JP2002249882A - Aluminum alloy material having excellent filiform corrosion resistance - Google Patents

Aluminum alloy material having excellent filiform corrosion resistance

Info

Publication number
JP2002249882A
JP2002249882A JP2001048617A JP2001048617A JP2002249882A JP 2002249882 A JP2002249882 A JP 2002249882A JP 2001048617 A JP2001048617 A JP 2001048617A JP 2001048617 A JP2001048617 A JP 2001048617A JP 2002249882 A JP2002249882 A JP 2002249882A
Authority
JP
Japan
Prior art keywords
aluminum alloy
oxide film
alloy material
phosphate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001048617A
Other languages
Japanese (ja)
Other versions
JP4829412B2 (en
Inventor
Mariko Sakata
真理子 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001048617A priority Critical patent/JP4829412B2/en
Publication of JP2002249882A publication Critical patent/JP2002249882A/en
Application granted granted Critical
Publication of JP4829412B2 publication Critical patent/JP4829412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si alloy in which phosphate treatability treated together with steel is improved, and filiform corrosion resistance is improved to the equal one of a surface treated steel sheet. SOLUTION: The content of Cu in the Al-Mg-Si based aluminum alloy material is controlled to <=0.2%. Further, in the analysis of an oxide film on the surface by ESCA(electron spectroscopy for chemical analysis), the thickness of the oxide film is <35Å, also, the content of Mg in the oxide film is 0%, and the covering ratio of phosphate crystals after phosphate treatment is >=90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用パネル外
材として好適な、耐糸錆性に優れた、塗装下地処理とし
てリン酸塩処理された後に塗装される自動車パネル用Al
-Mg-Si系アルミニウム合金材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for automotive panels which is suitable as an external material for automobile panels, has excellent thread rust resistance, and is coated after being subjected to a phosphate treatment as a coating base treatment.
-Mg-Si-based aluminum alloy material.

【0002】[0002]

【従来の技術】近年、二酸化炭素による地球温暖化など
の環境問題に対し、自動車の軽量化による排出二酸化炭
素量の低減が大きな課題となっている。この自動車の軽
量化の一貫として、パネルなどの自動車部材を鋼材から
アルミニウム合金材(圧延板、押出形材、鍛造材などの
アルミニウム合金展伸材)に置き換えることが行われて
いる。アルミニウム合金材は、鋼板に比較して、比重が
約1/3と軽く、軽量化効果が大きい。
2. Description of the Related Art In recent years, with respect to environmental problems such as global warming caused by carbon dioxide, reduction of the amount of carbon dioxide emitted by reducing the weight of automobiles has become a major issue. As a part of the reduction in the weight of automobiles, automobile members such as panels are being replaced with aluminum alloy materials (rolled sheets, extruded materials, forged materials, etc.). The aluminum alloy material has a specific gravity of about 1/3 lighter than a steel plate and has a large weight saving effect.

【0003】自動車部材の内の自動車パネルの製造工程
を例にとると、鋼板やアルミニウム合金板は、プレス成
形により所定形状に成形加工した後、他の部品ととも
に、自動車車体として組み立てられ、その後、リン酸塩
処理による塗装下地処理、塗装により、自動車車体とし
て完成する。この内、自動車車体の外側に位置するパネ
ル外板は、強度などの機械的特性の他に、自動車の外観
を左右する鮮映性、表面傷に対する耐糸錆性、塗膜密着
性などが特に要求される。
[0003] Taking the manufacturing process of an automobile panel as an example of an automobile member, a steel plate or an aluminum alloy plate is formed into a predetermined shape by press forming, and then assembled together with other parts into an automobile body. Finished as an automobile body by coating base treatment by phosphate treatment and painting. Of these, the panel skin located outside the car body has mechanical properties such as strength, as well as sharpness that affects the appearance of the car, thread rust resistance to surface scratches, coating film adhesion, etc. Required.

【0004】しかし、従来の鋼板、特に、パネル外板に
多用されている表面処理鋼板と比較した場合、アルミニ
ウム合金板の耐糸錆性は劣っている。これは、アルミニ
ウム合金板が自動車車体の一部にしか使用されない現状
では、リン酸塩処理条件が自動車車体の多くを占める鋼
材に適したものとなっているためである。
[0004] However, when compared with conventional steel sheets, particularly, surface-treated steel sheets frequently used for panel outer panels, the aluminum alloy sheets have poor thread rust resistance. This is because in the current situation where aluminum alloy plates are used only for a part of the vehicle body, phosphating conditions are suitable for steel materials that occupy most of the vehicle body.

【0005】前記アルミニウム合金材が鋼材とともにリ
ン酸塩処理される条件、即ち、鋼材に適した条件でリン
酸塩処理される場合や、鋼材と同じラインでリン酸塩処
理される場合には、アルミニウム合金材のリン酸塩処理
性が劣り、リン酸塩皮膜がアルミニウム合金材の全面を
覆わなくなる。このため、前記パネル外板にアルミニウ
ム合金板を使用する場合、耐糸錆性などの耐食性や鮮映
性が、鋼板に比して劣ることとなる。
[0005] When the aluminum alloy material is subjected to phosphating with steel, that is, when the phosphating is performed under conditions suitable for the steel, or when phosphating is performed on the same line as the steel, The phosphatability of the aluminum alloy material is poor, and the phosphate film does not cover the entire surface of the aluminum alloy material. Therefore, when an aluminum alloy plate is used as the panel outer plate, corrosion resistance such as thread rust resistance and sharpness are inferior to steel plates.

【0006】これに対し、アルミニウム合金材のリン酸
塩処理性を向上させるためには、アルミ合金材に適した
処理条件を適用すれば良い。
On the other hand, in order to improve the phosphatability of an aluminum alloy material, processing conditions suitable for the aluminum alloy material may be applied.

【0007】この代表的な技術は、リン酸塩処理浴中へ
フリーフッ素イオンを適量添加する方法であり、特開平
6ー173026号公報などに開示されている。
This typical technique is a method of adding an appropriate amount of free fluorine ions into a phosphating bath, which is disclosed in Japanese Patent Application Laid-Open No. 6-173026.

【0008】また、アルミニウム合金材の材料側からの
改善も従来から種々提案されている。例えば、特開平6-
240467号、特開平5-33165 号などの公報には、アルミニ
ウムに対して貴な、Fe、Ni、Cu、Cr、Mnなどの金属を析
出させることにより、これら析出金属をリン酸塩反応に
おけるカソードとして、アノードからのアルミニウムの
溶解を促進し、アルミ合金板へのリン酸塩の析出を促進
させる方法が開示されている。
Various improvements from the material side of the aluminum alloy material have been proposed in the past. For example, Japanese Unexamined Patent Publication
No. 240467, Japanese Patent Application Laid-Open No. 5-33165, and the like, by depositing metals such as Fe, Ni, Cu, Cr, and Mn, which are noble with respect to aluminum, these deposited metals are used as cathodes in a phosphate reaction. Discloses a method of accelerating the dissolution of aluminum from an anode and accelerating the precipitation of phosphate on an aluminum alloy plate.

【0009】[0009]

【発明が解決しようとする課題】ところが、これらの技
術を用いても、アルミニウム合金材では十分な耐糸錆性
が得られてない。そして、この傾向は、Al-Mg-Si系アル
ミニウム合金材(AA 乃至JIS 規格に規定された6000系ア
ルミニウム合金材) において特に顕著となる。
However, even with these techniques, aluminum alloy materials do not provide sufficient thread rust resistance. This tendency is particularly remarkable in Al-Mg-Si-based aluminum alloy materials (AA-6000-based aluminum alloy materials specified in JIS standards).

【0010】まず、前記リン酸塩処理浴中へフリーフッ
素イオンを適量添加する方法は、アルミニウム合金材の
処理量にもよるが、リン酸塩処理工程で排出されるスラ
ッジ量が著しく増大するという問題がある。
First, the method of adding an appropriate amount of free fluorine ions to the phosphating bath depends on the amount of the aluminum alloy material to be treated, but the amount of sludge discharged in the phosphating step is significantly increased. There's a problem.

【0011】実際に、前記鋼材用のリン酸塩処理条件を
アルミニウム合金材用の処理条件に変更するには、この
スラッジの問題から、処理ラインへのスラッジの除去装
置や排出スラッジの処理設備の設置など、設備の大幅な
改造が必要となる。このため、アルミニウム合金材に適
した処理条件が適用されている例は、車体のほとんどに
アルミニウム合金材が用いられているオールアルミ車用
の専用表面処理ラインのみである。
In practice, in order to change the phosphating treatment conditions for steel to the treatment conditions for aluminum alloy materials, due to the problem of sludge, a device for removing sludge to the treatment line and a facility for treating sludge discharged. Significant remodeling of the equipment such as installation is required. For this reason, an example in which the processing conditions suitable for the aluminum alloy material are applied is only a dedicated surface treatment line for an all-aluminum vehicle in which the aluminum alloy material is used for most of the vehicle body.

【0012】したがって、アルミニウム合金材が鋼材と
ともにリン酸塩処理される通常の場合において、リン酸
塩処理浴中へ添加するフリーフッ素イオン量には、スラ
ッジの問題からの制約がある。しかし、この制約された
中でのフリーフッ素イオン量では、リン酸塩処理性改善
効果が満足なものとは言えず、耐糸錆性も十分なレベル
ではない。
Therefore, in the normal case where the aluminum alloy material is phosphated together with the steel material, the amount of free fluorine ions added to the phosphating bath is limited by the problem of sludge. However, the effect of improving the phosphatability cannot be said to be satisfactory when the amount of free fluorine ions is limited, and the rust resistance is not at a sufficient level.

【0013】より具体的に、前記スラッジ発生抑制の具
体的な方法としては、リン酸塩処理浴中のフリーフッ素
イオン量を100 〜200ppm程度に抑えること、あるいはフ
リーフッ素量イオンを約150ppm以下に抑え、かつ、鉄の
キレート化合物の添加された浴を用いる方法などがあ
る。これらの処理浴では、スラッジ量を抑えることが出
来る反面、リン酸塩皮膜を材料表面の広範囲に被覆させ
ることは難しく、その結果、耐糸錆性に劣る。
More specifically, as a specific method for suppressing the generation of sludge, the amount of free fluorine ions in the phosphating bath is suppressed to about 100 to 200 ppm, or the amount of free fluorine ions is reduced to about 150 ppm or less. There is a method using a bath which is suppressed and to which an iron chelate compound is added. In these treatment baths, the amount of sludge can be suppressed, but it is difficult to coat a phosphate film over a wide range of the material surface, and as a result, the rust resistance is poor.

【0014】更に、前記アルミニウム合金材に金属を析
出させる技術は、確かにリン酸塩の析出を促進し、リン
酸塩処理性を向上させる効果がある。しかし、この効果
を出すためには、一定量以上の金属析出量が必要とな
る。このため、析出した金属がリン酸塩処理後にも、ア
ルミニウム合金板表面に残存し、耐糸錆性や塗膜密着性
をかえって劣化させるという問題がある。一方、この金
属析出量を抑制した場合、リン酸塩処理性向上効果が低
下し、リン酸塩皮膜を材料表面の広範囲に被覆させるこ
とは難しく、その結果、耐糸錆性に劣ることとなる。
Further, the technique of depositing a metal on the aluminum alloy material has the effect of promoting the precipitation of phosphate and improving the phosphatability. However, in order to achieve this effect, a certain amount of metal deposition is required. For this reason, there is a problem that the deposited metal remains on the surface of the aluminum alloy plate even after the phosphate treatment, deteriorating the rust resistance and coating film adhesion. On the other hand, when the metal deposition amount is suppressed, the effect of improving the phosphatability is reduced, and it is difficult to coat the phosphate film over a wide range of the material surface, and as a result, the rust resistance is poor. .

【0015】したがって、フリーフッ素イオン量を前記
100 〜200ppm程度に低く抑えたリン酸塩処理浴、言い換
えると、現行のアルミニウム合金材を鋼材とともに処理
するリン酸塩処理浴や現行の鋼材に適したリン酸塩処理
浴で処理する際に、アルミニウム合金材のリン酸塩皮膜
の被覆率の増大させ、アルミニウム合金材の耐糸錆性を
表面処理鋼板と同等にまで向上させること、即ち、アル
ミニウム合金材のリン酸塩処理性を向上させることが、
自動車へのアルミニウム合金材採用の大きな課題の一つ
であった。
Therefore, the amount of free fluorine ions is
When treating with a phosphating bath that is kept low to about 100 to 200 ppm, in other words, a phosphating bath that treats the current aluminum alloy material with steel and a phosphating bath that is suitable for current steel, To increase the coverage of the phosphate film of the aluminum alloy material and to improve the rust resistance of the aluminum alloy material to the same level as the surface-treated steel sheet, that is, to improve the phosphate treatment property of the aluminum alloy material. But,
This was one of the major issues in using aluminum alloy materials for automobiles.

【0016】本発明の目的は、これら従来技術の問題点
に鑑み、鋼材とともにリン酸塩処理されるアルミニウム
合金材のリン酸塩処理性を向上させ、耐糸錆性を表面処
理鋼板と同等にまで向上させたAl-Mg-Si系アルミニウム
合金材を提供することである。
SUMMARY OF THE INVENTION In view of these problems of the prior art, an object of the present invention is to improve the phosphatability of an aluminum alloy material to be phosphated together with a steel material, and to improve the rust resistance to a level equivalent to that of a surface-treated steel sheet. An object of the present invention is to provide an Al-Mg-Si-based aluminum alloy material which has been improved.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
に、本発明の耐糸錆性に優れたアルミニウム合金材の請
求項1 の要旨は、鋼材とともにリン酸塩処理された後に
塗装される自動車パネル用Al-Mg-Si系アルミニウム合金
材であって、Cu含有量を0.2 % 以下に規制するととも
に、アルミニウム合金材表面の酸化皮膜をESCAにより分
析した際の、酸化皮膜厚みが35Å未満であり、かつ酸化
皮膜中のMg含有量が0%であり、リン酸塩処理された後の
リン酸塩結晶の被覆率が90% 以上であることである。
In order to achieve this object, the gist of claim 1 of the present invention is to provide an aluminum alloy material having excellent rust resistance, which is coated after being treated with phosphate together with steel. An Al-Mg-Si-based aluminum alloy material for automotive panels.The Cu content is regulated to 0.2% or less, and when the oxide film on the aluminum alloy surface is analyzed by ESCA, the oxide film thickness is less than 35 mm. And the Mg content in the oxide film is 0%, and the coverage of phosphate crystals after the phosphate treatment is 90% or more.

【0018】本発明者らは、Cuを実質的に含まない乃至
Cuを規制した (以下、単に、Cuを含まない、と言う)Al-
Mg-Si 系アルミニウム合金材(AA 乃至JIS 規格に規定さ
れた6000系アルミニウム合金材) の耐糸錆性について検
討した結果、リン酸塩処理前のアルミニウム合金材表
面、それもアルミニウム合金材表面の酸化皮膜をESCAに
より分析した際の、酸化皮膜厚みと酸化皮膜中のMg含有
量が、リン酸塩処理性や耐糸錆性に大きく影響している
ことを見出した。
The inventors of the present invention have substantially no Cu content.
Regulated Cu (hereinafter simply referred to as containing no Cu)
As a result of examining the filiform rust resistance of Mg-Si-based aluminum alloy materials (6000-based aluminum alloy materials specified in AA to JIS standards), the surface of the aluminum alloy material before phosphate treatment, When the oxide film was analyzed by ESCA, it was found that the oxide film thickness and the Mg content in the oxide film greatly affected the phosphatability and the rust resistance.

【0019】そして、酸化皮膜厚みが35Å未満であり、
かつ酸化皮膜中のMg含有量が0%である場合に、これらを
越える酸化皮膜厚みや酸化皮膜中のMg含有量の場合に比
して、Cuを含まないAl-Mg-Si系アルミニウム合金材の、
鋼材とともに処理される場合の、リン酸塩処理性や耐糸
錆性が著しく向上することも見出した。
The oxide film thickness is less than 35 mm,
And, when the Mg content in the oxide film is 0%, compared to the case of the oxide film thickness and the Mg content in the oxide film exceeding these, the Cu-free Al-Mg-Si aluminum alloy material of,
It has also been found that when treated with steel, the phosphatability and the rust resistance are significantly improved.

【0020】本発明は、前記リン酸塩処理性や耐糸錆性
の向上効果を有するため、請求項2のように、リン酸塩
処理浴中のフリーフッ素量が200 ppm 以下であるか、ま
たは、鉄のキレート化合物が含まれていて、かつ、フリ
ーフッ素量が150ppm以下であるような、鋼材に適した(A
l-Mg-Si 系アルミニウム合金材のとって不利な) 条件の
リン酸塩処理浴に適用されて好適である。
Since the present invention has the effect of improving the phosphatability and the rust resistance, it is preferred that the amount of free fluorine in the phosphating bath is 200 ppm or less. Alternatively, a steel material containing an iron chelate compound and having a free fluorine content of 150 ppm or less (A
It is suitable for application to a phosphating bath under conditions that are disadvantageous for l-Mg-Si-based aluminum alloy materials.

【0021】[0021]

【発明の実施の形態】(酸化皮膜分析方法)まず、本発明
におけるアルミニウム合金材表面の酸化皮膜のESCAによ
る組織の分析乃至測定方法を以下に説明する。ESCA (エ
スカ) は固体表面分析に汎用されている分析方法であ
る。ESCAは、Electron Spectroscopy for Chemical Ana
lysis の略称であり、X 線光電子分光法(XPS:X-ray Pho
toelectron Spectroscopy)の呼称である。本発明におけ
るアルミニウム合金材表面の酸化皮膜のESCAによる測定
は、V.G.Scientific社製ESCALAB-210Dを用い、X 線源に
はAl Kα線を用いる。また、検出角は、試料の法線に対
し、0 °で行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Method of Analyzing Oxide Film) First, a method of analyzing or measuring a structure of an oxide film on the surface of an aluminum alloy material by ESCA according to the present invention will be described below. ESCA is an analytical method widely used for solid surface analysis. ESCA is an Electron Spectroscopy for Chemical Ana
Abbreviation for lysis, X-ray photoelectron spectroscopy (XPS: X-ray Pho
toelectron Spectroscopy). In the present invention, the measurement of the oxide film on the surface of the aluminum alloy material by ESCA is performed using ESCALAB-210D manufactured by VGScientific, and Al Kα radiation is used as the X-ray source. The detection angle is set at 0 ° with respect to the normal line of the sample.

【0022】この検出角が異なると、酸化皮膜と金属Al
中を通過するX 線の距離が変化する結果、検出されるI
Al-OやIAl-Al などの各ピークの面積値が変わり、酸化
皮膜の厚みやMg含有量に測定のばらつきが出やすくな
る。
If the detection angles are different, the oxide film and the metal Al
As a result of the change in the distance of the X-ray passing through the
The area value of each peak of Al-O , I Al-Al, etc. changes, and the thickness of the oxide film and the Mg content tend to have measurement variations.

【0023】酸化皮膜の厚みd(Å: オングストローム)
は、ESCAより求めたピーク中の、酸素と結合しているAl
に起因するピークの面積IAl-Oと金属Alと結合している
Alに起因するピークの面積IAl-Al を波形分離して求
め、その比IAl-O/IAl-Al から、下記公知の換算式に
より、Å (オングストローム) 換算する。より具体的に
は、酸化皮膜の厚みはアルミニウム酸化皮膜最表層部
で、前記関連ピークを測定し、d=20×cos θIn(1.15 ×
Al-O/IAl-Al +1)の換算式 (但し、θは光電子の検
出角度) により算出する。
Oxide film thickness d (d: Angstroms)
Is the Al bound to oxygen in the peak determined by ESCA
Area of the peak I due to is bonded to Al-O and metallic Al
The area I Al-Al of the peak caused by Al is determined by waveform separation, and the ratio I Al-O / I Al-Al is converted into Å (angstrom) by the following known conversion formula. More specifically, the thickness of the oxide film was measured at the outermost layer portion of the aluminum oxide film, and the related peak was measured, and d = 20 × cos θIn (1.15 ×
I Al-O / I Al-Al +1) (where θ is the photoelectron detection angle).

【0024】同様に、Mg含有量も、ESCAより求めたI
Mg-Oのピークの面積を質量% に換算して求める。Mg含有
量は、アルミニウム酸化皮膜最表層部で検出される前記
Mg関連ピークの面積から原子量換算することにより求め
られる。
Similarly, the Mg content is determined by the ICA determined by ESCA.
Determine the area of the Mg-O peak by converting it to mass%. The Mg content is detected at the outermost layer of the aluminum oxide film.
It is determined by converting the area of the Mg-related peak into an atomic weight.

【0025】なお、前記IAl-O/IAl-Al およびIMg-O
は、それぞれESCAの狭域スペクトルにおけるAl2Pのピー
クおよびMg2Pのピークより求める。また、材料のばらつ
きを考慮して、ESCAによるピークの材料測定箇所は、間
隔が例えば20cm以上離れた、複数箇所 (例えば5 箇所)
とし、測定値としては、これらの平均を取ることが好ま
しい。
The above - mentioned I Al-O / I Al-Al and I Mg-O
Is determined from the peak of Al 2P and the peak of Mg 2P in the narrow spectrum of ESCA, respectively. In addition, in consideration of material variations, the material measurement locations of peaks by ESCA are multiple locations (for example, 5 locations) separated by, for example, 20 cm or more.
It is preferable to take the average of the measured values.

【0026】なお、ESCAによる分析対象のアルミニウム
合金材表面に、防錆油や潤滑油、Al粉、あるいは他の汚
れなどの付着物が存在する場合には、ESCAにおいて、こ
れら油やAl由来の炭素、Alなど、測定対象ピークに対し
て外乱となる他のピークなどが生じ、測定誤差を生じ易
くなる。このため、アセトンなどの有機溶媒による超音
波洗浄等、前記付着物に応じて、分析対象のアルミニウ
ム合金材表面が予め洗浄乃至清浄化されることが好まし
い。
When there are rust-preventive oils, lubricating oils, Al powder, or other contaminants on the surface of the aluminum alloy material to be analyzed by ESCA, the ESCA determines whether these oils or Al-derived substances are present. Other peaks, such as carbon and Al, which disturb the peak to be measured are generated, and a measurement error is likely to occur. For this reason, it is preferable that the surface of the aluminum alloy material to be analyzed is previously cleaned or cleaned in accordance with the deposit, such as ultrasonic cleaning with an organic solvent such as acetone.

【0027】なお、特開平5-70970 号および特開平8-92
773 号公報などに開示されている、この種測定方法とし
て代表的なAES(オージェ) は、深さ方向の分解能が数nm
〜数十nmであり、皮膜の薄いアルミニウム合金材表面の
酸化皮膜の領域の分析を行うには不十分である。また、
通常の材料の成分分析に使用されるカント分析 (発光分
光分析) なども、本発明薄膜酸化皮膜のMg含有量の正確
な測定は不可能である。これに対し、本発明で用いたES
CAは、分解能が1nm 〜数nmであり、本発明薄膜酸化皮膜
の深さ方向 (領域) での酸化皮膜の厚みやMg含有量を十
分に評価することが可能である。
It should be noted that JP-A-5-70970 and JP-A-8-92970
AES (Auger), a typical example of this type of measurement method disclosed in Japanese Patent Publication No. 773, has a resolution in the depth direction of several nm.
To several tens of nanometers, which is insufficient for analyzing the region of the oxide film on the surface of the thin aluminum alloy material. Also,
Accurate measurement of the Mg content of the thin oxide film of the present invention is also impossible by Kant analysis (emission spectroscopy) used for component analysis of ordinary materials. In contrast, the ES used in the present invention
The CA has a resolution of 1 nm to several nm, and can sufficiently evaluate the thickness and Mg content of the oxide film in the depth direction (region) of the thin oxide film of the present invention.

【0028】(酸化皮膜の厚み)これらの条件により求め
たリン酸塩処理前のアルミニウム合金材表面の酸化皮膜
の厚みを、本発明では35Å (オングストローム) 未満の
薄膜と規定する。酸化皮膜の厚みを35Å未満 (前記換算
前のIAl-O/IAl-Al では4.0 以下となる) とすること
で、アルミニウム合金材のリン酸塩処理された後のリン
酸塩結晶の被覆率が90% 以上となるように、リン酸塩処
理性が向上し、かつ、耐糸錆性が向上する。一方、酸化
皮膜の厚みが35Å以上の場合、アルミニウム合金材の前
記リン酸塩結晶の被覆率は90% 未満となり、耐糸錆性向
上効果が得られない。
(Thickness of Oxide Film) The thickness of the oxide film on the surface of the aluminum alloy material before the phosphate treatment determined under these conditions is defined as a thin film of less than 35 ° (angstrom) in the present invention. By setting the thickness of the oxide film to less than 35 mm (I Al-O / I Al-Al before conversion becomes 4.0 or less), the phosphate crystal coating after phosphate treatment of the aluminum alloy material is performed. The phosphatability and the rust resistance are improved so that the rate becomes 90% or more. On the other hand, when the thickness of the oxide film is 35 mm or more, the coverage of the aluminum alloy material with the phosphate crystals is less than 90%, and the effect of improving the rust resistance cannot be obtained.

【0029】因みに、実施例表2 に示すように、前記I
Al-O/IAl-Al からの換算において、例えば、IAl-O
Al-Al が3.5 では酸化皮膜の厚みは32Å、IAl-O/I
Al-A l が3.8 では酸化皮膜の厚みは34Å、IAl-O/I
Al-Al が4.2 では酸化皮膜の厚みは35Å、IAl-O/I
Al-Al が4.5 では酸化皮膜の厚みは36Å、IAl-O/I
Al-A l が4.7 では酸化皮膜の厚みは37Åとなる。
Incidentally, as shown in Table 2 in the working examples,
Al-O/ IAl-AlIn the conversion fromAl-O/
IAl-AlIs 3.5, the thickness of oxide film is 32mm, IAl-O/ I
Al-A lIs 3.8, the thickness of the oxide film is 34mm, IAl-O/ I
Al-AlIs 4.2, the thickness of the oxide film is 35mm, IAl-O/ I
Al-AlIs 4.5, the thickness of the oxide film is 36mm, IAl-O/ I
Al-A lHowever, at 4.7, the thickness of the oxide film is 37 mm.

【0030】Al-Mg-Si系アルミニウム合金材を圧延乃至
押出などの常法により製造した場合、脱脂などのエッチ
ングを伴う最終洗浄後のアルミニウム合金材の通常の酸
化皮膜の厚みは35Å〜45Åのレベルである。これに対
し、本発明では、酸化皮膜の厚みを35Å未満のごく薄い
レベルの厚みとする。
When an Al-Mg-Si-based aluminum alloy material is manufactured by a conventional method such as rolling or extrusion, the thickness of a normal oxide film of the aluminum alloy material after final cleaning accompanied by etching such as degreasing is 35 to 45 mm. Level. In contrast, in the present invention, the thickness of the oxide film is set to a very small level of less than 35 °.

【0031】アルミニウム合金材の表面酸化皮膜の組成
は、前記アルミニウム合金材の製造工程における最終洗
浄によるエッチングのレベルに大きく依存する。本発明
者らは、アルミニウム合金材の表面の洗浄によるエッチ
ングレベルを、弱いレベルから強いレベルまで、広範囲
に種々変えて行ない、表面酸化皮膜組成を変化させ、こ
れを前記ESCA分析により、定量化し、リン酸塩処理性や
耐糸錆性との関係を詳細調査した。
The composition of the surface oxide film of the aluminum alloy material largely depends on the level of etching by the final cleaning in the manufacturing process of the aluminum alloy material. The present inventors performed various changes in the etching level by cleaning the surface of the aluminum alloy material from a weak level to a strong level in a wide range, changed the surface oxide film composition, and quantified the composition by the ESCA analysis. The relationship between phosphatability and yarn rust resistance was investigated in detail.

【0032】この結果、アルミニウム合金材表面の酸化
皮膜は、エッチングを伴う洗浄のエッチング強度によ
り、3つの段階に変化する。まず、エッチング強度の弱
い洗浄レベルでの酸化皮膜は、厚みが45Å以上のレベル
で厚く、Mgを多く含む酸化皮膜であり、従来から言われ
ている様に、熱処理工程などの前工程で生成した酸化皮
膜である。このMgを含む酸化皮膜は、特開平8 -92773号
公報に記載のように、特にフリーフッ素イオン量を低く
抑えた前記鋼材向けのリン酸塩処理条件においては、リ
ン酸塩処理性を著しく阻害する。
As a result, the oxide film on the surface of the aluminum alloy material changes into three stages depending on the etching strength of the cleaning involving etching. First, the oxide film at the cleaning level where the etching strength is weak is a thick oxide film with a thickness of 45 mm or more and contains a large amount of Mg. It is an oxide film. As described in JP-A-8-92773, the oxide film containing Mg significantly inhibits phosphatability, particularly under phosphating conditions for the steel material in which the amount of free fluorine ions is kept low. I do.

【0033】次に、エッチング強度の比較的強い洗浄レ
ベルでの酸化皮膜は、厚みが35Å〜45Åのレベル (前記
通常の酸化皮膜の厚み) で、Mgを実質的に含まない。し
かし、本発明で規定する酸化皮膜の厚み35Å未満からす
ると、比較的厚いアルミの酸化物からなる皮膜である。
この酸化皮膜も、特にフリーフッ素イオン量を低く抑え
た前記鋼材向けのリン酸塩処理条件においては、アルミ
ニウム合金材のリン酸塩処理性が良くなく、アルミニウ
ム合金材のリン酸塩処理された後のリン酸塩結晶の被覆
率が90% 以上とならない。
Next, the oxide film at the cleaning level with relatively high etching strength has a thickness of 35 ° to 45 ° (the thickness of the ordinary oxide film) and does not substantially contain Mg. However, when the thickness of the oxide film specified in the present invention is less than 35 mm, the oxide film is a relatively thick film made of aluminum oxide.
This oxide film also has poor phosphatability of the aluminum alloy material, particularly under the phosphating conditions for steel in which the amount of free fluorine ions is kept low, and after the aluminum alloy material has been phosphated, Does not exceed 90%.

【0034】そして、これより更に、エッチング強度が
強い洗浄レベルでの酸化皮膜は、本発明で規定する酸化
皮膜の厚み35Å未満であり、Mgを実質的に含まない酸化
皮膜である。この酸化皮膜は、特にフリーフッ素イオン
量を約200ppm以下に抑えた、前記鋼材向けのリン酸塩処
理条件においても、リン酸塩結晶の被覆率が90% 以上と
なる、高いリン酸塩処理性が得られる。
Further, the oxide film at the cleaning level having a high etching strength is an oxide film having a thickness of less than 35 mm of the oxide film specified in the present invention and substantially not containing Mg. This oxide film has a high phosphatability with a phosphate crystal coverage of 90% or more even under the phosphating conditions for steel materials in which the amount of free fluorine ions is suppressed to about 200 ppm or less. Is obtained.

【0035】前記エッチング強度の比較的強い洗浄で得
られた、厚みが35Å〜45Åのレベルで、Mgを実質的に含
まない酸化皮膜が、前記鋼材向けのリン酸塩処理条件に
おいては、リン酸塩処理性が悪い理由は、酸化皮膜組成
に起因する。即ち、エッチングにより、酸化皮膜からMg
を除去しても、熱延や押出、鍛造あるいは熱処理などの
アルミニウム合金材の製造工程中で、高温で生成した不
動態能が高い、比較的厚い前記酸化アルミの皮膜が残存
している。この高温で生成した酸化アルミの皮膜は、前
記鋼材向けのリン酸塩処理条件においては、リン酸塩処
理性が特に悪い。
When the oxide film obtained by the above-mentioned cleaning with relatively high etching strength and having a thickness of 35 to 45 ° and containing substantially no Mg is used, the phosphoric acid treatment conditions for the steel material are phosphoric acid. The reason for poor salt treatment properties is due to the composition of the oxide film. That is, by etching, Mg
Even during the removal of the aluminum oxide, a relatively thick film of the aluminum oxide, which has a high passivation ability and is generated at a high temperature, remains in a manufacturing process of the aluminum alloy material such as hot rolling, extrusion, forging or heat treatment. The aluminum oxide film formed at this high temperature has particularly poor phosphatability under the phosphating conditions for steel.

【0036】したがって、本発明で規定する、Mgを実質
的に含まず、厚みが35Å未満の酸化皮膜を得、前記鋼材
向けのリン酸塩処理条件におけるリン酸塩処理性を向上
させるためには、まず、Al-Mg-Si系アルミニウム合金材
の洗浄 (エッチング) を強度に行い、前記製造工程中に
高温で生成した不動態能の高い酸化アルミの皮膜を溶解
除去することが重要となる。
Therefore, in order to obtain an oxide film substantially free of Mg and having a thickness of less than 35 mm as defined in the present invention and to improve the phosphatability under the phosphating conditions for the steel material, First, it is important to strongly wash (etch) the Al-Mg-Si-based aluminum alloy material to dissolve and remove the aluminum oxide film having a high passivation ability generated at a high temperature during the manufacturing process.

【0037】そして、この洗浄後に、大気中あるいは洗
浄液中で、新たに本発明で規定する、Mgを実質的に含ま
ず、厚みが35Å未満の酸化皮膜を生成させる。ただ、こ
の新たに酸化皮膜を生成させた段階で、あるいは、リン
酸塩処理される前の段階で、酸化皮膜中のMg含有量が0%
であり、酸化皮膜の厚さが35Å未満となるような薄い厚
みとすることが重要である。洗浄条件によっては、ある
いは洗浄後リン酸塩処理されるまでの条件によっては、
酸化皮膜がMgを実質的に含んだり、厚みが35Å以上とな
りうるので注意を要する。
After this cleaning, an oxide film substantially free of Mg and having a thickness of less than 35 °, which is specified in the present invention, is newly formed in the air or a cleaning solution. However, at the stage where this new oxide film is generated or before the phosphate treatment, the Mg content in the oxide film is 0%
It is important that the oxide film has a thickness as small as less than 35 mm. Depending on the washing conditions, or the conditions before washing and phosphating,
Note that the oxide film may substantially contain Mg or the thickness may be 35 mm or more.

【0038】(エッチングを伴う洗浄)本発明におけるア
ルミニウム合金材の製造条件の内、特に、エッチングを
伴う洗浄工程は、前記した通り、アルミニウム合金材表
面の酸化皮膜の制御のために特に重要となる。
(Cleaning with Etching) Among the manufacturing conditions of the aluminum alloy material in the present invention, the washing step with etching is particularly important as described above for controlling the oxide film on the surface of the aluminum alloy material. .

【0039】このエッチングを伴う洗浄工程は、酸化皮
膜からMgを溶解除去し、アルミニウム合金材の製造工程
中で生成した不動態能が高い酸化アルミの皮膜を溶解除
去し、この洗浄後に生成した新たな酸化皮膜中のMg含有
量が0%であり、酸化皮膜の厚さが35Å未満となるような
薄い厚みとする条件を、合金の製造履歴と成分組成との
関係で選択する。
In the cleaning process involving etching, Mg is dissolved and removed from the oxide film, and the aluminum oxide film having a high passivation generated during the manufacturing process of the aluminum alloy material is dissolved and removed. The conditions for reducing the thickness of the oxide film to 0% and the thickness of the oxide film to be less than 35 ° are selected in relation to the production history of the alloy and the component composition.

【0040】エッチングを伴う洗浄には、一般的には、
電解脱脂、水酸化ナトリウム、炭酸ナトリウムなどのア
ルカリ水溶液、硫酸、硝酸などの酸水溶液、市販の洗浄
液あるいはこれらを組み合わせた洗浄工程等が例示され
る。本発明でも、特異な洗浄方法や条件を選択するので
はなく、これら公知の洗浄条件の中から、前記本発明酸
化皮膜条件を満たす条件を適宜選択する。
For cleaning with etching, generally,
Examples include electrolytic degreasing, an aqueous alkali solution such as sodium hydroxide and sodium carbonate, an aqueous acid solution such as sulfuric acid and nitric acid, a commercially available cleaning solution, or a cleaning step combining these. In the present invention, too, a condition that satisfies the above-mentioned oxide film conditions of the present invention is appropriately selected from these known cleaning conditions, instead of selecting specific cleaning methods and conditions.

【0041】但し、同じ洗浄条件であっても、アルミニ
ウム合金材の製造履歴が大きく異なり、アルミニウム合
金材の製造工程中で生成した前記不動態能が高く厚い酸
化アルミの皮膜条件が異なる場合には、前記本発明酸化
皮膜条件を満たさなくなる場合がある。また、アルミニ
ウム合金材の製造工程中で生成した酸化アルミの皮膜条
件が同じであって、前記洗浄薬液が同じであっても、洗
浄処理温度や処理時間が大きく異なる場合、前記本発明
酸化皮膜条件を満たさなくなる場合があるので注意を要
する。
However, even under the same cleaning conditions, when the manufacturing histories of the aluminum alloy material are significantly different and the film conditions of the thick aluminum oxide having a high passivation ability generated during the manufacturing process of the aluminum alloy material are different. In some cases, the oxide film conditions of the present invention may not be satisfied. Further, when the film conditions of the aluminum oxide produced during the manufacturing process of the aluminum alloy material are the same, and the cleaning chemical solution is the same, when the cleaning temperature and the processing time are greatly different, the oxide film conditions of the present invention are not changed. Care must be taken because it may not be satisfied.

【0042】更に、エッチングを伴う洗浄後のアルミニ
ウム合金材のリン酸塩処理までの保管も重要である。洗
浄後の酸化皮膜の酸化が更に進んだ場合、前記洗浄後に
生成した酸化皮膜の、特に酸化皮膜の厚さが、本発明範
囲を外れる可能性がある。このため、アルミニウム合金
材の酸化皮膜が経時変化しないように、防錆油や防錆剤
などを塗布する、包装するなどの工夫も場合によって必
要となる。
Further, it is important to store the aluminum alloy material after the cleaning with etching until the phosphate treatment. If the oxidation of the oxide film after the cleaning is further advanced, the thickness of the oxide film formed after the cleaning, particularly the thickness of the oxide film, may fall outside the range of the present invention. For this reason, in order to prevent the oxide film of the aluminum alloy material from changing with time, some measures such as applying a rust-preventive oil or a rust-preventive agent and packaging may be required.

【0043】(リン酸塩結晶の被覆率と耐糸錆性)本発明
で規定する、Mgを実質的に含まず、厚みが35Å未満の薄
い酸化皮膜とした場合、リン酸塩結晶の被覆率は90% 以
上となり、耐食性試験における最大糸錆長さが急激に短
くなる。
(Coverage rate of phosphate crystals and rust resistance) When a thin oxide film having substantially no Mg and having a thickness of less than 35 mm as defined in the present invention is used, the coverage rate of phosphate crystals Is 90% or more, and the maximum yarn rust length in the corrosion resistance test is sharply shortened.

【0044】糸錆は、自動車外板を想定した場合、チッ
ピングや当て傷などにより、塗膜が剥離し、剥離部分の
アルミ素地が露出する結果、塩素分がアルミ素地を腐食
させることで起こることが知られている。そして、糸錆
の成長は、この腐食を起点とし、リン酸塩結晶の被覆さ
れていない部分より、大気中の水分が、塗膜を通じてア
ルミ素地に供給され、塗膜下での電気化学的な反応によ
り、糸状の錆として進行すると考えられる。
[0044] Yarn rust occurs when an automobile outer panel is supposed to cause peeling of the coating film due to chipping or bruising, thereby exposing the aluminum base material at the peeled part, thereby causing chlorine content to corrode the aluminum base material. It has been known. The growth of thread rust starts from this corrosion, and the moisture in the air is supplied from the uncoated portion of the phosphate crystal to the aluminum substrate through the coating film, and the electrochemical lithography under the coating film occurs. It is considered that the reaction proceeds as thread-like rust.

【0045】このため、リン酸塩結晶がアルミニウム合
金材を覆っていなければ、塗膜側からの水の供給、酸素
の供給がなされ、糸錆が成長し易いことが推測できる。
したがって、アルミニウム合金材表面のリン酸塩皮膜の
被覆率が大きい場合、糸錆の成長は少ない。一方、リン
酸塩結晶の被覆率が小さい場合には、塗膜下での糸錆の
成長は大きくなる。
For this reason, if the phosphate crystals do not cover the aluminum alloy material, it is presumed that water and oxygen are supplied from the coating film side and that rust easily grows.
Therefore, when the coverage of the phosphate film on the surface of the aluminum alloy material is large, the growth of thread rust is small. On the other hand, when the phosphate crystal coverage is small, the growth of thread rust under the coating film increases.

【0046】また、糸錆は、リン酸塩結晶の未被覆部が
連続的につながっている方が、より成長し易い。糸錆の
成長は、前記した通り、電気化学的な反応により進行す
るので、塗膜から糸錆先端への水分の供給が、糸錆の進
行方向に連続的になされると糸錆の成長は促進される。
Further, the filiform rust is more likely to grow when the uncoated portions of the phosphate crystals are continuously connected. As described above, the growth of the thread rust progresses by the electrochemical reaction, and therefore, if the supply of moisture from the coating film to the tip of the thread rust is continuously performed in the traveling direction of the thread rust, the growth of the thread rust does not occur. Promoted.

【0047】これに対し、本発明においては、この塗膜
からの糸錆先端への水分の供給が連続的になされないよ
うに、リン酸塩結晶の被覆率は90% 以上と規定する。リ
ン酸塩の被覆部の割合が90%以上を越えると、急激に
最大糸錆長さが短くなったのは、リン酸塩被覆部率の割
合が90%を臨界値として、未被覆部が急激に減少し、
連続的につながった未被覆部が減少し、島状になったた
めと推考される。
On the other hand, in the present invention, the coverage of phosphate crystals is specified to be 90% or more so that water is not continuously supplied from the coating film to the tip of the thread rust. When the proportion of the phosphate coated portion exceeded 90% or more, the maximum thread rust length was suddenly shortened because the ratio of the phosphate coated portion was 90% as the critical value, and the uncoated portion was 90%. Sharply decreases,
It is presumed that the continuous uncoated portion decreased and became an island shape.

【0048】リン酸塩結晶の被覆状況は、一般的に、SE
M により観察できる。但し、リン酸塩の結晶は傾斜して
成長しているものも多く、未被覆部が結晶に隠されてい
る場合も多い。その結果、未被覆部が連続的につながっ
ているか、あるいは、島状であるかなど、未被覆部の詳
細を知ることは難しい。
The coating condition of the phosphate crystals is generally defined by SE
Observed by M. However, many phosphate crystals are grown at an angle, and the uncoated portions are often hidden by the crystals. As a result, it is difficult to know details of the uncovered portion, such as whether the uncovered portion is continuously connected or has an island shape.

【0049】このため、本発明では、リン酸塩結晶の被
覆率を、SEM 観察により求めることを前提とするが、そ
の条件を、2000倍の倍率で40μm ×50μm の領域を2視
野観察した平均値を以下の式にあてはめて求めるものと
する。 リン酸塩結晶の被覆率% =100-( アルミ素地が露出して
いる部分の面積/観察視野の面積×100)
For this reason, in the present invention, it is assumed that the coverage of the phosphate crystals is determined by SEM observation, and the condition is determined by observing the area of 40 μm × 50 μm by 2000 times magnification in two visual fields. The value shall be determined by applying the following formula. Phosphate crystal coverage% = 100-(Area of exposed aluminum substrate / Area of observation field x 100)

【0050】そして、このリン酸塩結晶の被覆率を求め
る基準となるリン酸塩処理条件は、フリーフッ素イオン
量を約200ppm以下に抑えるとともに、リン酸塩処理浴組
成を、亜鉛イオン濃度が0.6 〜2.0 g /l、リン酸イオン
濃度が、5 〜 30g /l の、一般的な範囲のものを用い
る。リン酸塩処理時間は2分間で、処理温度は33〜45℃
で行う。
The phosphating conditions serving as the criteria for determining the coverage of the phosphate crystals are such that the amount of free fluorine ions is suppressed to about 200 ppm or less and the phosphating bath composition is adjusted to a zinc ion concentration of 0.6 ppm. Use a compound having a general range of 2.0 g / l and a phosphate ion concentration of 5 to 30 g / l. Phosphate treatment time is 2 minutes, treatment temperature is 33-45 ° C
Do with.

【0051】前記特開平8 -92773号公報では、洗浄によ
るエッチング量/酸化皮膜質量が0.8 〜1.5 の範囲であ
れば、リン酸塩処理性が良好であるとされている。しか
し、前記特開平8 -92773号公報では、対象が、Mg量が4.
5%と高いAl-Mg 系 (5000系)であって、Al-Mg-Si系アル
ミニウム合金材に比してリン酸塩処理性が良い、アルミ
ニウム合金材を対象にしている。また、本発明が対象と
する、特にフリーフッ素イオン量を約200ppm以下に抑え
たようなリン酸塩処理浴における処理性を意図していな
い。
According to the above-mentioned Japanese Patent Application Laid-Open No. 8-92773, if the ratio of the amount of etching by cleaning / the mass of the oxide film is in the range of 0.8 to 1.5, the phosphatability is good. However, in the above-mentioned JP-A-8-92773, the target has a Mg content of 4.
It is intended for aluminum alloy materials that are Al-Mg-based (5000-based) with as high as 5% and have better phosphatability than Al-Mg-Si-based aluminum alloy materials. In addition, the present invention does not intend to treat the phosphating bath which is the object of the present invention, particularly, the phosphating bath in which the amount of free fluorine ions is suppressed to about 200 ppm or less.

【0052】更に、本発明は、特開平6-240467号、特開
平5-33165 号公報などに開示されているアルミニウム合
金材表面に金属を析出させる方法ではなく、アルミニウ
ム合金材表面の酸化皮膜をエッチングを伴う洗浄などに
より適切に調整する手段を用いている。その結果、析出
させた金属により、耐糸錆性が低下するなどの問題は発
生しない。
Further, the present invention is not directed to the method of depositing a metal on the surface of an aluminum alloy material disclosed in JP-A-6-240467 and JP-A-5-33165, but to an oxide film on the surface of the aluminum alloy material. Appropriate adjustment is made by cleaning with etching or the like. As a result, the deposited metal does not cause a problem such as a decrease in rust resistance.

【0053】(アルミニウム合金材)本発明が適用対象と
するAl-Mg-Si系アルミニウム合金材は、AA乃至JIS 規格
に規定された6000系アルミニウム合金材全般である。但
し、用途に応じて、基本的な諸特性を満足する必要があ
るので、前記6000系の規格内より最適合金材 (圧延板、
押出形材、鍛造材などのアルミニウム合金展伸材) を選
択する。
(Aluminum Alloy Material) The Al-Mg-Si-based aluminum alloy materials to which the present invention is applied are all 6000-based aluminum alloy materials specified in AA to JIS standards. However, depending on the application, it is necessary to satisfy the basic characteristics, so the most suitable alloy material (rolled plate,
Aluminum alloy wrought materials such as extruded and forged materials).

【0054】ただ、6000系合金の中でも、特に、前記自
動車車体のパネル材、フレーム材、メンバー材などとし
ての要求特性である、プレス成形性や曲げ加工性に優
れ、或いは、塗装焼付後に150MPa以上の耐力となる人工
時効硬化性に優れることが好ましい。
However, among the 6000 series alloys, in particular, they are excellent in press formability and bending workability, which are required properties as a panel material, a frame material and a member material of the automobile body, or 150 MPa or more after baking. It is preferable to be excellent in artificial age hardening property, which is the proof stress.

【0055】この特性を満足するための、Al-Mg-Si系ア
ルミニウム合金の好ましい化学成分組成は、耐糸錆性向
上の点から、Cu含有量を0.2 % 以下に規制することを必
須とし、基本的にSi:0.6〜1.3% (質量% 、以下同じ) 、
Mg:0.4〜1.2%を含み残部Alおよび不可避的不純物からな
ることである。この化学成分組成と前記特性を満足する
6000系Al合金としてはJIS 乃至AA規格で、6016、6111、
6022、6061、6N01等のT4、T6などの調質材が例示され
る。
A preferable chemical composition of the Al-Mg-Si-based aluminum alloy for satisfying this property is that it is essential to limit the Cu content to 0.2% or less from the viewpoint of improving the rust resistance. Basically Si: 0.6-1.3% (mass%, the same applies hereinafter),
Mg: 0.4 to 1.2%, with the balance being Al and unavoidable impurities. Satisfies the chemical composition and the above characteristics
6000 series Al alloy is JIS to AA standard, 6016, 6111,
Temper materials such as T4 and T6 such as 6022, 6061 and 6N01 are exemplified.

【0056】本発明の6000系アルミニウム合金パネル材
の場合、Cuの含有量が0.2%を越えると、塗装後の耐蝕性
の耐糸錆性を著しく劣化させる。このため、自動車パネ
ル構造体の外板の場合の耐糸さび性のより厳しい要求基
準を満足できなくなる可能性が高い。このため、本発明
では、Cuの含有量はできるだけ少ない方が良い。
In the case of the 6000 series aluminum alloy panel material of the present invention, if the Cu content exceeds 0.2%, the corrosion resistance and the rust resistance after coating are significantly deteriorated. For this reason, there is a high possibility that the stricter requirements for string rust resistance in the case of the outer panel of an automobile panel structure cannot be satisfied. Therefore, in the present invention, the content of Cu is preferably as small as possible.

【0057】この他、Mn、Cr、Zr、Ti、B 、Fe、Zn、N
i、V などのその他の合金元素は、基本的には不純物元
素である。しかし、6000系合金のリサイクルの観点か
ら、溶解材として、高純度Al地金だけではなく、6000系
合金や、その他のAl合金スクラップ材、低純度Al地金な
どを溶解材として使用する場合を含む。このため、これ
ら元素が、本発明の目的とする諸特性向上効果を阻害し
ない範囲で、JIS 乃至AA規格内で含有されることを許容
する。
In addition, Mn, Cr, Zr, Ti, B, Fe, Zn, N
Other alloying elements such as i and V are basically impurity elements. However, from the viewpoint of recycling of 6000 series alloys, when using not only high-purity Al metal but also 6000 series alloys, other Al alloy scrap materials, low-purity Al metal, etc. Including. For this reason, these elements are allowed to be contained within the JIS to AA standards as long as the effects of improving various properties aimed at by the present invention are not impaired.

【0058】本発明におけるアルミニウム合金材自体
は、溶解、鋳造、均質化熱処理、熱間加工 (圧延、押
出、鍛造) 、必要により中間焼鈍、冷間加工 (圧延、鍛
造) 圧延等の工程は常法により製造が可能である。
The aluminum alloy material itself in the present invention is usually subjected to processes such as melting, casting, homogenizing heat treatment, hot working (rolling, extrusion, forging), intermediate annealing and cold working (rolling, forging) and rolling if necessary. It can be manufactured by the method.

【0059】[0059]

【実施例】次に、本発明の実施例を説明する。表1 に示
すAl-Mg-Si系アルミニウム合金組成の鋳塊を、DC鋳造法
により溶製後、470 ℃×8 時間の範囲で均質化熱処理を
施し、厚さ2.5 mmまで熱間圧延した。次に厚さ1.0mm ま
で冷間圧延し、その後、硝石炉を用いて560 ℃で溶体化
処理後直ちに水冷して焼入れ処理を行うT4調質処理を行
い、アルミニウム合金圧延板を作製した。この表1 のAl
-Mg-Si系アルミニウム合金圧延板は、6016-T4 で125MP
a、6016--T4で150MPaの耐力を有していた。
Next, embodiments of the present invention will be described. An ingot having an Al-Mg-Si-based aluminum alloy composition shown in Table 1 was melted by DC casting, subjected to a homogenizing heat treatment at 470 ° C for 8 hours, and hot-rolled to a thickness of 2.5 mm. Next, the steel sheet was cold-rolled to a thickness of 1.0 mm, and then subjected to a T4 temper treatment in which a solution treatment was carried out at 560 ° C. and water quenching was immediately performed using a nitrite furnace to produce a rolled aluminum alloy sheet. Al in Table 1
-Mg-Si based rolled aluminum alloy is 125MP at 6016-T4
a, 6016-T4 had a proof stress of 150 MPa.

【0060】このAl-Mg-Si系アルミニウム合金板より供
試材を採取し、表2 に示す条件で、供試材のエッチング
を伴う洗浄処理 (電解脱脂を選択的に含む) を行った。
そして、洗浄後のアルミニウム合金板表面の酸化皮膜中
のMg含有量、厚み( Å) を前記したESCAの好ましい測定
条件で求めた。これらの結果を表3 に示す。参考まで
に、厚み換算の基となったI Al-o/I Al-Alの値も表3 に
示す。
A test material was sampled from the Al-Mg-Si-based aluminum alloy plate, and was subjected to a cleaning process involving etching of the test material (selectively including electrolytic degreasing) under the conditions shown in Table 2.
Then, the Mg content and the thickness (Å) in the oxide film on the surface of the aluminum alloy plate after cleaning were determined under the above-described preferable ESCA measurement conditions. Table 3 shows these results. For reference, Table 3 also shows the values of I Al-o / I Al-Al used as the basis for thickness conversion.

【0061】次いで、さらに、これらの洗浄処理後の供
試材を、リン酸チタンを0.1 % 含むコロイド分散液に、
室温で20秒間浸漬する処理を行い、供試材表面にリン酸
チタンを吸着被覆した。その後、直ちに、鋼板に適した
フリーフッ素量を150 ppm 含むリン酸亜鉛浴に2 分間浸
漬するリン酸亜鉛処理を、各例とも同じ条件で行った。
そして、それぞれの供試材表面へのリン酸亜鉛の被覆率
を、前記した条件でSEM 観察により求めた。これらの結
果も表3 に示す。
Next, the test materials after these washing treatments were further converted into a colloidal dispersion containing 0.1% of titanium phosphate,
A treatment of immersion at room temperature for 20 seconds was performed, and the surface of the test material was coated with titanium phosphate by adsorption. Immediately after that, a zinc phosphate treatment of immersing for 2 minutes in a zinc phosphate bath containing 150 ppm of free fluorine suitable for a steel sheet was performed under the same conditions in each example.
Then, the coverage of zinc phosphate on the surface of each test material was determined by SEM observation under the above conditions. Table 3 also shows these results.

【0062】そして、更に、このリン酸塩皮膜を設けた
供試材に、カチオン電着塗装およびスプレー塗装により
2 コート、2 ベークの塗装皮膜を設け、これら塗膜を設
けた供試材に対し、耐糸錆性評価試験を行った。これら
の結果も表3 に示す。
Further, the test material provided with the phosphate film is subjected to cationic electrodeposition coating and spray coating.
Two coats and two bake coatings were provided, and the test material provided with these coatings was subjected to a yarn rust resistance evaluation test. Table 3 also shows these results.

【0063】耐糸錆性評価試験は、塗装試験片に1 片が
7cm のクロスカットを施した後、35℃の1.7%塩酸水溶液
に2 分間浸漬した後、40℃、85% R .H .の恒温恒湿の
雰囲気に1008時間放置し、発生した糸錆の最大長さL
(クロスカットから垂直方向の距離、mm) を測定した。
比較のために、同じリン酸亜鉛処理と塗装、および耐糸
錆性評価試験を行ったSPCE鋼板のリン酸亜鉛の被覆率と
糸錆の最大長さも表3 に示す。
In the evaluation test for the rust resistance of the yarn, one piece was
After a 7 cm cross-cut, it was immersed in a 1.7% hydrochloric acid aqueous solution at 35 ° C for 2 minutes, and then at 40 ° C and 85% R.C. H. For 1008 hours in a constant temperature and humidity atmosphere, and the maximum length L of generated thread rust
(The distance in the vertical direction from the cross cut, mm) was measured.
For comparison, Table 3 also shows the zinc phosphate coverage and the maximum length of thread rust of SPCE steel sheets that were subjected to the same zinc phosphate treatment and coating, and a test for evaluating thread rust resistance.

【0064】表3 より明らかな通り、洗浄後のアルミニ
ウム合金材表面の酸化皮膜をESCAにより分析した際の、
酸化皮膜厚みが35Å未満であり、かつ酸化皮膜中のMg含
有量が0%である発明例No.1 〜4 は、酸化皮膜厚みが35
Å以上か、酸化皮膜中にMgを含有する比較例No.5 〜9
に比較し、比較例No.10のSPCE鋼板並の90% 以上にリン
酸塩被覆率が増大している。更に、発明例No.1 〜4
は、比較例No.5 〜9 に比較し、明らかに最大糸錆長さ
が短く、比較例No.10の溶融亜鉛めっき鋼板並に耐糸錆
性が向上していることが分かる。
As is clear from Table 3, when the oxide film on the surface of the aluminum alloy material after cleaning was analyzed by ESCA,
Invention Example No. 1 in which the oxide film thickness is less than 35 mm and the Mg content in the oxide film is 0%. 1 to 4 have an oxide film thickness of 35
ÅComparative Example No. containing Mg in the oxide film 5 to 9
Comparative Example No. The phosphate coverage increased to more than 90%, the same as that of 10 SPCE steel sheets. Furthermore, in Invention Example No. 14
In Comparative Example No. Compared with Nos. 5 to 9, the maximum yarn rust length was clearly shorter. It can be seen that the thread rust resistance is improved as much as 10 hot-dip galvanized steel sheets.

【0065】これら実施例の結果から、アルミニウム合
金材におけるリン酸塩処理性および塗装後の耐糸錆性で
の、本発明条件の臨界的な意義が裏付けられる。また、
更に、本発明のアルミ合金展伸材が特に自動車などの輸
送機用材として好適に用いられることがわかる。
The results of these examples support the critical significance of the conditions of the present invention in the phosphatability and the rust resistance after painting of aluminum alloy materials. Also,
Further, it can be seen that the wrought aluminum alloy of the present invention is particularly suitably used as a material for transportation equipment such as automobiles.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【表2】 [Table 2]

【0068】[0068]

【表3】 [Table 3]

【0069】[0069]

【発明の効果】本発明によれば、アルミニウム合金材を
鋼材と同時に処理する、あるいは、アルミニウム合金材
を鋼材に適したリン酸塩浴で処理する際に、リン酸塩皮
膜の被覆率の増大させ、アルミニウム合金材の耐糸錆性
を鋼板と同等にまで向上させたアルミニウム合金材を提
供することが可能となる。したがって、アルミニウム合
金材の自動車などの用途への拡大を図れる点で、工業的
な価値が大きい。
According to the present invention, when the aluminum alloy material is treated simultaneously with the steel material, or when the aluminum alloy material is treated with a phosphate bath suitable for the steel material, the coverage of the phosphate film is increased. As a result, it is possible to provide an aluminum alloy material in which the thread rust resistance of the aluminum alloy material is improved to the same level as a steel plate. Therefore, it is of great industrial value in that aluminum alloy materials can be expanded to applications such as automobiles.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼材とともにリン酸塩処理された後に塗
装される自動車パネル用Al-Mg-Si系アルミニウム合金材
であって、Cu含有量を0.2 % 以下に規制するとともに、
アルミニウム合金材表面の酸化皮膜をESCAにより分析し
た際の、酸化皮膜厚みが35Å未満であり、かつ酸化皮膜
中のMg含有量が0%であり、リン酸塩処理された後のリン
酸塩結晶の被覆率が90% 以上であることを特徴とする耐
糸錆性に優れたアルミニウム合金材。
An Al-Mg-Si-based aluminum alloy material for an automobile panel, which is coated after being phosphated together with a steel material, wherein the Cu content is regulated to 0.2% or less.
When the oxide film on the surface of the aluminum alloy material was analyzed by ESCA, the thickness of the oxide film was less than 35 mm, the Mg content in the oxide film was 0%, and the phosphate crystals after the phosphate treatment. An aluminum alloy material excellent in thread rust resistance, characterized in that the coating ratio of the aluminum alloy is 90% or more.
【請求項2】前記リン酸塩処理の浴中に200ppm以下の鉄
のキレート化合物および/ または150ppm以下のフリーフ
ッ素イオンが含まれている請求項1に記載の耐糸錆性に
優れたアルミニウム合金材。
2. The aluminum alloy excellent in thread rust resistance according to claim 1, wherein the phosphate treatment bath contains 200 ppm or less of an iron chelate compound and / or 150 ppm or less of free fluorine ions. Wood.
JP2001048617A 2001-02-23 2001-02-23 Aluminum alloy material with excellent yarn rust resistance Expired - Fee Related JP4829412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001048617A JP4829412B2 (en) 2001-02-23 2001-02-23 Aluminum alloy material with excellent yarn rust resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001048617A JP4829412B2 (en) 2001-02-23 2001-02-23 Aluminum alloy material with excellent yarn rust resistance

Publications (2)

Publication Number Publication Date
JP2002249882A true JP2002249882A (en) 2002-09-06
JP4829412B2 JP4829412B2 (en) 2011-12-07

Family

ID=18909853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001048617A Expired - Fee Related JP4829412B2 (en) 2001-02-23 2001-02-23 Aluminum alloy material with excellent yarn rust resistance

Country Status (1)

Country Link
JP (1) JP4829412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308097C (en) * 2003-07-10 2007-04-04 现代自动车株式会社 Panel assembly and method for manufacturing the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240675A (en) * 1988-03-19 1989-09-26 Sumitomo Light Metal Ind Ltd Surface treatment for automobile body panel made of al
JPH01319692A (en) * 1988-06-17 1989-12-25 Kobe Steel Ltd Production of mg-containing aluminum alloy sheet having excellent degreasing property
JPH0570970A (en) * 1991-09-17 1993-03-23 Kobe Steel Ltd Al-mg based alloy material excellent in phosphating treatment
JPH05230669A (en) * 1992-02-21 1993-09-07 Nippon Parkerizing Co Ltd Continuous phosphate chemical conversion treatment for steel-aluminum containing metal composite material
JPH06192891A (en) * 1992-12-28 1994-07-12 Kobe Steel Ltd Surface-treated al or al alloy material excellent in cationic electrodeposition coating suitability and corrosion resistance after coating
JPH073371A (en) * 1994-01-26 1995-01-06 Sky Alum Co Ltd Aluminum alloy sheet for zinc phosphate treatment and production thereof
JPH07173643A (en) * 1993-12-21 1995-07-11 Mazda Motor Corp Method for phosphating metal surface and phosphating solution
JPH07188956A (en) * 1993-12-27 1995-07-25 Sumitomo Light Metal Ind Ltd Surface treatment of mg-containing aluminum alloy sheet for automobile body
JPH07216519A (en) * 1994-01-28 1995-08-15 Nippon Steel Corp Production of aluminum alloy sheet excellent in external appearance of chemical conversion treatment film
JPH10176233A (en) * 1996-12-14 1998-06-30 Mitsubishi Alum Co Ltd Production of aluminum alloy for baking finish, excellent in chemical conversion treating property and corrosion resistance after coating, and baking-finished aluminum alloy material
JPH10265965A (en) * 1997-03-26 1998-10-06 Sky Alum Co Ltd Aluminum material to be phosphated and its surface treatment
JPH10306382A (en) * 1997-04-30 1998-11-17 Honda Motor Co Ltd Zinc phosphate treating agent for aluminum alloy
JPH11181582A (en) * 1997-12-22 1999-07-06 Nippon Steel Corp Method for modifying surface of magnesium-containing aluminum alloy
JPH11189882A (en) * 1997-12-25 1999-07-13 Sky Alum Co Ltd Aluminum material for phosphating and its production
JP2000034534A (en) * 1998-07-14 2000-02-02 Sumitomo Light Metal Ind Ltd Aluminum alloy for forming, having excellent chemical conversion treatment property, its manufacture, and transport equipment member
JP2000239778A (en) * 1999-02-25 2000-09-05 Kobe Steel Ltd Aluminum alloy material excellent in chemical convertibility
JP2000256873A (en) * 1999-03-03 2000-09-19 Kobe Steel Ltd Aluminum alloy material for phosphating and method for phosphating aluminum alloy material
JP2000345364A (en) * 1999-03-30 2000-12-12 Kobe Steel Ltd Aluminum alloy material excellent in filiform corrosion resistance

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240675A (en) * 1988-03-19 1989-09-26 Sumitomo Light Metal Ind Ltd Surface treatment for automobile body panel made of al
JPH01319692A (en) * 1988-06-17 1989-12-25 Kobe Steel Ltd Production of mg-containing aluminum alloy sheet having excellent degreasing property
JPH0570970A (en) * 1991-09-17 1993-03-23 Kobe Steel Ltd Al-mg based alloy material excellent in phosphating treatment
JPH05230669A (en) * 1992-02-21 1993-09-07 Nippon Parkerizing Co Ltd Continuous phosphate chemical conversion treatment for steel-aluminum containing metal composite material
JPH06192891A (en) * 1992-12-28 1994-07-12 Kobe Steel Ltd Surface-treated al or al alloy material excellent in cationic electrodeposition coating suitability and corrosion resistance after coating
JPH07173643A (en) * 1993-12-21 1995-07-11 Mazda Motor Corp Method for phosphating metal surface and phosphating solution
JPH07188956A (en) * 1993-12-27 1995-07-25 Sumitomo Light Metal Ind Ltd Surface treatment of mg-containing aluminum alloy sheet for automobile body
JPH073371A (en) * 1994-01-26 1995-01-06 Sky Alum Co Ltd Aluminum alloy sheet for zinc phosphate treatment and production thereof
JPH07216519A (en) * 1994-01-28 1995-08-15 Nippon Steel Corp Production of aluminum alloy sheet excellent in external appearance of chemical conversion treatment film
JPH10176233A (en) * 1996-12-14 1998-06-30 Mitsubishi Alum Co Ltd Production of aluminum alloy for baking finish, excellent in chemical conversion treating property and corrosion resistance after coating, and baking-finished aluminum alloy material
JPH10265965A (en) * 1997-03-26 1998-10-06 Sky Alum Co Ltd Aluminum material to be phosphated and its surface treatment
JPH10306382A (en) * 1997-04-30 1998-11-17 Honda Motor Co Ltd Zinc phosphate treating agent for aluminum alloy
JPH11181582A (en) * 1997-12-22 1999-07-06 Nippon Steel Corp Method for modifying surface of magnesium-containing aluminum alloy
JPH11189882A (en) * 1997-12-25 1999-07-13 Sky Alum Co Ltd Aluminum material for phosphating and its production
JP2000034534A (en) * 1998-07-14 2000-02-02 Sumitomo Light Metal Ind Ltd Aluminum alloy for forming, having excellent chemical conversion treatment property, its manufacture, and transport equipment member
JP2000239778A (en) * 1999-02-25 2000-09-05 Kobe Steel Ltd Aluminum alloy material excellent in chemical convertibility
JP2000256873A (en) * 1999-03-03 2000-09-19 Kobe Steel Ltd Aluminum alloy material for phosphating and method for phosphating aluminum alloy material
JP2000345364A (en) * 1999-03-30 2000-12-12 Kobe Steel Ltd Aluminum alloy material excellent in filiform corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1308097C (en) * 2003-07-10 2007-04-04 现代自动车株式会社 Panel assembly and method for manufacturing the same

Also Published As

Publication number Publication date
JP4829412B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
EP3266900B1 (en) Molten al-zn-mg-si-plated steel sheet
JP2018528324A (en) Steel sheet coated with aluminum-based metal coating
JP6645273B2 (en) Hot-dip Al-Zn-Mg-Si plated steel sheet and method for producing the same
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
WO2013103117A1 (en) Hot-dip galvannealed steel sheet
WO2016031938A1 (en) Aluminum alloy sheet
EP4023790A1 (en) Hot-stamped article
JP4171141B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP2007162057A (en) High strength steel sheet having excellent phosphate treatability
JP4829412B2 (en) Aluminum alloy material with excellent yarn rust resistance
JP2000239778A (en) Aluminum alloy material excellent in chemical convertibility
WO2020153422A1 (en) Titanium material and coated titanium material
JP3781097B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP2011219823A (en) Organic compound mg-based plated steel plate
JP4249092B2 (en) Method for producing Al-Mg-Si aluminum alloy sheet with excellent corrosion resistance after painting
WO2019021695A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
JP2000212674A (en) Aluminum alloy material excellent in corrosion resistance after coating
JP3217768B2 (en) Aluminum alloy material for zinc phosphate treatment
JP2000129458A (en) Aluminum alloy sheet excellent in press formability and corrosion resistance
JP2000256873A (en) Aluminum alloy material for phosphating and method for phosphating aluminum alloy material
WO2022168167A1 (en) Thin steel sheet
JP2500010B2 (en) Manufacturing method of aluminum alloy surface control plate for automobile panel
JP3442699B2 (en) Cleaning method of aluminum alloy material with excellent thread rust resistance
JPH11279770A (en) Aluminum alloy material for transporting machine excellent in water resistance and filiform corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4829412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees