JP2007162057A - High strength steel sheet having excellent phosphate treatability - Google Patents

High strength steel sheet having excellent phosphate treatability Download PDF

Info

Publication number
JP2007162057A
JP2007162057A JP2005358662A JP2005358662A JP2007162057A JP 2007162057 A JP2007162057 A JP 2007162057A JP 2005358662 A JP2005358662 A JP 2005358662A JP 2005358662 A JP2005358662 A JP 2005358662A JP 2007162057 A JP2007162057 A JP 2007162057A
Authority
JP
Japan
Prior art keywords
steel sheet
less
amount
mass
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005358662A
Other languages
Japanese (ja)
Inventor
Etsuo Hamada
悦男 濱田
Noriko Makiishi
規子 槙石
Hideko Yasuhara
英子 安原
Naoki Nishiyama
直樹 西山
Seiji Nakajima
清次 中島
Shinji Otsuka
真司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005358662A priority Critical patent/JP2007162057A/en
Publication of JP2007162057A publication Critical patent/JP2007162057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Si-added high strength steel sheet having excellent phosphate treatability by controlling Si based oxides produced on the surface of the Si-added steel sheet having phosphate treatability remarkably inferior to that of soft steel. <P>SOLUTION: The content of Si based oxides in the surface of a high strength steel sheet is controlled to ≤20 mg/m<SP>2</SP>expressed in terms of SiO<SB>2</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車用鋼板に最適な、リン酸塩処理性に優れた鋼板に関する。   The present invention relates to a steel sheet that is optimal for automobile steel sheets and has excellent phosphatability.

近年、地球環境の保全という観点から、自動車の燃費改善が求められている。また、衝突時における乗員保護の観点から、自動車車体の安全性の向上も要求されている。そのため、自動車車体の軽量化および強化を目的として、自動車部品への高強度鋼板の適用が積極的に進められている。   In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, from the viewpoint of occupant protection in the event of a collision, it is also required to improve the safety of the automobile body. For this reason, the application of high-strength steel sheets to automobile parts has been actively promoted for the purpose of reducing the weight and strengthening of automobile bodies.

一方、自動車用部品として用いられる鋼板は、プレス成型後、塗装下地処理としてリン酸塩処理を施されるのが一般的である。高強度鋼板は強化元素としてSiを含有していることが多く、この場合、軟鋼と比較してリン酸塩処理性に劣ることが大きな課題の一つとなっている。   On the other hand, steel plates used as automotive parts are generally subjected to phosphate treatment as a coating ground treatment after press molding. High-strength steel sheets often contain Si as a strengthening element, and in this case, inferior phosphatability compared to mild steel is one of the major issues.

一般の軟鋼においても、連続焼鈍後の冷却を水冷や気水冷却で行った場合などにリン酸塩処理性が悪化することが知られており、一般冷延鋼板のリン酸塩処理性向上技術に関しては、以下に挙げるように多くの検討がなされてきている。   Even in general mild steel, it is known that phosphate treatment performance deteriorates when cooling after continuous annealing is performed by water cooling or air-water cooling, etc. Many studies have been made on the following.

特許文献1から特許文献10には鋼板表面にFe以外の金属元素、例えば、Ni、Co、Ti、Mn、Cu、Mo、W等を付着させる方法が、特許文献11には鋼板表面にFe-Pめっきを施す方法が、特許文献12には有機または無機酸あるいはそれらの塩を含有した冷却剤により鋼板を冷却する方法が、特許文献13には連続焼鈍の冷却終了後の後処理として、冷延鋼板にホウ酸水溶液を接触させる方法が開示されている。
特開昭58−055535号公報 特開昭56−116883号公報 特開昭58−066666号公報 特開昭59−159987号公報 特開昭61−149492号公報 特開昭61−023794号公報 特開平03−075382号公報 特開平03−086302号公報 特開平03−126879号公報 特開平07−278843号公報 特開昭61−136694号公報 特開平01−139728号公報 特開平02−270969号公報
Patent Document 1 to Patent Document 10 describe a method of attaching a metal element other than Fe, for example, Ni, Co, Ti, Mn, Cu, Mo, W, etc. to the steel sheet surface, and Patent Document 11 discloses Fe— As a method of performing P plating, Patent Document 12 discloses a method of cooling a steel sheet with a coolant containing an organic or inorganic acid or a salt thereof, and Patent Document 13 discloses a cooling process as post-treatment after completion of cooling of continuous annealing. A method of bringing a boric acid aqueous solution into contact with a rolled steel sheet is disclosed.
JP 58-055535 A Japanese Patent Laid-Open No. 56-116883 JP 58-066666 A JP 59-159987 A JP-A 61-149492 JP-A 61-023794 Japanese Patent Laid-Open No. 03-075382 Japanese Patent Laid-Open No. 03-086302 Japanese Patent Laid-Open No. 03-126879 Japanese Patent Application Laid-Open No. 07-278843 JP-A 61-136694 Japanese Patent Laid-Open No. 01-139728 Japanese Patent Laid-Open No. 02-270969

しかしながら、以上の方法は一般の軟鋼におけるリン酸塩処理性の向上を目的としたものであり、Siを含有する高強度鋼板のリン酸塩処理性向上には有効でない。何故なら、Si添加鋼では焼鈍時に鋼板表面に生成するSi系酸化物がリン酸塩処理性を阻害するため、軟鋼よりも遥かにリン酸塩処理性が劣るからである。   However, the above method is intended to improve the phosphatability of general mild steel, and is not effective for improving the phosphatability of high strength steel sheets containing Si. This is because in Si-added steel, the Si-based oxide formed on the surface of the steel sheet during annealing hinders the phosphatability, so that the phosphatability is far inferior to that of mild steel.

本発明は上記の課題を解決しようとするものであり、その目的はリン酸塩処理性に優れたSi添加高強度鋼板を提供することにある。   The present invention is intended to solve the above-mentioned problems, and an object thereof is to provide a Si-added high-strength steel sheet excellent in phosphate processability.

本発明者らは、Si添加鋼において鋼板表面のSi量とリン酸塩処理性の関係を調査した結果、良好なリン酸塩処理性を得るためには、リン酸塩処理の大きな阻害要因である鋼板表面のSi系酸化物の量を、ある一定値以下にすれば良いことを見出した。ここでいうSi系酸化物とは、選択酸化で生成するSiを含有する酸化物を指し、Si系酸化物の量を制御しながら、さらに、上記条件範囲内であっても良好なリン酸塩処理性が得られない場合には、鋼板表面にNiもしくはSをある条件下にて付与すれば、リン酸塩処理性を、一層向上させることができることを見出した。以上の知見より得られた、上記課題を解決するリン酸塩処理性に優れた高強度鋼板鋼板は、以下の通りである。
(1)本発明に係るリン酸塩処理性に優れた高強度鋼板鋼板は、鋼板表面にのSi系酸化物量が、SiO2換算で20mg/m2以下であることを特徴とする。
(2)本発明に係るリン酸塩処理性に優れた高強度鋼板鋼板は、鋼板表面のSi系酸化物量がSiO2換算で20mg/m2以下、および鋼板表面のNi化合物量がNi換算で1mg/m2以上、200mg/m2以下で、かつ鋼板表面でのFeに対するNiの原子比が0.08以上、2以下であることを特徴とする。
(3)本発明に係るリン酸塩処理性に優れた高強度鋼板鋼板は、鋼板表面のSi系酸化物量がSiO2換算で20mg/m2以下、および鋼板表面のS化合物量がS換算で1mg/m2以上、100mg/m2以下、かつ鋼板表面でのFeに対するSの原子比が0.05以上、1.5以下であることを特徴とする。
As a result of investigating the relationship between the Si amount on the steel sheet surface and the phosphate treatment property in the Si-added steel, the present inventors have found that in order to obtain a good phosphate treatment property, It has been found that the amount of Si-based oxide on the surface of a certain steel sheet may be set to a certain value or less. The Si-based oxide as used herein refers to an oxide containing Si produced by selective oxidation, and is a good phosphate even within the above condition range while controlling the amount of Si-based oxide. It has been found that when the processability cannot be obtained, the phosphate processability can be further improved by applying Ni or S to the steel sheet surface under certain conditions. The high-strength steel sheet steel obtained from the above knowledge and excellent in phosphatability that solves the above problems is as follows.
(1) The high-strength steel plate excellent in phosphate treatment according to the present invention is characterized in that the amount of Si-based oxide on the surface of the steel plate is 20 mg / m 2 or less in terms of SiO 2 .
(2) The high-strength steel plate with excellent phosphatability according to the present invention has a Si-based oxide content on the steel plate surface of 20 mg / m 2 or less in terms of SiO 2 and a Ni compound content on the steel plate surface in terms of Ni. It is characterized by being 1 mg / m 2 or more and 200 mg / m 2 or less, and the atomic ratio of Ni to Fe on the steel sheet surface is 0.08 or more and 2 or less.
(3) The high-strength steel sheet with excellent phosphatability according to the present invention has a Si-based oxide content on the steel sheet surface of 20 mg / m 2 or less in terms of SiO 2 and an S compound content on the steel sheet surface in terms of S. It is characterized by being 1 mg / m 2 or more and 100 mg / m 2 or less, and the atomic ratio of S to Fe on the steel sheet surface is 0.05 or more and 1.5 or less.

本発明は、リン酸塩処理を阻害する鋼板表面のSi系酸化物量の上限を規定し、さらに鋼板表面にNi化合物もしくはS化合物をもうけることで、Si添加高強度鋼板のリン酸塩処理性を向上させ、リン酸塩処理性に優れたSi添加高強度鋼板を得ることを可能とする。   The present invention defines the upper limit of the amount of Si-based oxides on the steel sheet surface that inhibits the phosphate treatment, and further provides a Ni compound or S compound on the steel sheet surface, thereby improving the phosphate treatment property of the Si-added high-strength steel sheet. It is possible to improve and obtain a Si-added high-strength steel sheet excellent in phosphate processability.

以下に本発明の限定理由について説明する。   The reason for limitation of the present invention will be described below.

(a)Si系酸化物量:SiO2換算で20mg/m2以下
本発明者らは、Si添加鋼(必須な組成に関しては後述する)を焼鈍する際に鋼板表面に生成するSi系酸化物に着目し、その量とリン酸塩化成処理性の関係を調査した。
(A) Si-based oxide amount: 20 mg / m 2 or less in terms of SiO 2 The present inventors have developed a Si-based oxide formed on the steel sheet surface when annealing Si-added steel (the essential composition will be described later). Paying attention, the relationship between the amount and phosphate chemical conversion treatment was investigated.

鋼板表面のSi系酸化物の量は、Si添加量の異なる鋼板を用いたり、10mass%の塩酸水溶液を用いて鋼板を3〜60秒間酸洗することで調整した。この際、表1に示す成分の鋼を、後述する実施例に示した方法と表2に示した条件で製造した冷延鋼板を原板として用いた。   The amount of Si-based oxide on the surface of the steel sheet was adjusted by using steel sheets with different Si addition amounts or pickling the steel sheet for 3 to 60 seconds using a 10 mass% hydrochloric acid aqueous solution. Under the present circumstances, the cold-rolled steel plate which manufactured the steel of the component shown in Table 1 by the method shown in the Example mentioned later and the conditions shown in Table 2 was used as an original plate.

これら冷延鋼板表面にあるSi系酸化物量は、蛍光X線分析装置(FX)を用いて、次のようにして決定した。まずSiO2の付着量が既知である標準試料を用いて、SiのX線強度とSiO2換算の付着量に対応した検量線を作成した。次に、被検試料および被検試料を1masst%のフッ酸水溶液で酸洗(25℃で15秒)した後、試料のSiのX線強度を測定し、その差をSi系酸化物のX線強度として、検量線からSi系酸化物のSiO2換算量を決定した。 The amount of Si-based oxide on the surface of these cold-rolled steel sheets was determined as follows using a fluorescent X-ray analyzer (FX). First, using a standard sample the amount of deposition of SiO 2 is known to prepare a calibration curve corresponding to the amount of deposition of X-ray intensity and in terms of SiO 2 of Si. Next, after pickling the test sample and the test sample with a 1 mass% hydrofluoric acid aqueous solution (at 25 ° C. for 15 seconds), the X-ray intensity of Si in the sample was measured, and the difference between the X-rays of the Si-based oxide was measured. As the line intensity, the SiO 2 equivalent amount of the Si-based oxide was determined from the calibration curve.

その後、日本ペイント社のサーフダインSD2800HNシステムでリン酸塩処理を、処理液温度43℃、浸漬法にて行い、リン酸塩処理性の比較を行った。リン酸塩処理性については、目視および走査型電子顕微鏡(以降、SEM)観察により評価した。目視評価では、均一な外観であるものを○、均一ではあるが多少ムラが見られる外観のものを△、不均一な外観であるものを×とした。SEMによる評価では、微細なリン酸塩結晶が下地鋼板を90%以上被覆しているものを○、リン酸塩結晶が下地鋼板を90%以上被覆しているが、10μm以上の粒径のリン酸塩結晶が存在しているものを△、リン酸塩結晶が下地鋼板を90%未満しか被覆できていないものを×とした。リン酸塩結晶の被覆率は、120μm×100μmの視野のSEM像を、5箇所撮影し、それらの単純算術平均値から求めた。   After that, phosphate treatment was performed by a surf dyne SD2800HN system manufactured by Nippon Paint Co., Ltd. by a dipping method at a treatment solution temperature of 43 ° C. to compare phosphate treatment properties. The phosphate processability was evaluated by visual observation and observation with a scanning electron microscope (hereinafter, SEM). In the visual evaluation, a case with a uniform appearance was indicated by ◯, a case with a uniform but somewhat uneven appearance was indicated by Δ, and a case having a non-uniform appearance was indicated by ×. Evaluation by SEM shows that fine phosphate crystals cover 90% or more of the underlying steel sheet, and phosphate crystals cover 90% or more of the underlying steel sheet. The case where the salt crystals were present was indicated by Δ, and the case where the phosphate crystals were able to cover the base steel sheet with less than 90% was indicated as x. The coverage of the phosphate crystals was obtained from the SEM images of a 120 μm × 100 μm field of view and taken from their simple arithmetic average values.

表3に、鋼板表面のSi系酸化物量とリン酸塩処理性との関係を示す。表3において、
1)目視評価:○、かつSEM評価:○
2)目視評価:○、かつSEM評価:△
3)目視評価:△、かつSEM評価:○
4)目視評価:△、かつSEM評価:△
の内、何れかの評価結果のものが、良好なリン酸塩処理性を有すると判断する。さらに、上記1)の場合は、特に良好なリン酸塩処理性を有すると判断する。この結果から、鋼板表面のSi系酸化物量を減少させることでリン酸塩処理性が向上することが明らかになった。しかも、Si系酸化物量を20mg/m2近傍を境に、リン酸塩処理性は良好となり、リン酸塩処理性が改善されることが分かった。そのため、本発明においては、Si系酸化物量はSiO2換算で20mg/m2以下に限定する。さらに、特に良好なリン酸塩処理性を有する状態とするには、10mg/m2以下とするのが好ましい。
Table 3 shows the relationship between the amount of Si-based oxide on the surface of the steel sheet and the phosphatability. In Table 3,
1) Visual evaluation: ○ and SEM evaluation: ○
2) Visual evaluation: ○ and SEM evaluation: △
3) Visual evaluation: △ and SEM evaluation: ○
4) Visual evaluation: Δ and SEM evaluation: Δ
Of these, any of the evaluation results is judged to have good phosphatability. Further, in the case of the above 1), it is judged to have particularly good phosphate treatment properties. From this result, it became clear that the phosphate treatment ability is improved by reducing the amount of Si-based oxide on the steel sheet surface. Moreover, the Si-based oxide amount on the border of 20 mg / m 2 vicinity, phosphating property becomes good, it was found that the phosphate treatment is improved. Therefore, in the present invention, the amount of Si-based oxide is limited to 20 mg / m 2 or less in terms of SiO 2 . Furthermore, in order to obtain a particularly favorable phosphate treatment property, it is preferably 10 mg / m 2 or less.

ここで、Si系酸化物量が20mg/m2以下のNo.11では、目視評価とSEM評価共に、△となっている。さらに、No.14は、Si系酸化物量が12mg/m2と少量にも関わらず、SEM観察の評価が△となっている。このように、Si系酸化物量が20mg/m2以下であるにもかかわらず、リン酸塩処理性が多少落ちる場合がある詳細な理由は不明であるが、鋼板表面にあるSi以外の鋼中成分や熱処理方法(雰囲気、温度など)等の影響が考えられる。 Here, in No. 11 where the amount of Si-based oxide is 20 mg / m 2 or less, both visual evaluation and SEM evaluation are Δ. In addition, No. 14 has an evaluation of SEM observation of Δ despite the small amount of Si-based oxide, 12 mg / m 2 . Thus, despite the fact that the amount of Si-based oxide is 20 mg / m 2 or less, the detailed reason that the phosphate treatment ability may be somewhat degraded is unknown, but in steel other than Si on the steel sheet surface. The influence of components, heat treatment methods (atmosphere, temperature, etc.) can be considered.

Figure 2007162057
Figure 2007162057

Figure 2007162057
Figure 2007162057

Figure 2007162057
Figure 2007162057

次に、上記(a)に示した条件を満たした鋼板表面に存在する、Ni化合物とS化合物について述べる。   Next, the Ni compound and S compound present on the surface of the steel sheet satisfying the conditions shown in (a) above will be described.

(b)Ni化合物量:Ni換算で1mg/m2以上、200mg/m2以下、Feに対するNiの原子比:0.08以上、2以下
従来から、リン酸塩処理性向上の手段として金属Niや水酸化Ni、酸化Niを鋼板表面に付着させることが知られているが、既述のとおり、これらの手法では、Si添加鋼のリン酸塩処理性を向上させることはできない。しかしながら、発明者等が検討した結果、Si添加鋼であっても、上記(a)の条件を満たした場合には、Ni化合物(金属ニッケル、水酸化ニッケル、酸化ニッケル、塩化ニッケル、硫酸ニッケル等、もしくはこれら2種以上の化合物)を鋼板表面に付着させることで、リン酸塩処理性を向上できることを見出した。さらに、最適なNi付着量や付着形態について検討した結果、Ni化合物はNi換算で1mg/m2以上、200mg/m2以下とし、かつ鋼板表面でのFeに対するNiの原子比(Ni/Fe)が0.08以上、2以下の時に良好なリン酸塩処理性を得られることを見出した。従って、Ni化合物の量はNi換算で1mg/m2以上、200mg/m2以下とし、かつ鋼板表面でのFeに対するNiの原子比(Ni/Fe)が0.08以上、2以下に限定する。
(B) Ni compound amount: 1 mg / m 2 or more and 200 mg / m 2 or less in terms of Ni, atomic ratio of Ni to Fe: 0.08 or more, 2 or less Conventionally, metallic Ni and water have been used as means for improving phosphate treatment Although it is known that Ni oxide and Ni oxide are attached to the surface of the steel sheet, as described above, the phosphate treatment properties of the Si-added steel cannot be improved by these methods. However, as a result of investigations by the inventors, even in the case of Si-added steel, when the condition (a) is satisfied, Ni compounds (metal nickel, nickel hydroxide, nickel oxide, nickel chloride, nickel sulfate, etc.) Or two or more of these compounds) was found to be able to improve the phosphatability by adhering to the steel sheet surface. Furthermore, as a result of examining the optimum amount and form of Ni deposition, the Ni compound should be 1 mg / m 2 or more and 200 mg / m 2 or less in terms of Ni, and the atomic ratio of Ni to Fe on the steel sheet surface (Ni / Fe) It has been found that good phosphate treatment properties can be obtained when the ratio is 0.08 or more and 2 or less. Therefore, the amount of Ni compound is limited to 1 mg / m 2 or more and 200 mg / m 2 or less in terms of Ni, and the atomic ratio of Ni to Fe (Ni / Fe) on the steel sheet surface is limited to 0.08 or more and 2 or less.

(c)S化合物量:S換算で1mg/m2以上、100mg/m2以下、Feに対するSの原子比:0.05以上、1.5以下
さらに本発明者等は、リン酸塩処理性を向上させる物質としてNi化合物以外の化合物も探索した。その結果、上記(a)の条件を満たした上でS化合物(チオグリコール酸、硫酸化物、FeS等、もしくはこれら2種以上の化合物)を鋼板表面に付着させることで、リン酸塩処理性を向上させることに成功した。最適なS付着量、付着形態について検討した結果、S化合物はS換算で1mg/m2以上、100mg/m2以下とし、かつ鋼板表面でのFeに対するSの原子比(S/Fe)が0.05以上、1.5以下の時に良好なリン酸塩処理性を得られることを見出した。従って、S化合物の量はS換算で1mg/m2以上、100mg/m2以下とし、かつ鋼板表面でのFeに対するSの原子比(S/Fe)が0.05以上、1.5以下に限定する。
(C) S compound amount: 1 mg / m 2 or more and 100 mg / m 2 or less in terms of S, atomic ratio of S to Fe: 0.05 or more, 1.5 or less Further, the present inventors are substances that improve phosphate processability As a search for compounds other than Ni compounds. As a result, after satisfying the above condition (a), an S compound (thioglycolic acid, sulfate, FeS, or the like, or two or more of these compounds) is adhered to the surface of the steel sheet, thereby improving the phosphate processability. Succeeded to improve. As a result of examining the optimum S deposition amount and deposition form, the S compound is 1 mg / m 2 or more and 100 mg / m 2 or less in terms of S, and the atomic ratio of S to Fe on the steel sheet surface (S / Fe) is 0.05. As described above, it has been found that good phosphate treatment properties can be obtained when the ratio is 1.5 or less. Therefore, the amount of S compound is limited to 1 mg / m 2 or more and 100 mg / m 2 or less in terms of S, and the atomic ratio of S to Fe (S / Fe) on the steel sheet surface is limited to 0.05 or more and 1.5 or less.

なお上記(a)から(c)でいう鋼板表面とは、FX、XPSもしくはEPMA等の一般的に表面敏感な分析手法と認められる方法にて測定される範囲を指している。   In addition, the steel plate surface in the above (a) to (c) indicates a range measured by a method generally recognized as a surface sensitive analysis method such as FX, XPS or EPMA.

また、素材とする高強度鋼の組成としては、以下の条件であるのが望ましい。   Moreover, as a composition of the high strength steel used as a raw material, the following conditions are desirable.

(d)Si:0.5mass%以上、3mass%以下
Siは、固溶強化により鋼を強化するとともに、オーステナイトを安定化し、残留オーステナイト相の生成を促進する作用を有する。このような作用は、Si含有量が0.5mass%以上で認められる。一方、3mass%を超えて含有すると、延性が劣化する。このため、Siは0.5mass%以上、3mass%の範囲に限定する。より好ましくは1mass%以上、2.5mass%以下である。
(D) Si: 0.5 mass% or more, 3 mass% or less
Si strengthens steel by solid solution strengthening, stabilizes austenite, and has an action of promoting the formation of residual austenite phase. Such an effect is recognized when the Si content is 0.5 mass% or more. On the other hand, when it contains exceeding 3 mass%, ductility will deteriorate. For this reason, Si is limited to the range of 0.5 mass% or more and 3 mass%. More preferably, it is 1 mass% or more and 2.5 mass% or less.

その他の成分は、要求される鋼の特性に応じて、以下の成分を適宜含有させることができる。   Other components can appropriately contain the following components in accordance with required properties of steel.

(e)C:0.05mass%以上、0.35mass%以下
Cは、鋼の高強度化に必須の元素であり、さらに残留オーステナイトや低温変態相の生成に効果があり、不可欠の元素である。しかし、C含有量が0.05mass%未満では所望の高強度化が得られず、一方、0.35mass%を超えると、溶接性の劣化を招く。このため、Cは0.05mass%以上、0.35mass%以下の範囲に限定する。より好ましくは0.1mass%以上、0.2mass%以下である。
(E) C: 0.05 mass% or more, 0.35 mass% or less
C is an indispensable element for increasing the strength of steel, and further has an effect on the formation of retained austenite and a low-temperature transformation phase, and is an indispensable element. However, if the C content is less than 0.05 mass%, the desired high strength cannot be obtained. On the other hand, if the C content exceeds 0.35 mass%, the weldability is deteriorated. For this reason, C is limited to the range of 0.05 mass% or more and 0.35 mass% or less. More preferably, it is 0.1 mass% or more and 0.2 mass% or less.

(f)Mn:0.5mass%以上、3mass%以下
Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上し、残留オーステナイトや低温変態相の生成を促進する作用を有する。このような作用は、Mn含有量が0.5mass%以上で認められる。一方、3mass%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなりコストの上昇を招く。このため、Mnは0.5mass%以上、3.0mass%以下の範囲に限定する。より好ましくは1mass%以上、2mass%以下である。
(F) Mn: 0.5 mass% or more, 3 mass% or less
Mn strengthens the steel by solid solution strengthening, improves the hardenability of the steel, and has an action of promoting the formation of retained austenite and a low-temperature transformation phase. Such an effect is observed when the Mn content is 0.5 mass% or more. On the other hand, even if the content exceeds 3 mass%, the effect is saturated, and an effect commensurate with the content cannot be expected, resulting in an increase in cost. For this reason, Mn is limited to the range of 0.5 mass% or more and 3.0 mass% or less. More preferably, it is 1 mass% or more and 2 mass% or less.

(g)P:0.05mass%以下
Pは固溶強化元素であり、通常、高強度鋼板を得るのに有効な元素ではあるが、0.05mass%超の含有はスポット溶接性を低下させてしまうことから、上限を0.05mass%以下とする。より好ましい範囲は0.02mass%以下である。
(G) P: 0.05 mass% or less
P is a solid solution strengthening element, which is usually an element effective for obtaining a high-strength steel sheet, but if it exceeds 0.05 mass%, spot weldability is reduced, so the upper limit is 0.05 mass% or less. To do. A more preferable range is 0.02 mass% or less.

(h)S:0.005mass%以下
Sは、鋼中にMnSを形成し、鋼板の伸びフランジ性を低下させる不純物元素である。このため、Sの含有量は0.005mass%以下に限定する。より好ましい範囲は0.003mass%以下である。
(H) S: 0.005 mass% or less
S is an impurity element that forms MnS in the steel and lowers the stretch flangeability of the steel sheet. For this reason, the S content is limited to 0.005 mass% or less. A more preferable range is 0.003 mass% or less.

残部はFeおよび不可避的不純物である。不可避的不純物としては、製鋼工程までに混入が予想されるCa、Zr、Mg等の元素、あるいはリン酸塩処理に悪影響の無い合金元素が挙げられ、靭性およびリン酸塩処理に問題が生じない範囲で許容される。   The balance is Fe and inevitable impurities. Inevitable impurities include elements such as Ca, Zr, and Mg that are expected to be mixed before the steelmaking process, or alloy elements that do not adversely affect the phosphate treatment, and do not cause problems in toughness and phosphate treatment. Allowed in range.

次に、本発明に係る高強度鋼板の製造方法の一例について、説明する。   Next, an example of the manufacturing method of the high strength steel plate according to the present invention will be described.

先ず、上記(d)から(h)の範囲から適宜選ばれた成分の鋼を、連続鋳造によりスラブとし、その後当該スラブを1170℃以下に加熱し、Ar3点以上Ar3点+100℃以下で仕上げ圧延を行い、400以上650℃以下の温度まで平均冷却速度20℃/s以上で冷却し、さらに巻き取り熱延鋼板とした。そして、得られた熱延鋼板を30%以上60%以下の圧下率で冷間圧延を施した後、さらに700℃以上に加熱し30秒以上保持した後、300℃以上480℃以下の温度まで10℃/s以上の冷却速度で冷却し、その温度域で60秒以上600秒以下保持し、50℃以下まで30℃/s以上の速度で冷却して冷延鋼板とする。   First, a steel having a component appropriately selected from the range (d) to (h) above is made into a slab by continuous casting, and then the slab is heated to 1170 ° C or lower, and finished at Ar3 point or higher and Ar3 point + 100 ° C or lower. Rolling was performed, and cooling was performed at an average cooling rate of 20 ° C./s or more to a temperature of 400 to 650 ° C., and a rolled hot-rolled steel sheet was obtained. And after subjecting the obtained hot-rolled steel sheet to cold rolling at a reduction rate of 30% or more and 60% or less, after further heating to 700 ° C or more and holding for 30 seconds or more, to a temperature of 300 ° C or more and 480 ° C or less Cool at a cooling rate of 10 ° C / s or more, hold at that temperature range for 60 seconds or more and 600 seconds or less, and cool to 50 ° C or less at a rate of 30 ° C / s or more to obtain a cold-rolled steel sheet.

その後、上記冷延鋼板表面のSi系酸化物の量を、10mass%の塩酸水溶液を用いて鋼板を3〜60秒間、酸洗することで変化させた。鋼板表面のSi系酸化物の量の調整は、他に、酸洗一般、ショットブラスト等の鋼板表面の機械的な研削除去があげられる。   Thereafter, the amount of Si-based oxide on the surface of the cold-rolled steel sheet was changed by pickling the steel sheet for 3 to 60 seconds using a 10 mass% hydrochloric acid aqueous solution. In addition to the adjustment of the amount of Si-based oxide on the surface of the steel plate, mechanical grinding and removal of the surface of the steel plate, such as pickling in general and shot blasting, can be mentioned.

上記(a)と同様に蛍光X線分析装置(以降、FX)により鋼板表面のSi系酸化物量の値をSiO2換算で得た。 Similarly to the above (a), the value of the Si-based oxide amount on the steel sheet surface was obtained in terms of SiO 2 using a fluorescent X-ray analyzer (hereinafter referred to as FX).

上記(a)の条件を満たしたか否かを確認した後、鋼板表面にNi化合物を付着させる。Ni化合物を付着させる方法としては、発明者等にて検討した範囲では、鋼板にNi電気めっきを施す、Ni化合物(塩化ニッケル、硫酸ニッケル等)水溶液を塗布乾燥する、等の方法が可能であった。これらの方法では、Ni付着量が同等であれば、付着方法に関わらず同程度の効果を得ることができた。   After confirming whether the condition (a) is satisfied, a Ni compound is adhered to the steel sheet surface. As a method for attaching the Ni compound, within the range studied by the inventors, Ni electroplating is applied to the steel sheet, and an aqueous solution of Ni compound (nickel chloride, nickel sulfate, etc.) is applied and dried. It was. In these methods, as long as the Ni adhesion amount was the same, the same effect could be obtained regardless of the adhesion method.

最後に、鋼板表面のNi化合物の量を確認する。当該Ni化合物量の決定には、Si系酸化物と同様にFXを用いた。具体的には、酸洗前後でのNiのX線強度を測定し、その差からNi化合物の付着量を決定した。酸洗液には、12mass%硝酸−2mass%塩酸水溶液を用いた。また、鋼板表面でのFeに対するNiの原子比(Ni/Fe)は、X線光電子分光装置(以降、XPS)を用いて決定した。XPSにはKRATOS社のAXIS-HSを用い、X線源には、モノクロメータで単色化したAl Kα線を使用し、スパッタなどの前処理を行わずにアセトンで超音波洗浄した鋼板最表面をそのまま測定した。その測定結果から、ピーク底部を直線で結んでバックグラウンドを除き、NiとFeのピークの積分強度に相対感度係数で補正した後、Feに対するNiの原子比とした。   Finally, the amount of Ni compound on the steel sheet surface is confirmed. For the determination of the amount of Ni compound, FX was used as in the case of the Si-based oxide. Specifically, the X-ray intensity of Ni before and after pickling was measured, and the adhesion amount of Ni compound was determined from the difference. A 12 mass% nitric acid-2 mass% hydrochloric acid aqueous solution was used for the pickling solution. The atomic ratio of Ni to Fe (Ni / Fe) on the steel sheet surface was determined using an X-ray photoelectron spectrometer (hereinafter referred to as XPS). AXIS-HS from KRATOS is used for XPS, Al Kα radiation monochromatized with a monochromator is used for the X-ray source, and the steel sheet outermost surface cleaned with acetone without pretreatment such as sputtering is used. Measured as is. From the measurement results, the bottom of the peak was connected by a straight line, the background was removed, the integrated intensity of the Ni and Fe peaks was corrected with the relative sensitivity coefficient, and the atomic ratio of Ni to Fe was obtained.

または、上記(a)の条件を満たした後、鋼板表面にS化合物を付着させる。S化合物を付着させる方法としては、発明者等にて検討した範囲では、チオグリコール酸もしくはチオ尿素等の水溶液に、浸漬もしくは水溶液を塗布乾燥する、等の方法が可能であった。これらの方法では、S付着量が同等であれば、付着方法に関わらず同程度の効果を得ることができた。   Or after satisfy | filling the conditions of said (a), S compound is made to adhere to the steel plate surface. As a method of attaching the S compound, within the range examined by the inventors, a method such as immersing or applying an aqueous solution to an aqueous solution of thioglycolic acid or thiourea was possible. In these methods, as long as the S deposition amount was the same, the same effect could be obtained regardless of the deposition method.

最後に、鋼板表面のS化合物の量を確認する。当該S化合物量の決定には、Si系酸化物と同様にFXを用いた。具体的には、酸洗前後でのSのX線強度を測定し、その差からS化合物の付着量を決定した。酸洗液には、10mass%の塩酸水溶液を用いた。また、鋼板表面でのFeに対するSの原子比(S/Fe)は、上記Ni/Fe原子比の算出方法に準じて算出した。   Finally, the amount of S compound on the steel sheet surface is confirmed. For the determination of the amount of S compound, FX was used as in the case of the Si-based oxide. Specifically, the X-ray intensity of S before and after pickling was measured, and the adhesion amount of the S compound was determined from the difference. A 10 mass% hydrochloric acid aqueous solution was used for the pickling solution. Further, the atomic ratio of S to Fe (S / Fe) on the steel sheet surface was calculated according to the calculation method of the Ni / Fe atomic ratio.

なお、本実施の形態の説明では、Si系酸化物量、Ni化合物量およびSi化合物量はFXで、Ni/Fe原子比およびSi/Fe原子比はXPSで、それぞれ求めたが、本発明はこれに限定されるものではない。それぞれの値が必要とする精度、分析手法の測定限界、分析にかかる時間もしくは分析装置にかかるコスト等を考慮し、適宜決定すれば良い   In the description of the present embodiment, the amount of Si-based oxide, the amount of Ni compound, and the amount of Si compound were determined as FX, and the Ni / Fe atomic ratio and Si / Fe atomic ratio were determined as XPS, respectively. It is not limited to. It may be determined appropriately in consideration of the accuracy required for each value, the measurement limit of the analysis method, the time required for analysis, or the cost of the analyzer.

表1のAからCの冷延鋼板の表面に、Ni化合物もしくはS化合物を付着させた場合を実施例として、説明する。   The case where a Ni compound or an S compound is adhered to the surface of the cold rolled steel sheets A to C in Table 1 will be described as an example.

転炉溶製、連続鋳造の工程により製造した表1に示す成分を有するスラブを、表2の製造条件により冷延鋼板とした。さらにその冷延鋼板表面のSi系酸化物の量を、10mass%の塩酸水溶液を用いて冷延鋼板を3〜60秒間、酸洗することで変化させた。この酸洗後の冷延鋼板表面にあるSi系酸化物量が発明範囲内か否かは、実施の形態と同様に蛍光X線分析装置(FX)を用いて、判断した。   A slab having the components shown in Table 1 manufactured by the converter melting and continuous casting processes was used as a cold-rolled steel sheet according to the manufacturing conditions shown in Table 2. Further, the amount of Si-based oxide on the surface of the cold-rolled steel sheet was changed by pickling the cold-rolled steel sheet for 3 to 60 seconds using a 10 mass% hydrochloric acid aqueous solution. Whether or not the amount of the Si-based oxide on the surface of the cold-rolled steel sheet after pickling is within the range of the invention was determined using a fluorescent X-ray analyzer (FX) as in the embodiment.

この判断の後、表面のSi系酸化物量が発明範囲内であれば、上記冷延鋼板にNi電気めっきもしくはチオグリコール酸水溶液を塗布乾燥させた。Ni電気めっきは、硫酸Ni(240g/L)−ホウ酸(30g/L)混合水溶液(硫酸でpHを3.6に調製済)を処理液として、処理液温度50℃の条件下にて行った。電解時間によって付着量を、電流密度によってNi/Fe比を制御した。また、チオグリコール酸水溶液処理は、冷延鋼板表面に、チオグリコール酸水溶液(1.0〜5.0g/L)をミスト状にして吹きかけて塗布した後、乾燥させることで行った。付着量は処理液の塗布量によって制御し、S/Fe比はミストの粒径を変化させて制御した。Ni及びSの付着量、Ni/Fe比、S/Fe比は、それぞれ既述の方法により測定した。   After this judgment, if the amount of Si-based oxide on the surface was within the range of the invention, Ni electroplating or thioglycolic acid aqueous solution was applied to the cold-rolled steel sheet and dried. Ni electroplating was performed under the conditions of a treatment liquid temperature of 50 ° C. using a mixed aqueous solution of sulfuric acid Ni (240 g / L) and boric acid (30 g / L) (pH adjusted to 3.6 with sulfuric acid) as a treatment liquid. The amount of adhesion was controlled by the electrolysis time, and the Ni / Fe ratio was controlled by the current density. Moreover, the thioglycolic acid aqueous solution treatment was performed by spraying the thioglycolic acid aqueous solution (1.0 to 5.0 g / L) in the form of a mist on the surface of the cold-rolled steel sheet and then drying it. The adhesion amount was controlled by the coating amount of the treatment liquid, and the S / Fe ratio was controlled by changing the particle size of the mist. The adhesion amount of Ni and S, the Ni / Fe ratio, and the S / Fe ratio were measured by the methods described above.

規定のNi化合物もしくはS化合物を表面に付着させた後、冷延鋼板を日本ペイント社製SP-250で脱脂し、さらに、日本ペイント社製サーフファイ5N-1で表面調整した後に、日本ペイント社製SD-2800でリン酸塩処理を行った。   After attaching the prescribed Ni compound or S compound to the surface, degrease the cold-rolled steel sheet with SP-250 made by Nippon Paint Co., Ltd. Phosphate treatment was carried out with SD-2800 manufactured.

以上のようにして作製した試料について、実施の形態に示したSi系酸化物におけるリン酸塩処理性の評価と同様の評価を行った。各試料の条件と評価結果を表4と表5に示す。表4がNi化合物を付着させた場合、表5がS化合物を付着させた場合の結果を示している。これらの結果から、本発明例の範囲内の高強度鋼板は、Siが添加されていても良好なリン酸塩処理性を示すことが明らかになった。   The samples prepared as described above were evaluated in the same manner as the evaluation of phosphate treatment in the Si-based oxide shown in the embodiment. Tables 4 and 5 show the conditions and evaluation results for each sample. Table 4 shows the results when Ni compounds were deposited, and Table 5 shows the results when S compounds were deposited. From these results, it became clear that the high-strength steel plates within the scope of the present invention examples show good phosphatability even when Si is added.

Figure 2007162057
Figure 2007162057

Figure 2007162057
Figure 2007162057

Claims (3)

鋼板表面のSi系酸化物量が、SiO2換算で20mg/m2以下であることを特徴とするリン酸塩処理性に優れた高強度鋼板。 A high-strength steel sheet excellent in phosphatability, characterized in that the amount of Si-based oxide on the steel sheet surface is 20 mg / m 2 or less in terms of SiO 2 . 鋼板表面のSi系酸化物量がSiO2換算で20mg/m2以下、および鋼板表面のNi化合物量がNi換算で1mg/m2以上、200mg/m2以下で、かつ鋼板表面でのFeに対するNiの原子比が0.08以上、2以下であることを特徴とするリン酸塩処理性に優れた高強度鋼板。 The amount of Si-based oxide on the steel sheet surface is 20 mg / m 2 or less in terms of SiO 2 , and the amount of Ni compound on the steel sheet surface is 1 mg / m 2 or more and 200 mg / m 2 or less in terms of Ni, and Ni against Fe on the steel sheet surface A high-strength steel sheet excellent in phosphate treatment, characterized by having an atomic ratio of 0.08 or more and 2 or less. 鋼板表面のSi系酸化物量がSiO2換算で20mg/m2以下、および鋼板表面のS化合物量がS換算で1mg/m2以上、100mg/m2以下、かつ鋼板表面でのFeに対するSの原子比が0.05以上、1.5以下であることを特徴とするリン酸塩処理性に優れた高強度鋼板。 The amount of Si-based oxide on the steel sheet surface is 20 mg / m 2 or less in terms of SiO 2 , and the amount of S compound on the steel sheet surface is 1 mg / m 2 or more and 100 mg / m 2 or less in terms of S, and the amount of S relative to Fe on the steel sheet surface A high-strength steel sheet excellent in phosphate processability characterized by an atomic ratio of 0.05 or more and 1.5 or less.
JP2005358662A 2005-12-13 2005-12-13 High strength steel sheet having excellent phosphate treatability Pending JP2007162057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358662A JP2007162057A (en) 2005-12-13 2005-12-13 High strength steel sheet having excellent phosphate treatability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005358662A JP2007162057A (en) 2005-12-13 2005-12-13 High strength steel sheet having excellent phosphate treatability

Publications (1)

Publication Number Publication Date
JP2007162057A true JP2007162057A (en) 2007-06-28

Family

ID=38245310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358662A Pending JP2007162057A (en) 2005-12-13 2005-12-13 High strength steel sheet having excellent phosphate treatability

Country Status (1)

Country Link
JP (1) JP2007162057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090441A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Steel material superior in chemical conversion treatability of worked member, and method for manufacturing the same
WO2013129295A1 (en) * 2012-02-28 2013-09-06 Jfeスチール株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
JP2017145471A (en) * 2016-02-18 2017-08-24 新日鐵住金株式会社 Steel sheet and manufacturing method therefor
WO2022168167A1 (en) * 2021-02-02 2022-08-11 日本製鉄株式会社 Thin steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116887A (en) * 1980-02-21 1981-09-12 Nippon Steel Corp Cold rolled steel plate with excellent suitability for phosphate treatment and preparation thereof
JPS57161035A (en) * 1981-03-31 1982-10-04 Nippon Steel Corp Production of silicon-contg. steel plate of superior phosphatability
JPS59129785A (en) * 1983-01-13 1984-07-26 Sumitomo Metal Ind Ltd Cold rolled steel sheet with superior suitability to phosphating and manufacture
JPS59232275A (en) * 1983-06-14 1984-12-27 Nippon Steel Corp Cold rolled steel sheet having excellent phosphate treatability and its production
JPS60208481A (en) * 1984-04-02 1985-10-21 Kawasaki Steel Corp Production of dead soft cold rolled steel sheet having excellent phosphate treatability
JPS61113787A (en) * 1984-11-07 1986-05-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet having excellent phosphating property
JPH09137285A (en) * 1995-11-13 1997-05-27 Kobe Steel Ltd Lubricating steel sheet excellent in oil face adhesive property and chemical convertibility
JP2003226920A (en) * 2002-02-06 2003-08-15 Kobe Steel Ltd METHOD OF PRODUCING HIGH Si-CONTAINING HIGH TENSILE STRENGTH STEEL SHEET HAVING EXCELLENT PHOSPHATE FILM TREATABILITY
JP2004323969A (en) * 2003-04-10 2004-11-18 Kobe Steel Ltd High strength cold rolled steel sheet excellent in chemical processing
JP2005139486A (en) * 2003-11-05 2005-06-02 Nippon Steel Corp Hot rolled steel sheet with excellent chemical conversion treatability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116887A (en) * 1980-02-21 1981-09-12 Nippon Steel Corp Cold rolled steel plate with excellent suitability for phosphate treatment and preparation thereof
JPS57161035A (en) * 1981-03-31 1982-10-04 Nippon Steel Corp Production of silicon-contg. steel plate of superior phosphatability
JPS59129785A (en) * 1983-01-13 1984-07-26 Sumitomo Metal Ind Ltd Cold rolled steel sheet with superior suitability to phosphating and manufacture
JPS59232275A (en) * 1983-06-14 1984-12-27 Nippon Steel Corp Cold rolled steel sheet having excellent phosphate treatability and its production
JPS60208481A (en) * 1984-04-02 1985-10-21 Kawasaki Steel Corp Production of dead soft cold rolled steel sheet having excellent phosphate treatability
JPS61113787A (en) * 1984-11-07 1986-05-31 Sumitomo Metal Ind Ltd Cold rolled steel sheet having excellent phosphating property
JPH09137285A (en) * 1995-11-13 1997-05-27 Kobe Steel Ltd Lubricating steel sheet excellent in oil face adhesive property and chemical convertibility
JP2003226920A (en) * 2002-02-06 2003-08-15 Kobe Steel Ltd METHOD OF PRODUCING HIGH Si-CONTAINING HIGH TENSILE STRENGTH STEEL SHEET HAVING EXCELLENT PHOSPHATE FILM TREATABILITY
JP2004323969A (en) * 2003-04-10 2004-11-18 Kobe Steel Ltd High strength cold rolled steel sheet excellent in chemical processing
JP2005139486A (en) * 2003-11-05 2005-06-02 Nippon Steel Corp Hot rolled steel sheet with excellent chemical conversion treatability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090441A (en) * 2008-10-08 2010-04-22 Jfe Steel Corp Steel material superior in chemical conversion treatability of worked member, and method for manufacturing the same
WO2013129295A1 (en) * 2012-02-28 2013-09-06 Jfeスチール株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
CN104136644A (en) * 2012-02-28 2014-11-05 杰富意钢铁株式会社 Si-containing high strength cold rolled steel sheet, production method therefor, and vehicle member
JPWO2013129295A1 (en) * 2012-02-28 2015-07-30 Jfeスチール株式会社 Si-containing high-strength cold-rolled steel sheet, method for producing the same, and automobile member
US10174430B2 (en) 2012-02-28 2019-01-08 Jfe Steel Corporation Si-containing high strength cold rolled steel sheet, method of producing the same, and automotive members
JP2017145471A (en) * 2016-02-18 2017-08-24 新日鐵住金株式会社 Steel sheet and manufacturing method therefor
WO2022168167A1 (en) * 2021-02-02 2022-08-11 日本製鉄株式会社 Thin steel sheet
JP7525804B2 (en) 2021-02-02 2024-07-31 日本製鉄株式会社 Thin Steel Plate

Similar Documents

Publication Publication Date Title
JP5729211B2 (en) Cold rolled steel sheet manufacturing method, cold rolled steel sheet and automobile member
TWI586840B (en) Cold-rolled steel sheet, method of manufacturing cold-rolled steel sheet and automobile member
KR101772308B1 (en) Hot-stamped product and process for producing hot-stamped product
JP5835558B2 (en) Cold rolled steel sheet manufacturing method
JP2009242949A (en) Hot-dip galvannealed steel sheet and method for production thereof
JP2004323970A (en) High strength hot dip galvanized steel sheet, and its production method
EP2801634B1 (en) Hot-dip galvannealed steel sheet
JP6855678B2 (en) Steel sheet manufacturing method
JP5835545B2 (en) Method for producing Si-containing hot-rolled steel sheet
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP2007162057A (en) High strength steel sheet having excellent phosphate treatability
JP2005213643A (en) High-strength electrogalvanized steel sheet excellent in appearance uniformity and its production method
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP4725374B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
JP4926517B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent corrosion resistance after painting
JP4821365B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet with excellent corrosion resistance after painting
JP4725376B2 (en) High-strength cold-rolled steel sheet excellent in formability, chemical conversion treatment and post-coating corrosion resistance, and method for producing the same
WO2022158469A1 (en) Steel material
JP6123754B2 (en) Si-containing hot-rolled steel sheet having excellent chemical conversion property and method for producing the same
JP5835548B2 (en) Method for producing Si-containing cold-rolled steel sheet
WO2022168167A1 (en) Thin steel sheet
JP2007126747A (en) High-strength cold rolled steel sheet having excellent formability and corrosion resistance after coating and its production method
WO2024122120A1 (en) Plated steel sheet
WO2024028642A1 (en) Steel sheet having excellent powdering properties after press-hardening and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002