JPH0472793B2 - - Google Patents

Info

Publication number
JPH0472793B2
JPH0472793B2 JP62163988A JP16398887A JPH0472793B2 JP H0472793 B2 JPH0472793 B2 JP H0472793B2 JP 62163988 A JP62163988 A JP 62163988A JP 16398887 A JP16398887 A JP 16398887A JP H0472793 B2 JPH0472793 B2 JP H0472793B2
Authority
JP
Japan
Prior art keywords
torr
metal
vacuum
reaction
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62163988A
Other languages
Japanese (ja)
Other versions
JPS649878A (en
Inventor
Hirohiko Nakada
Masaaki Pponda
Masaya Myake
Takeya Motoyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62163988A priority Critical patent/JPS649878A/en
Publication of JPS649878A publication Critical patent/JPS649878A/en
Publication of JPH0472793B2 publication Critical patent/JPH0472793B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は耐熱、耐摩耗性と軽量性の要求される
構造部品として使用されるセラミツクス・金属の
複合部品に関するもので、高度の接着強度を得る
ための窒化ケイ素(Si3N4以下同じ)セラミツク
スとの金属の接合体に関するものである。 (b) 従来の技術 従来、金属とセラミツクスとの接合方法として
は有機、無機接着材による接着接合法、焼き
ばめ、鋳ぐるみなどの機械的接合法、あらかじ
めセラミツクス表面をメタライズ、ブレージング
する方法、高温法、圧力下で固相反応させる等の
化学的接合法に大別される。この内容については
1986年4月発行の「材料技術」Vol.4、No.2の26
〜33頁「非酸化物セラミツクスの接着」に紹介さ
れている。 (c) 発明が解決しようとする問題点 セラミツクスと金属の接合の場合、両者の熱膨
張係数の差、化学的な性質の相異により種々の工
夫がなされている。しかしながら下記の問題のた
め、Si3N4/金属の複合体では、Si3N4/Si3N4
如き同じセラミツクス同士の接合体で得られるよ
うな50Kg/mm2程度の接合強度は得られていない。 上記の従来法の接着材法では接着材の特性上
耐熱性が低くせいぜい150℃までしか耐えられず
せつかくのセラミツクスの高温特性を発揮させる
ことができない。またの機械的方法は、焼きば
め法ではセラミツクスと金属の事前の加工精度を
高めないと実施不可能でありコストが高くなり複
雑形状の部品には適用できない。また、鋳込み法
では熔融金属をセラミツクスに直接接触せしめる
ため熱衝撃によりセラミツクスが損傷を受け易
く、またセラミツクスと金属の組み合わせにも制
約がある。ブレージング法、メタライズ法では上
記の形状的な制約は少ないが、従来の方法では接
合強度的に10〜26Kg/mm2が限度であり、また400
℃以上での強度劣化の問題があり、高温構造材と
しては限度がある。また、固相反応による方法で
は一般に高温高圧力を必要であり設備コストが高
く、形状的制約が多い。 上記の通り、従来の方法では、Si3N4と金属の
接合複合体として高温での使用に耐える部品は製
造が困難であり、本発明の方法は、形状的制約が
無く、接合強度も26Kg/mm2以上であり、400℃以
上でも強度低下の少ないSi3N4/金属複合体を提
供するものである。 (d) 問題点を解決するための手段(発明の開示) 本発明の接合体の製造方法は、接合すべきSi3
N4セラミツクスと金属とをイオンプレーテイン
グ装置の中に設置し、まず、1×10-5Torr以下
の真空度で、Si3N4セラミツクスの表面にTi,
Cu,Ag金属をイオンプレーテイングにより蒸着
し、厚み0.1〜5.0μmの被覆を施し、この蒸着後1
×10-3Torrの真空下で、700〜1000℃の範囲で熱
処理を行う。しかる後に金属化されたSi3N4と金
属とを1×10-3Torr以下の真空下で接触接合す
るのである。 あらかじめSi3N4表面を蒸着で金属化するのは
金属とSi3N4との反応を行わせるためであり、Ti
が主として反応に寄与し、Cu,Agはこの反応を
促進する効果がある。しかも、イオンプレーテイ
ングで行うので活性の高い金属を高純度の状態で
セラミツクス表面に蒸着することが出来、またイ
オンプレーテイングのため0.1μm以下のレベルで
蒸着金属膜厚のコントロールが出来るため反応層
の量的な制御が容易なる。一般に反応層が厚過ぎ
るとメタライズ層の被着強度は大幅に低下する事
がわかつていたが、反応層を微細にコーントロー
ルすることができなかつたのである。更にイオン
プレーテイングのため、複雑形状の部品でも蒸着
金属が回りこみにより金属を隅無く付着させるこ
とができる。この時の真空度を1×10-5Torr以
下にすることによりTiの酸化を防止し、反応性
が高い状態で蒸着することができる。 蒸着金属層の厚みに関しては、0.1μm未満とな
るSi3N4との反応に必要な金属が不足し、また
5.0μm以上であると金属が過多となり、反応層が
厚くなりかえつて強度低下が起こる。 蒸着後の熱処理は蒸着金属層とセラミツクス間
に強固な反応相を形成するために行うものであつ
て、700℃未満の温度での熱処理では、Si3N4
するTiの反応が不十分であり、1000℃以上にな
ると、反応層が必要以上に厚くなり強度が低下す
る。この熱処理によりSi3N4とTiが反応しSi3N4
表面に適度の厚みのチタンシリサイドおよびチタ
ンナイトライドが生成し、被着強度に寄与してい
ると考えられる。この時の真空度が1×10-3
Torr以上の場合Si3N4と金属との反応時に酸化物
が生成し、被着強度に寄与するチタンシリサイド
やチタンナイトライドの生成を妨げるため蒸着、
熱処理後のSi3N4と金属との接合時の真空度を1
×10-3Torrとするもの上記と同じ理由による。 次に本発明による効果を実施例により説明す
る。 実施例 1 Al2O3−Y2O3を助材とするSi3N4と主成分のホ
ツトプレス焼結体を10mm角×20mm高さに切断加工
し、イオンプレーテイング装置を用いてTi,Cu,
Agの各金属をそれぞれ1μm、合計で3μmの厚み
に蒸着した。この時の真空度は2×10-5Torrで
あつた。 この後、大気中及び種々の真空度、温度で熱処
理を行い、10mm角×20mm長のKovar(Carpenter
Technology Corp.の登録商標)合金と1×10-4
Torrの真空度下で装置内で接触接合した。得ら
れた接合体から3×4×40mmの形状の試験片を切
り出し4点曲げ強度の測定を行つた。その結果を
第1表に示す。
(a) Industrial application field The present invention relates to ceramic/metal composite parts used as structural parts that require heat resistance, wear resistance, and light weight. (Si 3 N 4 (same below)) relates to a metal bonded body with ceramics. (b) Conventional technology Conventionally, methods for joining metals and ceramics include adhesive joining using organic or inorganic adhesives, mechanical joining methods such as shrink fitting and casting, methods in which the ceramic surface is pre-metallized or brazed, It is broadly divided into high temperature methods and chemical bonding methods such as solid phase reaction under pressure. About this content
"Materials Technology" Vol. 4, No. 2, 26, published in April 1986
-Introduced in ``Adhesion of non-oxide ceramics'' on page 33. (c) Problems to be Solved by the Invention In the case of joining ceramics and metals, various techniques have been devised due to the difference in coefficient of thermal expansion and chemical properties between the two. However, due to the following problems, Si 3 N 4 /metal composites cannot achieve the bonding strength of about 50 kg/mm 2 that can be obtained by joining the same ceramics such as Si 3 N 4 /Si 3 N 4 . It has not been done. The conventional adhesive method described above has low heat resistance due to the characteristics of the adhesive, and can only withstand temperatures of up to 150°C, making it impossible to bring out the high-temperature properties of ceramics. In addition, the mechanical method cannot be carried out using the shrink fitting method unless the pre-processing accuracy of ceramics and metal is increased, and the cost is high and it cannot be applied to parts with complex shapes. Furthermore, since the casting method brings molten metal into direct contact with ceramics, the ceramics are easily damaged by thermal shock, and there are also restrictions on the combination of ceramics and metals. The brazing method and metallization method are less subject to the above-mentioned shape constraints, but with conventional methods, the joint strength is limited to 10 to 26 kg/mm2, and 400 kg/ mm2
There is a problem of strength deterioration at temperatures above ℃, and there is a limit to its use as a high-temperature structural material. In addition, methods based on solid phase reactions generally require high temperature and high pressure, resulting in high equipment costs and many geometrical restrictions. As mentioned above, with conventional methods, it is difficult to manufacture parts that can withstand use at high temperatures as a bonded composite of Si 3 N 4 and metal, but the method of the present invention has no shape restrictions and has a bond strength of 26 kg. /mm 2 or more, and provides a Si 3 N 4 /metal composite with little strength loss even at temperatures of 400° C. or more. (d) Means for Solving the Problems (Disclosure of the Invention) The method for manufacturing a bonded body of the present invention is characterized in that Si 3 to be bonded is
N 4 ceramics and metal are placed in an ion plating device, and first, Ti , Ti, and
Cu and Ag metals are deposited by ion plating, and a coating with a thickness of 0.1 to 5.0 μm is applied.
Heat treatment is performed in the range of 700 to 1000°C under a vacuum of ×10 -3 Torr. Thereafter, the metallized Si 3 N 4 and the metal are contacted and bonded under a vacuum of 1×10 -3 Torr or less. The reason why the Si 3 N 4 surface is metallized by vapor deposition in advance is to cause a reaction between the metal and Si 3 N 4 , and the Ti
mainly contributes to the reaction, and Cu and Ag have the effect of promoting this reaction. Moreover, since it is performed by ion plating, highly active metals can be deposited on the ceramic surface in a highly pure state.Also, since ion plating allows the thickness of the deposited metal film to be controlled at a level of 0.1 μm or less, the reaction layer Quantitative control becomes easier. It has been known that, in general, if the reaction layer is too thick, the adhesion strength of the metallized layer is significantly reduced, but it has not been possible to finely cone roll the reaction layer. Furthermore, because of ion plating, the vapor-deposited metal wraps around even parts with complex shapes, making it possible to adhere the metal without any corners. By setting the degree of vacuum at this time to 1×10 -5 Torr or less, oxidation of Ti can be prevented and Ti can be deposited in a highly reactive state. Regarding the thickness of the deposited metal layer, it is less than 0.1 μm due to the lack of metal necessary for the reaction with Si 3 N 4 , and
If it is 5.0 μm or more, there will be too much metal, the reaction layer will become thicker, and the strength will decrease. Heat treatment after vapor deposition is performed to form a strong reaction phase between the deposited metal layer and the ceramic. Heat treatment at temperatures below 700°C may result in insufficient reaction of Ti to Si 3 N 4 . If the temperature exceeds 1000℃, the reaction layer becomes thicker than necessary and its strength decreases. This heat treatment causes Si 3 N 4 and Ti to react and form Si 3 N 4
It is thought that titanium silicide and titanium nitride with an appropriate thickness are formed on the surface and contribute to the adhesion strength. The degree of vacuum at this time is 1×10 -3
If the temperature exceeds Torr, oxides are generated during the reaction between Si 3 N 4 and the metal, which prevents the formation of titanium silicide and titanium nitride, which contribute to adhesion strength.
The degree of vacuum during bonding between Si 3 N 4 and metal after heat treatment is 1.
×10 -3 Torr for the same reason as above. Next, the effects of the present invention will be explained using examples. Example 1 A hot-pressed sintered body consisting mainly of Si 3 N 4 with Al 2 O 3 -Y 2 O 3 as an auxiliary material was cut into 10 mm square x 20 mm height, and Ti, Ti, Cu,
Each metal, Ag, was deposited to a thickness of 1 μm, for a total thickness of 3 μm. The degree of vacuum at this time was 2×10 -5 Torr. After this, heat treatment is performed in the air and at various degrees of vacuum and temperature, and a 10 mm square x 20 mm long Kovar (Carpenter)
Technology Corp.'s registered trademark) alloy and 1×10 -4
Contact bonding was carried out in a device under a vacuum of Torr. A test piece having a shape of 3 x 4 x 40 mm was cut out from the obtained joined body, and the four-point bending strength was measured. The results are shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1の第1表中、曲げ強度が45.2Kg/mm2
ものを高温で測定した結果、400℃で43.2Kg/mm2
800℃では15Kg/mm2であつた。 実施例 3 MgO−Al2O3系の助材を含むSi3N4の常圧焼結
体の表面にイオンプレーテイング装置を用いて、
5×10-6Torrの真空度下でTi,Cu,Agの金属を
各々0.5μm,1.0μm,1.0μmの厚さに蒸着し、5
×10-6Torrの真空下、900℃で熱処理を行い、自
動車用レシプロエンジンの排気バルブの先端部に
接合させた。この部分をエンジンテストで100時
間運転を行つた結果、接合部が400℃の温度に上
昇したにも拘わらずSi3N4セラミツクスの接合は
何ら異常が発生してなかつた。 (e) 発明の効果 本発明の方法によるSi3N4/金属複合部品は接
合強度が常温、高温において高く複雑形状の部品
への適用できるため、セラミツクス単体および従
来の接合法で実用できなかつた高靱性、高信頼
性、低コストの要求される構造部品、エンジン部
品の分野にも利用できるようになる。
[Table] Example 2 In Table 1 of Example 1, as a result of measuring the bending strength of 45.2Kg/mm 2 at high temperature, it was 43.2Kg/mm 2 at 400℃.
At 800℃, it was 15Kg/ mm2 . Example 3 Using an ion plating device, the surface of a pressureless sintered body of Si 3 N 4 containing MgO-Al 2 O 3 -based auxiliary material was
Ti, Cu, and Ag metals were deposited to thicknesses of 0.5 μm, 1.0 μm, and 1.0 μm, respectively, under a vacuum of 5 × 10 -6 Torr.
It was heat-treated at 900℃ under a vacuum of ×10 -6 Torr and bonded to the tip of an exhaust valve of an automobile reciprocating engine. When this part was operated for 100 hours in an engine test, no abnormality occurred in the Si 3 N 4 ceramic bond, even though the temperature of the bond increased to 400°C. (e) Effects of the Invention The Si 3 N 4 /metal composite parts produced by the method of the present invention have a high bonding strength at room temperature and high temperature, and can be applied to parts with complex shapes. It can also be used in the field of structural parts and engine parts that require high toughness, high reliability, and low cost.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化ケイ素セラミツクと金属部材の接合体で
あつて、該セラミツクの接合面には、1×10-5
Torr以下の真空下、イオンプレーテイング法に
よつて膜厚0.1〜5.0μmで蒸着されたTi,Cu,Ag
からなる活性金属層が、その後の1×10-3Torr
以下の真空下700〜1000℃の熱処理によつて形成
された、該活性金属層と窒化ケイ素セラミツクと
の反応層を介して強固な金属化接合層を形成して
おり、この接合層形成面に、1×10-3Torr以下
の真空下で接合された該金属部材を配した構造か
らなることを特徴とする、曲げ強度26Kg/mm2以上
の接合体。
1 A bonded body of silicon nitride ceramic and a metal member, in which the bonding surface of the ceramic has 1×10 -5
Ti, Cu, Ag deposited with a film thickness of 0.1 to 5.0 μm by ion plating method under vacuum below Torr.
A subsequent active metal layer consisting of 1×10 -3 Torr
A strong metallized bonding layer is formed through a reaction layer between the active metal layer and silicon nitride ceramic, which is formed by heat treatment at 700 to 1000°C under vacuum as described below. , a bonded body having a bending strength of 26 Kg/mm 2 or more, characterized in that it has a structure in which the metal members are bonded under a vacuum of 1×10 −3 Torr or less, and has a bending strength of 26 Kg/mm 2 or more.
JP62163988A 1987-07-02 1987-07-02 Bonding between silicon nitride ceramics and metal Granted JPS649878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62163988A JPS649878A (en) 1987-07-02 1987-07-02 Bonding between silicon nitride ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62163988A JPS649878A (en) 1987-07-02 1987-07-02 Bonding between silicon nitride ceramics and metal

Publications (2)

Publication Number Publication Date
JPS649878A JPS649878A (en) 1989-01-13
JPH0472793B2 true JPH0472793B2 (en) 1992-11-19

Family

ID=15784626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62163988A Granted JPS649878A (en) 1987-07-02 1987-07-02 Bonding between silicon nitride ceramics and metal

Country Status (1)

Country Link
JP (1) JPS649878A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117842A (en) * 1991-10-25 1993-05-14 Ulvac Japan Ltd Method for joining of metal with ceramic
JP3495052B2 (en) * 1992-07-15 2004-02-09 株式会社東芝 Metallized body and manufacturing method thereof
EP1617966B1 (en) * 2003-03-30 2011-06-29 L-3 Communications Corporation Method of diffusion bonding a microchannel plate to a dielectric insulator ; diffusion bonded microchannel plate body assembly
KR102496716B1 (en) * 2015-10-27 2023-02-07 주식회사 아모센스 Ceramic Board Manufacturing Method
JP2020145335A (en) * 2019-03-07 2020-09-10 株式会社Fjコンポジット Manufacturing method of circuit substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032648A (en) * 1983-08-02 1985-02-19 株式会社東芝 Method of metallizing ceramics and alloy foil for metallizing ceramics
JPS60177635A (en) * 1984-02-24 1985-09-11 Toshiba Corp Manufacture of good heat conductive substrate
JPS61215272A (en) * 1985-03-20 1986-09-25 株式会社東芝 Method of bonding ceramic member and metal member
JPS63190773A (en) * 1987-02-02 1988-08-08 住友電気工業株式会社 Ceramic metal joined body with high joint strength

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032648A (en) * 1983-08-02 1985-02-19 株式会社東芝 Method of metallizing ceramics and alloy foil for metallizing ceramics
JPS60177635A (en) * 1984-02-24 1985-09-11 Toshiba Corp Manufacture of good heat conductive substrate
JPS61215272A (en) * 1985-03-20 1986-09-25 株式会社東芝 Method of bonding ceramic member and metal member
JPS63190773A (en) * 1987-02-02 1988-08-08 住友電気工業株式会社 Ceramic metal joined body with high joint strength

Also Published As

Publication number Publication date
JPS649878A (en) 1989-01-13

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
US4763828A (en) Method for bonding ceramics and metals
US4624404A (en) Method for bonding ceramics and metals
JPH0510309B2 (en)
US7270885B1 (en) Method for brazing ceramic-containing bodies, and articles made thereby
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JP3095490B2 (en) Ceramic-metal joint
JPH0472793B2 (en)
JPS6077177A (en) Ceramic bonded body
JP3495052B2 (en) Metallized body and manufacturing method thereof
JP2541837B2 (en) Method for manufacturing bonded body of ceramics and metal
JP3505212B2 (en) Joint and method of manufacturing joint
JPH0651594B2 (en) Manufacturing method of bonded body of non-oxide ceramics and metal
JPS6177681A (en) Method of bonding nitride ceramics
JP2001048670A (en) Ceramics-metal joined body
JPS61222965A (en) Method of joining ceramic and metal
JPH059396B2 (en)
JPS62297275A (en) Joined body of non-oxide ceramic and metal
JPS63190770A (en) Ceramic-metal joined body with high temperature characteristics
JPS59223280A (en) Method of bonding ceramic and metal
Naidich et al. Progress in ceramics/metal joining
JPH0825826B2 (en) Metallization composition for zirconia ceramics
JPH0580434B2 (en)
JPS63190772A (en) Ceramic metal joined body with high joint strength

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term