JP2002256410A - Ceramics-metal composite member - Google Patents

Ceramics-metal composite member

Info

Publication number
JP2002256410A
JP2002256410A JP2001053281A JP2001053281A JP2002256410A JP 2002256410 A JP2002256410 A JP 2002256410A JP 2001053281 A JP2001053281 A JP 2001053281A JP 2001053281 A JP2001053281 A JP 2001053281A JP 2002256410 A JP2002256410 A JP 2002256410A
Authority
JP
Japan
Prior art keywords
layer
ceramic
ceramic substrate
thermal
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001053281A
Other languages
Japanese (ja)
Other versions
JP3591829B2 (en
Inventor
Yoshihiro Ushio
義弘 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053281A priority Critical patent/JP3591829B2/en
Publication of JP2002256410A publication Critical patent/JP2002256410A/en
Application granted granted Critical
Publication of JP3591829B2 publication Critical patent/JP3591829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that when a sprayed layer of several millimeters thick is formed on the main surface of a large size of a ceramic base-material, the sprayed layer easily exfoliates from a main surface of a ceramic substrate at the boundary, when the thermal stress is applied due to a temperature cycle from outside or the like during spraying, or when it is machined. SOLUTION: The sprayed layer 3 consisting of a copper alloy or stainless steel, having thickness of 2 mm or more and 1/5 of the ceramic base material 2 or thinner, is formed all around the circumference of at least one main surface of the ceramic substrate 2 which has two main surfaces facing each other. The whole circumference of the main surfaces of the ceramic substrate 2 is thinned stepwise, and the sprayed layer 3 is coated on the thinned part so that the top face may be higher than the main surface and the side face may contact the step 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、対向する主面を有
するセラミック基材の主面に金属の溶射層を被着したセ
ラミックス−金属複合部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic-metal composite member in which a metal sprayed layer is applied to a main surface of a ceramic substrate having opposing main surfaces.

【0002】[0002]

【従来の技術】一般に、セラミックスは、金属材料より
も剛性に優れ、軽量かつ低熱膨張性である等、構造材料
として優れた特性を有することが知られている。これら
の特性から、例えば半導体製造装置等に使用され、高精
度に制御することが要求される各種精密機械部材への適
用が試みられている。
2. Description of the Related Art In general, ceramics are known to have excellent properties as structural materials, such as higher rigidity, lighter weight and lower thermal expansion than metal materials. Because of these characteristics, application to various precision machine members that are used in, for example, semiconductor manufacturing equipment and require high-precision control has been attempted.

【0003】しかしながら、セラミックスは極めて硬い
ことから加工効率に劣り、それが原因で多種の寸法を有
する部材や複雑形状の部材に対しては製造コストが高く
なるという問題点があった。その上、セラミックスは脆
性材料であることから、加工時に欠けや割れを発生し易
く、例えセラミックスが精密機械部材に適用されても、
金属材料のように簡単な微修正加工が容易に施せないと
いう問題点があった。
However, since ceramics are extremely hard, they are inferior in processing efficiency, and as a result, there has been a problem that members having various dimensions or members having complicated shapes have a high manufacturing cost. In addition, since ceramics are brittle materials, they tend to crack or crack during processing, and even if ceramics are applied to precision machine parts,
There has been a problem that simple fine correction processing cannot be easily performed like a metal material.

【0004】一方、例えば直径が250〜500mmで
厚さが10〜20mm程度の金属製構造体では、ナノ
(nm)オーダーの寸法精度を有する安価な部材を得る
ことは極めて困難であった。
On the other hand, for example, in the case of a metal structure having a diameter of 250 to 500 mm and a thickness of about 10 to 20 mm, it has been extremely difficult to obtain an inexpensive member having dimensional accuracy on the order of nanometers (nm).

【0005】即ち、ナノオーダーの寸法精度を得るため
には極めて慎重な加工を行なわなければならず、製造コ
ストが大となる。また、金属製構造体に快削性の材料を
用いると加工性には優れるものの、快削性の材料は基本
的に柔らかく剛性が低いので、加工後に加工機械から取
り外すと特に上記のような大型の部材では変形を生じ易
く、その結果所望の寸法精度が得られないという欠点が
あった。
[0005] That is, in order to obtain dimensional accuracy on the order of nanometers, extremely careful processing must be performed, and the production cost increases. Although the use of a free-cutting material for a metal structure provides excellent workability, the free-cutting material is basically soft and low in rigidity. The above member is liable to be deformed, and as a result, a desired dimensional accuracy cannot be obtained.

【0006】そこで、セラミックスの軽量で剛性に優れ
た特性を有するとともに難加工性の短所を補う対策とし
て、セラミックス基材の主面にセラミックスの特性を損
なわないような厚さの金属層を設け、この金属層を微修
正加工することにより、セラミックスと金属の特性を併
せ持つ複合部材を製作することが試みられている。
[0006] Therefore, as a countermeasure against the disadvantages of the difficult-to-work and the lightweight characteristics of ceramics, which have excellent rigidity, a metal layer having a thickness that does not impair the characteristics of the ceramics is provided on the main surface of the ceramic base material. Attempts have been made to produce a composite member having both the characteristics of ceramics and metal by finely modifying the metal layer.

【0007】即ち、セラミックスが有する軽量かつ高剛
性等の特性と、金属が有する快削性を併せ持つ複合部材
を得んとするものである。
That is, it is an object of the present invention to obtain a composite member having both the characteristics of ceramics such as light weight and high rigidity and the free cutting characteristics of metal.

【0008】また、従来よりセラミックス基材の表面へ
の金属層形成技術としては、溶射法の他にめっき法や物
理的気相成長法(PVD:Physical Vapor Depositio
n)、化学的気相成長法(CVD:Chemical Vapor Depos
ition)等が知られている。
Conventionally, as a technique for forming a metal layer on the surface of a ceramic substrate, a plating method or a physical vapor deposition (PVD) method is used in addition to a thermal spraying method.
n), Chemical vapor deposition (CVD)
ition) are known.

【0009】それらのうち、溶射法は、金属,セラミッ
クス,プラスチック等の材料をプラズマ,ガス燃焼熱,
アーク熱,レーザ加熱,誘導加熱等の方法により高温で
溶融し、空気圧や急激な温度変化による大気の体積膨張
で生じる圧力を利用して、溶滴として母材に吹き付け溶
射材料を被覆する方法である。
[0009] Among them, the thermal spraying method uses a material such as metal, ceramics, and plastics as plasma, gas combustion heat, or the like.
It is a method of melting at high temperature by methods such as arc heat, laser heating, induction heating, etc., and spraying the base material as droplets by using the pressure generated by the volume expansion of the atmosphere due to air pressure or sudden temperature change, and coating the sprayed material. is there.

【0010】この溶射法による成膜メカニズムは、上述
した溶滴が母材に衝突し扁平化し、瞬間的に溶滴から母
材に熱が移動して溶滴が凝固する際に熱収縮を起し、母
材主面の凹凸に食い込みアンカー効果で接合するもので
ある。そして、そのような溶滴の粒子が次々と積み重な
り、上述した衝突、変形、熱移動を繰り返して層状に被
着されることになる。
In the film forming mechanism by this thermal spraying method, the above-described droplet collides with the base material to flatten, and heat is instantaneously transferred from the droplet to the base material to cause thermal contraction when the droplet solidifies. Then, it is made to bite into the unevenness of the main surface of the base material and is joined by an anchor effect. Then, the particles of such droplets are successively piled up, and are repeatedly applied as described above, and are deposited in layers.

【0011】次に、めっき法は大型複雑形状部材に適用
可能ではあるものの、合金層の組成が層厚方向で均一に
ならないという問題点がある。他方、PVD法やCVD
法においては、大型複雑形状のセラミック基材の表面に
数百μmの合金層を形成させることは、製造コストおよ
び設備的にも難しい等の問題点があった。
Next, although the plating method can be applied to a large-sized complicated-shaped member, there is a problem that the composition of the alloy layer is not uniform in the layer thickness direction. On the other hand, PVD method and CVD
In the method, it is difficult to form an alloy layer having a thickness of several hundred μm on the surface of a large-sized complicated-shaped ceramic substrate, in terms of manufacturing cost and equipment.

【0012】一方、当初適用された金属層の材料は、加
工し易さに注目して選定されたものではなく、セラミッ
クスとの密着性のみに主眼をおいたものであり、例え
ば、銅(Cu),ニッケル(Ni),鉄(Fe)等の純
金属から成る皮膜が形成されていた。そのため、金属層
を微修正加工する際、セラミックスより加工性に優れる
ものの、研削剤等の加工液を使用しなければならず、金
属層の錆や、部材の汚染等を嫌うようなクリーン度が要
求される精密部材としては不適当であった。
On the other hand, the material of the metal layer initially applied is not selected in view of ease of processing, but focuses only on the adhesion to ceramics. ), Nickel (Ni), iron (Fe) and other pure metals. Therefore, when finely modifying the metal layer, although it has better workability than ceramics, it is necessary to use a working fluid such as an abrasive, and the cleanliness that dislikes the rust of the metal layer and contamination of the members is low. It was unsuitable as a required precision member.

【0013】他方、セラミックスの表面に高精度加工が
必要な部分のみにメタライズ層を形成した後、ショット
ブラスト加工によりメタライズ層の表面を粗面化し、そ
の上に溶射法で銅合金の金属層を形成することにより、
快削性を有し、容易に微修正加工が可能であるセラミッ
ク部材が提案されている(従来例1;特開平8−919
67号公報参照)。このセラミック部材によれば、図6
に示すように、セラミックス基材102の主面に加工性
の優れた銅合金層103を所定の厚さに容易に被着形成
することができ、加工液を使用しなくとも被着した銅合
金層103を機械加工することが可能となる。
On the other hand, after forming a metallized layer only on a portion of the ceramic surface requiring high-precision processing, the surface of the metallized layer is roughened by shot blasting, and a copper alloy metal layer is formed thereon by a thermal spraying method. By forming
A ceramic member having free-cutting properties and capable of easily performing fine correction processing has been proposed (conventional example 1; Japanese Patent Application Laid-Open No. 8-919).
No. 67). According to this ceramic member, FIG.
As shown in the figure, the copper alloy layer 103 having excellent workability can be easily formed on the main surface of the ceramic base material 102 to a predetermined thickness, and the copper alloy layer can be formed without using a processing liquid. The layer 103 can be machined.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、上記従
来例1の銅合金層103はせいぜい厚さが500μm程
度であり、上述した直径が250〜500mmで厚さが
10〜20mm程度の金属製構造体に相当するような大
型のセラミック基材に被着させる金属溶射層の厚さは、
加工取り代を考慮するとセラミック基材の剛性を損なわ
ない範囲で厚さ数mmの単位で形成することが必要とな
る。
However, the copper alloy layer 103 of the prior art 1 has a thickness of at most about 500 .mu.m, and has a diameter of about 250 to 500 mm and a thickness of about 10 to 20 mm. The thickness of the metal spray layer deposited on a large ceramic substrate as
In consideration of the machining allowance, it is necessary to form the ceramic base in units of several mm in a range that does not impair the rigidity of the ceramic base.

【0015】そこで、上記従来例1のセラミック基材1
02に数mm以上の厚さの溶射による銅合金層103を
被着させると、セラミック基材102より金属である銅
合金層103の方が一般的に熱膨張が大となる。例え
ば、セラミック基材102の熱膨張係数は、アルミナ
(Al23)セラミックスでは約7×10-6/℃(室温
〜800℃)であり、セラミック基材102主面に被着
されたモリブデン(Mo)−マンガン(Mn)合金から
成るメタライズ層は約7.5×10-6/℃(室温〜80
0℃)であり、銅(Cu)合金やステンレス鋼から成る
溶射層は約15×10-6〜20×10-6/℃(室温〜8
00℃)と大きく相違している。
Therefore, the ceramic substrate 1 of the above-mentioned conventional example 1
When a copper alloy layer 103 having a thickness of several mm or more is applied to the metal layer 02, the copper alloy layer 103, which is a metal, generally has a larger thermal expansion than the ceramic substrate 102. For example, the thermal expansion coefficient of the ceramic substrate 102 is about 7 × 10 −6 / ° C. (room temperature to 800 ° C.) for alumina (Al 2 O 3 ) ceramics, and the molybdenum deposited on the main surface of the ceramic substrate 102 The metallized layer made of a (Mo) -manganese (Mn) alloy is about 7.5 × 10 −6 / ° C. (room temperature to 80 ° C.).
0 ° C.), and the thermal sprayed layer made of copper (Cu) alloy or stainless steel is about 15 × 10 −6 to 20 × 10 −6 / ° C. (room temperature to 8 ° C.).
00 ° C.).

【0016】そのため、例えば、セラミック基材102
の焼成変形を考慮して円盤状のセラミック基材102の
主面の周縁の全周に厚さ2mm以上のリング状の溶射層
を被着すると、溶射層の熱収縮応力がセラミック基材1
02の中心方向に作用し、溶射層がセラミック基材10
2の外周部から剥離するという問題点があった。これ
は、残留応力を有する溶射層に外部からの温度サイクル
による熱応力が加わると、セラミック基材102の主面
より容易に界面剥離を起すことに起因する。
Therefore, for example, the ceramic substrate 102
When a ring-shaped sprayed layer having a thickness of 2 mm or more is applied over the entire periphery of the main surface of the disc-shaped ceramic base material 102 in consideration of the firing deformation of the ceramic base material 1, the thermal shrinkage stress of the sprayed layer is reduced.
02 acting in the center direction of the ceramic substrate 10
2 has a problem of peeling from the outer peripheral portion. This is because when thermal stress due to a temperature cycle from the outside is applied to the thermal sprayed layer having the residual stress, the interface is easily separated from the main surface of the ceramic substrate 102.

【0017】また、得られたセラミック部材を機械加工
する際、溶射層の残留応力からセラミック部材の外周部
においてセラミック基材102と溶射層との界面が剥が
れて口を開くという問題点もあった。
Further, when machining the obtained ceramic member, there is also a problem that the interface between the ceramic base material 102 and the sprayed layer is peeled off at the outer peripheral portion of the ceramic member due to the residual stress of the sprayed layer, and the mouth is opened. .

【0018】本発明は、上記従来技術の問題点に鑑みて
なされたものであり、その目的は、大型のセラミック基
材の主面に数mmの厚さの厚い溶射層を被着したセラミ
ックス−金属複合部材において、溶射時、外部から温度
サイクル等による熱応力が加わた際、または機械加工し
た際に、セラミック基材の主面から容易に界面剥離を起
すことのないセラミックス−金属複合部材を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a ceramic material comprising a large ceramic substrate having a main surface coated with a thick sprayed layer having a thickness of several mm. In a metal composite member, a ceramic-metal composite member that does not easily cause interfacial delamination from the main surface of a ceramic base material during thermal spraying, when thermal stress is applied from the outside due to a temperature cycle, or when machining is performed. To provide.

【0019】[0019]

【課題を解決するための手段】本発明のセラミックス−
金属複合部材は、対向する主面を有するセラミック基材
の前記両主面の少なくとも一方の周縁の全周に、厚さが
2mm以上でありかつ前記セラミック基材の厚さの1/
5以下である、銅合金またはステンレス鋼から成る溶射
層が被着されたセラミックス−金属複合部材であって、
前記セラミック基材は、前記主面の前記周縁の全周が段
差状に薄肉化されているとともに、その薄肉部に上面が
前記主面よりも上に突出しかつ側面が段差に接するよう
に前記溶射層が被着されていることを特徴とする。
Means for Solving the Problems Ceramics of the present invention
The metal composite member has a thickness of not less than 2 mm and 1/1 / th of the thickness of the ceramic base material on the entire periphery of at least one of the two main surfaces of the ceramic base material having the opposing main surfaces.
A ceramic-metal composite member having a thermal sprayed layer made of a copper alloy or stainless steel having a thickness of 5 or less,
The ceramic base material is formed such that the entire periphery of the peripheral edge of the main surface is reduced in a stepped shape, and the thermal spraying is performed such that an upper surface protrudes above the main surface and a side surface is in contact with the step at the thinned portion. Characterized in that the layer is applied.

【0020】本発明は、上記の構成により、溶射層の熱
収縮応力が圧縮力に強いセラミック基材の段差に作用し
て溶射層が係止されるため、セラミック基材の主面から
溶射層が界面剥離し難くなるという作用効果を有する。
According to the present invention, since the thermal shrinkage stress of the thermal spray layer acts on the step of the ceramic substrate having a strong compressive force to lock the thermal spray layer by the above configuration, the thermal spray layer is fixed from the main surface of the ceramic substrate. Has the effect of making it difficult for the interface to peel.

【0021】本発明において、好ましくは、前記段差の
深さが0.3mm以上であることを特徴とする。
In the present invention, preferably, the depth of the step is 0.3 mm or more.

【0022】本発明は、上記の構成により、溶射層が段
差に係止されてセラミック基材の主面から溶射層が界面
剥離し難くなるという作用効果がさらに向上する。
According to the present invention, the above-mentioned configuration further enhances the effect that the thermal sprayed layer is locked at the step and the thermal sprayed layer is less likely to be separated from the main surface of the ceramic base material at the interface.

【0023】[0023]

【発明の実施の形態】本発明のセラミックス−金属複合
部材を図面に基き以下に詳細に説明する。図1は、本発
明のセラミックス−金属複合部材について実施の形態の
例を示す断面図であり、図2は図1のセラミックス−金
属複合部材の要部を拡大した断面図である。図1及び図
2において、1は、セラミック基材2と、銅合金または
ステンレス鋼から成る溶射層3とから主として構成され
たセラミックス−金属複合部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ceramic-metal composite member of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of an embodiment of the ceramic-metal composite member of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the ceramic-metal composite member of FIG. 1 and 2, reference numeral 1 denotes a ceramic-metal composite member mainly composed of a ceramic substrate 2 and a sprayed layer 3 made of a copper alloy or stainless steel.

【0024】本発明のセラミック基材2は、両主面の少
なくとも一方の周縁の全周に、厚さが2mm以上であり
かつセラミック基材2の厚さの1/5以下である、銅合
金またはステンレス鋼から成る溶射層3が被着されてお
り、またセラミック基材2は、その主面の周縁の全周が
段差状に薄肉化されているとともに、その薄肉部に上面
が主面よりも上に突出しかつ側面が段差4(段差4の内
側面5)に接するように溶射層3が被着されている。
The ceramic substrate 2 of the present invention has a copper alloy having a thickness of 2 mm or more and a thickness of 1/5 or less of the thickness of the ceramic substrate 2 over the entire periphery of at least one peripheral edge of both main surfaces. Alternatively, a thermal sprayed layer 3 made of stainless steel is adhered, and the ceramic substrate 2 is formed such that the entire periphery of the peripheral surface of the main surface is reduced in a step-like shape, and the upper surface of the thin portion is higher than the main surface. The thermal spray layer 3 is applied so as to protrude upward and to contact the side surface with the step 4 (the inner side surface 5 of the step 4).

【0025】また、好ましくは、段差4の深さが0.3
mm以上である。つまり、溶射層3の側面が段差4と
0.3mm以上接しているのであり、この0.3mm以
上の接触部が段差4との係合部7を構成している。
Preferably, the depth of the step 4 is 0.3
mm or more. That is, the side surface of the thermal spray layer 3 is in contact with the step 4 by 0.3 mm or more, and the contact portion of 0.3 mm or more constitutes the engaging portion 7 with the step 4.

【0026】本発明の溶射層3は、Mo−Mn合金から
成るメタライズ層と、Niから成るめっき層と、Ni−
Al合金から成る溶射層を順次被着した下地層8を介し
て被着されている。
The thermal spray layer 3 of the present invention comprises a metallized layer made of a Mo—Mn alloy, a plated layer made of Ni,
The thermal spraying layer is formed via an underlayer 8 on which a thermal spray layer made of an Al alloy is sequentially applied.

【0027】また、セラミック基材2の主面の周縁の全
周に設けたリング状の段差4は、その内側面5において
溶射層3と0.3mm以上接するような係合部7を有す
るのがよい。係合部7の深さが0.3mm未満では、溶
射層3の熱収縮応力は係合部7以外の部分で大きく作用
し、溶射層3に発生する内部応力とも相俟ってセラミッ
ク基材2の外周部から溶射層3の界面剥離を起こし易く
なる。溶射層3の上面が主面と同じ位置かその下にある
と、セラミック基材2主面の周縁の全周での溶射層3の
加工代が確保できなくなる。その結果、溶射層3の研削
加工による所定寸法の微修正加工を容易に行なうことが
できず、精密加工をすることが困難となる。
The ring-shaped step 4 provided on the entire periphery of the main surface of the ceramic base 2 has an engagement portion 7 on its inner surface 5 so as to be in contact with the sprayed layer 3 by 0.3 mm or more. Is good. When the depth of the engagement portion 7 is less than 0.3 mm, the thermal shrinkage stress of the thermal sprayed layer 3 largely acts on portions other than the engagement portion 7, and together with the internal stress generated in the thermal sprayed layer 3, the ceramic base material is used. 2, the thermal sprayed layer 3 is likely to be peeled off from the outer peripheral portion. If the upper surface of the thermal spray layer 3 is at or below the same position as the main surface, it is not possible to secure a processing allowance for the thermal spray layer 3 over the entire periphery of the main surface of the ceramic base material 2. As a result, it is not possible to easily perform a fine correction process of a predetermined size by grinding the thermal sprayed layer 3, and it becomes difficult to perform a precision process.

【0028】従って、段差4の深さは、下地層8の厚さ
を考慮すると約0.3mm以上、厳密には0.35mm
以上あれば良い。
Accordingly, the depth of the step 4 is about 0.3 mm or more, more precisely 0.35 mm in consideration of the thickness of the underlayer 8.
It would be fine if more.

【0029】本発明のセラミック基材2は、例えば、ア
ルミナ(Al23)セラミックス等から成り、アルミナ
(Al23),シリカ(SiO2),マグネシア(Mg
O),カルシア(CaO)等の原料粉末に適宜有機バイ
ンダ、溶剤等を添加混合した後、この混合物を例えば従
来周知のプレス成形法により所定形状に成形し、得られ
た成形体を約1600℃の高温で焼成することにより製
作される。
The ceramic substrate 2 of the present invention is made of, for example, alumina (Al 2 O 3 ) ceramics or the like, and comprises alumina (Al 2 O 3 ), silica (SiO 2 ), magnesia (Mg
O), calcia (CaO), etc., after appropriately adding an organic binder, a solvent, and the like to the raw material powder and mixing the mixture, molding the mixture into a predetermined shape by, for example, a conventionally known press molding method. It is manufactured by firing at a high temperature.

【0030】また、本発明の銅合金またはステンレス鋼
から成る溶射層3は、その厚さ6が2mm以上でありか
つセラミック基材2の厚さの1/5以下であり、その上
面がセラミック基材2の主面から上に突出しかつ側面が
段差4に接していることが必要である。
The thermal sprayed layer 3 made of the copper alloy or stainless steel of the present invention has a thickness 6 of 2 mm or more and 1/5 or less of the thickness of the ceramic substrate 2, and the upper surface thereof has a ceramic base. It is necessary that the material 2 protrudes upward from the main surface and the side surface is in contact with the step 4.

【0031】即ち、銅合金またはステンレス鋼から成る
溶射層3の厚さが2mm未満では、直径が250mmを
超えるような大型のセラミック基材2では、各種寸法や
複雑形状に対応して研削加工により所定寸法に近づけた
後、高精度に微修正加工する被加工物としては厚さ不足
となり、不適当である。溶射層3の厚さがセラミック基
材2の厚さの1/5を超えると、溶射層3の内部に発生
する熱応力によりセラミック基材2の外周部から溶射層
3が界面剥離を起こし易くなる。更に、溶射層3は、セ
ラミック基材2の主面より突出して研削加工代を形成し
ていることが必要である。
That is, when the thickness of the thermal sprayed layer 3 made of a copper alloy or stainless steel is less than 2 mm, in the case of a large ceramic substrate 2 having a diameter exceeding 250 mm, grinding is performed in accordance with various dimensions and complicated shapes. The thickness of the workpiece to be fine-corrected with high precision after approaching the predetermined dimension is insufficient, which is inappropriate. When the thickness of the thermal spray layer 3 exceeds 5 of the thickness of the ceramic substrate 2, the thermal stress generated inside the thermal spray layer 3 causes the thermal spray layer 3 to easily cause interface peeling from the outer peripheral portion of the ceramic substrate 2. Become. Further, it is necessary that the thermal spray layer 3 protrudes from the main surface of the ceramic substrate 2 to form a grinding allowance.

【0032】また、セラミック基材2の少なくとも段差
4の底面(薄肉部)にはメタライズ層が被着される。即
ち、メタライズ層は段差4の内側面5にも形成すること
ができる。このメタライズ層は、Mo粉末とMn粉末と
若干のSiO2を含有する金属ペーストを、セラミック
基材2の段差4の底面に塗布すると共にこれを高温で焼
成することにより、セラミック基材2の段差4の底面に
焼き付けられ被着される。この場合、Mo−Mn合金中
のMnおよびSiO2成分がセラミック基材2中の例え
ばアルミナ質焼結体と化合し、セラミック基材2の主面
とメタライズ層との界面にAl23とMnとガラスとの
複合酸化物を形成することにより強固に被着するものと
考えられる。
A metallized layer is applied to at least the bottom surface (thin portion) of the step 4 of the ceramic substrate 2. That is, the metallized layer can also be formed on the inner side surface 5 of the step 4. This metallized layer is formed by applying a metal paste containing Mo powder, Mn powder and a small amount of SiO 2 to the bottom surface of the step 4 of the ceramic base 2 and firing the same at a high temperature to form the step of the ceramic base 2. 4 is baked and adhered to the bottom surface. In this case, the Mn and SiO 2 components in the Mo—Mn alloy combine with, for example, an alumina-based sintered body in the ceramic substrate 2, and Al 2 O 3 is formed on the interface between the main surface of the ceramic substrate 2 and the metallized layer. It is considered that the composite oxide is firmly adhered by forming a composite oxide of Mn and glass.

【0033】このメタライズ層は、セラミック基材2に
強固に被着して銅合金またはステンレス鋼から成る溶射
層3をNiめっき層と、Ni−Al合金から成る溶射層
を介して、セラミック基材2に接合させるための下地金
属皮膜として機能する。そして、メタライズ層の厚さ
は、上記複合酸化物の形成によりセラミック基材2との
密着強度を向上させ、メタライズ層自体の強度を向上さ
せて、メタライズ層自体のクラック等によるセラミック
基材2との界面剥離を防止するという観点から、12〜
25μmの範囲が好ましい。
The metallized layer is firmly adhered to the ceramic substrate 2 and a thermal spray layer 3 made of a copper alloy or stainless steel is applied to the ceramic substrate 2 via a Ni plating layer and a thermal spray layer made of a Ni-Al alloy. 2 functions as a base metal film for bonding. The thickness of the metallized layer is improved by increasing the adhesion strength of the metallized layer to the ceramic substrate 2 by forming the above-mentioned composite oxide, and by improving the strength of the metallized layer itself. From the viewpoint of preventing interfacial peeling of
A range of 25 μm is preferred.

【0034】また、メタライズ層の上面には、Niめっ
き層が従来周知の電解めっき法や無電解めっき法により
被着される。このNiめっき層は、メタライズ層にNi
−Al合金から成る溶射層を強固に被着させるための下
地金属皮膜として機能する。また、このNiめっき層
は、メタライズ層とNi−Al合金から成る溶射層との
間に発生する両者の熱膨張差に起因する熱応力を良好に
吸収緩和するものである。
On the upper surface of the metallized layer, a Ni plating layer is applied by a conventionally known electrolytic plating method or electroless plating method. This Ni plating layer is formed by adding Ni to the metallized layer.
-It functions as a base metal film for firmly applying a thermal spray layer made of an Al alloy. The Ni plating layer satisfactorily absorbs and relaxes the thermal stress caused by the difference in thermal expansion between the metallized layer and the thermal sprayed layer made of the Ni-Al alloy.

【0035】更に、Niめっき層は、接合時のアンカー
効果を得るため、その上面が算術平均粗さRaで約0.
5〜3μm程度に粗面化されているのが良い。また、N
iめっき層は、メタライズ層とNi−Al合金から成る
溶射層の両方にそれぞれ強固に被着させるために、その
厚さを0.5〜15μm程度とすることが好ましい。
Further, the upper surface of the Ni plating layer has an arithmetic mean roughness Ra of about 0.5 to obtain an anchor effect at the time of joining.
The surface is preferably roughened to about 5 to 3 μm. Also, N
The i-plated layer preferably has a thickness of about 0.5 to 15 μm in order to firmly adhere to both the metallized layer and the sprayed layer made of a Ni—Al alloy.

【0036】次に、Niめっき層の上面に被着されたN
i−Al合金から成る溶射層は、銅合金またはステンレ
ス鋼から成る溶射層3を被着させるための下地金属層と
して機能する。また、Ni−Al合金から成る溶射層
は、Niめっき層との良好な接合性および溶射層自体に
発生する内部応力の抑制という点から、その厚さは5〜
1500μm程度が好ましい。さらに、Ni−Al合金
から成る溶射層は、Niめっき層との接着性から、Ni
の含有率が80〜95重量%であり、Alの含有率が5
〜20重量%である組成範囲が好ましい。
Next, the N deposited on the upper surface of the Ni plating layer
The thermal spray layer made of the i-Al alloy functions as a base metal layer for depositing the thermal spray layer 3 made of a copper alloy or stainless steel. Further, the thermal sprayed layer made of the Ni-Al alloy has a thickness of 5 to 5 from the viewpoints of good bonding property with the Ni plating layer and suppression of internal stress generated in the thermal sprayed layer itself.
About 1500 μm is preferable. Further, the thermal sprayed layer made of a Ni-Al alloy has a high adhesion to the Ni plating layer.
Is 80 to 95% by weight, and the content of Al is 5%.
A composition range of 2020% by weight is preferred.

【0037】そして、Mo−Mn合金から成るメタライ
ズ層と、Niめっき層と、Ni−Al合金から成る溶射
層を順次被着した下地層8を介することにより、銅合金
またはステンレス鋼から成る溶射層3を強固に被着でき
る。
Then, a metallized layer made of a Mo—Mn alloy, a Ni plating layer, and a thermal sprayed layer made of a Ni—Al alloy are sequentially applied via an underlayer 8 to form a thermal sprayed layer made of a copper alloy or stainless steel. 3 can be firmly applied.

【0038】因みに、銅合金またはステンレス鋼から成
る溶射層3の熱膨張係数が約15×10-6〜20×10
-6/℃(室温〜800℃)であるのに対して、セラミッ
ク基材2の熱膨張係数は約7×10-6/℃(室温〜80
0℃)と大きく異なる。しかしながら、セラミック基材
2と溶射層3との間には、セラミック基材2側から熱膨
張係数が約7.5×10-6/℃(室温〜800℃)のメ
タライズ層と、熱膨張係数が約13×10-6/℃(室温
〜800℃)のNiめっき層と、熱膨張係数が約15×
10-6〜18×10-6/℃(室温〜800℃)のNi−
Al合金から成る溶射層が順次被着されている。
Incidentally, the thermal expansion coefficient of the thermal sprayed layer 3 made of copper alloy or stainless steel is about 15 × 10 -6 to 20 × 10
−6 / ° C. (room temperature to 800 ° C.), whereas the thermal expansion coefficient of the ceramic substrate 2 is about 7 × 10 −6 / ° C. (room temperature to 80 ° C.).
0 ° C). However, a metallized layer having a thermal expansion coefficient of about 7.5 × 10 −6 / ° C. (room temperature to 800 ° C.) from the ceramic substrate 2 side, and a thermal expansion coefficient Is about 13 × 10 −6 / ° C. (room temperature to 800 ° C.) and a thermal expansion coefficient is about 15 ×
10-6 to 18 * 10-6 / C (room temperature to 800C) Ni-
A sprayed layer made of an Al alloy is sequentially applied.

【0039】従って、本発明の溶射層3が例えば−40
〜80℃の温度サイクルに繰返し曝されたり、溶射時の
温度変化に対しても、セラミック基材2と溶射層3との
間に発生する両者の熱膨張差による応力は、下地層8に
より良好に吸収緩和される。また、セラミック基材2の
周縁の全周に段差4を設け、段差の内側面5で溶射層3
の側面を所定深さで係合させていることから、段差4の
内側面5で溶射層3の熱収縮応力が効果的に係止され
る。その結果、溶射層3の研削加工時においても溶射層
3がセラミック基材2から界面剥離したりすることは無
い。
Accordingly, the thermal sprayed layer 3 of the present invention is, for example, -40.
The stress caused by the difference in thermal expansion between the ceramic substrate 2 and the sprayed layer 3 generated between the ceramic substrate 2 and the sprayed layer 3 is better due to the base layer 8 even when repeatedly exposed to a temperature cycle of up to 80 ° C. or when the temperature changes during spraying. It is absorbed and relaxed. Further, a step 4 is provided on the entire periphery of the ceramic substrate 2, and the sprayed layer 3 is formed on the inner side surface 5 of the step.
Are engaged at a predetermined depth, so that the heat shrinkage stress of the sprayed layer 3 is effectively locked on the inner side surface 5 of the step 4. As a result, even when the thermal spraying layer 3 is ground, the thermal spraying layer 3 does not peel off from the ceramic substrate 2 at the interface.

【0040】本発明のセラミック基材2は対向する主面
を有する形状のものであればよく、円盤状、直方体状、
平板状、その他平面視形状が複雑形状でもよい。
The ceramic substrate 2 of the present invention may have a shape having a main surface opposed thereto, and may have a disk shape, a rectangular parallelepiped shape,
The shape of a flat plate or other planar view may be a complicated shape.

【0041】[0041]

【実施例】本発明の実施例について以下に説明する。Embodiments of the present invention will be described below.

【0042】(実施例)先ず、純度99重量%のアルミ
ナ質焼結体から成る、直径250mm、厚さ20mmの
円盤状のセラミック基材2を用意した。そのセラミック
基材2の両主面の周縁の全周に、図2に示すような内側
面5が略垂直面とされた、幅4mmで各種深さ(下記表
1参照)のリング状の段差4を研削加工により形成し
た。
(Example) First, a disk-shaped ceramic substrate 2 having a diameter of 250 mm and a thickness of 20 mm made of an alumina sintered body having a purity of 99% by weight was prepared. A ring-shaped step having a width of 4 mm and various depths (see Table 1 below) having an inner surface 5 substantially vertical as shown in FIG. 2 around the entire periphery of both main surfaces of the ceramic substrate 2. 4 was formed by grinding.

【0043】次いで、セラミック基材2の段差4の底面
に、MoとMnとSiO2をそれぞれ89重量%、6重
量%、5重量%の割合で含有する金属ペーストを、10
〜15μmの厚さとなるように印刷塗布し、乾燥後、加
湿したフォーミングガス中で1400℃の温度で焼成し
た。こうしてセラミック基材2の段差4の底面(薄肉
部)にMo−Mn合金から成るメタライズ層を被着させ
た。
Next, a metal paste containing 89% by weight, 6% by weight, and 5% by weight of Mo, Mn, and SiO 2 , respectively, was placed on the bottom surface of the step 4 of the ceramic base 2 by 10%.
It was printed and coated to a thickness of 1515 μm, dried, and fired at 1400 ° C. in a humidified forming gas. Thus, a metallized layer made of a Mo—Mn alloy was applied to the bottom surface (thin portion) of the step 4 of the ceramic substrate 2.

【0044】その後、メタライズ層上にNiめっき層を
電解めっき法により約2μmの厚さで被着させ、次いで
サンドブラスト法でNiめっき層の表面をRaが10μ
m程度となるように粗面化した。
Thereafter, a Ni plating layer is deposited on the metallized layer to a thickness of about 2 μm by electrolytic plating, and then the surface of the Ni plating layer is coated with Ra to a thickness of 10 μm by sandblasting.
The surface was roughened to about m.

【0045】次に、Niめっき層の表面に、Ni(95
重量%)−Al(15重量%)合金の溶射層を、アーク
溶射法により被着した。その際、溶射ガン電流は30
A、電圧は150V、吐出圧力は49MPaの溶射条件
にて、約50μmの厚さに被着した。
Next, Ni (95) was formed on the surface of the Ni plating layer.
% By weight) -Al (15% by weight) alloy was applied by arc spraying. At that time, the spray gun current was 30
A, the coating was applied to a thickness of about 50 μm under the spraying conditions of a voltage of 150 V and a discharge pressure of 49 MPa.

【0046】引き続いて、メタライズ層、Niめっき
層、溶射層を下地層8として、その上にCu(59重量
%)−Zn(38重量%)−Pd(3重量%)合金の銅
合金、あるいはFe(74重量%)−Cr(18重量
%)−Ni(8重量%)合金のステンレス鋼から成る溶
射層を、フレームワイヤ溶射法により被着した。その
際、溶射ガン電流が30A、電圧が150V、吐出圧力
が49MPa(メガパスカル)の溶射条件にて、溶射層
3を2mmと4mmの厚さに被着形成した。
Subsequently, a metallized layer, a Ni plating layer, and a sprayed layer are used as an underlayer 8 on which a Cu (59% by weight) -Zn (38% by weight) -Pd (3% by weight) copper alloy or A sprayed layer made of a stainless steel of an Fe (74 wt%)-Cr (18 wt%)-Ni (8 wt%) alloy was applied by a flame wire spraying method. At that time, the sprayed layer 3 was formed to have a thickness of 2 mm and 4 mm under the spraying conditions of a spray gun current of 30 A, a voltage of 150 V, and a discharge pressure of 49 MPa (megapascal).

【0047】一方、比較例として、段差4を設けずに、
上記実施例と同一寸法のセラミック基材2に、幅4mm
で厚さ2μmの上記と同一組成の銅合金から成る溶射層
3を上記と同様の下地層8を介して被着した試料を作製
した。
On the other hand, as a comparative example, without providing the step 4,
A ceramic substrate 2 having the same dimensions as in the above-described embodiment is provided with a width of 4 mm
A sample in which a 2 μm-thick thermal spray layer 3 made of a copper alloy having the same composition as described above was applied via an underlayer 8 similar to the above was produced.

【0048】かくして、得られた評価用試料を用いて、
先ず溶射層3を形成した時点での溶射層3とセラミック
基材2との密着状態を光学機器を用いて検査したが、本
発明品では全く界面剥離が認められなかった。それに対
して、比較例品では溶射層3を形成した段階でセラミッ
ク基材2と銅合金から成る溶射層3との界面で剥離が認
められた。
Using the evaluation sample thus obtained,
First, the adhesion between the thermal sprayed layer 3 and the ceramic substrate 2 at the time when the thermal sprayed layer 3 was formed was inspected using an optical instrument, but no interfacial peeling was observed in the product of the present invention. On the other hand, in the comparative example, peeling was observed at the interface between the ceramic base material 2 and the sprayed layer 3 made of a copper alloy at the stage when the sprayed layer 3 was formed.

【0049】次に、溶射工程での溶射層3のはみ出し部
である盛り上りを機械加工してセラミック基材2の外周
寸法と同一寸法にした後、溶射層3のセラミック基材2
からの剥離を光学機器を用いて検査した。その結果を表
1に示す。
Next, the protruding portion, which is the protruding portion of the thermal spray layer 3 in the thermal spraying step, is machined to have the same dimension as the outer peripheral dimension of the ceramic substrate 2.
Was inspected using an optical instrument. Table 1 shows the results.

【0050】[0050]

【表1】 [Table 1]

【0051】表1より明らかなように、比較例の試料番
号12では、厚さ2mmの銅合金から成る溶射層3を幅
4mmでリング状にセラミック基材2の主面の周縁の全
周に形成しただけで、セラミック基材2との界面に剥離
が認められた。
As is clear from Table 1, in the sample No. 12 of the comparative example, the sprayed layer 3 made of a copper alloy having a thickness of 2 mm was formed in a ring shape with a width of 4 mm around the entire periphery of the main surface of the ceramic base 2. The peeling was recognized at the interface with the ceramic substrate 2 only by the formation.

【0052】一方、セラミック基材2に段差4を設けて
も、係合部7が本発明の範囲外である試料番号1では、
溶射層3の機械加工後のセラミック基材2との界面に剥
離が認められた。また、試料番号11は溶射層3がセラ
ミック基材2の主面より突出せず、溶射層3を研削加工
して精密加工する研削代が得られなかった。
On the other hand, even if the step 4 is provided on the ceramic base material 2, in the sample No. 1 in which the engaging portion 7 is out of the range of the present invention,
Peeling was observed at the interface between the thermal sprayed layer 3 and the ceramic substrate 2 after the mechanical processing. Also, in sample No. 11, the thermal sprayed layer 3 did not protrude from the main surface of the ceramic substrate 2, and a grinding allowance for precision processing by grinding the thermal sprayed layer 3 was not obtained.

【0053】それらに対して、本発明品ではいずれも剥
離が認められず、溶射工程の熱履歴にも、その後の機械
加工にも十分耐えうる接合強度を有していることが分か
った。
In contrast, none of the products of the present invention showed any peeling, indicating that they had a bonding strength sufficient to withstand the thermal history of the thermal spraying process and the subsequent machining.

【0054】なお、本発明は上記実施例に限定されるも
のではなく、本発明の要旨を逸脱しない範囲において種
々の変更を行なうことは可能である。例えば、図3に示
すように、段差4の内側面5の形状を、深さ方向に向か
って溶射層3の幅が小さくなるような階段状にして設け
る構成としてもよい。この場合、深さ方向に向かって溶
射層3の幅が大きくなるようにすることもできる。即
ち、深さ方向に向かって溶射層3が内側面5の内部に食
い込んでいくような構成とし得る。また、図4に示すよ
うに、段差4の内側面5の形状を曲面的に中窪み状とし
た構成とし得る。さらに、図5に示すように、段差4の
内側面5の形状を深さ方向に向かって溶射層3の幅が漸
次広がるような形状、即ち内側面5の形状が逆テーパー
状となるような構成とし得る。
It should be noted that the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention. For example, as shown in FIG. 3, the inner surface 5 of the step 4 may be provided in a step-like shape such that the width of the sprayed layer 3 decreases in the depth direction. In this case, the width of the thermal spray layer 3 may be increased in the depth direction. That is, a configuration in which the thermal sprayed layer 3 penetrates into the inner side surface 5 in the depth direction can be adopted. Further, as shown in FIG. 4, the shape of the inner surface 5 of the step 4 may be a curvedly concave shape. Further, as shown in FIG. 5, the shape of the inner surface 5 of the step 4 is such that the width of the sprayed layer 3 gradually increases in the depth direction, that is, the shape of the inner surface 5 has an inversely tapered shape. It can be configured.

【0055】これら図3〜図5の構成においては、溶射
層3の内側面5に対する接触面積が向上するとともに、
係止の度合いが強化されるため、上記実施例と同等以上
の作用効果が得られる。
3 to 5, the contact area of the sprayed layer 3 with the inner side surface 5 is improved, and
Since the degree of locking is strengthened, the same or more advantageous effects as in the above embodiment can be obtained.

【0056】[0056]

【発明の効果】本発明は、対向する主面を有するセラミ
ック基材の両主面の少なくとも一方の周縁の全周に、厚
さが2mm以上でありかつセラミック基材の厚さの1/
5以下である、銅合金またはステンレス鋼から成る溶射
層が被着されたセラミックス−金属複合部材であって、
セラミック基材は、主面の周縁の全周が段差状に薄肉化
されているとともに、その薄肉部に上面が主面よりも上
に突出しかつ側面が段差に接するように溶射層が被着さ
れていることから、溶射層の熱収縮応力が圧縮力に強い
セラミック基材の段差に作用して溶射層が係止される。
そのため、大型のセラミック基材の主面に2mm以上の
厚さの溶射層を被着しても、溶射時、外部から温度サイ
クル等による熱応力が加わった際、または機械加工した
際に、セラミック基材の主面から容易に界面剥離を起す
ことのない、軽量で高剛性を有し快削性を有するセラミ
ックス−金属複合部材が得られる。その結果、直径が2
50mm以上の大型の構造体にナノオーダーの寸法精度
を有する安価な部材を提供することができる。
According to the present invention, the thickness of the ceramic substrate having a thickness of not less than 2 mm and at least one-third of the thickness of the ceramic substrate is formed on the entire periphery of at least one of the two main surfaces of the ceramic substrate having the opposing main surfaces.
A ceramic-metal composite member having a thermal sprayed layer made of a copper alloy or stainless steel having a thickness of 5 or less,
The ceramic substrate has a main surface whose entire periphery is thinned in a step shape, and a sprayed layer is applied to the thin portion so that the upper surface protrudes above the main surface and the side surfaces contact the step. Therefore, the thermal contraction stress of the thermal spray layer acts on the step of the ceramic base material having a strong compressive force, so that the thermal spray layer is locked.
Therefore, even if a thermal spray layer with a thickness of 2 mm or more is applied to the main surface of a large ceramic base material, when thermal stress is applied from the outside due to a temperature cycle or the like during thermal spraying, or when machining, A ceramic-metal composite member that is lightweight, has high rigidity, and has easy-cutting properties without easily causing interface delamination from the main surface of the base material can be obtained. As a result, the diameter is 2
It is possible to provide an inexpensive member having dimensional accuracy on the order of nanometers for a large structure having a size of 50 mm or more.

【0057】本発明は、好ましくは段差の深さが0.3
mm以上であることにより、溶射層が段差に係止されて
セラミック基材主面から溶射層が界面剥離し難くなると
いう作用効果がさらに向上する。
In the present invention, preferably, the depth of the step is 0.3
When the thickness is not less than mm, the function and effect that the thermal sprayed layer is locked to the step and the thermal sprayed layer is less likely to be separated at the interface from the main surface of the ceramic base material is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックス−金属複合部材について
実施の形態の例を示す断面図である。
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic-metal composite member of the present invention.

【図2】本発明のセラミックス−金属複合部材の要部拡
大断面図である。
FIG. 2 is an enlarged sectional view of a main part of the ceramic-metal composite member of the present invention.

【図3】本発明のセラミックス−金属複合部材について
実施の形態の他の例を示す要部拡大断面図である。
FIG. 3 is an enlarged sectional view of a main part showing another example of the embodiment of the ceramic-metal composite member of the present invention.

【図4】本発明のセラミックス−金属複合部材について
実施の形態の他の例を示す要部拡大断面図である。
FIG. 4 is a main part enlarged sectional view showing another example of the embodiment of the ceramic-metal composite member of the present invention.

【図5】本発明のセラミックス−金属複合部材について
実施の形態の他の例を示す要部拡大断面図である。
FIG. 5 is an enlarged sectional view of a main part showing another example of the embodiment of the ceramic-metal composite member of the present invention.

【図6】従来のセラミックス−金属複合部材を示す断面
図である。
FIG. 6 is a sectional view showing a conventional ceramic-metal composite member.

【符号の説明】[Explanation of symbols]

1:セラミックス−金属複合部材 2:セラミック基材 3:溶射層 4:段差 5:内側面 6:溶射層の厚さ 7:係合部 1: Ceramic-metal composite member 2: Ceramic base 3: Sprayed layer 4: Step 5: Inner surface 6: Thickness of sprayed layer 7: Engagement portion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向する主面を有するセラミック基材の
前記両主面の少なくとも一方の周縁の全周に、厚さが2
mm以上でありかつ前記セラミック基材の厚さの1/5
以下である、銅合金またはステンレス鋼から成る溶射層
が被着されたセラミックス−金属複合部材であって、前
記セラミック基材は、前記主面の前記周縁の全周が段差
状に薄肉化されているとともに、その薄肉部に上面が前
記主面よりも上に突出しかつ側面が段差に接するように
前記溶射層が被着されていることを特徴とするセラミッ
クス−金属複合部材。
1. A ceramic substrate having an opposing main surface having a thickness of 2
mm or more and 1/5 of the thickness of the ceramic substrate
The following is a ceramic-metal composite member to which a sprayed layer made of a copper alloy or stainless steel is applied, wherein the entire circumference of the periphery of the main surface of the ceramic base is reduced to a step-like shape. A ceramic-metal composite member, wherein the thermal spray layer is applied to the thin portion so that an upper surface protrudes above the main surface and a side surface contacts a step.
【請求項2】 前記段差の深さが0.3mm以上である
ことを特徴とする請求項1記載のセラミックス−金属複
合部材。
2. The ceramic-metal composite member according to claim 1, wherein the depth of the step is 0.3 mm or more.
JP2001053281A 2001-02-28 2001-02-28 Ceramic-metal composite members Expired - Fee Related JP3591829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053281A JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053281A JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Publications (2)

Publication Number Publication Date
JP2002256410A true JP2002256410A (en) 2002-09-11
JP3591829B2 JP3591829B2 (en) 2004-11-24

Family

ID=18913765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053281A Expired - Fee Related JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Country Status (1)

Country Link
JP (1) JP3591829B2 (en)

Also Published As

Publication number Publication date
JP3591829B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
US6875477B2 (en) Method for coating internal surface of plasma processing chamber
WO2013042635A1 (en) Laminate and laminate manufacturing method
JPH0510309B2 (en)
TW201923148A (en) Method for producing plasma-resistant coating layer and plasma-resistant member formed by the same
US5695883A (en) Carbon member having a metal spray coating
JP5154141B2 (en) Rare earth oxide-containing thermal spray substrate and laminate
JP2602000B2 (en) Mask for forming a coating pattern
JP3591829B2 (en) Ceramic-metal composite members
JP3995994B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
JP3610311B2 (en) Ceramics-metal composite member
JPS60181269A (en) Target for sputtering
JPS61159566A (en) Coating method of metallic or ceramic base material
KR101254618B1 (en) Ceramic coating method for corrosion resistant member
JPH065376Y2 (en) Mold for molding glass products
JP2004059397A (en) Plasma resistant member
JP6562914B2 (en) Baking jig and method for manufacturing the baking jig
JP4394666B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
TWI814429B (en) wafer support
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
KR102356172B1 (en) Method for Producing Plasma-Resistant Coating Layer
US20050074561A1 (en) Method for forming film
KR101113934B1 (en) Method of forming hole in difficult-to-work material and difficult-to-work material having hole formed by the method
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
JPH0472793B2 (en)
JP2002167679A (en) Thermal spray coating on surface of ceramic base material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees