resistance of the conductive paste for mounting the optical semiconductor element, particularly the adhesion during heat, has been conventionally taken. In many cases, and as a result, the water absorption rate was increased, and the moisture resistance reliability tended to be poor. In addition, resins having high heat resistance generally tend to have high elasticity and rather increase internal stress, and therefore, there is a high possibility that chip peeling due to heat history during the assembly process and the mounting process becomes a problem.

【0005】従って、物理的、電気的な接合信頼性の向
上を目指して、耐半田リフロー性に優れた信頼性の高い
光半導体装置の開発が強く要望されていた。
Therefore, there has been a strong demand for the development of a highly reliable optical semiconductor device having excellent solder reflow resistance in order to improve physical and electrical bonding reliability.

【0006】本発明は、上記の事情に鑑みてなされたも
ので、従来の光半導体装置の構成部材を変えることな
く、半田耐熱性、耐半田リフロー性に優れた信頼性の高
い光半導体装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and provides a highly reliable optical semiconductor device having excellent solder heat resistance and solder reflow resistance without changing the components of a conventional optical semiconductor device. It is something to offer.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の目的
を達成しようと鋭意研究を重ねた結果、光半導体装置の
組立て最終工程に、熱エージング工程を導入することに
よって、上記の目的を達成できることを見いだし、本発
明を完成したものである。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventor has achieved the above object by introducing a heat aging step in the final step of assembling an optical semiconductor device. The inventors have found what can be achieved and completed the present invention.

【0008】即ち、本発明は、3B−5B族等化合物半
導体素子を樹脂組成物でマウントし、透明封止樹脂でモ
ールドした後、80℃〜200℃の温度で8〜48時
間、エージング工程を通すことを特徴とする光半導体装
置である。
That is, according to the present invention, an aging step is carried out at a temperature of 80 ° C. to 200 ° C. for 8 to 48 hours after mounting a 3B-5B group compound semiconductor device with a resin composition and molding with a transparent sealing resin. An optical semiconductor device characterized by passing through.

【0009】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明に用いる光半導体素子としては、G
aAlAs、GaP、GaInAsP、InP、GaN
等の3B−5B族化合物半導体のものあるいはSiC等
の他の化合物半導体素子を挙げることができる。
As an optical semiconductor device used in the present invention, G
aAlAs, GaP, GaInAsP, InP, GaN
And other compound semiconductor devices such as SiC.

【0011】本発明のマウントに用いる樹脂組成物とし
ては、一般にエポキシ樹脂系が用いられるが、光半導体
素子の構造により、導電性樹脂組成物、絶縁性樹脂組成
物いずれかの組成物を適用する。耐熱性の低い有機バイ
ンダーでは、高温高湿の条件下、例えば、121℃,2
気圧でのプレッシャークッカーテストのような条件下で
は、樹脂組成物の硬化被膜が劣化する。それ故、このよ
うな厳しい条件下での信頼性を要求される場合には、耐
熱性の高いバインダーを選ぶ必要がある。例えば、ポリ
イミド変性樹脂や平均エポキシ基数3以上のノボラック
エポキシ樹脂をフェノール樹脂で硬化させる系が挙げら
れる。
As the resin composition used for the mount of the present invention, an epoxy resin is generally used. Depending on the structure of the optical semiconductor element, either a conductive resin composition or an insulating resin composition is used. . In the case of an organic binder having a low heat resistance, a temperature of 121 ° C., 2
Under conditions such as a pressure cooker test at atmospheric pressure, the cured film of the resin composition deteriorates. Therefore, when reliability under such severe conditions is required, it is necessary to select a binder having high heat resistance. For example, a system in which a polyimide-modified resin or a novolak epoxy resin having an average number of epoxy groups of 3 or more is cured with a phenol resin is used.

【0012】また、マウントした光半導体素子の樹脂封
止に用いる封止樹脂としては、光半導体用として通常使
用されている透明樹脂が使用され、一般的には、二官能
エポキシ樹脂/酸無水物硬化系の封止樹脂が用いられ
る。
As a sealing resin used for resin sealing of the mounted optical semiconductor element, a transparent resin generally used for optical semiconductors is used. Generally, a bifunctional epoxy resin / acid anhydride is used. A curing type sealing resin is used.

【0013】この透明封止樹脂の硬化後に行う熱エージ
ング工程は、本発明の光半導体装置を実現する上で要と
なる工程である。
The heat aging step performed after the curing of the transparent sealing resin is a necessary step for realizing the optical semiconductor device of the present invention.

【0014】熱源としては、特に制限はないが、熱風循
環式オーブンやトンネル炉など、光半導体装置に対して
急激な熱が加わらないようなものが、より好ましい。も
し、熱板を熱源にする場合には、光半導体装置を熱板の
上に直接置かず、熱伝導性の良い金属製のケースなどに
入れて、間接的に熱を伝えてやるとよい。
Although there is no particular limitation on the heat source, a heat source that does not apply rapid heat to the optical semiconductor device, such as a hot air circulation oven or a tunnel furnace, is more preferable. If a heat plate is used as a heat source, the optical semiconductor device may be placed directly in a metal case or the like having good heat conductivity instead of being directly placed on the heat plate to conduct heat indirectly.

【0015】熱エージングの温度は、80℃〜200℃
の範囲で任意に選択できるが、特に好ましくは、100
℃〜150℃が良い。熱エージングの温度が80℃未満
では、エージング効果が期待できず、一方、200℃を
超える場合は金属フレームの酸化や変色、さらにマウン
ト樹脂組成物や透明封止樹脂の熱劣化により、基材への
密着性の低下やクラックが懸念される。
The temperature for heat aging is from 80 ° C. to 200 ° C.
Can be arbitrarily selected in the range of
C. to 150.degree. C. is good. If the temperature of thermal aging is lower than 80 ° C, the aging effect cannot be expected. On the other hand, if the temperature exceeds 200 ° C, oxidation or discoloration of the metal frame and thermal deterioration of the mounting resin composition or the transparent sealing resin may cause the base material to deteriorate. There is a concern that the adhesion may decrease or cracks may occur.

【0016】熱エージングの時間は、8〜48時間の範
囲で任意に選択できるが、好ましくは12〜24時間が
良い。熱エージングの時間が8時間未満ではエージング
効果が期待できず、反対に48時間を超えた場合には、
金属フレームの酸化や変色、さらにマウント樹脂組成物
や透明封止樹脂の熱劣化により、基材への密着性の低下
やクラックが懸念される。
The heat aging time can be arbitrarily selected within the range of 8 to 48 hours, but is preferably 12 to 24 hours. If the heat aging time is less than 8 hours, the aging effect cannot be expected, and if it exceeds 48 hours,
Oxidation and discoloration of the metal frame, and thermal degradation of the mount resin composition and the transparent sealing resin may cause a decrease in adhesion to the substrate or cracks.

【0017】さらに、高温エージングにより、金属フレ
ームの酸化が懸念される場合には、熱源内の雰囲気を窒
素等の不活性ガスで置換してやる必要がある。
Furthermore, when oxidation of the metal frame is feared due to high temperature aging, it is necessary to replace the atmosphere in the heat source with an inert gas such as nitrogen.

【0018】本発明の光半導体装置は、次のようにして
製造される。GaAlAsなどの光半導体素子の電極面
を導電性ペーストなどでリードフレーム上にマウント
後、所定の硬化条件で硬化し、ワイヤボンディングを行
い、次いで透明封止樹脂で封止硬化し、最後にオーブン
等で加熱エージングを行い、リードフレームを切り放し
て光半導体装置を製造することができる。
The optical semiconductor device of the present invention is manufactured as follows. After mounting the electrode surface of an optical semiconductor device such as GaAlAs on a lead frame with a conductive paste or the like, curing under predetermined curing conditions, performing wire bonding, sealing and curing with a transparent sealing resin, and finally, oven and the like. Aging is performed, and the lead frame is cut off to manufacture an optical semiconductor device.

【0019】[0019]

【作用】本発明は、光半導体装置の組立て最終工程に、
適切な条件で熱エージングを行うことにより、光半導体
素子をマウントしている樹脂組成物および透明封止材へ
のアフター硬化として作用し、その結果、これら樹脂の
基材への密着性を向上させる効果がある。また、これら
の樹脂の硬化で装置内部、特に素子界面に発生した応力
を、この熱エージング工程を通すことにより低減させ、
ヒートショックなどでさらに素子界面に応力がかかった
場合でも、基材と十分密着を保つことができ、光半導体
装置の電気的信頼性の向上を実現させたものである。
According to the present invention, in the final assembly process of an optical semiconductor device,
By performing thermal aging under appropriate conditions, it acts as an after-curing to the resin composition and the transparent encapsulant mounting the optical semiconductor element, thereby improving the adhesion of these resins to the base material. effective. Further, the stress generated inside the device, particularly at the element interface due to the curing of these resins, is reduced by passing through this heat aging process,
Even when a stress is further applied to the element interface due to heat shock or the like, sufficient contact with the base material can be maintained, and the electrical reliability of the optical semiconductor device is improved.

【0020】この手法により、従来の光半導体装置に用
いられている樹脂マウント材や透明封止材などの構成部
材を変更することなく、従来以上の半田耐熱性、半田リ
フロー性に優れた光半導体装置を得ることができる。
According to this method, an optical semiconductor having superior solder heat resistance and solder reflow properties can be obtained without changing the components such as a resin mount material and a transparent sealing material used in the conventional optical semiconductor device. A device can be obtained.

【0021】[0021]

【発明の実施形態】次に本発明を実施例によって説明す
るが、本発明はこれらの実施例によって限定されるもの
ではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0022】実施例1〜2 市販されているエポキシ樹脂/フェノール硬化系の無溶
剤型銀系導電性ペースト(A)を用いて、皿型のリード
フレームと0.3mm×0.3mmのGaAlAs系光
半導体素子(LEDチップ)を、各導電性ペースト所定
の硬化条件でマウント硬化し、ワイヤボンディングを行
い、次いで市販されている一般的なエポキシ樹脂/酸無
水物系の透明封止材で封止硬化(120℃×2H+13
0℃×6H)して光半導体装置を組み立てた。
Examples 1-2 Using a commercially available epoxy resin / phenol-cured solventless silver conductive paste (A), a dish-shaped lead frame and a 0.3 mm × 0.3 mm GaAlAs-based lead frame were used. The optical semiconductor element (LED chip) is mounted and cured under predetermined curing conditions for each conductive paste, wire-bonded, and then sealed with a commercially available general epoxy resin / acid anhydride transparent sealing material. Curing (120 ℃ × 2H + 13
(0 ° C. × 6 H) to assemble the optical semiconductor device.

【0023】組み立てた光半導体装置を、本発明の熱エ
ージング条件の範囲内で熱風循環型オーブンで熱エージ
ング工程を通し、実施例1〜2の光半導体装置を用意し
た。
The assembled optical semiconductor device was subjected to a thermal aging process in a hot air circulation type oven within the range of the thermal aging conditions of the present invention, and optical semiconductor devices of Examples 1 and 2 were prepared.

【0024】実施例3〜4 市販されているエポキシ樹脂/ジシアンジアミド硬化系
の溶剤型銀系導電性ペースト(B)を用いて、皿型のリ
ードフレームと0.3mm×0.3mmのGaAlAs
系光半導体素子(LEDチップ)を、各導電性ペースト
所定の硬化条件でマウント硬化し、ワイヤボンディング
を行い、次いで市販されている一般的なエポキシ樹脂/
酸無水物系の透明封止材で封止硬化(120℃×2H+
130℃×6H)して光半導体装置をそれぞれ組み立て
た。
Examples 3 and 4 Using a commercially available epoxy resin / dicyandiamide-curable solvent-type silver-based conductive paste (B), a dish-shaped lead frame and 0.3 mm × 0.3 mm GaAlAs were used.
The optical semiconductor element (LED chip) is mounted and cured under predetermined curing conditions for each conductive paste, wire bonding is performed, and then a commercially available general epoxy resin /
Sealing and curing with acid anhydride transparent sealing material (120 ℃ × 2H +
(130 ° C. × 6H) to assemble the optical semiconductor devices.

【0025】組み立てた光半導体装置を、本発明の熱エ
ージング条件の範囲内で熱風循環型オーブンで熱エージ
ング工程を通し、実施例3〜4の光半導体装置を用意し
た。
The assembled optical semiconductor device was subjected to a thermal aging process in a hot air circulation type oven within the range of the thermal aging conditions of the present invention, whereby optical semiconductor devices of Examples 3 and 4 were prepared.

【0026】比較例1〜3 市販されているエポキシ樹脂/フェノール硬化系の無溶
剤型銀系導電性ペースト(A)を用いて、皿型のリード
フレームと0.3mm×0.3mmのGaAlAs系光
半導体素子(LEDチップ)を、各導電性ペースト所定
の硬化条件でマウント硬化し、ワイヤボンディングを行
い、次いで市販されている一般的なエポキシ樹脂/酸無
水物系の透明封止材で封止硬化(120℃×2H+13
0℃×6H)して光半導体装置をそれぞれ組み立てた。
Comparative Examples 1 to 3 Using a commercially available epoxy resin / phenol-cured solventless silver-based conductive paste (A), a dish-shaped lead frame and a 0.3 mm × 0.3 mm GaAlAs-based lead frame were used. The optical semiconductor element (LED chip) is mounted and cured under predetermined curing conditions for each conductive paste, wire-bonded, and then sealed with a commercially available general epoxy resin / acid anhydride transparent sealing material. Curing (120 ℃ × 2H + 13
(0 ° C. × 6 H) to assemble the optical semiconductor devices.

【0027】組み立てた光半導体装置を、熱エージング
しないもの、および本発明の熱エージング条件以外の条
件で熱風循環型オーブンで熱エージング工程を通し、比
較例1〜3の光半導体装置を用意した。
The assembled optical semiconductor device was subjected to a heat aging process in a hot air circulating oven under conditions other than the heat aging conditions of the present invention and those not subjected to heat aging, to prepare optical semiconductor devices of Comparative Examples 1 to 3.

【0028】比較例4〜6 市販されているエポキシ樹脂/ジシアンジアミド硬化系
の溶剤型銀系導電性ペースト(B)を用いて、皿型のリ
ードフレームと0.3mm×0.3mmのGaAlAs
系光半導体素子(LEDチップ)を、各導電性ペースト
所定の硬化条件でマウント硬化し、ワイヤボンディング
を行い、次いで市販されている一般的なエポキシ樹脂/
酸無水物系の透明封止材で封止硬化(120℃×2H+
130℃×6H)して光半導体装置をそれぞれ組み立て
た。
Comparative Examples 4 to 6 Using a commercially available epoxy resin / dicyandiamide-curable solvent-type silver-based conductive paste (B), a dish-shaped lead frame and 0.3 mm × 0.3 mm GaAlAs were used.
The optical semiconductor element (LED chip) is mounted and cured under predetermined curing conditions for each conductive paste, wire bonding is performed, and then a commercially available general epoxy resin /
Sealing and curing with acid anhydride transparent sealing material (120 ℃ × 2H +
(130 ° C. × 6H) to assemble the optical semiconductor devices.

【0029】組み立てた光半導体装置を、熱エージング
しないもの、および本発明の熱エージング条件以外の条
件で熱風循環型オーブンで熱エージング工程を通し、比
較例4〜6の光半導体装置を用意した。
The assembled optical semiconductor devices were subjected to a heat aging step in a hot air circulating oven under conditions other than those not subject to heat aging and under the conditions other than the heat aging conditions of the present invention to prepare optical semiconductor devices of Comparative Examples 4 to 6.

【0030】実施例1〜4および比較例1〜6で得た光
半導体装置について、85℃/85%RH 72時間吸
湿後、260℃,および280℃の半田耐熱試験を行
い、試験前後の電圧値変動(ΔVF)を比較した。その
結果を表1、表2に示したが、いずれも本発明が優れて
おり、本発明の顕著な効果が認められた。
The optical semiconductor devices obtained in Examples 1 to 4 and Comparative Examples 1 to 6 were subjected to a solder heat resistance test at 260 ° C. and 280 ° C. after moisture absorption at 85 ° C./85% RH for 72 hours. The value variation (ΔVF) was compared. The results are shown in Tables 1 and 2. As a result, the present invention was excellent in both cases, and remarkable effects of the present invention were recognized.

【0031】[0031]

【表1】 *1:85℃/85%RHの条件で72H吸湿放置後、
モールド樹脂部5秒、リード部10秒、半田浸漬して、
常温通電時(順電流30mA)の電圧(VF)を測定し
た。試験に供した光半導体装置は、各々20個である。
[Table 1] * 1: After leaving for 72H under the condition of 85 ° C / 85% RH,
Mold resin part 5 seconds, lead part 10 seconds, solder immersion,
The voltage (VF) at the time of normal-temperature energization (forward current 30 mA) was measured. The number of optical semiconductor devices subjected to the test is 20 each.

【0032】*2:吸湿前後で最大のVF変動が生じた
サンプルについて、吸湿後のVFが吸湿前の何倍に上昇
したかを示す。
* 2: For a sample in which the maximum VF fluctuation occurred before and after moisture absorption, it indicates how many times the VF after moisture absorption increased before moisture absorption.

【0033】[0033]

【表2】 *1:85℃/85%RHの条件で72H吸湿放置後、
モールド樹脂部5秒、リード部10秒、半田浸漬して、
常温通電時(順電流30mA)の電圧(VF)を測定し
た。試験に供した光半導体装置は、各々20個である。
[Table 2] * 1: After leaving for 72H under the condition of 85 ° C / 85% RH,
Mold resin part 5 seconds, lead part 10 seconds, solder immersion,
The voltage (VF) at the time of normal temperature current application (forward current 30 mA) was measured. The number of optical semiconductor devices subjected to the test is 20 each.

【0034】*2:吸湿前後で最大のVF変動が生じた
サンプルについて、吸湿後のVFが吸湿前の何倍に上昇
したかを示す。
* 2: For the sample in which the maximum VF fluctuation occurred before and after moisture absorption, it indicates how many times the VF after moisture absorption increased compared to before moisture absorption.

【0035】[0035]

【発明の効果】以上の説明および表1、2から明らかな
ように、本発明の光半導体装置は、組立ての最終工程に
熱エージングを行うことにより、従来の材料構成部を変
更しなくても、鉛フリー化に伴う260〜280℃付近
の高温半田の使用に際し、素子の物理的、電気的な接合
信頼性を向上させ、光半導体装置のVF変動を抑えるこ
とができ、工業上大変有益なものである。
As is clear from the above description and Tables 1 and 2, the optical semiconductor device of the present invention can be heat-aged in the final step of assembling, so that the conventional material components can be changed. When using high-temperature solder near 260 to 280 ° C. due to the lead-free process, it is possible to improve the physical and electrical bonding reliability of the element and to suppress the VF fluctuation of the optical semiconductor device, which is very industrially useful. Things.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3B−5B族等化合物半導体の光半導体
素子を樹脂組成物でマウントし、透明封止樹脂でモール
ドした後、80℃〜200℃の温度で8〜48時間、エ
ージング工程を通すことを特徴とする光半導体装置。
1. An optical semiconductor device of a 3B-5B group compound semiconductor or the like is mounted with a resin composition, molded with a transparent sealing resin, and then passed through an aging step at a temperature of 80 ° C. to 200 ° C. for 8 to 48 hours. An optical semiconductor device, comprising:
JP2001082294A 2001-03-22 2001-03-22 Optical semiconductor device Pending JP2002280604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082294A JP2002280604A (en) 2001-03-22 2001-03-22 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082294A JP2002280604A (en) 2001-03-22 2001-03-22 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JP2002280604A true JP2002280604A (en) 2002-09-27

Family

ID=18938255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082294A Pending JP2002280604A (en) 2001-03-22 2001-03-22 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2002280604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060586A (en) * 2007-09-18 2008-03-13 Asahi Rubber:Kk Method for soldering semiconductor optical element part, and semiconductor optical element part
US7416906B2 (en) 2005-05-18 2008-08-26 Asahi Rubber Inc. Soldering method for semiconductor optical device, and semiconductor optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416906B2 (en) 2005-05-18 2008-08-26 Asahi Rubber Inc. Soldering method for semiconductor optical device, and semiconductor optical device
US7638812B2 (en) 2005-05-18 2009-12-29 Asahi Rubber Inc. Soldering method for semiconductor optical device, and semiconductor optical device
JP2008060586A (en) * 2007-09-18 2008-03-13 Asahi Rubber:Kk Method for soldering semiconductor optical element part, and semiconductor optical element part

Similar Documents

Publication Publication Date Title
US9887331B2 (en) LED leadframe or LED substrate, semiconductor device, and method for manufacturing LED leadframe or LED substrate
JP4492448B2 (en) Semiconductor power module
US10490712B2 (en) Light emitter device packages, components, and methods for improved chemical resistance and related methods
KR101311635B1 (en) Surface mount light emitting chip package
JP2004214436A (en) Semiconductor light emitting device and its manufacturing method
JP2007329516A (en) Semiconductor light-emitting apparatus
JP2006179538A (en) Semiconductor power module
JP2015130457A (en) Semiconductor device
JP2002280604A (en) Optical semiconductor device
JP4198928B2 (en) LED lamp manufacturing method and LED lamp
JP3783212B2 (en) Manufacturing method of chip type LED lamp
JP2008010564A (en) Optical semiconductor device, and its manufacturing method
JP3804747B2 (en) Manufacturing method of semiconductor device
CN112185923A (en) Lead frame assembly of semiconductor device
JP2019188456A (en) Solder alloy, solder paste, mold solder, and semiconductor device using solder alloy
JP2015144199A (en) semiconductor device
JP2007067452A (en) Semiconductor light-emitting device
JP7454530B2 (en) metal parts
TWI281265B (en) A SMD type LED package method
US11901326B2 (en) Semiconductor device with branch electrode terminal and method of manufacturing semiconductor device
JP7108907B2 (en) Bonding material, method for manufacturing semiconductor device using bonding material, and semiconductor device
JPH07297451A (en) Semiconductor device
JP2005259918A (en) Power converter
JP4408931B2 (en) Semiconductor light emitting device
JPS61177754A (en) Resin-sealed semiconductor device