WO2013042635A1 - Laminate and laminate manufacturing method - Google Patents

Laminate and laminate manufacturing method Download PDF

Info

Publication number
WO2013042635A1
WO2013042635A1 PCT/JP2012/073712 JP2012073712W WO2013042635A1 WO 2013042635 A1 WO2013042635 A1 WO 2013042635A1 JP 2012073712 W JP2012073712 W JP 2012073712W WO 2013042635 A1 WO2013042635 A1 WO 2013042635A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
intermediate layer
titanium
metal
chromium
Prior art date
Application number
PCT/JP2012/073712
Other languages
French (fr)
Japanese (ja)
Inventor
智資 平野
教良 金田
年彦 花待
雄一郎 山内
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2013042635A1 publication Critical patent/WO2013042635A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Definitions

  • the present invention relates to a laminate in which a hard film is formed on the surface of a substrate made of a metal or an alloy, and a method for manufacturing the laminate.
  • a laminate in which a hard film is formed on the surface of a base material made of a metal or an alloy has been used in various applications such as machine parts, tools, molds, medical members, and sports equipment.
  • the hard coating for example, ceramics (oxide ceramics, non-oxide ceramics, BCN ultra-hard materials), mixed materials of metals and ceramics, metals or alloys are used, and depending on the materials, corrosion resistance and heat resistance are used. Functions such as wear resistance can be imparted to the substrate.
  • Such a hard coating is formed on the substrate surface by chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal spraying, or the like.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • thermal spraying has been actively used because of the advantages that the film formation rate is fast, the film can be applied to a wide variety of substrates and coating materials, and there are few restrictions on the dimensions of the substrate.
  • Patent Document 1 discloses a metal substrate, a ceramic coating layer covering the surface of the metal substrate, and a metal substrate side.
  • a heat-resistant material comprising a fine particle aggregate layer and a metal bonding layer having a coarse particle aggregate layer disposed on the ceramic coating layer side is disclosed.
  • the film formed by thermal spraying adheres to the base material by a so-called anchor effect in which the material of the melted film enters the irregularities on the surface of the base material. Therefore, conventionally, when a laminate is produced by a thermal spraying method, as shown in FIG. 9, in order to increase the adhesion strength between a base material 91 such as a metal and a hard coating 93 formed on the surface thereof, The surface 92 of 91 is preliminarily roughened by blasting. However, the laminate produced by such a method has a problem that the adhesion strength between the base material 91 and the hard film 93 is not sufficient when mechanical stress is applied.
  • Patent Document 1 discloses that the metal base material is caused by cracks in the ceramic coating layer or cracks when the laminate is used in an environment where the temperature or the temperature fluctuates severely. In order to prevent peeling of the ceramic coating layer from the metal, it is disclosed that a metal bonding layer is provided between them. However, Patent Document 1 does not disclose any adhesion strength between the metal substrate and the ceramic coating layer when mechanical stress is applied to the laminate.
  • the present invention has been made in view of the above, and is a laminate having high adhesion strength between a base material made of a metal or an alloy and a thermal spray coating layer formed on the surface of the base material, and the laminate.
  • An object is to provide a manufacturing method.
  • a laminate according to the present invention is a substrate made of a metal or an alloy and a powder material of the metal or alloy heated to a temperature lower than the melting point of the powder material. It is characterized by comprising an intermediate layer which is accelerated together with gas and sprayed and deposited on the surface of the base material in a solid state, and a thermal spray coating layer formed on the intermediate layer by thermal spraying.
  • the base material is copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, It is characterized by comprising any one of niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
  • the intermediate layer is made of copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, It is characterized by comprising any one of niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
  • the intermediate layer is made of the same metal or alloy as the base material.
  • the intermediate layer has a thickness of 5 to 100 ⁇ m.
  • the thermal spray coating layer is made of a ceramic material, a mixed material of metal and ceramic, a metal, or an alloy material.
  • the sprayed coating layer is made of alumina, magnesia, zirconia, yttria, yttria stabilized zirconia, steatite, forsterite, mullite, titania, silica, sialon, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, Titanium carbide, titanium carbonitride, titanium aluminum nitride, titanium nitride chromium, chromium nitride, zirconium nitride, chromium carbide, tungsten carbide, boron carbide, boron nitride, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, Magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy,
  • a metal or alloy powder material is accelerated on a surface of a base material made of a metal or alloy together with a gas heated to a temperature lower than the melting point of the powder material, It includes an intermediate layer forming step of forming an intermediate layer by spraying and depositing as it is, and a thermal spray coating layer forming step of forming a thermal spray coating layer on the intermediate layer by thermal spraying.
  • a metal or alloy powder material is accelerated with a gas heated to a temperature lower than the melting point of the powder material to a base material made of a metal or alloy, and remains in a solid state on the surface of the base material. Since the intermediate layer is deposited by a so-called cold spraying method and a sprayed coating layer is formed on the intermediate layer, the adhesion strength between the substrate and the sprayed coating layer can be improved.
  • FIG. 1 is a schematic diagram showing a configuration of a laminate according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for manufacturing a laminate according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an outline of a cold spray apparatus used for manufacturing the laminate according to the embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating the structure of the test piece according to the example.
  • FIG. 5 is an electron micrograph showing the surface of the intermediate layer (CS film).
  • FIG. 6 is a schematic diagram illustrating the structure of a test piece according to a comparative example.
  • FIG. 7 is an electron micrograph showing the blasted substrate surface.
  • FIG. 8 is a graph showing the results of a tensile test.
  • FIG. 9 is a schematic diagram showing a conventional structure of a laminate in which a thermal spray coating is formed on the substrate surface.
  • FIG. 1 is a schematic diagram showing a configuration of a laminate according to an embodiment of the present invention.
  • a laminate 10 shown in FIG. 1 includes a base material 11 made of a metal or an alloy, an intermediate layer (CS film) 12 formed on the surface of the base material 11 by a cold spray (CS) method, and the intermediate layer 12 And a thermal spray coating layer 13 formed by a thermal spraying method.
  • CS film intermediate layer
  • CS cold spray
  • the base material 11 is, for example, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium It is formed of a metal or an alloy such as an alloy, molybdenum, a molybdenum alloy, silver, a silver alloy, tin, a tin alloy, tantalum, or a tantalum alloy.
  • the base material 11 shown in FIG. 1 has comprised plate shape, the shape of the base material 11 will not be limited to plate shape, if the film formation by spraying is possible on the surface.
  • the intermediate layer 12 is formed as a base of the sprayed coating layer 13 by a cold spray method described later.
  • the intermediate layer 12 is, for example, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium. , Chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
  • the material of the intermediate layer 12 may be the same type of metal or alloy as the base material 11, or may be a different type of metal or alloy from the base material 11.
  • the cold spray method is a film forming method in which a powder material is accelerated together with a gas heated to a temperature lower than the melting point of the powder material and sprayed on the surface of the base material 11 in a solid state to deposit the powder material. .
  • the powder material collides with the base material 11 at a high speed, so that plastic deformation occurs between the material powder and the base material 11. Is obtained.
  • the thermal spray coating layer 13 is a hard coating made of a ceramic material, a mixed material of metal and ceramics, or a metal or an alloy material, and is formed on the intermediate layer 12 by thermal spraying.
  • the material of the sprayed coating layer 13 is selected according to the function imparted to the base material 11 such as corrosion resistance, heat resistance, and wear resistance.
  • a metal or alloy material is used for the sprayed coating layer 13, a material different from the base material 11 and the intermediate layer 12 is selected.
  • Ceramic materials include oxide ceramics such as alumina, magnesia, zirconia, yttria, yttria stabilized zirconia, steatite, forsterite, mullite, titania, silica, sialon, aluminum nitride, silicon nitride, silicon carbide.
  • Non-oxide ceramics such as titanium nitride, titanium carbide, titanium carbonitride, titanium aluminum nitride, titanium chromium nitride, chromium nitride, zirconium nitride, chromium carbide, tungsten carbide, and BCN-based ultra-hard materials such as boron carbide and boron nitride Is mentioned.
  • metal or alloy materials include copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium Niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, tungsten alloy.
  • a mixed material of metal and ceramics a mixed material mainly composed of ceramics such as oxides, nitrides, carbides, borides, etc. (for example, the above-mentioned ceramic materials), and a metal or alloy as a binder phase (bonding material).
  • cermet a mixed material which disperse
  • a material such as a mixed composition of yttria-stabilized zirconia (YSZ) and a nickel (Ni) -chromium (Cr) alloy may be used.
  • FIG. 2 is a flowchart showing a method for manufacturing the laminate 10.
  • step S1 a base material 11 having a desired shape is produced from a desired material.
  • step S2 the intermediate layer 12 is formed on the surface of the substrate 11 by a cold spray method.
  • FIG. 3 is a schematic diagram showing an outline of the cold spray apparatus 40 used for forming the intermediate layer 12.
  • the cold spray device 40 includes a gas heater 41 that heats the compressed gas, a powder supply device 42 that contains the powder of the material to be injected onto the base material 11 and supplies the powder to the spray gun 43, and heating A gas nozzle 44 for injecting the compressed gas and the material powder supplied thereto onto the substrate 11, and valves 45 and 46 for adjusting the amount of compressed gas supplied to the gas heater 41 and the powder supply device 42, respectively.
  • the material powder for example, one having an average particle diameter of about 5 to 100 ⁇ m is prepared.
  • the compressed gas helium, nitrogen, air or the like is used.
  • the compressed gas supplied to the gas heater 41 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the material powder of the intermediate layer 12, and then supplied to the spray gun 43.
  • the heating temperature of the compressed gas is preferably 300 to 900 ° C.
  • the compressed gas supplied to the powder supply device 42 supplies the material powder in the powder supply device 42 to the spray gun 43 so as to have a predetermined discharge amount.
  • the heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 44 having a divergent shape.
  • the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because the adhesion strength between the base material 11 and the intermediate layer 12 can be improved by adjusting the pressure of the compressed gas to this level.
  • the powder material supplied to the spray gun 43 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the base material 11 at a high speed while being in a solid phase to deposit, thereby forming a film.
  • the apparatus is not limited to the cold spray apparatus 40 shown in FIG. 3 as long as the apparatus can collide the material powder with the base material 11 in a solid state to form a film.
  • the powder material collides with and binds to the lower layer (the base layer 11 and the intermediate layer 12 previously deposited on the base material 11) in the solid state, so that the surface of the intermediate layer 12 Has a convex shape toward the outside (the interface on the thermal spray coating layer 13 side to be formed later).
  • the thickness of the intermediate layer 12 is preferably about 5 ⁇ m or more. Thereby, the entire surface of the substrate 11 can be covered with the intermediate layer 12 and a convex shape sufficient for the sprayed coating layer 13 to adhere can be formed.
  • the upper limit of the thickness of the intermediate layer 12 if the intermediate layer 12 is in a state of covering the entire surface of the substrate 11, there is no significant difference in effect even if the intermediate layer 12 is thickened. In consideration of the time required for the formation process of the intermediate layer 12, the upper limit is preferably about 100 ⁇ m.
  • step S3 a thermal spray coating layer 13 having a desired thickness is formed on the intermediate layer 12 by a thermal spraying method. Thereby, the laminated body 10 shown in FIG. 1 is completed.
  • the laminate 10 produced in this way has the following characteristics. First, at the interface between the intermediate layer 12 and the base material 11 and inside the intermediate layer 12, a strong bond is obtained by an anchor effect and a metal bond. Further, the surface of the intermediate layer 12 has a complex convex shape toward the sprayed coating layer 13 side. Therefore, the anchor effect of the thermal spray coating 13 is improved by the material of the thermal spray coating layer 13 melted by the thermal spray flame entering the narrow concave portion between the convexity of the surface of the intermediate layer 12. Thereby, the intermediate layer 12 and the sprayed coating layer 13 are also firmly bonded to each other. As a result, high adhesion strength can be obtained between the base material 11 and the sprayed coating layer 13.
  • the intermediate layer 12 is formed by the cold spray method can be determined by observing the interface between the base material 11 and the intermediate layer 12 (the presence or absence of an anchor layer) and the surface of the intermediate layer 12. it can.
  • the thermal spraying method since a laminated structure having a so-called lamellar structure is formed by laminating flat fine particles, it is possible to distinguish the cold spray method from the thermal spraying method.
  • the base material 11 is formed by laminating the sprayed coating layer 13 by thermal spraying on the surface of the base material 11 made of metal or alloy via the intermediate layer 12 by the cold spray method. It is possible to improve the adhesion strength between the thermal spray coating layer 13 and the thermal spray coating layer 13.
  • a columnar aluminum test piece 20 having a diameter of about 25 mm and a thickness of about 20 mm is prepared, and a thickness of about 5 mm is formed on one bottom surface of the aluminum test piece 20.
  • the copper base material 21 was bonded with an adhesive.
  • oxygen-free copper C1020 was used.
  • a copper intermediate layer (CS film) 22 having a thickness of about 30 ⁇ m was formed on the copper base material 21 by a cold spray method as a base treatment. At this time, copper powder having an average particle diameter of about 30 ⁇ m was used as the raw material powder, and nitrogen having a gas pressure of about 800 ° C.
  • FIG. 5 is an electron micrograph of the surface of the copper intermediate layer 22 taken.
  • the average surface roughness Ra of the surface of the copper intermediate layer 22 was about 5 to 8 ⁇ m.
  • an alumina (Al 2 O 3 ) layer 23 having a thickness of about 400 ⁇ m was formed on the copper intermediate layer 22 as a sprayed coating layer.
  • An aluminum test piece 20 was bonded to the upper surface of the alumina layer 23 with an adhesive.
  • a copper base 31 having a thickness of about 5 mm was adhered to one bottom surface of the aluminum test piece 20 with an adhesive.
  • oxygen-free copper C1020 was used as in the example.
  • the upper surface of the copper substrate 31 was blasted as a base treatment.
  • abrasive grains of white alumina having an average particle diameter of 350 ⁇ m were used.
  • FIG. 7 is an electron micrograph of the surface of the copper base 31 taken. At this time, the average surface roughness Ra of the surface of the copper base material 31 was about 4 to 6 ⁇ m.
  • an alumina layer 32 having a thickness of about 400 ⁇ m was formed on the copper base 31 as a sprayed coating layer.
  • the aluminum test piece 20 was bonded to the upper surface of the alumina layer 32 with an adhesive.
  • Al—Mg-based aluminum alloy A5052 was used instead of the copper base material 31 in the comparative example.
  • FIG. 8 is a graph showing the results of the tensile test, and shows the average value of peel strength measured by experiments on Examples, Comparative Examples, and Reference Examples.
  • the peeling strength when peeling occurred in the examples was about 18 MPa on average. All this peeling occurred between the copper intermediate layer 22 and the alumina layer 23. This is presumably because the copper intermediate layer 22 and the copper base material 21 are bonded by a metal bond, so that the adhesion strength is particularly high (for example, 70 MPa or more).
  • the peel strength in the comparative example was an average of about 5 MPa, which was less than 1/3 of the example. Further, the peel strength in the reference example was about 8.5 MPa on average, and remained at about 9 MPa at the maximum.

Abstract

Provided are a laminate and a method for manufacturing said laminate, the laminate having a strong adhesion between the substrate, which is obtained from a metal or an alloy, and the thermally sprayed film layer formed on the surface of the substrate. The laminate (10) is provided with: a substrate (11) that is formed from a metal or an alloy; an intermediate layer (12) deposited by accelerating a powdered material of a metal or an alloy along with a gas heated to a temperature below the melting point of the powdered material and spraying in the solid state onto the substrate surface; and a thermally sprayed film layer (13) formed by thermal spraying on the intermediate layer.

Description

積層体及び積層体の製造方法Laminate and method for producing laminate
 本発明は、金属又は合金からなる基材の表面に硬質皮膜を形成した積層体及び積層体の製造方法に関する。 The present invention relates to a laminate in which a hard film is formed on the surface of a substrate made of a metal or an alloy, and a method for manufacturing the laminate.
 近年、金属又は合金からなる基材の表面に硬質皮膜を形成した積層体は、機械部品、工具、金型、医療用部材、スポーツ用品等の様々な用途に用いられている。硬質皮膜としては、例えば、セラミックス(酸化物セラミックス、非酸化物セラミックス、BCN系超硬質材料)、金属とセラミックスとの混合材、金属又は合金等が用いられ、材料に応じて、耐食性、耐熱性、耐磨耗性といった機能を基材に付与することができる。 In recent years, a laminate in which a hard film is formed on the surface of a base material made of a metal or an alloy has been used in various applications such as machine parts, tools, molds, medical members, and sports equipment. As the hard coating, for example, ceramics (oxide ceramics, non-oxide ceramics, BCN ultra-hard materials), mixed materials of metals and ceramics, metals or alloys are used, and depending on the materials, corrosion resistance and heat resistance are used. Functions such as wear resistance can be imparted to the substrate.
 このような硬質皮膜は、化学蒸着法(CVD)、物理蒸着法(PVD)、溶射法等によって基材表面に形成される。最近では、皮膜の形成速度が速い、幅広い種類の基材や皮膜材料に適用できる、基材の寸法に対する制限が少ないといった利点から、溶射法が積極的に利用されている。 Such a hard coating is formed on the substrate surface by chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal spraying, or the like. Recently, the thermal spraying method has been actively used because of the advantages that the film formation rate is fast, the film can be applied to a wide variety of substrates and coating materials, and there are few restrictions on the dimensions of the substrate.
 金属の基材上にセラミックス皮膜を形成した積層体に関連する技術として、例えば特許文献1には、金属基材と、該金属基材の表面を覆うセラミック被覆層と、金属基材側に配置された微粒子の凝集体層及びセラミック被覆層側に配置された粗粒子の凝集体層を有する金属結合層とを具備する耐熱材料が開示されている。 As a technique related to a laminate in which a ceramic film is formed on a metal substrate, for example, Patent Document 1 discloses a metal substrate, a ceramic coating layer covering the surface of the metal substrate, and a metal substrate side. A heat-resistant material comprising a fine particle aggregate layer and a metal bonding layer having a coarse particle aggregate layer disposed on the ceramic coating layer side is disclosed.
特開平8-41619号公報JP-A-8-41619
 ところで、溶射によって形成される皮膜は、溶融した皮膜の材料が基材表面の凹凸に入り込む所謂アンカー効果によって、基材に付着する。そのため、従来、溶射法によって積層体を作製する場合、図9に示すように、金属等の基材91とその表面に形成される硬質皮膜93との間の密着強度を高めるために、基材91の表面92に予めブラスト処理を施して粗面化することが行われている。しかしながら、このような方法により作製した積層体においては、機械的な応力が加えられた場合に、基材91と硬質皮膜93との密着強度が十分ではないという問題があった。 By the way, the film formed by thermal spraying adheres to the base material by a so-called anchor effect in which the material of the melted film enters the irregularities on the surface of the base material. Therefore, conventionally, when a laminate is produced by a thermal spraying method, as shown in FIG. 9, in order to increase the adhesion strength between a base material 91 such as a metal and a hard coating 93 formed on the surface thereof, The surface 92 of 91 is preliminarily roughened by blasting. However, the laminate produced by such a method has a problem that the adhesion strength between the base material 91 and the hard film 93 is not sufficient when mechanical stress is applied.
 基材と硬質皮膜との間の密着強度に関して、特許文献1には、高温若しくは熱変動の激しい環境下において積層体を使用する場合に、セラミック被覆層の亀裂やこの亀裂に起因する金属基材からのセラミック被覆層の剥離を防止するため、両者の間に金属結合層を設けることが開示されている。しかしながら、特許文献1には、積層体に機械的な応力が加えられた場合における金属基材とセラミック被覆層との密着強度については一切開示されていない。 Regarding the adhesion strength between the base material and the hard film, Patent Document 1 discloses that the metal base material is caused by cracks in the ceramic coating layer or cracks when the laminate is used in an environment where the temperature or the temperature fluctuates severely. In order to prevent peeling of the ceramic coating layer from the metal, it is disclosed that a metal bonding layer is provided between them. However, Patent Document 1 does not disclose any adhesion strength between the metal substrate and the ceramic coating layer when mechanical stress is applied to the laminate.
 本発明は、上記に鑑みてなされたものであって、金属又は合金からなる基材と、この基材の表面に形成した溶射皮膜層との間の密着強度が高い積層体及び該積層体の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and is a laminate having high adhesion strength between a base material made of a metal or an alloy and a thermal spray coating layer formed on the surface of the base material, and the laminate. An object is to provide a manufacturing method.
 上述した課題を解決し、目的を達成するために、本発明に係る積層体は、金属又は合金からなる基材と、金属又は合金の粉末材料を該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記基材表面に固相状態のままで吹き付けて堆積させた中間層と、前記中間層上に溶射により形成された溶射皮膜層とを備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a laminate according to the present invention is a substrate made of a metal or an alloy and a powder material of the metal or alloy heated to a temperature lower than the melting point of the powder material. It is characterized by comprising an intermediate layer which is accelerated together with gas and sprayed and deposited on the surface of the base material in a solid state, and a thermal spray coating layer formed on the intermediate layer by thermal spraying.
 上記積層体において、前記基材は、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金の内のいずれか1種からなることを特徴とする。 In the laminate, the base material is copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, It is characterized by comprising any one of niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
 上記積層体において、前記中間層は、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金の内のいずれか1種からなることを特徴とする。 In the laminate, the intermediate layer is made of copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, It is characterized by comprising any one of niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
 上記積層体において、前記中間層は、前記基材と同種の金属又は合金からなることを特徴とする。 In the laminated body, the intermediate layer is made of the same metal or alloy as the base material.
 上記積層体において、前記中間層は、5~100μmの厚さを有することを特徴とする。 In the above laminate, the intermediate layer has a thickness of 5 to 100 μm.
 上記積層体において、前記溶射皮膜層は、セラミックス系材料、金属及びセラミックスの混合材料、金属、又は合金材料からなることを特徴とする。 In the laminate, the thermal spray coating layer is made of a ceramic material, a mixed material of metal and ceramic, a metal, or an alloy material.
 上記積層体において、前記溶射皮膜層は、アルミナ、マグネシア、ジルコニア、イットリア、イットリア安定化ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン、窒化アルミニウム、窒化珪素、炭化珪素、窒化チタン、炭化チタン、炭窒化チタン、窒化チタンアルミニウム、窒化チタンクロム、窒化クロム、窒化ジルコニウム、炭化クロム、炭化タングステン、炭化ホウ素、窒化ホウ素、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金、タングステン、タングステン合金の内の少なくとも1種からなることを特徴とする。 In the laminate, the sprayed coating layer is made of alumina, magnesia, zirconia, yttria, yttria stabilized zirconia, steatite, forsterite, mullite, titania, silica, sialon, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, Titanium carbide, titanium carbonitride, titanium aluminum nitride, titanium nitride chromium, chromium nitride, zirconium nitride, chromium carbide, tungsten carbide, boron carbide, boron nitride, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, Magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, Characterized in that it consists of at least one of tungsten alloys.
 本発明に係る積層体の製造方法は、金属又は合金からなる基材の表面に、金属又は合金の粉末材料を該粉末材料の融点より低い温度に加熱されたガスと共に加速し、固相状態のままで吹き付けて堆積させることにより中間層を形成する中間層形成工程と、前記中間層上に溶射によって溶射皮膜層を形成する溶射皮膜層形成工程とを含むことを特徴とする。 In the method for producing a laminate according to the present invention, a metal or alloy powder material is accelerated on a surface of a base material made of a metal or alloy together with a gas heated to a temperature lower than the melting point of the powder material, It includes an intermediate layer forming step of forming an intermediate layer by spraying and depositing as it is, and a thermal spray coating layer forming step of forming a thermal spray coating layer on the intermediate layer by thermal spraying.
 本発明によれば、金属又は合金からなる基材に対し、金属又は合金の粉末材料を該粉末材料の融点より低い温度に加熱されたガスと共に加速し、基材表面に固相状態のままで吹き付ける所謂コールドスプレー法により中間層を堆積させ、この中間層上に溶射皮膜層を形成するので、基材と溶射皮膜層との間の密着強度を向上させることが可能となる。 According to the present invention, a metal or alloy powder material is accelerated with a gas heated to a temperature lower than the melting point of the powder material to a base material made of a metal or alloy, and remains in a solid state on the surface of the base material. Since the intermediate layer is deposited by a so-called cold spraying method and a sprayed coating layer is formed on the intermediate layer, the adhesion strength between the substrate and the sprayed coating layer can be improved.
図1は、本発明の実施の形態に係る積層体の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a laminate according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る積層体の製造方法を示すフローチャートである。FIG. 2 is a flowchart showing a method for manufacturing a laminate according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る積層体の製造に使用されるコールドスプレー装置の概要を示す模式図である。FIG. 3 is a schematic diagram showing an outline of a cold spray apparatus used for manufacturing the laminate according to the embodiment of the present invention. 図4は、実施例に係る試験片の構造を示す模式図である。FIG. 4 is a schematic diagram illustrating the structure of the test piece according to the example. 図5は、中間層(CS皮膜)表面を示す電子顕微鏡写真である。FIG. 5 is an electron micrograph showing the surface of the intermediate layer (CS film). 図6は、比較例に係る試験片の構造を示す模式図である。FIG. 6 is a schematic diagram illustrating the structure of a test piece according to a comparative example. 図7は、ブラスト加工された基材表面を示す電子顕微鏡写真である。FIG. 7 is an electron micrograph showing the blasted substrate surface. 図8は、引張試験の結果を示すグラフである。FIG. 8 is a graph showing the results of a tensile test. 図9は、基材表面に溶射皮膜が形成された積層体の従来の構造を示す模式図である。FIG. 9 is a schematic diagram showing a conventional structure of a laminate in which a thermal spray coating is formed on the substrate surface.
 以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解し得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。即ち、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing.
(実施の形態)
 図1は、本発明の一実施の形態に係る積層体の構成を示す模式図である。
 図1に示す積層体10は、金属又は合金からなる基材11と、該基材11の表面にコールドスプレー(CS)法により形成された中間層(CS皮膜)12と、該中間層12上に溶射法により形成された溶射皮膜層13とを備える。
(Embodiment)
FIG. 1 is a schematic diagram showing a configuration of a laminate according to an embodiment of the present invention.
A laminate 10 shown in FIG. 1 includes a base material 11 made of a metal or an alloy, an intermediate layer (CS film) 12 formed on the surface of the base material 11 by a cold spray (CS) method, and the intermediate layer 12 And a thermal spray coating layer 13 formed by a thermal spraying method.
 基材11は、例えば、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金といった金属又は合金により形成される。なお、図1に示す基材11は板状をなしているが、表面に溶射による皮膜形成が可能な形状であれば、基材11の形状は板状に限定されない。 The base material 11 is, for example, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium It is formed of a metal or an alloy such as an alloy, molybdenum, a molybdenum alloy, silver, a silver alloy, tin, a tin alloy, tantalum, or a tantalum alloy. In addition, although the base material 11 shown in FIG. 1 has comprised plate shape, the shape of the base material 11 will not be limited to plate shape, if the film formation by spraying is possible on the surface.
 中間層12は、後述するコールドスプレー法により溶射皮膜層13の下地として形成されている。中間層12も、基材11と同様に、例えば、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金といった金属又は合金により形成されるにより形成される。中間層12の材料は、基材11と同種の金属又は合金であっても良いし、基材11と異種の金属又は合金であっても良い。 The intermediate layer 12 is formed as a base of the sprayed coating layer 13 by a cold spray method described later. Similarly to the base material 11, the intermediate layer 12 is, for example, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium. , Chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy. The material of the intermediate layer 12 may be the same type of metal or alloy as the base material 11, or may be a different type of metal or alloy from the base material 11.
 コールドスプレー法とは、粉末材料を該粉末材料の融点よりも低い温度に加熱されたガスと共に加速し、基材11表面に固相状態のままで吹き付けて粉末材料を堆積させる成膜方法である。コールドスプレー法においては、粉末材料が基材11に高速に衝突することで、材料粉末と基材11との間に塑性変形が生じ、アンカー効果及び金属結合によって、基材11と中間層12との結合が得られる。 The cold spray method is a film forming method in which a powder material is accelerated together with a gas heated to a temperature lower than the melting point of the powder material and sprayed on the surface of the base material 11 in a solid state to deposit the powder material. . In the cold spray method, the powder material collides with the base material 11 at a high speed, so that plastic deformation occurs between the material powder and the base material 11. Is obtained.
 溶射皮膜層13は、セラミックス系材料、金属及びセラミックスの混合材料、又は、金属若しくは合金材料からなる硬質皮膜であり、中間層12上に溶射により形成されている。溶射皮膜層13の材料は、例えば耐食、耐熱、耐磨耗といった基材11に対して付与する機能に応じて選択される。なお、溶射皮膜層13として金属若しくは合金材料を用いる場合、基材11及び中間層12とは異なる材料が選択される。 The thermal spray coating layer 13 is a hard coating made of a ceramic material, a mixed material of metal and ceramics, or a metal or an alloy material, and is formed on the intermediate layer 12 by thermal spraying. The material of the sprayed coating layer 13 is selected according to the function imparted to the base material 11 such as corrosion resistance, heat resistance, and wear resistance. When a metal or alloy material is used for the sprayed coating layer 13, a material different from the base material 11 and the intermediate layer 12 is selected.
 セラミックス系材料としては、例えば、アルミナ、マグネシア、ジルコニア、イットリア、イットリア安定化ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン、等の酸化物セラミックスや、窒化アルミニウム、窒化珪素、炭化珪素、窒化チタン、炭化チタン、炭窒化チタン、窒化チタンアルミニウム、窒化チタンクロム、窒化クロム、窒化ジルコニウム、炭化クロム、炭化タングステン等の非酸化物セラミックスや、炭化ホウ素、窒化ホウ素等のBCN系超硬質材料が挙げられる。 Examples of ceramic materials include oxide ceramics such as alumina, magnesia, zirconia, yttria, yttria stabilized zirconia, steatite, forsterite, mullite, titania, silica, sialon, aluminum nitride, silicon nitride, silicon carbide. Non-oxide ceramics such as titanium nitride, titanium carbide, titanium carbonitride, titanium aluminum nitride, titanium chromium nitride, chromium nitride, zirconium nitride, chromium carbide, tungsten carbide, and BCN-based ultra-hard materials such as boron carbide and boron nitride Is mentioned.
 金属若しくは合金材料としては、例えば、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金、タングステン、タングステン合金が挙げられる。 Examples of metal or alloy materials include copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium Niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, tungsten alloy.
 金属及びセラミックスの混合材料としては、酸化物、窒化物、炭化物、ホウ化物等のセラミックス(例えば、上述したセラミックス系材料)を主成分とし、金属又は合金を結合相(繋ぎ材)とする混合材料(サーメットとも呼ばれる)が挙げられる。例えば、炭化タングステンの粉末に、コバルトやニッケル等の金属粉末を繋ぎ材として分散させた混合材料を用いても良い。或いは、イットリア安定化ジルコニア(YSZ)とニッケル(Ni)-クロム(Cr)合金との混合組成物といった材料も挙げられる。 As a mixed material of metal and ceramics, a mixed material mainly composed of ceramics such as oxides, nitrides, carbides, borides, etc. (for example, the above-mentioned ceramic materials), and a metal or alloy as a binder phase (bonding material). (Also called cermet). For example, you may use the mixed material which disperse | distributed metal powders, such as cobalt and nickel, to the powder of tungsten carbide as a binder. Alternatively, a material such as a mixed composition of yttria-stabilized zirconia (YSZ) and a nickel (Ni) -chromium (Cr) alloy may be used.
 次に、本実施の形態に係る積層体の製造方法を説明する。図2は、積層体10の製造方法を示すフローチャートである。
 まず、工程S1において、所望の材料により所望の形状をなす基材11を作製する。
 続く工程S2において、コールドスプレー法により基材11の表面に中間層12を形成する。
Next, the manufacturing method of the laminated body which concerns on this Embodiment is demonstrated. FIG. 2 is a flowchart showing a method for manufacturing the laminate 10.
First, in step S1, a base material 11 having a desired shape is produced from a desired material.
In the subsequent step S2, the intermediate layer 12 is formed on the surface of the substrate 11 by a cold spray method.
 図3は、中間層12の形成に使用されるコールドスプレー装置40の概要を示す模式図である。図3に示すように、コールドスプレー装置40は、圧縮ガスを加熱するガス加熱器41と、基材11に噴射する材料の粉末を収容し、スプレーガン43に供給する粉末供給装置42と、加熱された圧縮ガス及びそこに供給された材料粉末を基材11に噴射するガスノズル44と、ガス加熱器41及び粉末供給装置42に対する圧縮ガスの供給量をそれぞれ調節するバルブ45及び46とを備える。なお、材料粉末としては、例えば平均粒径が5~100μm程度のものが用意される。 FIG. 3 is a schematic diagram showing an outline of the cold spray apparatus 40 used for forming the intermediate layer 12. As shown in FIG. 3, the cold spray device 40 includes a gas heater 41 that heats the compressed gas, a powder supply device 42 that contains the powder of the material to be injected onto the base material 11 and supplies the powder to the spray gun 43, and heating A gas nozzle 44 for injecting the compressed gas and the material powder supplied thereto onto the substrate 11, and valves 45 and 46 for adjusting the amount of compressed gas supplied to the gas heater 41 and the powder supply device 42, respectively. As the material powder, for example, one having an average particle diameter of about 5 to 100 μm is prepared.
 圧縮ガスとしては、ヘリウム、窒素、空気などが使用される。ガス加熱器41に供給された圧縮ガスは、例えば50℃以上であって、中間層12の材料粉末の融点よりも低い範囲の温度に加熱された後、スプレーガン43に供給される。圧縮ガスの加熱温度は、好ましくは300~900℃である。一方、粉末供給装置42に供給された圧縮ガスは、粉末供給装置42内の材料粉末をスプレーガン43に所定の吐出量となるように供給する。 As the compressed gas, helium, nitrogen, air or the like is used. The compressed gas supplied to the gas heater 41 is, for example, 50 ° C. or higher, heated to a temperature in a range lower than the melting point of the material powder of the intermediate layer 12, and then supplied to the spray gun 43. The heating temperature of the compressed gas is preferably 300 to 900 ° C. On the other hand, the compressed gas supplied to the powder supply device 42 supplies the material powder in the powder supply device 42 to the spray gun 43 so as to have a predetermined discharge amount.
 加熱された圧縮ガスは、末広形状をなすガスノズル44により超音速流(約340m/s以上)にされる。この際の圧縮ガスのガス圧力は、1~5MPa程度とすることが好ましい。圧縮ガスの圧力をこの程度に調整することにより、基材11と中間層12との間の密着強度の向上を図ることができるからである。スプレーガン43に供給された粉末材料は、この圧縮ガスの超音速流の中への投入により加速され、固相状態のまま基材11に高速で衝突して堆積し、皮膜を形成する。なお、材料粉末を基材11に固相状態で衝突させて皮膜を形成できる装置であれば、図3に示すコールドスプレー装置40に限定されるものではない。 The heated compressed gas is made a supersonic flow (about 340 m / s or more) by the gas nozzle 44 having a divergent shape. At this time, the gas pressure of the compressed gas is preferably about 1 to 5 MPa. This is because the adhesion strength between the base material 11 and the intermediate layer 12 can be improved by adjusting the pressure of the compressed gas to this level. The powder material supplied to the spray gun 43 is accelerated by the injection of the compressed gas into the supersonic flow, and collides with the base material 11 at a high speed while being in a solid phase to deposit, thereby forming a film. Note that the apparatus is not limited to the cold spray apparatus 40 shown in FIG. 3 as long as the apparatus can collide the material powder with the base material 11 in a solid state to form a film.
 上述したとおり、コールドスプレー法においては、粉末材料が固相状態のまま下層(基材11及び基材11上に先に堆積した中間層12)に衝突して結合するので、中間層12の表面は、外側(この後で形成される溶射皮膜層13側の界面)に向かって凸の形状をなしている。 As described above, in the cold spray method, the powder material collides with and binds to the lower layer (the base layer 11 and the intermediate layer 12 previously deposited on the base material 11) in the solid state, so that the surface of the intermediate layer 12 Has a convex shape toward the outside (the interface on the thermal spray coating layer 13 side to be formed later).
 また、中間層12の厚さは、約5μm以上とすることが望ましい。それにより、基材11表面全体を中間層12で一通り覆うことができ、溶射皮膜層13が密着するのに十分な凸形状を形成することができるからである。一方、中間層12の厚さの上限については、中間層12が基材11の表面全体を一通り覆った状態になれば、中間層12を厚くしても効果に大きな差異は生じないので、中間層12の形成工程に要する時間等を考慮し、100μm程度を上限にすると良い。 In addition, the thickness of the intermediate layer 12 is preferably about 5 μm or more. Thereby, the entire surface of the substrate 11 can be covered with the intermediate layer 12 and a convex shape sufficient for the sprayed coating layer 13 to adhere can be formed. On the other hand, as for the upper limit of the thickness of the intermediate layer 12, if the intermediate layer 12 is in a state of covering the entire surface of the substrate 11, there is no significant difference in effect even if the intermediate layer 12 is thickened. In consideration of the time required for the formation process of the intermediate layer 12, the upper limit is preferably about 100 μm.
 続く工程S3において、溶射法により中間層12上に所望の厚さの溶射皮膜層13を形成する。それにより、図1に示す積層体10が完成する。 In subsequent step S3, a thermal spray coating layer 13 having a desired thickness is formed on the intermediate layer 12 by a thermal spraying method. Thereby, the laminated body 10 shown in FIG. 1 is completed.
 このように作製された積層体10は、次のような特徴を有している。まず、中間層12と基材11との界面及び中間層12の内部においては、アンカー効果及び金属結合により強固な結合が得られている。また、中間層12の表面は、溶射皮膜層13側に向かって、複雑な凸の形状をなしている。そのため、溶射炎によって溶融した溶射皮膜層13の材料が、中間層12表面の凸と凸との間の狭く凹んだ部分に入り込むことで、溶射皮膜13のアンカー効果を向上させる。それにより、中間層12及び溶射皮膜層13も互いに強固に結合する。その結果、基材11と溶射皮膜層13との間において高い密着強度を得ることができる。 The laminate 10 produced in this way has the following characteristics. First, at the interface between the intermediate layer 12 and the base material 11 and inside the intermediate layer 12, a strong bond is obtained by an anchor effect and a metal bond. Further, the surface of the intermediate layer 12 has a complex convex shape toward the sprayed coating layer 13 side. Therefore, the anchor effect of the thermal spray coating 13 is improved by the material of the thermal spray coating layer 13 melted by the thermal spray flame entering the narrow concave portion between the convexity of the surface of the intermediate layer 12. Thereby, the intermediate layer 12 and the sprayed coating layer 13 are also firmly bonded to each other. As a result, high adhesion strength can be obtained between the base material 11 and the sprayed coating layer 13.
 なお、中間層12をコールドスプレー法により形成したか否かについては、基材11と中間層12との界面(アンカー層の有無)や、中間層12の表面を観察することにより判別することができる。例えば、溶射法の場合、扁平微粒子の積層により、所謂ラメラ構造を有する積層構造が形成されるため、コールドスプレー法を溶射法から識別することは可能である。 Whether or not the intermediate layer 12 is formed by the cold spray method can be determined by observing the interface between the base material 11 and the intermediate layer 12 (the presence or absence of an anchor layer) and the surface of the intermediate layer 12. it can. For example, in the case of the thermal spraying method, since a laminated structure having a so-called lamellar structure is formed by laminating flat fine particles, it is possible to distinguish the cold spray method from the thermal spraying method.
 以上説明したように、本実施の形態によれば、金属若しくは合金からなる基材11表面に、コールドスプレー法による中間層12を介して溶射による溶射皮膜層13を積層することにより、基材11と溶射皮膜層13との間における密着強度を向上させることが可能となる。 As described above, according to the present embodiment, the base material 11 is formed by laminating the sprayed coating layer 13 by thermal spraying on the surface of the base material 11 made of metal or alloy via the intermediate layer 12 by the cold spray method. It is possible to improve the adhesion strength between the thermal spray coating layer 13 and the thermal spray coating layer 13.
<試験片の作製>
 実施例に係る試験片として、図4に示すように、直径約25mm、厚さ約20mmの円柱状のアルミニウムテストピース20を用意し、このアルミニウムテストピース20の一方の底面に、厚さ約5mmの銅基材21を接着剤により接着した。銅基材21としては、無酸素銅C1020を用いた。この銅基材21上に、下地処理として、コールドスプレー法により、厚さ約30μmの銅中間層(CS皮膜)22を形成した。この際、原料粉として平均粒径が約30μmの銅粉末を用い、圧縮ガスとして、約800℃、ガス圧力を4MPaの窒素を用いた。図5は、銅中間層22の表面を撮影した電子顕微鏡写真である。この銅中間層22表面の平均面粗さRaは、5~8μm程度であった。さらに、銅中間層22上に、溶射皮膜層として、厚さ約400μmのアルミナ(Al)層23を形成した。このアルミナ層23の上面に、アルミニウムテストピース20を接着剤により接着した。
<Preparation of test piece>
As a test piece according to the example, as shown in FIG. 4, a columnar aluminum test piece 20 having a diameter of about 25 mm and a thickness of about 20 mm is prepared, and a thickness of about 5 mm is formed on one bottom surface of the aluminum test piece 20. The copper base material 21 was bonded with an adhesive. As the copper base material 21, oxygen-free copper C1020 was used. A copper intermediate layer (CS film) 22 having a thickness of about 30 μm was formed on the copper base material 21 by a cold spray method as a base treatment. At this time, copper powder having an average particle diameter of about 30 μm was used as the raw material powder, and nitrogen having a gas pressure of about 800 ° C. and a gas pressure of 4 MPa was used as the compressed gas. FIG. 5 is an electron micrograph of the surface of the copper intermediate layer 22 taken. The average surface roughness Ra of the surface of the copper intermediate layer 22 was about 5 to 8 μm. Further, an alumina (Al 2 O 3 ) layer 23 having a thickness of about 400 μm was formed on the copper intermediate layer 22 as a sprayed coating layer. An aluminum test piece 20 was bonded to the upper surface of the alumina layer 23 with an adhesive.
 また、比較例に係る試験片として、図6に示すように、アルミニウムテストピース20の一方の底面に、厚さ約5mmの銅基材31を接着剤により接着した。銅基材31としては、実施例と同様に、無酸素銅C1020を用いた。この銅基材31の上面を、下地処理として、ブラスト加工した。この際、平均粒径が350μmのホワイトアルミナの砥粒を用いた。図7は、銅基材31の表面を撮影した電子顕微鏡写真である。このとき、銅基材31表面の平均面粗さRaは、4~6μm程度であった。さらに、銅基材31上に、溶射皮膜層として、厚さ約400μmのアルミナ層32を形成した。このアルミナ層32の上面に、アルミニウムテストピース20を接着剤により接着した。 Further, as a test piece according to the comparative example, as shown in FIG. 6, a copper base 31 having a thickness of about 5 mm was adhered to one bottom surface of the aluminum test piece 20 with an adhesive. As the copper substrate 31, oxygen-free copper C1020 was used as in the example. The upper surface of the copper substrate 31 was blasted as a base treatment. At this time, abrasive grains of white alumina having an average particle diameter of 350 μm were used. FIG. 7 is an electron micrograph of the surface of the copper base 31 taken. At this time, the average surface roughness Ra of the surface of the copper base material 31 was about 4 to 6 μm. Further, an alumina layer 32 having a thickness of about 400 μm was formed on the copper base 31 as a sprayed coating layer. The aluminum test piece 20 was bonded to the upper surface of the alumina layer 32 with an adhesive.
 参考例に係る試験片として、比較例における銅基材31の代わりに、Al-Mg系アルミニウム合金A5052を用いた。 As the test piece according to the reference example, Al—Mg-based aluminum alloy A5052 was used instead of the copper base material 31 in the comparative example.
<引っ張り試験>
 実施例、比較例、及び参考例に係る試験片に対し、一方(例えば図4の上側)のアルミニウムテストピース20を固定し、他方のアルミニウムテストピース20に対して円柱の高さ方向(例えば図4中の引っ張り方向)に荷重をかける引っ張り試験を行い、銅基材21、31とアルミナ層23、32との間で剥離が生じたときの引っ張り強度(剥離強度)を測定した。このような実験を、実施例については8個の試験片、比較例については3個の試験片、参考例については3個の試験片について行った。
<Tensile test>
One (for example, the upper side of FIG. 4) aluminum test piece 20 is fixed to the test pieces according to the examples, comparative examples, and reference examples, and the column height direction (for example, the figure) is fixed with respect to the other aluminum test piece 20. A tensile test in which a load is applied in the tensile direction in FIG. 4 was performed, and the tensile strength (peel strength) when peeling occurred between the copper base materials 21 and 31 and the alumina layers 23 and 32 was measured. Such an experiment was conducted on 8 test pieces for the example, 3 test pieces for the comparative example, and 3 test pieces for the reference example.
 図8は、引っ張り試験の結果を示すグラフであり、実施例、比較例、及び参考例に対する実験により測定された剥離強度の平均値を示している。実施例において剥離が生じた際の剥離強度は、平均で約18MPaであった。この剥離は全て、銅中間層22とアルミナ層23との間で生じていた。これは、銅中間層22と銅基材21とは金属結合で結合しているので、特に密着強度が高い(例えば、70MPa以上)ためと考えられる。 FIG. 8 is a graph showing the results of the tensile test, and shows the average value of peel strength measured by experiments on Examples, Comparative Examples, and Reference Examples. The peeling strength when peeling occurred in the examples was about 18 MPa on average. All this peeling occurred between the copper intermediate layer 22 and the alumina layer 23. This is presumably because the copper intermediate layer 22 and the copper base material 21 are bonded by a metal bond, so that the adhesion strength is particularly high (for example, 70 MPa or more).
 それに対して、比較例における剥離強度は平均で約5MPa弱であり、実施例の1/3にも満たなかった。また、参考例における剥離強度は平均約8.5MPaであり、大きくても9MPa程度に留まっていた。 On the other hand, the peel strength in the comparative example was an average of about 5 MPa, which was less than 1/3 of the example. Further, the peel strength in the reference example was about 8.5 MPa on average, and remained at about 9 MPa at the maximum.
 10 積層体
 11、91 基材
 12 中間層
 13 溶射皮膜層
 20 アルミニウムテストピース
 21、31 銅基材
 22 銅中間層(CS皮膜)
 23、32 アルミナ層(溶射皮膜層)
 40 コールドスプレー装置
 41 ガス加熱器
 42 粉末供給装置
 43 スプレーガン
 44 ガスノズル
 45、46 バルブ
 92 表面(皮膜形成面)
 93 硬質皮膜
DESCRIPTION OF SYMBOLS 10 Laminated body 11, 91 Base material 12 Intermediate layer 13 Thermal spray coating layer 20 Aluminum test piece 21, 31 Copper base material 22 Copper intermediate layer (CS film)
23, 32 Alumina layer (sprayed coating layer)
40 Cold spray device 41 Gas heater 42 Powder supply device 43 Spray gun 44 Gas nozzle 45, 46 Valve 92 Surface (film formation surface)
93 Hard coating

Claims (8)

  1.  金属又は合金からなる基材と、
     金属又は合金の粉末材料を該粉末材料の融点より低い温度に加熱されたガスと共に加速し、前記基材表面に固相状態のままで吹き付けて堆積させた中間層と、
     前記中間層上に溶射により形成された溶射皮膜層と、
    を備えることを特徴とする積層体。
    A base material made of metal or alloy;
    An intermediate layer formed by accelerating a metal or alloy powder material together with a gas heated to a temperature lower than the melting point of the powder material, and spraying and depositing the material on the surface of the substrate in a solid state;
    A thermal spray coating layer formed by thermal spraying on the intermediate layer;
    A laminate comprising:
  2.  前記基材は、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金の内のいずれか1種からなることを特徴とする請求項1に記載の積層体。 The base material is copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, The laminate according to claim 1, which is made of any one of molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
  3.  前記中間層は、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金の内のいずれか1種からなることを特徴とする請求項1に記載の積層体。 The intermediate layer is copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, The laminate according to claim 1, which is made of any one of molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, and tantalum alloy.
  4.  前記中間層は、前記基材と同種の金属又は合金からなることを特徴とする請求項3に記載の積層体。 The laminate according to claim 3, wherein the intermediate layer is made of the same metal or alloy as the base material.
  5.  前記中間層は、5~100μmの厚さを有することを特徴とする請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the intermediate layer has a thickness of 5 to 100 µm.
  6.  前記溶射皮膜層は、セラミックス系材料、金属及びセラミックスの混合材料、金属、又は合金材料からなることを特徴とする請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the thermal spray coating layer is made of a ceramic material, a mixed material of metal and ceramic, a metal, or an alloy material.
  7.  前記溶射皮膜層は、アルミナ、マグネシア、ジルコニア、イットリア、イットリア安定化ジルコニア、ステアタイト、フォルステライト、ムライト、チタニア、シリカ、サイアロン、窒化アルミニウム、窒化珪素、炭化珪素、窒化チタン、炭化チタン、炭窒化チタン、窒化チタンアルミニウム、窒化チタンクロム、窒化クロム、窒化ジルコニウム、炭化クロム、炭化タングステン、炭化ホウ素、窒化ホウ素、銅、銅合金、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、ニッケル、ニッケル合金、鉄、鉄合金、チタン、チタン合金、クロム、クロム合金、ニオブ、ニオブ合金、モリブデン、モリブデン合金、銀、銀合金、錫、錫合金、タンタル、タンタル合金、タングステン、タングステン合金の内の少なくとも1種からなることを特徴とする請求項6に記載の積層体。 The sprayed coating layer is made of alumina, magnesia, zirconia, yttria, yttria stabilized zirconia, steatite, forsterite, mullite, titania, silica, sialon, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, titanium carbide, carbonitride. Titanium, titanium nitride aluminum, titanium nitride chromium, chromium nitride, zirconium nitride, chromium carbide, tungsten carbide, boron carbide, boron nitride, copper, copper alloy, zinc, zinc alloy, aluminum, aluminum alloy, magnesium, magnesium alloy, nickel, Nickel alloy, iron, iron alloy, titanium, titanium alloy, chromium, chromium alloy, niobium, niobium alloy, molybdenum, molybdenum alloy, silver, silver alloy, tin, tin alloy, tantalum, tantalum alloy, tungsten, tungsten alloy The laminate according to claim 6, characterized in that it consists of at least one.
  8.  金属又は合金からなる基材の表面に、金属又は合金の粉末材料を該粉末材料の融点より低い温度に加熱されたガスと共に加速し、固相状態のままで吹き付けて堆積させることにより中間層を形成する中間層形成工程と、
     前記中間層上に溶射によって溶射皮膜層を形成する溶射皮膜層形成工程と、
    を含むことを特徴とする積層体の製造方法。
    An intermediate layer is formed by accelerating a metal or alloy powder material on a surface of a metal or alloy substrate together with a gas heated to a temperature lower than the melting point of the powder material and spraying and depositing the powder material in a solid state. An intermediate layer forming step to be formed;
    A thermal spray coating layer forming step of forming a thermal spray coating layer on the intermediate layer by thermal spraying;
    The manufacturing method of the laminated body characterized by including.
PCT/JP2012/073712 2011-09-20 2012-09-14 Laminate and laminate manufacturing method WO2013042635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011205365A JP5809901B2 (en) 2011-09-20 2011-09-20 Laminate and method for producing laminate
JP2011-205365 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042635A1 true WO2013042635A1 (en) 2013-03-28

Family

ID=47914402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073712 WO2013042635A1 (en) 2011-09-20 2012-09-14 Laminate and laminate manufacturing method

Country Status (3)

Country Link
JP (1) JP5809901B2 (en)
TW (1) TWI606921B (en)
WO (1) WO2013042635A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001263A1 (en) * 2013-07-03 2015-01-08 Snecma Process for preparing for removal a metal coating by thermal spraying on a substrate
CN104988493A (en) * 2015-05-28 2015-10-21 山东建筑大学 Method for achieving nanocrystallization of titanium alloy laser deposition layer through nanocrystallization factors
CN107488043A (en) * 2016-06-12 2017-12-19 中国科学院宁波材料技术与工程研究所 Multilayer complex films, its preparation method and the application as carborundum and its composite connecting material
CN108559941A (en) * 2018-04-27 2018-09-21 齐鲁工业大学 High-densit gradient metal ceramic coating in a kind of stainless steel mobile muffler surface and preparation method thereof
CN109111243A (en) * 2018-09-20 2019-01-01 界首永恩机电科技有限公司 A kind of method that ceramics surface sprays complex copper powder
US10315388B2 (en) 2014-06-11 2019-06-11 Nhk Spring Co., Ltd. Method of manufacturing laminate and laminate
CN115446319A (en) * 2022-08-12 2022-12-09 南京大学 Method for preparing titanium alloy and titanium-aluminum alloy spherical micro powder with assistance of copper

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103375B2 (en) * 2013-05-13 2017-03-29 大日本印刷株式会社 Laminated body and laminated body manufacturing method used for manufacturing electronic parts, touch panel device including film sensor and film sensor, and film forming method for forming concentration gradient type metal layer
TW201500556A (en) * 2013-06-30 2015-01-01 Teng-Fei Wu Titanium-based composite material and manufacturing method thereof
GB2541610B (en) * 2014-06-06 2021-04-07 Nat Res Council Canada Bi-layer iron coating of lightweight metallic substrate
JP2017001235A (en) * 2015-06-08 2017-01-05 トヨタ自動車株式会社 Thermal insulation structure
JP6662585B2 (en) * 2015-06-23 2020-03-11 日本発條株式会社 Clad pipe and method for manufacturing clad pipe
JP6109281B1 (en) * 2015-11-26 2017-04-05 日本発條株式会社 Manufacturing method of laminate
KR101746974B1 (en) * 2015-12-15 2017-06-28 주식회사 포스코 Method for preparing metal-coated steel sheet and metal-coated steel sheet prepared by the same
EP3572555B1 (en) * 2017-01-17 2021-03-03 Shinshu University Method for manufacturing ceramic circuit board
JP6868412B2 (en) * 2017-02-03 2021-05-12 日産自動車株式会社 Sliding members, sliding members of internal combustion engines, and methods for manufacturing sliding members
EP3587621B1 (en) * 2017-02-24 2021-12-15 National Institute for Materials Science Method for manufacturing aluminum circuit board
KR20190057753A (en) * 2017-11-20 2019-05-29 (주)코미코 Method for Producing Plasma-Resistant Coating Layer and Plasma-Resistant Member Formed by the Same
CN109628927B (en) * 2019-02-01 2020-10-16 水利部杭州机械设计研究所 Wear-resistant corrosion-resistant nickel-based silicon carbide composite coating for maritime work hydraulic piston rod and preparation method thereof
CN110273149B (en) * 2019-07-31 2021-06-01 安徽工业大学 Molybdenum-based alloy coating and substrate with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211390A (en) * 1986-03-12 1987-09-17 Hitachi Ltd Ceramic coated heat resistant member and its production
JP2008163459A (en) * 2006-12-19 2008-07-17 General Electric Co <Ge> Thermal barrier coating system and method for coating component
JP2011029323A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211390A (en) * 1986-03-12 1987-09-17 Hitachi Ltd Ceramic coated heat resistant member and its production
JP2008163459A (en) * 2006-12-19 2008-07-17 General Electric Co <Ge> Thermal barrier coating system and method for coating component
JP2011029323A (en) * 2009-07-23 2011-02-10 Mitsubishi Materials Corp Substrate for power module, power module, and method of manufacturing substrate for power module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015001263A1 (en) * 2013-07-03 2015-01-08 Snecma Process for preparing for removal a metal coating by thermal spraying on a substrate
FR3008109A1 (en) * 2013-07-03 2015-01-09 Snecma METHOD FOR PREPARING THE REMOVAL OF A METALLIC COATING THROUGH THERMAL PROJECTION ON A SUBSTRATE
US9920431B2 (en) 2013-07-03 2018-03-20 Snecma Process for preparing a substrate for thermal spraying of a metal coating
RU2659521C2 (en) * 2013-07-03 2018-07-02 Снекма Method for preparing substrate for thermal spraying of metal coating
US10315388B2 (en) 2014-06-11 2019-06-11 Nhk Spring Co., Ltd. Method of manufacturing laminate and laminate
CN104988493A (en) * 2015-05-28 2015-10-21 山东建筑大学 Method for achieving nanocrystallization of titanium alloy laser deposition layer through nanocrystallization factors
CN107488043A (en) * 2016-06-12 2017-12-19 中国科学院宁波材料技术与工程研究所 Multilayer complex films, its preparation method and the application as carborundum and its composite connecting material
CN107488043B (en) * 2016-06-12 2022-10-25 中国科学院宁波材料技术与工程研究所 Multilayer composite film, preparation method thereof and application of multilayer composite film as silicon carbide and composite material connecting material thereof
CN108559941A (en) * 2018-04-27 2018-09-21 齐鲁工业大学 High-densit gradient metal ceramic coating in a kind of stainless steel mobile muffler surface and preparation method thereof
CN109111243A (en) * 2018-09-20 2019-01-01 界首永恩机电科技有限公司 A kind of method that ceramics surface sprays complex copper powder
CN109111243B (en) * 2018-09-20 2020-12-11 界首永恩机电科技有限公司 Method for spraying composite copper powder on surface of ceramic artwork
CN115446319A (en) * 2022-08-12 2022-12-09 南京大学 Method for preparing titanium alloy and titanium-aluminum alloy spherical micro powder with assistance of copper

Also Published As

Publication number Publication date
TW201323197A (en) 2013-06-16
JP5809901B2 (en) 2015-11-11
JP2013067825A (en) 2013-04-18
TWI606921B (en) 2017-12-01

Similar Documents

Publication Publication Date Title
JP5809901B2 (en) Laminate and method for producing laminate
EP3156514B1 (en) Method for producing laminate
US7910051B2 (en) Low-energy method for fabrication of large-area sputtering targets
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US20090023567A1 (en) Coated Member, Especially Roller, Made of Carbon Fiber-Reinforced Plastic (CFK) for Paper Machines and Printing Presses, and Method for the Production of such a Member
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
US20070278324A1 (en) Device for cold gas spraying
EP2695972B1 (en) Laminate, and method for producing laminate
JP2008538385A (en) Method for forming metal matrix composite and coating layer and bulk produced using the same
JP2013139634A (en) Applying bond coat using cold spraying process and articles thereof
JP4628578B2 (en) Low temperature sprayed coating coated member and method for producing the same
WO2005090637A1 (en) Metal material for foundry machine part, member for contact with molten aluminum, and process for producing the same
WO2017090565A1 (en) Laminate and method for producing laminate
CN106591761A (en) Preparation method for composite coating resisting etching of molten metal
US8747946B2 (en) Pre-treatment apparatus and method for improving adhesion of thin film
WO2008141593A1 (en) Method for production of sputtering targets
JPH02236266A (en) Member for molten metal and its production
Gibbons et al. Thermal-sprayed coatings on aluminium for mould tool protection and upgrade
KR101922805B1 (en) Method of plasma spray coated layer for improving the bond strength between the coating layer and substrate
JP2003105426A (en) Water-cooled lance for metallurgical use and manufacturing method therefor
JP6599950B2 (en) Laminate and method for producing laminate
JP5459498B2 (en) Surface coated cutting tool
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
JP3610311B2 (en) Ceramics-metal composite member
JP2013224481A (en) Manufacturing method of sputtering target material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833424

Country of ref document: EP

Kind code of ref document: A1