JP2002249556A - Molded article for packaging - Google Patents

Molded article for packaging

Info

Publication number
JP2002249556A
JP2002249556A JP2001052016A JP2001052016A JP2002249556A JP 2002249556 A JP2002249556 A JP 2002249556A JP 2001052016 A JP2001052016 A JP 2001052016A JP 2001052016 A JP2001052016 A JP 2001052016A JP 2002249556 A JP2002249556 A JP 2002249556A
Authority
JP
Japan
Prior art keywords
glycolic acid
glycolide
copolymer
heat
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001052016A
Other languages
Japanese (ja)
Other versions
JP4993238B2 (en
Inventor
Kazuaki Sakurai
和明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001052016A priority Critical patent/JP4993238B2/en
Publication of JP2002249556A publication Critical patent/JP2002249556A/en
Application granted granted Critical
Publication of JP4993238B2 publication Critical patent/JP4993238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PROBLEM TO BE SOLVED: To provide a molded article prepared from a thermoplastic resin composition mainly composed of a glycolic acid-based copolymer, the article being biodegradable, having excellent gas barrier properties, heat resistance, transparency and mechanical strength, and being suitable for packaging use. SOLUTION: This molded article for packaging is prepared from a thermoplastic resin composition mainly composed of a glycolic acid-based copolymer, wherein the melting point in the first temperature elevating step is >=175 deg.C and <=205 deg.C, the heat of crystallization in the first cooling step is 0 J/g, and the heat of fusion in the second temperature elevating step is >=0 J/g and <20 J/g in the DSC measurement, the relative degree of crystallinity is >=3% and <=50%, and the logarithmic viscosity number is >=0.15 m<3> /kg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、包装材用途に好適
なグリコール酸系共重合体を主体とする熱可塑性樹脂組
成物よりなる成形体に関する。更に詳しくは、生分解性
を有し、且つガスバリア性、耐熱性、透明性、機械的強
度に優れる、包装材用途に好適なグリコール酸系共重合
体を主体とする熱可塑性樹脂組成物よりなる成形体に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article made of a thermoplastic resin composition mainly composed of a glycolic acid copolymer suitable for use as a packaging material. More specifically, it is a thermoplastic resin composition mainly composed of a glycolic acid-based copolymer suitable for packaging materials, having biodegradability, and having excellent gas barrier properties, heat resistance, transparency, and mechanical strength. It relates to a molded article.

【0002】[0002]

【従来の技術】食品や医薬品などの包装は、その内容物
の輸送や分配の作業を容易にするものであると同時に、
品質維持が特に重要な役割である。従って、包装材に
は、品質維持性能の高さが要求される。具体的には、長
期保存時に内容物を保護する性能として、衝撃や突き刺
しなどの外力に対する機械的強度や、外気酸素による内
容物の酸化劣化や内容物の水分蒸発による劣化に対する
ガスバリア性、包装材自体が保存時や使用時に変性や変
形しない耐油性や耐熱性などの安定性、包装材自体から
の有害物質、異味、異臭の移行がない衛生性などが挙げ
られる。
2. Description of the Related Art Packaging of foods and pharmaceuticals facilitates the work of transporting and distributing their contents,
Maintaining quality is a particularly important role. Therefore, packaging materials are required to have high quality maintenance performance. Specifically, the properties that protect the contents during long-term storage include mechanical strength against external forces such as impact and puncture, gas barrier properties against oxidative deterioration of the contents due to external oxygen and deterioration due to moisture evaporation of the contents, and packaging materials. Stability such as oil resistance and heat resistance, which are not denatured or deformed during storage or use, and hygiene without transfer of harmful substances, off-flavors and off-flavors from the packaging material itself.

【0003】従来から、これら包装材用途には、加工時
や利用時の利便性からプラスチック製品が使用されてい
た。しかし、現在の消費社会では、その使用量は年々増
加の一途をたどっており、同時にプラスチック廃棄物問
題は年々深刻化している。プラスチック廃棄物は、多く
は焼却や埋め立てにより処分されているが、近年は環境
保全の観点から、回収して再びプラスチック製品の原料
として用いるマテリアルリサイクルが提唱されている。
Conventionally, plastic products have been used for these packaging materials because of their convenience in processing and use. However, in today's consumer society, the amount of use is increasing year by year, and at the same time, the problem of plastic waste is getting more serious every year. Most of plastic waste is disposed of by incineration or landfill, but in recent years, from the viewpoint of environmental conservation, material recycling that is collected and reused as a raw material for plastic products has been proposed.

【0004】しかし、上述のとおり、プラスチック製品
の包装材としての要求性能は多岐にわたり、単一種類の
プラスチックのみではこれら全ての要求を満たすことが
出来ず、例えば多層化してガスバリア性フィルムや成形
容器にするなど、一般に数種類のプラスチックを組み合
わせて用いられている。この様な包装材は、各種樹脂へ
の分別が非常に困難であり、コスト面などを考慮すると
マテリアルリサイクルは不可能である。
However, as described above, the performance requirements of plastic products as packaging materials vary widely, and a single type of plastic alone cannot satisfy all of these requirements. For example, a multilayered gas barrier film or molded container In general, several types of plastics are used in combination. Such packaging materials are very difficult to separate into various resins, and material recycling is impossible in view of cost and the like.

【0005】これに対し、特開平10−60137号公
報には、融点Tmが150℃以上、融解熱ΔHmが20
J/g以上、無配向結晶化物の密度が1.50g/cm
3以上である特定のポリグリコール酸を含有する熱可塑
性樹脂よりなるポリグリコール酸シートが開示され、該
ポリグリコール酸シートが土中崩壊性を示し、且つ強靭
性やバリア性に優れる容器や包材として使用することが
出来る旨の記載もある。
On the other hand, JP-A-10-60137 discloses that the melting point Tm is 150 ° C. or higher and the heat of fusion ΔHm is 20 or more.
J / g or more, density of non-oriented crystallized product is 1.50 g / cm
Disclosed is a polyglycolic acid sheet comprising a thermoplastic resin containing a specific polyglycolic acid of 3 or more, wherein the polyglycolic acid sheet exhibits disintegration in soil, and has excellent toughness and barrier properties. There is also a statement that it can be used as.

【0006】しかしながら、上記特開平10−6013
7号公報に記載のポリグリコール酸シートは、融点Tm
が150℃程度では依然として耐熱性が不充分であり、
電子レンジ容器として使用する場合に発熱した内容物か
らの熱により大きく変形したり、溶融穿孔が起こったり
する問題点があった。また、包装材の要求特性として
は、内容物の認識し易さや、購入者の購買意欲を促すデ
ィスプレイ効果により商品価値を高めるために、透明性
も重要な因子である。ところが、上記特開平10−60
137号公報に記載のポリグリコール酸シートは、融解
熱ΔHmが20J/g以上、無配向結晶化物の密度が
1.50g/cm3以上であることから、非常に結晶性
が高いために透明なシートが得られ難かったり、透明性
を向上させるためには成形時に急冷しなければならずシ
ート製造工程が非常に煩雑になるという問題点があっ
た。
However, Japanese Patent Application Laid-Open No.
No. 7 discloses a polyglycolic acid sheet having a melting point Tm.
However, at about 150 ° C., the heat resistance is still insufficient,
When used as a microwave oven container, there has been a problem that the material is greatly deformed due to heat from the heated contents, or melt-punching occurs. As a required characteristic of the packaging material, transparency is also an important factor in order to enhance the product value by making the contents easily recognizable and a display effect that encourages the purchaser's willingness to purchase. However, Japanese Patent Application Laid-Open No. Hei 10-60
The polyglycolic acid sheet described in Japanese Patent No. 137 has a high heat of fusion of 20 J / g or more and a density of non-oriented crystallized material of 1.50 g / cm 3 or more. There has been a problem that it is difficult to obtain a sheet or that the sheet has to be rapidly cooled during molding in order to improve transparency, so that the sheet manufacturing process becomes very complicated.

【0007】尚、融解熱や密度と結晶性との関係は、詳
しくは後述するが、例えば樹脂の結晶化度測定方法とし
て熱分析法や密度法などがあり、一般に前者では融解
熱、後者では密度と関連付けられている(日本分析化学
会編、新版 高分子分析ハンドブック、p.340、紀
伊国屋書店(1995))。
The relation between the heat of fusion and the density and the crystallinity will be described in detail later. For example, there are a thermal analysis method and a density method as a method for measuring the crystallinity of a resin. It is associated with the density (edited by the Society of Analytical Chemistry, Japan, New Edition, Polymer Analysis Handbook, p. 340, Kinokuniya Shoten (1995)).

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、生分
解性を有し、且つガスバリア性、耐熱性、透明性、機械
的強度に優れる、包装材用途に好適なグリコール酸系共
重合体を主体とする熱可塑性樹脂組成物よりなる成形体
を提供することにある。
An object of the present invention is to provide a glycolic acid-based copolymer which has biodegradability and is excellent in gas barrier properties, heat resistance, transparency and mechanical strength, and is suitable for use in packaging materials. It is an object of the present invention to provide a molded article comprising a thermoplastic resin composition mainly composed of:

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
達成する為に鋭意検討した結果、繰返し単位が主として
グリコール酸よりなる共重合体の融点、結晶化熱、融解
熱、相対結晶化度、及び対数粘度数を特定することによ
り、該重合体を主体とする熱可塑性樹脂組成物よりなる
成形体が生分解性を有し、且つガスバリア性、耐熱性、
透明性、機械的強度に優れ、包装材料用途に好適である
ことを見出し、本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the melting point, heat of crystallization, heat of fusion, and relative crystallization of a copolymer whose repeating unit is mainly composed of glycolic acid are obtained. Degree, and by specifying the logarithmic viscosity number, the molded body made of a thermoplastic resin composition mainly comprising the polymer has biodegradability, and gas barrier properties, heat resistance,
The inventors have found that they have excellent transparency and mechanical strength and are suitable for use in packaging materials, and have reached the present invention.

【0010】即ち、本発明は、 1. グリコール酸系共重合体の非晶シートを150℃
で100分間熱処理した試験片を用い加熱及び冷却速度
が10℃/分で測定した示差走査熱量測定(JIS K
7121、及びK7122準拠)において1回目の昇温
過程での融点Tm(℃)、1回目の冷却過程での結晶化
熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔH
m(J/g)が下式(1)〜(3)を満たし、且つ下式
(4)で表される相対結晶化度Xrが3%以上50%以
下、対数粘度数[η]が0.15m3/kg以上である
グリコール酸系共重合体を主体とする熱可塑性樹脂組成
物よりなることを特徴とする包装材用成形体、 式(1)175≦Tm≦205 式(2)ΔHc=0 式(3)0≦ΔHm<20 式(4)Xr=[(ρb−ρa)/(ρc−ρa)]×
(ρc/ρb)×100 但し、ρa:非晶物の密度(g/cm3) ρb:150℃で5分間加熱した結晶化物の密度(g/
cm3) ρc:150℃で100分間加熱した結晶化物の密度
(g/cm3) 2. グリコール酸系共重合体が、グリコリドとグリコ
リド以外の単量体を用いて開環重合し得られる共重合体
であって、グリコリドよりなる繰返し単位の成分割合が
78〜90mol%であり、グリコリド以外の単量体よ
りなる繰返し単位の成分割合が22〜10mol%であ
ることを特徴とする上記1に記載の包装材用成形体、 3. グリコリド以外の単量体が脂肪族ヒドロキシカル
ボン酸類の環状二量体およびラクトン類から選ばれる少
なくとも一種からなることを特徴とする上記2に記載の
包装材用成形体、である。
That is, the present invention provides: Amorphous sheet of glycolic acid copolymer is heated to 150 ° C
Scanning calorimetry (JIS K) using a test piece heat-treated for 100 minutes at a heating and cooling rate of 10 ° C./min.
7121 and K7122), the melting point Tm (° C.) in the first heating process, the heat of crystallization ΔHc (J / g) in the first cooling process, and the heat of fusion ΔH in the second heating process.
m (J / g) satisfies the following formulas (1) to (3), the relative crystallinity Xr represented by the following formula (4) is 3% or more and 50% or less, and the logarithmic viscosity number [η] is 0. A molded article for a packaging material comprising a thermoplastic resin composition mainly composed of a glycolic acid-based copolymer of not less than 15 m 3 / kg, Formula (1) 175 ≦ Tm ≦ 205 Formula (2) ΔHc = 0 Equation (3) 0 ≦ ΔHm <20 Equation (4) Xr = [(ρb−ρa) / (ρc−ρa)] ×
(Ρc / ρb) × 100, where ρa: density of amorphous substance (g / cm 3 ) ρb: density of crystallized substance heated at 150 ° C. for 5 minutes (g / cm 3 )
cm 3 ) ρc: density of crystallized material heated at 150 ° C. for 100 minutes (g / cm 3 ) A glycolic acid-based copolymer is a copolymer obtained by ring-opening polymerization using glycolide and a monomer other than glycolide, wherein the proportion of a repeating unit composed of glycolide is 78 to 90 mol%, 2. The molded article for a packaging material according to the above item 1, wherein the component ratio of the repeating unit composed of the monomer is 22 to 10 mol%. 3. The molded article for a packaging material according to the above item 2, wherein the monomer other than glycolide comprises at least one selected from a cyclic dimer of an aliphatic hydroxycarboxylic acid and a lactone.

【0011】以下、本発明の包装材用成形体について詳
細に説明する。本発明の包装材用成形体は、本発明で規
定する結晶化熱ΔHc 、融解熱ΔHm および相対結晶
化度Xrがそれぞれ特定範囲にあるような結晶性を有す
るグリコール酸系共重合体を用いることにより、成形体
製造時に急冷するなどの煩雑な工程を経なくとも透明性
が得られ、更に成形体を長期間保管した場合でも透明性
は高いレベルに維持することが可能になることを見出し
たことに基くものである。
Hereinafter, the molded article for packaging material of the present invention will be described in detail. The molded product for a packaging material of the present invention uses a glycolic acid-based copolymer having crystallinity such that the heat of crystallization ΔHc, the heat of fusion ΔHm, and the relative crystallinity Xr defined in the present invention are each in a specific range. Thereby, it has been found that transparency can be obtained without going through complicated steps such as rapid cooling at the time of production of a molded article, and that the transparency can be maintained at a high level even when the molded article is stored for a long period of time. It is based on that.

【0012】重合体の結晶性とは、重合体の結晶化し易
さを指しおり、結晶化速度や結晶化度を指標として表さ
れる。結晶化速度は、過冷却融体から結晶状態に非可逆
的に転移するときの速度であり、その目安として熱分析
における等速冷却過程での結晶化温度の測定が行われて
いて、結晶化速度が速い方が結晶化温度は高くなるとさ
れている(日本分析化学会編、新版 高分子分析ハンド
ブック、p.339、紀伊国屋書店(1995))。
[0012] The crystallinity of a polymer refers to the easiness of crystallization of the polymer, and is expressed using the crystallization speed and the degree of crystallization as indices. The crystallization rate is the rate at which an irreversible transition from a supercooled melt to a crystalline state occurs.As a guide, the crystallization temperature is measured during the uniform cooling process in thermal analysis. It is said that the higher the speed, the higher the crystallization temperature (edited by the Japan Society for Analytical Chemistry, New Edition, Polymer Analysis Handbook, p. 339, Kinokuniya Shoten (1995)).

【0013】本発明で用いるグリコール酸系共重合体
は、冷却速度が10℃/分で測定した示差走査熱量測定
(JIS K7121、及びK7122準拠 以下DS
Cという。)における1回目の冷却過程での結晶化熱Δ
Hcが0J/gであることが必要である。即ちDSCの
測定条件(冷却速度10℃/分)では結晶化が起こらな
い結晶化速度を有することが必要である。DSCにおけ
る等速冷却過程で結晶化ピークが現れない場合(結晶化
熱ΔHc=0J/g) 、試験片の結晶性は、非晶質で
あり全く結晶化しないか、或いは結晶化速度が遅いため
DSCの測定条件(冷却速度10℃/分)では結晶化が
起こらないかの二通りが考えられる。ここで、本発明の
グリコール酸系重合体は、後述のとおりDSCにおける
1回目の昇温過程での融点Tmが175℃以上205℃
以下であるので、上述した非晶質であり全く結晶化しな
い場合とは異なるものである。
The glycolic acid-based copolymer used in the present invention has a differential scanning calorimeter (hereinafter referred to as DS according to JIS K7121 and K7122) measured at a cooling rate of 10 ° C./min.
Called C. ) Heat of crystallization during the first cooling process
It is necessary that Hc is 0 J / g. That is, it is necessary to have a crystallization rate at which crystallization does not occur under the DSC measurement conditions (cooling rate 10 ° C./min). When the crystallization peak does not appear in the DSC uniform cooling process (heat of crystallization ΔHc = 0 J / g), the crystallinity of the test piece is amorphous and does not crystallize at all, or the crystallization speed is low. Under DSC measurement conditions (cooling rate: 10 ° C./min), two types of crystallization do not occur. Here, the glycolic acid-based polymer of the present invention has a melting point Tm of 175 ° C. or more and 205 ° C. in the first heating process in DSC as described later.
This is different from the above-described case where the film is amorphous and does not crystallize at all.

【0014】本発明で用いるグリコール酸系共重合体
が、1回目の冷却過程において該結晶化熱ΔHcが0J
/g以外では、該重合体を主体とする熱可塑性樹脂組成
物よりなる包装材用成形体は、その製造時に急冷操作な
ど特別な非晶化過程が必要となり、また該成形体の透明
性を高いレベルに維持することができない。一方、結晶
化度は、高分子固体における結晶領域の重量分率として
定義され、例えば熱分析法や密度法などにより測定され
る。
The glycolic acid copolymer used in the present invention has a heat of crystallization ΔHc of 0 J in the first cooling step.
/ G other than the above, a molded article for a packaging material composed of a thermoplastic resin composition mainly composed of the polymer requires a special non-crystallization step such as a quenching operation at the time of its production, and the transparency of the molded article is increased. Cannot be maintained at a high level. On the other hand, the crystallinity is defined as a weight fraction of a crystalline region in a polymer solid, and is measured by, for example, a thermal analysis method or a density method.

【0015】熱分析法では、一般に理論融解熱ΔHfに
対する試験片の実測融解熱ΔHmの比として、結晶化度
Xc(%)=ΔHm/ΔHf×100より求められる
(日本分析化学会編、新版 高分子分析ハンドブック、
p.339、紀伊国屋書店(1995))。該式におい
て、ΔHmは示差走査熱量測定(DSC;JIS K7
122準拠)により測定した値を用い、ΔHfはホモポ
リマーの場合は例えばPOLYMER HANDBOO
K(JOHN WILEY & SONS)等に記載の
値が用いられている。
In the thermal analysis method, the ratio of the measured heat of fusion ΔHm of the test piece to the theoretical heat of fusion ΔHf is generally obtained from the crystallinity Xc (%) = ΔHm / ΔHf × 100 (edited by the Japan Society for Analytical Chemistry, New Edition Molecular analysis handbook,
p. 339, Kinokuniya Bookstore (1995)). In the formula, ΔHm is the value of differential scanning calorimetry (DSC; JIS K7).
ΔHf is, for example, POLYMER HANDBOO in the case of a homopolymer.
K (John Wiley & Sons) and the like are used.

【0016】また、密度法では、一般に試験片の実測密
度をd、完全非晶および完全結晶の密度をそれぞれda
およびdcで表すと、結晶化度Xc(%)=[(d−d
a)/(dc−da)]×(dc/d)×100により
求められる(日本分析化学会編、新版 高分子分析ハン
ドブック、p.586、紀伊国屋書店(1995))。
該式において、dやdaは試験片や試験片を加熱融解し
た後急冷することで得られる非晶物を例えば浮沈法や密
度勾配管法(JIS K7112準拠)により測定した
値を用い、dcはホモポリマーの場合は例えばPOLY
MER HANDBOOK(JOHN WILEY &
SONS)等に記載の値が用いられている。しかしな
がら、上記ΔHfやdcは、共重合体の場合は共重合成
分やその成分割合が多岐に亘るために文献値が無い場合
が多い。
In the density method, the measured density of a test piece is generally d, and the densities of completely amorphous and completely crystalline are respectively da.
And dc, the degree of crystallinity Xc (%) = [(dd−
a) / (dc-da)] × (dc / d) × 100 (edited by the Japan Society for Analytical Chemistry, New Edition, Polymer Analysis Handbook, p.586, Kinokuniya Shoten (1995)).
In the formula, d and da are values obtained by measuring a test piece or an amorphous substance obtained by heating and melting the test piece and then quenching the material by, for example, a float-sink method or a density gradient tube method (based on JIS K7112). In the case of a homopolymer, for example, POLY
MER HANDBOOK (JOHN WILEY &
SONS) and the like are used. However, in the case of a copolymer, ΔHf and dc often have no literature value because the copolymerization components and their component ratios are diversified.

【0017】熱分析法では、結晶化度Xcを求める上記
計算式は、試験片の実測融解熱ΔHmが大きい方が結晶
化度は高くなることを意味していることから、本発明に
おいては、ΔHmの値によって結晶化度を判断する。
DSC測定における2回目の昇温過程での融解熱ΔHm
が0J/g以上20J/g未満であることが必要であ
る。また、密度法では、結晶化が十分進むと考えられる
条件で加熱し結晶化させた場合の密度を用いて求めた相
対結晶化度の値によって、重合体の結晶化度を判断す
る。本発明においては、下記式(4)で表される相対結
晶化度Xrが3%以上50%以下の範囲内であることが
必要である。 式(4)Xr=[(ρb−ρa)/(ρc−ρa)]×
(ρc/ρb)×100 但し、ρa:非晶物の密度(g/cm3) ρb:150℃で5分間加熱した結晶化物の密度(g/
cm3) ρc:150℃で100分間加熱した結晶化物の密度
(g/cm3
In the thermal analysis method, the above formula for determining the crystallinity Xc means that the larger the measured heat of fusion ΔHm of the test piece, the higher the crystallinity. The crystallinity is determined based on the value of ΔHm.
Heat of fusion ΔHm in the second heating process in DSC measurement
Is less than 0 J / g and less than 20 J / g. Further, in the density method, the crystallinity of the polymer is determined from the value of the relative crystallinity obtained using the density obtained by heating and crystallizing under conditions that the crystallization is considered to proceed sufficiently. In the present invention, the relative crystallinity Xr represented by the following formula (4) needs to be in the range of 3% or more and 50% or less. Formula (4) Xr = [(ρb−ρa) / (ρc−ρa)] ×
(Ρc / ρb) × 100, where ρa: density of amorphous substance (g / cm 3 ) ρb: density of crystallized substance heated at 150 ° C. for 5 minutes (g / cm 3 )
cm 3 ) ρc: density of crystallized material heated at 150 ° C. for 100 minutes (g / cm 3 )

【0018】本発明において用いるグリコール酸系共重
合体の該ΔHmの値が0J/gということは、前述の結
晶化熱ΔHcの場合と同様に、本発明の重合体が後述の
とおりDSCにおける1回目の昇温過程での融点Tmが
175℃以上205℃以下であるので非晶質であり全く
結晶化しない場合とは異なり、DSCの測定条件(昇温
速度10℃/分)では結晶化が起こらない結晶化速度で
あることを意味しており、該重合体を主体とする熱可塑
性樹脂組成物よりなる包装材用成形体は、その製造時に
急冷操作など特別な非晶化過程が不用で製造工程が簡便
になり、更に該成形体は透明性が優れ、長期間保管した
場合でも透明性は高いレベルに維持することが可能にな
る。
The fact that the value of ΔHm of the glycolic acid-based copolymer used in the present invention is 0 J / g means that the polymer of the present invention has a value of 1 in DSC as described later, as in the case of the heat of crystallization ΔHc described above. Since the melting point Tm in the second heating process is 175 ° C. or more and 205 ° C. or less, unlike the case where it is amorphous and does not crystallize at all, crystallization is not performed under the measurement conditions of DSC (heating rate 10 ° C./min). This means that the crystallization rate does not occur, and a molded article for a packaging material composed of a thermoplastic resin composition mainly composed of the polymer does not require a special non-crystallization step such as a quenching operation during its production. The manufacturing process is simplified, and the molded article has excellent transparency, and the transparency can be maintained at a high level even when stored for a long period of time.

【0019】一方、該ΔHmの値が20J/g以上の場
合、該重合体は結晶性が非常に高いために、該重合体を
主体とする熱可塑性樹脂組成物よりなる包装材用成形体
は、透明性が著しく悪化したり、透明性を向上させるた
めには成形時に急冷操作など特別な非晶化工程が必用に
なり製造工程が煩雑になる。該ΔHmの値は、より透明
性が高い包装材用成形体を得る為には、0J/g以上1
8.0J/g以下の範囲が好ましい。
On the other hand, when the value of ΔHm is not less than 20 J / g, since the polymer has very high crystallinity, a molded article for a packaging material composed of a thermoplastic resin composition containing the polymer as a main component is not provided. In order to remarkably deteriorate the transparency or to improve the transparency, a special non-crystallization step such as a quenching operation is required at the time of molding, which complicates the production process. The value of ΔHm is preferably 0 J / g or more and 1 to obtain a molded article for packaging material having higher transparency.
The range of 8.0 J / g or less is preferable.

【0020】また、前記式(4)で表される相対結晶化
度Xrが3%より低い場合は、グリコール酸系共重合体
の結晶性が低過ぎて、該重合体を主体とする熱可塑性樹
脂組成物よりなる包装材用成形体は耐熱性が著しく劣る
ものとなる。一方、該Xrの値が50%より高い場合
は、該重合体は結晶性が非常に高いために、該重合体を
主体とする熱可塑性樹脂組成物よりなる包装材用成形体
は、透明性が著しく悪化したり、透明性を向上させるた
めには成形時に急冷操作など特別な非晶化工程が必要に
なり製造工程が煩雑になる。該Xrの値は、より高い耐
熱性とより高い透明性を兼備する為には、10%以上4
0%以下の範囲が好ましい。
When the relative crystallinity Xr represented by the above formula (4) is lower than 3%, the crystallinity of the glycolic acid-based copolymer is too low, and the thermoplastic polymer mainly composed of the polymer is used. A molded article for a packaging material made of a resin composition has extremely poor heat resistance. On the other hand, when the value of Xr is higher than 50%, since the polymer has very high crystallinity, the molded article for a packaging material composed of a thermoplastic resin composition mainly composed of the polymer has a high transparency. In order to improve the transparency significantly or to improve the transparency, a special non-crystallization step such as a quenching operation is required at the time of molding, which complicates the production process. The value of Xr should be 10% or more to combine higher heat resistance and higher transparency.
A range of 0% or less is preferable.

【0021】また、前記式(4)において、150℃で
100分間加熱した際の密度ρcが、その加熱前の非晶
物の密度ρaと等しい場合には、該式により相対結晶化
度Xrを算出することが出来ない。この場合には、測定
に供したサンプルは、該加熱条件では結晶化せず結晶性
が非常に低いか、或いは非晶性であることを意味してお
り、相対結晶化度Xrは0%と見なし本発明の請求の範
囲から外れるものである。
In the above formula (4), when the density ρc when heated at 150 ° C. for 100 minutes is equal to the density ρa of the amorphous material before the heating, the relative crystallinity Xr is calculated by the formula. It cannot be calculated. In this case, the sample subjected to the measurement does not crystallize under the heating conditions, meaning that the crystallinity is extremely low or amorphous, and the relative crystallinity Xr is 0%. Deemed departures from the claims of the invention.

【0022】本発明で用いるグリコール酸系共重合体の
融点は、グリコール酸系共重合体を250℃に設定した
加熱プレス機で5分間加熱加圧したのち冷却プレスで急
冷し得られた非晶シートを、150℃に設定した熱風循
環恒温槽中で100分間加熱した結晶化物を試験片とし
て、加熱及び冷却速度が10℃/分の条件で測定した示
差走査熱量測定(DSC、JIS K7121準拠)で
一回目の昇温過程での融点Tmが175℃以上205℃
以下の範囲内である。該Tmの値が175℃より低い場
合は、グリコール酸系共重合体の融点が低過ぎて、該重
合体を主体とする熱可塑性樹脂組成物よりなる成形体の
耐熱性は著しく劣り、包装材や容器として耐熱性を要求
される用途では使用することが出来なくなる。
The melting point of the glycolic acid copolymer used in the present invention is determined by heating and pressurizing the glycolic acid copolymer with a heating press set at 250 ° C. for 5 minutes and then quenching with a cooling press. Differential scanning calorimetry (according to DSC, JIS K7121) in which a crystallized product obtained by heating a sheet in a hot-air circulating thermostat set at 150 ° C. for 100 minutes was used as a test piece at a heating and cooling rate of 10 ° C./min. Melting point Tm in the first heating process is 175 ° C or higher and 205 ° C
Within the following range. If the value of Tm is lower than 175 ° C., the melting point of the glycolic acid-based copolymer is too low, and the heat resistance of the molded article composed of the thermoplastic resin composition containing the polymer as a main component is extremely poor. It cannot be used in applications that require heat resistance as containers or containers.

【0023】一方、該Tmの値が205℃より高い場合
は、グリコール酸系共重合体の結晶性が非常に高くなる
ために、該重合体を主体とする熱可塑性樹脂組成物より
なる成形体は、透明性が著しく悪化し包装材として透明
性を要求される用途では使用することが出来なくなった
り、透明性を向上させるために成形時に急冷操作など特
別な非晶化工程が必要になり製造工程が煩雑になる。該
Tmの値は、より高い耐熱性とより高い透明性を兼備す
る為には、185℃以上200℃以下の範囲から選ぶこ
とが好ましい。なお、上記示差走査熱量測定において、
結晶の融解に起因する吸熱ピークが複数存在する場合
は、最も高温の吸熱ピーク温度を融点Tmとする。
On the other hand, when the value of Tm is higher than 205 ° C., the crystallinity of the glycolic acid-based copolymer becomes extremely high, so that a molded article made of a thermoplastic resin composition mainly comprising the polymer is used. Is extremely deteriorated in transparency and cannot be used in applications where transparency is required as a packaging material, or a special amorphization step such as a quenching operation is required during molding to improve transparency. The process becomes complicated. The value of Tm is preferably selected from the range of 185 ° C. or more and 200 ° C. or less in order to combine higher heat resistance and higher transparency. In the above differential scanning calorimetry,
When there are a plurality of endothermic peaks due to melting of the crystal, the highest endothermic peak temperature is defined as the melting point Tm.

【0024】本発明の包装材用成形体を構成する主たる
素材であるグリコール酸系共重合体とは、主たる単量体
にグリコール酸の環状二量体であるグリコリド(1,4
−ジオキサ−2,5−ジオン)を用いての開環重合、又
はグリコール酸を用いての直接脱水重縮合、例えばグリ
コール酸メチルなどのグリコール酸エステル類を用いて
脱アルコールしながらの重縮合などにより得られる共重
合体であって、これら主たる単量体と共重合し得るグリ
コリド以外の単量体を共重合させて得られるもののうち
本発明の要件を満たすものである。
The glycolic acid copolymer which is a main material constituting the molded article for packaging material of the present invention is glycolide (1,4) which is a cyclic dimer of glycolic acid as a main monomer.
-Dioxa-2,5-dione), or direct dehydration polycondensation using glycolic acid, for example, polycondensation using a glycolic acid ester such as methyl glycolate while removing alcohol. And copolymers obtained by copolymerizing monomers other than glycolide which can be copolymerized with these main monomers, which satisfy the requirements of the present invention.

【0025】主たる単量体以外の共重合に用いられるグ
リコリド以外の単量体としては、例えば、L−乳酸、D
−乳酸、2−ヒドロキシイソ酪酸を含む2−ヒドロキシ
−2,2−ジアルキル酢酸、3−ヒドロキシ酪酸、3−
ヒドロキシ吉草酸、3−ヒドロキシヘキサン酸、4−ヒ
ドロキシブタン酸、その他公知の脂肪族ヒドロキシカル
ボン酸類、これら脂肪族ヒドロキシカルボン酸類のエス
テル誘導体、これら脂肪族ヒドロキシカルボン酸類の同
種、又は異種の環状二量体など、およびβ−ブチロラク
トン、β−プロピオラクトン、ピバロラクトン、γ−ブ
チロラクトン、δ−バレロラクトン、β−メチル−δ−
バレロラクトン、ε−カプロラクトンなどのラクトン類
から少なくとも一種が選ばれる。
Examples of monomers other than glycolide used for copolymerization other than the main monomer include L-lactic acid and D-lactic acid.
-Lactic acid, 2-hydroxy-2,2-dialkylacetic acid including 2-hydroxyisobutyric acid, 3-hydroxybutyric acid,
Hydroxyvaleric acid, 3-hydroxyhexanoic acid, 4-hydroxybutanoic acid, other known aliphatic hydroxycarboxylic acids, ester derivatives of these aliphatic hydroxycarboxylic acids, same or different cyclic dimers of these aliphatic hydroxycarboxylic acids And β-butyrolactone, β-propiolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-
At least one is selected from lactones such as valerolactone and ε-caprolactone.

【0026】また、これらの他に、等モル量の多価アル
コール類と多価カルボン酸を組み合わせて、上記主たる
単量体と共重合させたものでもよい。多価アルコール類
としては、例えば、エチレングリコール、プロピレング
リコール、1,2−プロパンジオール、1,3−ブタン
ジオール、1,4−ブタンジオール、1,5−ペンタン
ジオール、2,2−ジメチル−1,3−プロパンジオー
ル、1,6−ヘキサンジオール、1,3−シクロヘキサ
ノール、1,4−シクロヘキサノール、1,3−シクロ
ヘキサンジメタノール、1,4−シクロヘキサンジメタ
ノールなどの脂肪族ジオール類、或いはこれら脂肪族ジ
オール類が複数結合した、例えばジエチレングリコー
ル、トリエチレングリコール、テトラエチレングリコー
ルなどが挙げられ、多価カルボン酸としては、マロン
酸、コハク酸、グルタル酸、2,2−ジメチルグルタル
酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン
酸、セバシン酸、1,3−シクロペンタンジカルボン
酸、1,3−シクロヘキサンジカルボン酸、1,4−シ
クロヘキサンジカルボン酸、ジグリコール酸などの脂肪
族ジカルボン酸類、テレフタル酸、イソフタル酸、1,
4−ナフタリンジカルボン酸、2,6−ナフタリンジカ
ルボン酸などの芳香族ジカルボン酸類、これら脂肪族ジ
カルボン酸類や芳香族ジカルボン酸類のエステル誘導
体、これら脂肪族ジカルボン酸類の無水物などが挙げら
れ、これらを多成分に組み合わせてもよい。
In addition to the above, an equimolar amount of a polyhydric alcohol and a polycarboxylic acid may be combined and copolymerized with the above-mentioned main monomer. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, and 2,2-dimethyl-1. Aliphatic diols such as 1,3-propanediol, 1,6-hexanediol, 1,3-cyclohexanol, 1,4-cyclohexanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, or These aliphatic diols include a plurality of bonds, for example, diethylene glycol, triethylene glycol, tetraethylene glycol, and the like. Examples of the polycarboxylic acid include malonic acid, succinic acid, glutaric acid, 2,2-dimethylglutaric acid, and adipine. Acid, pimelic acid, spearic acid, azelaic acid, Bhasin acid, 1,3-cyclopentane dicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as diglycolic acid, terephthalic acid, isophthalic acid, 1,
Aromatic dicarboxylic acids such as 4-naphthalene dicarboxylic acid and 2,6-naphthalene dicarboxylic acid; aliphatic dicarboxylic acids and ester derivatives of aromatic dicarboxylic acids; anhydrides of these aliphatic dicarboxylic acids; and the like. You may combine with an ingredient.

【0027】上記に例示した本発明の包装材用成形体を
構成する主たる素材であるグリコール酸系共重合体のう
ち好ましい共重合体は、より分子量の高い共重合体を得
易いという観点から、グリコリドとグリコリド以外の単
量体を用いて開環重合し得られる共重合体であって、グ
リコリドよりなる繰返し単位の成分割合が78〜90m
ol%と、グリコリド以外の単量体よりなる繰返し単位
の成分割合が22〜10mol%からなるものである。
より好ましくはグリコリドよりなる繰返し単位の成分割
合が81〜88mol%と、グリコリド以外の単量体よ
りなる繰返し単位の成分割合が19〜12mol%から
なるものである。
Among the glycolic acid-based copolymers which are the main materials constituting the molded article for packaging material of the present invention exemplified above, preferred copolymers are selected from the viewpoint that it is easy to obtain a copolymer having a higher molecular weight. A copolymer obtained by ring-opening polymerization using glycolide and a monomer other than glycolide, wherein the proportion of the repeating unit composed of glycolide is 78 to 90 m
ol%, and a component ratio of a repeating unit composed of a monomer other than glycolide is 22 to 10 mol%.
More preferably, the proportion of the repeating unit composed of glycolide is 81 to 88 mol%, and the proportion of the repeating unit composed of monomers other than glycolide is 19 to 12 mol%.

【0028】該共重合体を構成する単量体のうちグリコ
リド以外の単量体としては、好ましくは脂肪族ヒドロキ
シカルボン酸類の環状二量体、およびラクトン類から少
なくとも一種が選ばれ、乳酸の環状二量体であるラクチ
ド(3,6−ジメチル−1,4−ジオキサ−2,5−ジ
オン)が特に好ましい。なお、ラクチドは光学活性物質
でありL−体、D−体のいずれであってもよいし、D,
L−体混合物やメソ体であってもよい。また、グリコリ
ド−L−ラクチド共重合体とグリコリド−D−ラクチド
の混合物であってもよい。
Among the monomers constituting the copolymer, the monomer other than glycolide is preferably at least one selected from cyclic dimers of aliphatic hydroxycarboxylic acids and lactones. Lactide (3,6-dimethyl-1,4-dioxa-2,5-dione) which is a dimer is particularly preferred. In addition, lactide is an optically active substance and may be any of L-form and D-form.
It may be an L-isomer mixture or a meso-isomer. Further, a mixture of a glycolide-L-lactide copolymer and glycolide-D-lactide may be used.

【0029】本発明で用いるグリコール酸系共重合体の
製造方法は、特に限定されるものではなく従来公知の一
般的な方法で行われる。例えば、主たる単量体にグリコ
リドを用いて開環重合しグリコール酸系共重合体を得る
には、Gildingらの方法(Polymer,vo
l.20,December(1979))などが挙げ
られるが、これに限定されるものではない。
The method for producing the glycolic acid copolymer used in the present invention is not particularly limited, and is carried out by a conventionally known general method. For example, in order to obtain a glycolic acid-based copolymer by ring-opening polymerization using glycolide as a main monomer, the method of Gilding et al. (Polymer, vo.
l. 20, December (1979)) and the like, but are not limited thereto.

【0030】該重合体の分子量は、該重合体を主体とす
る熱可塑性樹脂組成物よりなる成形体が包装材として要
求される外力に対する機械的強度を有する為には、対数
粘度数で少なくとも0.15m3/kg以上が必要であ
り、0.18m3/kg以上であることが好ましい。対
数粘度数[η]は、一般に下式(5)により求められる
値であり、濃度0.2%以下の希薄溶液では高分子の分
子量の指標として用いられる固有粘度に近似できる(化
学大辞典 縮刷版、p.746、共立出版(196
3)、及び新版 高分子分析ハンドブック、p.12
0、紀伊国屋書店(1995))。 式(5) [η]={ln(t/to)}/c 但し、t:毛管粘度計で測定される高分子溶液の流下時
間(秒) to:毛管粘度計で測定される溶媒の流下時間(秒) c:溶質高分子の濃度(kg/m3
The molecular weight of the polymer is at least 0 in terms of logarithmic viscosity number so that a molded article composed of a thermoplastic resin composition mainly composed of the polymer has a mechanical strength against an external force required as a packaging material. .15 m 3 / kg or more is required, and preferably 0.18 m 3 / kg or more. The logarithmic viscosity number [η] is generally a value determined by the following equation (5), and can be approximated to the intrinsic viscosity used as an index of the molecular weight of a polymer in a dilute solution having a concentration of 0.2% or less (Comprehensive Dictionary of Chemical Encyclopedia) Edition, p.746, Kyoritsu Shuppan (196
3), and the new edition Polymer Analysis Handbook, p. 12
0, Kinokuniya Bookstore (1995)). Formula (5) [η] = {ln (t / to)} / c, where t: Flowing time of polymer solution measured by capillary viscometer (second) to: Flowing of solvent measured by capillary viscometer Time (sec) c: Concentration of solute polymer (kg / m 3 )

【0031】一方、該重合体の分子量の上限は、より容
易に成形体に成形加工するためには対数粘度数で0.8
0m3/kg以下に留めることが望ましいが、可塑剤な
どの添加により溶融流動性を調節すれば良く特に限定さ
れるものではない。なお、本発明で用いるグリコール酸
系共重合体の分子量は数平均分子量で表すと7.0×1
4以上、好ましくは1.0×105以上である。なお、
該分子量の上限は、数平均分子量で表すと7.0×10
5以下、好ましくは6.0×105以下に留めることが望
ましい。本発明の包装材用成形体は、上記特定のグリコ
ール酸系共重合体を主体とする熱可塑性樹脂組成物より
なることを特徴としているが、以下に本発明でいう該熱
可塑性樹脂組成物について説明する。
On the other hand, the upper limit of the molecular weight of the polymer is preferably 0.8 to 0.8 in terms of logarithmic viscosity in order to more easily form a molded product.
It is desirable to keep the melt flow rate at 0 m 3 / kg or less, but there is no particular limitation as long as the melt fluidity can be adjusted by adding a plasticizer or the like. The molecular weight of the glycolic acid-based copolymer used in the present invention is 7.0 × 1 when represented by a number average molecular weight.
0 4 or more, preferably 1.0 × 10 5 or more. In addition,
The upper limit of the molecular weight is 7.0 × 10 when represented by the number average molecular weight.
5 or less, preferably kept to 6.0 × 10 5 or less. The molded article for a packaging material of the present invention is characterized by being composed of a thermoplastic resin composition mainly containing the above-mentioned specific glycolic acid copolymer, and the thermoplastic resin composition referred to in the present invention below. explain.

【0032】本発明において、上記特定のグリコール酸
系共重合体を主体とする熱可塑性樹脂組成物とは、該グ
リコール酸系共重合体の単体、或いは該グリコール酸系
共重合体と他の重合体との組成物、これら共重合体単体
や共重合体と他の重合体との組成物と可塑剤、酸化防止
剤などの添加剤との組成物を指していう。該熱可塑性樹
脂組成物の組成割合は、包装材として使用される時に要
求される内容物の品質保持性能、例えばガスバリア性や
耐熱性などによって異なるが、望ましくは該組成物の各
重合体の繰返し単位全体のうち成分割合50mol%以
上がグリコリドからなる繰返し単位となるよう混合する
場合であり、より高い内容物の品質保持性能が要求され
る包装材用途では、より望ましくは該成分割合が70m
ol%以上の場合である。
In the present invention, the thermoplastic resin composition containing the above-mentioned specific glycolic acid-based copolymer as the main component refers to the glycolic acid-based copolymer alone or the glycolic acid-based copolymer and another polymer. It refers to a composition with a coalescence, a composition of a copolymer alone or a copolymer with another polymer, and a composition with additives such as a plasticizer and an antioxidant. The composition ratio of the thermoplastic resin composition varies depending on the quality retention performance of the content required when used as a packaging material, for example, gas barrier properties and heat resistance, but desirably, the repetition of each polymer of the composition is repeated. This is a case in which a component ratio of 50 mol% or more of the whole unit is mixed so as to be a repeating unit composed of glycolide. In a case of a packaging material application in which a higher quality retention performance of contents is required, the component ratio is more preferably 70 m.
ol% or more.

【0033】具体的には、例えばグリコール酸系共重合
体としてグリコリド80mol%とラクチド20mol
%の繰返し単位からなる共重合体と、ラクチド100m
ol%の繰返し単位からなるポリ乳酸とを混合する場合
では、該組成物の全繰返し単位に占めるグリコリドの成
分割合が50mol%以上とする為には、該グリコール
酸系共重合体の組成割合は66.5重量%以上にしなけ
ればならない。又、グリコール酸系共重合体としてグリ
コリド90mol%とラクチド10mol%の繰返し単
位からなる共重合体と、ラクチド100mol%の繰返
し単位からなるポリ乳酸とを混合する場合では、該組成
物の全繰返し単位に占めるグリコリドの成分割合が50
mol%以上とする為には、該グリコール酸系共重合体
の組成割合は60.3重量%以上にしなければならな
い。
Specifically, for example, as a glycolic acid copolymer, 80 mol% of glycolide and 20 mol of lactide
% Of a repeating unit and 100 m of lactide
In the case of mixing with polylactic acid consisting of ol% of repeating units, the composition ratio of the glycolic acid-based copolymer is required to be 50 mol% or more of the total repeating units of the composition. It must be at least 66.5% by weight. When a glycolic acid-based copolymer is mixed with a copolymer composed of repeating units of 90 mol% of glycolide and 10 mol% of lactide and a polylactic acid composed of repeating units of 100 mol% of lactide, all the repeating units of the composition are mixed. The proportion of glycolide in the total is 50
In order to make it equal to or more than mol%, the composition ratio of the glycolic acid-based copolymer must be made 60.3% by weight or more.

【0034】なお、成形体を構成する熱可塑性樹脂組成
物のグリコリドからなる繰返し単位の成分割合は、通常
の分析手法により解析することができる。例えば、成形
体をヘキサフルオロイソプロパノール(以下、HFIP
と略記する。)に溶解し、ろ過して不溶分を取り除く。
次いで、得られた熱可塑性樹脂組成物のHFIP溶液を
メタノール中に注ぎ、樹脂組成物成分を再沈殿させる。
得られた再沈殿樹脂組成物成分を真空乾燥機で十分乾燥
した後、重水素化トリフルオロ酢酸または重水素化HF
IPを溶媒として1H−NMRや13C−NMRを測定
し、熱可塑性樹脂組成物のグリコリドからなる繰返し単
位の成分割合を解析することができる。
The proportion of the repeating unit composed of glycolide in the thermoplastic resin composition constituting the molded article can be analyzed by a usual analytical technique. For example, a molded article is made of hexafluoroisopropanol (hereinafter, HFIP).
Abbreviated. ) And remove insolubles by filtration.
Next, the HFIP solution of the obtained thermoplastic resin composition is poured into methanol to reprecipitate the resin composition components.
After sufficiently drying the obtained reprecipitated resin composition component with a vacuum dryer, deuterated trifluoroacetic acid or deuterated HF is used.
By measuring 1H-NMR or 13C-NMR using IP as a solvent, the component ratio of a repeating unit composed of glycolide in the thermoplastic resin composition can be analyzed.

【0035】上記本発明の熱可塑性樹脂組成物におい
て、本発明で特定するグリコール酸系共重合体に他の重
合体を混合する場合には、混合しうる他の重合体として
は、上記具体例として挙げたポリ乳酸や、下記に挙げる
重合体から少なくとも一種が選ばれ、これらのうち生分
解性を有するものが望ましい。例えば、グリコール酸系
重合体では、本発明で特定するグリコール酸系共重合体
よりもグリコリドの成分割合が高く結晶性が高いもので
あってもよいし、或いは該成分割合が低く結晶性が低い
ものでもよい。単量体が光学活性物質であるポリ乳酸で
は、L−体またはD−体の何れであってもよいし、D,
L−体の混合割合が任意の混合組成物、D,L−体の共
重合割合が任意の共重合体、或いはメソ体の何れであっ
てもよい。
In the thermoplastic resin composition of the present invention, when another polymer is mixed with the glycolic acid-based copolymer specified in the present invention, the other polymer that can be mixed is as described in the above specific examples. At least one is selected from the polylactic acids listed above and the polymers listed below, and among these, those having biodegradability are desirable. For example, in the glycolic acid-based polymer, the component ratio of glycolide may be higher and higher in crystallinity than the glycolic acid-based copolymer specified in the present invention, or the component ratio may be lower and the crystallinity may be lower. It may be something. In the case of polylactic acid in which the monomer is an optically active substance, the L-form or the D-form may be used.
The mixture ratio of the L-form may be any mixed composition, and the copolymerization ratio of the D and L-forms may be any copolymer or meso form.

【0036】これらの他に、2−ヒドロキシイソ酪酸を
含む2−ヒドロキシ−2,2−ジアルキル酢酸、3−ヒ
ドロキシ酪酸、3−ヒドロキシ吉草酸、3−ヒドロキシ
ヘキサン酸、4−ヒドロキシブタン酸、その他公知の脂
肪族ヒドロキシカルボン酸類、これら脂肪族ヒドロキシ
カルボン酸類のエステル誘導体、これら脂肪族ヒドロキ
シカルボン酸類の同種、又は異種の環状二量体から得ら
れる単独重合体、或いはこれらより任意に選択した二種
以上から得られる共重合体であるポリヒドロキシカルボ
ン酸類、β−ブチロラクトン、β−プロピオラクトン、
ピバロラクトン、γ−ブチロラクトン、δ−バレロラク
トン、β−メチル−δ−バレロラクトン、ε−カプロラ
クトンなどのラクトン類から得られる単独重合体、或い
はこれらより任意に選択した二種以上から得られる共重
合体であるポリラクトン類、等モル量の多価アルコール
と多価カルボン酸を組み合わせであって、多価アルコー
ルとして、例えば、エチレングリコール、プロピレング
リコール、1,2−プロパンジオール、1,3−ブタン
ジオール、1,4−ブタンジオール、1,5−ペンタン
ジオール、2,2−ジメチル−1,3−プロパンジオー
ル、1,6−ヘキサンジオール、1,3−シクロヘキサ
ノール、1,4−シクロヘキサノール、1,3−シクロ
ヘキサンジメタノール、1,4−シクロヘキサンジメタ
ノールなどの脂肪族ジオール類、或いはこれら脂肪族ジ
オール類が複数結合した、例えばジエチレングリコー
ル、トリエチレングリコール、テトラエチレングリコー
ルなど、多価カルボン酸として、マロン酸、コハク酸、
グルタル酸、2,2−ジメチルグルタル酸、アジピン
酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン
酸、1,3−シクロペンタンジカルボン酸、1,3−シ
クロヘキサンジカルボン酸、1,4−シクロヘキサンジ
カルボン酸、ジグリコール酸などの脂肪族ジカルボン酸
類、テレフタル酸、イソフタル酸、1,4−ナフタリン
ジカルボン酸、2,6−ナフタリンジカルボン酸などの
芳香族ジカルボン酸類、これら脂肪族ジカルボン酸類や
芳香族ジカルボン酸類のエステル誘導体、これら脂肪族
ジカルボン酸類の無水物などから得られる多価アルコー
ル類と多価カルボン酸が各々一種づつの単独重合体、或
いは多価アルコール類と多価カルボン酸のうち何れか一
方が一種で他方が任意に選択した二種以上から得られる
共重合体、又は多価アルコール類と多価カルボン酸の各
々が任意に選択した二種以上から得られる共重合体であ
る脂肪族ポリエステル類、こられ以外の公知の生分解性
プラスチックである、例えばポリアスパラギン酸などの
ポリアミノ酸類、酢酸セルロースなどのセルロースエス
テル類、脂肪族ポリエステルカーボネート類、ポリビニ
ルアルコール類、ポリエチレンオキサイド、低分子量の
ポリエチレン等であってもよい。
In addition to these, 2-hydroxy-2,2-dialkylacetic acid containing 2-hydroxyisobutyric acid, 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 4-hydroxybutanoic acid, and others Known aliphatic hydroxycarboxylic acids, ester derivatives of these aliphatic hydroxycarboxylic acids, homopolymers obtained from the same or different cyclic dimers of these aliphatic hydroxycarboxylic acids, or two arbitrarily selected from these Polyhydroxycarboxylic acids, β-butyrolactone, β-propiolactone, which are copolymers obtained from the above,
Pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, homopolymers obtained from lactones such as ε-caprolactone, or copolymers obtained from two or more arbitrarily selected from these A polylactone, a combination of an equimolar amount of a polyhydric alcohol and a polycarboxylic acid, wherein the polyhydric alcohol includes, for example, ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 1,3-cyclohexanol, 1,4-cyclohexanol, 1, Aliphatic dimers such as 3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol All or a plurality of these aliphatic diols are bonded, for example, diethylene glycol, triethylene glycol, tetraethylene glycol, etc., as polycarboxylic acids, such as malonic acid, succinic acid,
Glutaric acid, 2,2-dimethylglutaric acid, adipic acid, pimelic acid, spearic acid, azelaic acid, sebacic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid , Aliphatic dicarboxylic acids such as diglycolic acid, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 1,4-naphthalene dicarboxylic acid, and 2,6-naphthalene dicarboxylic acid; these aliphatic dicarboxylic acids and aromatic dicarboxylic acids Ester derivatives, polyhydric alcohols and polycarboxylic acids obtained from anhydrides of these aliphatic dicarboxylic acids, etc., are each a homopolymer, or one of polyhydric alcohols and polycarboxylic acids is one. The other is a copolymer obtained from two or more arbitrarily selected, or polyvalent Aliphatic polyesters, which are copolymers obtained from two or more arbitrarily selected alcohols and polycarboxylic acids, and other known biodegradable plastics such as polyaspartic acid and the like. Amino acids, cellulose esters such as cellulose acetate, aliphatic polyester carbonates, polyvinyl alcohols, polyethylene oxide, low molecular weight polyethylene and the like may be used.

【0037】なお、ここに挙げた種々の重合体を構成す
る単量体の二種以上を任意の割合で共重合させた共重合
体であってもよく、該単量体が光学活性物質である場合
には、L−体またはD−体の何れであってもよいし、
D,L−体の混合割合が任意の混合組成物、D,L−体
の共重合割合が任意の共重合体、或いはメソ体の何れで
あってもよい。また、上記混合しうる他の重合体として
は、生分解性を有しないものであっても、本発明の熱可
塑性樹脂組成物の生分解性を阻害しない範囲で混合して
もよい。例えば、ポリオレフィン類、芳香族ポリエステ
ル類、ポリアミド類、エチレン−ビニルアルコール系共
重合体類、石油樹脂類やテルペン系樹脂類、その水素添
加物などが挙げられる。
The copolymer may be a copolymer obtained by copolymerizing two or more of the monomers constituting the various polymers mentioned above at an arbitrary ratio, and the monomer may be an optically active substance. In some cases, either the L-form or the D-form may be used,
The mixing ratio of the D and L-forms may be any mixed composition, the copolymerization ratio of the D and L-forms may be any copolymer or meso form. In addition, as the other polymer that can be mixed, those that do not have biodegradability may be mixed as long as the biodegradability of the thermoplastic resin composition of the present invention is not impaired. For example, polyolefins, aromatic polyesters, polyamides, ethylene-vinyl alcohol-based copolymers, petroleum resins, terpene-based resins, hydrogenated products thereof and the like can be mentioned.

【0038】本発明の熱可塑性樹脂組成物は、必要に応
じて無機および/または有機化合物よりなる添加剤、例
えば、可塑剤、滑剤、帯電防止剤、防曇剤、酸化防止
剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃
剤、結晶核剤等が適宜混合されてもよい。使用される可
塑剤の具体例としては、例えばジオクチルフタレートや
ジエチルフタレートなどのフタル酸エステル類、ラウリ
ン酸エチルやオレイン酸ブチル、リノール酸オクチルな
どの脂肪酸エステル類、ジオクチルアジペートやジブチ
ルセバケートなどの脂肪族二塩基酸エステル類、アセチ
ルくえん酸トリブチルやアセチルくえん酸トリエチルな
どの脂肪族三塩基酸エステル類、グリセリンジアセテー
トラウレートやグリセリントリアセテートなどのグリセ
リン脂肪酸エステル類、リン酸ジオクチルなどのリン酸
エステル類、エポキシ化大豆油やエポキシ化アマニ油な
どの変性植物油類、ポリブチレンセバケートなどのポリ
エステル系可塑剤などが挙げられ、安全衛生性の観点か
らグリセリン脂肪酸エステル類が特に望ましい。これら
から一種、または二種以上を選び、添加量は熱可塑性樹
脂組成物100重量部に対して1〜30重量部程度であ
る。
The thermoplastic resin composition of the present invention may contain, if necessary, additives composed of inorganic and / or organic compounds, for example, plasticizers, lubricants, antistatic agents, antifogging agents, antioxidants, heat stabilizers. , A light stabilizer, an ultraviolet absorber, a coloring agent, a flame retardant, a crystal nucleating agent, and the like may be appropriately mixed. Specific examples of the plasticizer used include, for example, phthalic acid esters such as dioctyl phthalate and diethyl phthalate, fatty acid esters such as ethyl laurate and butyl oleate, octyl linoleate, and fats such as dioctyl adipate and dibutyl sebacate. Aliphatic dibasic acid esters, aliphatic tribasic acid esters such as tributyl acetyl citrate and triethyl acetyl citrate, glycerin fatty acid esters such as glycerin diacetate traurate and glycerin triacetate, and phosphoric acid esters such as dioctyl phosphate And modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; and polyester plasticizers such as polybutylene sebacate. Glycerin fatty acid esters are particularly desirable from the viewpoint of safety and health. One or more of these are selected, and the amount of addition is about 1 to 30 parts by weight based on 100 parts by weight of the thermoplastic resin composition.

【0039】また、使用される酸化防止剤の具体例とし
ては、例えばフェノール系、フェニルアクリレート系、
リン系、イオウ系等から一種、又は二種以上を選び、添
加量は熱可塑性樹脂組成物100重量部に対して0.0
1〜10重量部程度である。本発明において用いる熱可
塑性樹脂組成物の製造は、本発明の上記特定のグリコー
ル酸系共重合体と、これと混合し得る他樹脂や必要に応
じて用いる添加剤などを、全部、或いは一部を単軸、又
は二軸押出機、バンバリーミキサー、ミキシングロー
ル、ニーダー等を使用して溶融混合させのが望ましい。
Specific examples of the antioxidant to be used include, for example, phenol type, phenyl acrylate type,
One type or two or more types are selected from phosphorus-based, sulfur-based, and the like, and the amount added is 0.0 to 100 parts by weight of the thermoplastic resin composition.
It is about 1 to 10 parts by weight. Production of the thermoplastic resin composition used in the present invention, the above-mentioned specific glycolic acid-based copolymer of the present invention, other resins that can be mixed therewith and additives used as necessary, all or a part of Is desirably melt-mixed using a single-screw or twin-screw extruder, Banbury mixer, mixing roll, kneader or the like.

【0040】次に、本発明の成形体について説明する。
成形体の種類としては、射出成形、ブロー成形、シート
成形により得られる容器包装材用の成形体が挙げられ
る。成形体の製法としては、例えばシート状成形体の場
合は、キャスティング法、溶融押出法、カレンダー法、
溶融成形法などが挙げられる。具体的には、本発明のグ
リコール酸系共重合体を主体とする熱可塑性樹脂組成物
を原料として用い、例えば溶融押出法では、該原料を押
出機に供給して加熱溶融し、押出機の先端に接続したダ
イスより押出することにより製造することができる。ま
た、溶融成形法では、該原料を金型に供給し、常圧或い
は減圧雰囲気下で加熱溶融させプレスすることにより製
造することができる。この場合、原料の加熱融解は、通
常は(融点−5℃)〜(融点+65℃)の温度範囲から
適宜選ばれる温度が望ましい。又、ここに例示した成形
方法により得られるシート状成形体の厚みは、その用途
により適宜選ばれ、通常は5μm〜1mmであるが特に
限定されるものではない。
Next, the molded article of the present invention will be described.
Examples of the type of the molded article include molded articles for container packaging materials obtained by injection molding, blow molding, and sheet molding. As a method for producing a molded article, for example, in the case of a sheet-shaped molded article, a casting method, a melt extrusion method, a calendar method,
A melt molding method is exemplified. Specifically, a thermoplastic resin composition mainly comprising the glycolic acid copolymer of the present invention is used as a raw material. For example, in a melt extrusion method, the raw material is supplied to an extruder, heated and melted, and the extruder is heated. It can be manufactured by extruding from a die connected to the tip. In the melt molding method, the raw material can be supplied to a mold, heated and melted under normal pressure or reduced pressure atmosphere, and then pressed. In this case, the temperature of the raw material for heating and melting is preferably a temperature appropriately selected from a temperature range of (melting point−5 ° C.) to (melting point + 65 ° C.). In addition, the thickness of the sheet-like molded body obtained by the molding method exemplified here is appropriately selected depending on its use, and is usually 5 µm to 1 mm, but is not particularly limited.

【0041】得られた成形体は、そのまま包装材として
使用しても良いが、必要に応じてシール適性、防湿性、
ガスバリア性、印刷適性などを向上させる目的でラミネ
ート加工やコーティング加工、或いはアルミニウムなど
の真空蒸着を施したり、その後の二次加工により用途に
応じた形状に成形して使用しても良い。二次加工品とし
ては具体的には、例えばシート状成形体の場合は、プラ
グアシスト成形法やエアークッション成形法などの真空
成形加工、圧空成形加工、雄雌型成形加工などにより得
られるトレイやカップなどの容器、又はブリスターパッ
ケージングシートなどが挙げられる。これら具体例の二
次加工品を得る為には、シート状成形体は溶融押出法で
Tダイより溶融押出して製造する方法が望ましい。
The obtained molded product may be used as it is as a packaging material.
For the purpose of improving gas barrier properties, printability, and the like, lamination processing, coating processing, or vacuum deposition of aluminum or the like may be performed, or formed into a shape suitable for the intended use by subsequent secondary processing. As the secondary processed product, specifically, for example, in the case of a sheet-shaped molded body, a vacuum molding process such as a plug assist molding method or an air cushion molding method, a pressurized molding process, a tray obtained by a male / female molding process, or the like. Containers such as cups, blister packaging sheets and the like can be mentioned. In order to obtain the secondary processed products of these specific examples, it is desirable that the sheet-like molded body be produced by melt extrusion from a T-die by a melt extrusion method.

【0042】得られた成形体は、電子レンジなどで加熱
して使用され耐熱性が要求される包装材や容器の用途
で、発熱した内容物からの熱による変形や溶融穿孔を防
ぐ目的で、或いは物性安定性を向上させる目的で、熱処
理やエージング処理等を施すことが望ましい。この場
合、熱処理は、通常は60〜160℃の温度範囲から適
宜選ばれる温度で1秒〜3時間行われることが望まし
い。又、必要に応じて帯電防止剤や防曇性を向上させる
目的でコーティングやコロナ処理等の各種表面処理を施
しても良い。
The obtained molded article is used by heating in a microwave oven or the like, and is used for packaging materials and containers that require heat resistance. For the purpose of preventing deformation due to heat from the heated contents and perforation by melting, Alternatively, it is desirable to perform a heat treatment or an aging treatment for the purpose of improving the stability of physical properties. In this case, it is desirable that the heat treatment is usually performed at a temperature appropriately selected from a temperature range of 60 to 160 ° C. for 1 second to 3 hours. If necessary, various surface treatments such as coating and corona treatment may be performed for the purpose of improving the antistatic agent and the anti-fogging property.

【0043】得られた本発明の成形体は、該成形体を構
成する主たる素材として特定範囲の結晶性を有するグリ
コール酸系共重合体を用いることにより、生分解性を有
し、且つガスバリア性、耐熱性に優れ、成形体製造時に
急冷するなどの煩雑な工程を必要とせずに透明性を高め
ることが可能であり、該成形体を長期間保管した場合で
も透明性は高いレベルに維持することが可能であり、更
に脆化せずに優れた機械的強度を保持しており、包装材
用途に好適に利用できる。
The obtained molded article of the present invention has biodegradability and gas barrier properties by using a glycolic acid copolymer having a specific range of crystallinity as a main material constituting the molded article. Excellent in heat resistance, it is possible to increase the transparency without the need for complicated steps such as rapid cooling during production of the molded body, and the transparency is maintained at a high level even when the molded body is stored for a long time. It can maintain excellent mechanical strength without being embrittled and can be suitably used for packaging materials.

【0044】[0044]

【発明の実施の形態】以下、実施例を挙げて本発明を更
に詳細に説明する。但し、これらの具体例は本発明の範
囲を限定するものではない。また、物性測定方法、評価
方法と尺度を下記に示すが、サンプルは特に断りのない
限り測定サンプル作製後に温度(23±2)℃、関係湿
度(50±5)%の雰囲気下に1〜3日間保管したもの
を物性測定や評価に供した。 [物性測定方法] (1)示差走査熱量測定(DSC) 融点Tm、結晶化熱ΔHc、融解熱ΔHmは、測定装置
にセイコー電子工業(株)製DSC6200を使用し、
JIS K7121、及びK7122に準拠して測定し
た。サンプルは、250℃に設定した加熱プレス機(テ
スター産業(株)製圧縮成形機SA−301)でグリコ
ール酸系共重合体を5分間約12Pa加圧した後、冷却
プレスで急冷し厚み約200μmの非晶シートを得て、
該非晶シートを150℃に設定した熱風循環恒温槽中で
100分間加熱結晶化させて作製した。サンプル量は
7.5mgとして、先ず0℃で3分間保持した後、加熱
速度10℃/分で250℃まで加熱し1回目の昇温過程
での融点Tmを測定した。250℃で1分間保持した
後、冷却速度10℃/分で0℃まで冷却し、1回目の冷
却過程での結晶化熱ΔHcを測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. However, these specific examples do not limit the scope of the present invention. The methods for measuring physical properties, evaluation methods and scales are shown below. Samples were prepared in an atmosphere at a temperature (23 ± 2) ° C. and a relative humidity (50 ± 5)% after preparation of a measurement sample, unless otherwise specified. Those stored for days were subjected to physical property measurement and evaluation. [Physical property measurement method] (1) Differential scanning calorimetry (DSC) Melting point Tm, heat of crystallization ΔHc, heat of fusion ΔHm were measured using a DSC6200 manufactured by Seiko Electronics Industry Co., Ltd.
The measurement was performed according to JIS K7121 and K7122. The sample was pressurized with a glycolic acid-based copolymer at about 12 Pa for 5 minutes by a heating press (compression molding machine SA-301 manufactured by Tester Sangyo Co., Ltd.) set at 250 ° C., and then quenched by a cooling press to obtain a thickness of about 200 μm. To obtain an amorphous sheet
The amorphous sheet was heated and crystallized in a hot-air circulating thermostat set at 150 ° C. for 100 minutes to produce. The sample amount was 7.5 mg, which was first kept at 0 ° C. for 3 minutes, heated to 250 ° C. at a heating rate of 10 ° C./min, and the melting point Tm in the first heating process was measured. After holding at 250 ° C. for 1 minute, the mixture was cooled to 0 ° C. at a cooling rate of 10 ° C./min, and the heat of crystallization ΔHc in the first cooling process was measured.

【0045】次いで、0℃で1分間保持した後、再び加
熱速度10℃/分で250℃まで加熱し2回目の昇温過
程での融解熱ΔHmを測定した。尚、温度と熱量の校正
は、標準物質としてインジウムを用いて行った。なお、
本発明でいう非晶シートとは、上記手順で作製したシー
トをサンプルとして、広角X線回折法により回折強度曲
線を測定し、該回折強度曲線に結晶に起因する回折ピー
クが存在しないものを指す。また、上記示差走査熱量測
定において、結晶の融解に起因する吸熱ピークが複数存
在する場合は、最も高温の吸熱ピーク温度を融点Tmと
する。
Next, after holding at 0 ° C. for 1 minute, the sample was heated again to 250 ° C. at a heating rate of 10 ° C./min, and the heat of fusion ΔHm in the second heating process was measured. The calibration of the temperature and the calorific value was performed using indium as a standard substance. In addition,
The amorphous sheet referred to in the present invention refers to a sheet obtained by measuring a diffraction intensity curve by a wide-angle X-ray diffraction method using the sheet prepared in the above procedure as a sample and having no diffraction peak due to the crystal in the diffraction intensity curve. . Further, in the above differential scanning calorimetry, when there are a plurality of endothermic peaks due to melting of the crystal, the highest endothermic peak temperature is defined as the melting point Tm.

【0046】(2)相対結晶化度 本発明では、式(4)で表される相対結晶化度の値を採
用している。上記DSC測定方法で示した手順によりグ
リコール酸系共重合体の非晶シートを得て、該非晶シー
トを150℃に設定した熱風循環恒温槽中で5分間、及
び100分間加熱結晶化させ結晶化物を得た。これら非
晶シートの試験片、150℃で5分間加熱した結晶化
物、150℃で100分間加熱した結晶化物をサンプル
として、JIS K7112C法に準拠して密度を測定
した。密度測定は、20℃でエタノール/塩化亜鉛水溶
液系浮沈法により浮沈状態を観察して測定した。サンプ
ルの密度測定結果から、式(4)により結晶化度Xrを
求めた。 式(4)Xr=[(ρb−ρa)/(ρc−ρa)]×
(ρc/ρb)×100 但し、ρa:非晶物の密度(g/cm3) ρb:150℃で5分間加熱した結晶化物の密度(g/
cm3) ρc:150℃で100分間加熱した結晶化物の密度
(g/cm3
(2) Relative Crystallinity In the present invention, the value of the relative crystallinity represented by the formula (4) is adopted. An amorphous sheet of a glycolic acid copolymer was obtained by the procedure described in the above DSC measurement method, and the amorphous sheet was crystallized by heating and crystallizing the amorphous sheet in a hot-air circulating thermostat set at 150 ° C. for 5 minutes and 100 minutes. I got The density of each of the test pieces of the amorphous sheet, the crystallized material heated at 150 ° C. for 5 minutes, and the crystallized material heated at 150 ° C. for 100 minutes was measured in accordance with JIS K7112C. The density was measured at 20 ° C. by observing the floating state by an ethanol / zinc chloride aqueous solution floating method. From the result of the density measurement of the sample, the crystallinity Xr was determined by the equation (4). Formula (4) Xr = [(ρb−ρa) / (ρc−ρa)] ×
(Ρc / ρb) × 100, where ρa: density of amorphous substance (g / cm 3 ) ρb: density of crystallized substance heated at 150 ° C. for 5 minutes (g / cm 3 )
cm 3 ) ρc: density of crystallized material heated at 150 ° C. for 100 minutes (g / cm 3 )

【0047】(3)対数粘度数 純溶媒HFIPと、グリコール酸系共重合体の濃度が
1.0kg/m3となるよう溶解したHFIP溶液をサ
ンプルとして、ウベローデ型毛管粘度計を使用し20℃
で毛管中を流下する時間を測定し、式(5)により対数
粘度数[η]を求めた。 式(5) [η]={ln(t/to)}/c 但し、t:毛管粘度計で測定される高分子溶液の流下時
間(秒) to:毛管粘度計で測定される溶媒の流下時間(秒) c:溶質高分子の濃度(kg/m3
(3) Logarithmic Viscosity A pure solvent HFIP and an HFIP solution in which a glycolic acid-based copolymer was dissolved at a concentration of 1.0 kg / m 3 were used as a sample, and were subjected to 20 ° C. using an Ubbelohde capillary viscometer.
The time required to flow down in the capillary was measured, and the logarithmic viscosity number [η] was determined by equation (5). Formula (5) [η] = {ln (t / to)} / c, where t: Flowing time of polymer solution measured by capillary viscometer (second) to: Flowing of solvent measured by capillary viscometer Time (sec) c: Concentration of solute polymer (kg / m 3 )

【0048】[評価方法と尺度] (1)透明性 上記DSC測定方法で示した手順により得られたグリコ
ール酸系共重合体の非晶シート、該非晶シートを150
℃に設定した熱風循環恒温槽中で5分間加熱結晶化させ
た結晶化物、該非晶シートを(23±2)℃、関係湿度
(50±5)%に設定した恒温恒湿槽中で50日保存し
た長期保存シートのヘーズを測定した。熱処理による透
明性の変化として結晶化物のヘーズHcと非晶シートの
ヘーズHaとの比Hc/Haを、長期保存による透明性
の変化として長期保存ヘーズHkと非晶シートのヘーズ
Haとの比Hk/Haを、各々算出して両者の判定結果
から透明性を評価した。ヘーズの測定は、測定装置に村
上色彩技術研究所社製ヘーズ計HR−100を使用し、
JIS K7105に準拠して測定した。得られた厚み
約200μmの上記非晶シート、及び上記150℃で5
分間加熱結晶化させた結晶化物、上記恒温恒湿槽中で5
0日保存した長期保存シートの各シート状サンプルを、
一辺50mmの正方形に切り出し、これをホルダーにセ
ットしサンプル毎のヘーズを測定した。
[Evaluation Method and Scale] (1) Transparency An amorphous sheet of a glycolic acid copolymer obtained by the procedure described in the above DSC measurement method,
Crystallized material heated and crystallized for 5 minutes in a hot-air circulating thermostat set at 50 ° C., and the amorphous sheet was heated for 50 days in a thermo-hygrostat set at (23 ± 2) ° C. and relative humidity (50 ± 5)%. The haze of the stored long-term storage sheet was measured. The ratio Hc / Ha between the haze Hc of the crystallized material and the haze Ha of the amorphous sheet is used as the change in transparency due to the heat treatment, and the ratio Hk between the haze Hk of the long-term storage and the haze Ha of the amorphous sheet is used as the change in transparency due to long-term storage. / Ha was calculated, and the transparency was evaluated from the results of both determinations. The measurement of haze uses a haze meter HR-100 manufactured by Murakami Color Research Laboratory Co., Ltd.
It was measured according to JIS K7105. The obtained amorphous sheet having a thickness of about 200 μm,
Crystallized product after heating and crystallizing for 5 min.
Each sheet sample of the long-term storage sheet stored for 0 days
A 50 mm square was cut out and set in a holder, and the haze of each sample was measured.

【0049】測定結果は、サンプル数各々5個づつ測定
して平均値を求め、上記ヘーズ比Hc/Ha、及びHk
/Haを算出した。得られたヘーズ比Hc/Ha、及び
Hk/Haの値を指標として判定し、この両者のうち低
い方の判定結果をそのまま透明性の判定結果とした。但
し、上記非晶シートの作製手順で得られたシートのヘー
ズが2.0%以上となる場合は、透明性の優れた成形体
を製造することが容易ではないことから、評価から除外
し判定は「×」とした。 <評価尺度> ヘーズ比Hc/Ha 判 定 備 考 50未満 ◎ 若干白化する程度で視認性は優れる 50以上70未満 ○ 白化するが視認性には問題ない 70以上80未満 △ 白化し視認性が劣る 80以上 × 著しく白化し視認性が非常に劣る <評価尺度> ヘーズ比Hk/Ha 判 定 備 考 2未満 ◎ 透明性を維持し視認性は優れる 2以上5未満 ○ 視認性に変化は認められない 5以上10未満 △ 僅かに白化する 10以上 × 白化する
The measurement results were obtained by measuring the number of samples for each five samples to obtain an average value, and calculating the haze ratios Hc / Ha and Hk.
/ Ha was calculated. The obtained values of the haze ratios Hc / Ha and Hk / Ha were used as indices, and the lower one of the two was directly used as the transparency determination result. However, if the haze of the sheet obtained in the above-described procedure for preparing an amorphous sheet is 2.0% or more, it is not easy to produce a molded article having excellent transparency, so that it is excluded from the evaluation and judged. Indicates “×”. <Evaluation scale> Haze ratio Hc / Ha Judgment Remarks Less than 50 ◎ Visibility is excellent with slight whitening 50 or more and less than 70 ○ Whitened but no problem in visibility 70 or more and less than 80 △ Whitened and poor visibility 80 or more x Significant whitening and very poor visibility <Evaluation scale> Haze ratio Hk / Ha Judgment Remarks Less than 2 ◎ Transparency is maintained and visibility is excellent 2 or more and less than 5 ○ No change in visibility is observed 5 or more and less than 10 △ slightly whitened 10 or more × whitened

【0050】(2)機械的強度 機械的強度は、測定装置に(株)東洋精機製作所製MI
T耐揉疲労試験機を使用して、JIS P8115を参
考にシート状成形体の耐折強さを測定し評価した。上記
DSC測定方法で示した手順により得られたグリコール
酸系共重合体の非晶シートをサンプルとして、縦150
mm、幅15mmの短冊状に切り出した。折り曲げ角度
135°、折り曲げ速度175cpm、荷重0.5kg
の条件で試験を行い、破断するまでの折り曲げ回数を測
定した。折り曲げ回数の測定結果は、上記手順によりサ
ンプル数5個づつ測定し平均値で示した。この折り曲げ
回数を機械的強度の指標とた。 <評価尺度> 折り曲げ回数 判 定 備 考 100回以上 ◎ 耐折強さが非常に高く実用上問題はない 50〜99回 ○ 耐折強さが高く用途により使用可 1〜49回 △ 耐折強さが低く実用に耐えない 0回 × 非常に脆く折り曲げ出来ない
(2) Mechanical strength The mechanical strength was measured by using a MI device manufactured by Toyo Seiki Seisaku-Sho, Ltd.
Using a T-rubbing fatigue tester, the bending strength of the sheet-shaped molded product was measured and evaluated with reference to JIS P8115. The amorphous sheet of the glycolic acid copolymer obtained by the procedure described in the above DSC measurement method was used as a sample,
mm and a width of 15 mm. Bending angle 135 °, bending speed 175 cpm, load 0.5 kg
The test was performed under the following conditions, and the number of times of bending until breaking was measured. The measurement result of the number of times of bending was measured by the above procedure for each of five samples, and the average value was shown. The number of times of bending was used as an index of mechanical strength. <Evaluation scale> Number of times of bending Judgment Remarks 100 times or more ◎ Very high bending strength and no practical problems 50 to 99 times ○ High bending strength and usable depending on the application 1 to 49 times △ Folding strength Low and not suitable for practical use 0 times × Very brittle and cannot be bent

【0051】(3)ガスバリア性 ガスバリア性は、測定装置にmocon社製酸素透過率
測定装置OX−TRAN200H型を使用して、JIS
K7126B法に準拠し酸素透過度を測定し評価し
た。上記DSC測定方法で示した手順により得られたグ
リコール酸系共重合体の非晶シートをサンプルとし、一
辺120mmの正方形状に切り出した。温度23℃、関
係湿度65%の条件で試験を行い、酸素透過度を測定し
た。酸素透過度の測定結果は、上記手順によりサンプル
数3個づつ測定して平均し、厚み10μmに換算して示
した。この酸素透過度をガスバリア性の指標とした。 <評価尺度> 酸素透過度 判 定 備 考 100未満 ◎ ガスバリア性が非常に高い 100以上500未満 ○ ガスバリア性が高い 500以上1000未満 △ ガスバリア性が低く用途により使用不可 1000以上 × ガスバリア性が非常に低く用途により使用不可 酸素透過度の単位:cc・10μm/m2・day・atm
(3) Gas Barrier Property The gas barrier property was measured according to JIS by using an oxygen permeability measuring device OX-TRAN200H manufactured by mocon as a measuring device.
The oxygen permeability was measured and evaluated according to the K7126B method. An amorphous sheet of the glycolic acid copolymer obtained by the procedure described in the above DSC measurement method was cut into a square having a side of 120 mm as a sample. The test was performed under the conditions of a temperature of 23 ° C. and a relative humidity of 65%, and the oxygen permeability was measured. The measurement results of the oxygen permeability were measured and averaged for each of three samples by the above procedure, and converted to a thickness of 10 μm. This oxygen permeability was used as an index of gas barrier properties. <Evaluation scale> Oxygen permeability Judgment Remarks Less than 100 ◎ Very high gas barrier property 100 or more and less than 500 ○ High gas barrier property 500 or more and less than 1000 △ Low gas barrier property and cannot be used depending on the application 1000 or more × Very high gas barrier property Low and cannot be used depending on the application. Unit of oxygen permeability: cc ・ 10μm / m 2・ day ・ atm

【0052】(4)耐熱性 耐熱性は、短冊状サンプルに荷重50gをかけた状態
で、一定温度に設定した熱風循環恒温槽中で1時間加熱
しサンプルの切断の有無を調べ、サンプルが切断しない
最高温度として評価した。上記DSC測定方法で示した
手順により得られたグリコール酸系共重合体の非晶シー
トを、150℃に設定した熱風循環恒温槽中で5分間加
熱結晶化させた結晶化物をサンプルとし、縦140m
m、横10mmの短冊状に切り出した。短冊状サンプル
の上下端25mmづつの部分に固定治具と荷重治具を各
々取り付け、一定温度に設定した熱風循環恒温槽中で1
時間加熱しサンプルの切断の有無を調べた。短冊状サン
プルが切断しない場合は、新しいサンプルで設定温度を
5℃上げて前記手順を繰返し試験した。短冊状サンプル
が切断しない最高温度の測定結果は、この試験を各シー
トサンプルにつき5回づつ行い最頻値で示した。この短
冊状サンプルが切断しない最高温度を耐熱性の指標とし
た。 <評価尺度> 切断しない最高温度 判 定 備 考 180℃以上 ◎ 耐熱性が非常に高く実用上問題はない 160〜175℃ ○ 耐熱性が高く用途により使用可 140〜155℃ △ 耐熱性が劣り用途が制限される 135℃以下 × 耐熱性は著しく低く実用に耐えない
(4) Heat resistance Heat resistance is determined by heating the strip-shaped sample for 1 hour in a hot-air circulating thermostat set at a constant temperature while applying a load of 50 g, and examining whether the sample has been cut. Not rated as the highest temperature. A sample obtained by crystallizing an amorphous sheet of a glycolic acid-based copolymer obtained by the procedure described in the above DSC measurement method in a hot air circulating thermostat set at 150 ° C. for 5 minutes was used as a sample.
m, and cut into strips 10 mm wide. A fixing jig and a load jig are respectively attached to the upper and lower ends of the strip-shaped sample at 25 mm intervals, and each is placed in a hot air circulating thermostat set at a constant temperature.
The sample was heated for a period of time to check whether the sample was cut. If the strip sample did not cut, the above procedure was repeated with a new sample at a set temperature of 5 ° C. The measurement result of the maximum temperature at which the strip-shaped sample was not cut was indicated by a mode value obtained by performing this test five times for each sheet sample. The maximum temperature at which the strip-shaped sample was not cut was used as an index of heat resistance. <Evaluation scale> Maximum temperature at which cutting does not occur Judgment Remarks 180 ° C or higher ◎ Extremely high heat resistance and no practical problem 160 to 175 ° C ○ High heat resistance and usable depending on application 140 to 155 ° C △ Inferior heat resistance 135 ° C or less × Heat resistance is extremely low and not practical

【0053】[0053]

【実施例1】[単量体の精製]グリコリド(MAYBR
IDGE社製1,4−ジオキサン−2,5−ジオン、融
点81〜83℃)250gを、脱水酢酸エチル500g
に75℃で溶解させた後、室温にて10時間放置し析出
させた。濾取した析出物を、室温で約500gの脱水酢
酸エチルを用いて洗浄を行った。再度この洗浄操作を繰
返した後、洗浄物をナス型フラスコ内に入れ、60℃に
設定したオイルバスに浸漬し24時間真空乾燥を行っ
た。この乾燥物を、170℃に設定したオイルバスに浸
漬し、乾燥窒素雰囲気下で6〜7mmHgに減圧し単蒸
留にて133〜134℃の留出物として蒸留精製グリコ
リド80gを得た。
Example 1 Purification of Monomer Glycolide (MAYBR)
250 g of 1,4-dioxane-2,5-dione manufactured by IDGE, melting point 81-83 ° C.)
And then left at room temperature for 10 hours to precipitate. The precipitate collected by filtration was washed with about 500 g of dehydrated ethyl acetate at room temperature. After repeating this washing operation again, the washed matter was put into an eggplant-shaped flask, immersed in an oil bath set at 60 ° C., and vacuum-dried for 24 hours. The dried product was immersed in an oil bath set at 170 ° C., and the pressure was reduced to 6 to 7 mmHg under a dry nitrogen atmosphere, and 80 g of distilled and purified glycolide was obtained as a distillate of 133 to 134 ° C. by simple distillation.

【0054】L−ラクチド(和光純薬社製一級試薬)2
50gを、脱水トルエン500gに80℃で溶解させた
後、室温にて10時間放置して析出させた。濾取した析
出物を、室温で約500gの脱水トルエンを用いて洗浄
を行った。再度この洗浄操作を繰返した後、洗浄物をナ
ス型フラスコ内に入れ60℃に設定したオイルバスに浸
漬して24時間真空乾燥を行い、精製L−ラクチド12
0gを得た。 [重合体の調製]上記単量体の精製で得られたグリコリ
ド70gとラクチド32g、及び触媒として2−エチル
ヘキサン酸すず(和光純薬社製)0.03gと脱水ラウ
リルアルコール0.01gを耐圧管に仕込み、乾燥窒素
を吹き込みながら約30分間室温で乾燥した。次いで、
乾燥窒素を吹き込みながら130℃に設定したオイルバ
スに浸漬し、20時間撹拌して重合を行った。重合操作
の終了後、室温まで冷却し、耐圧管から取り出した塊状
ポリマーを約3mm以下の細粒に粉砕した。この粉砕物
を、脱水酢酸エチルを用いて10時間ソックスレー抽出
した後、HFIP200gに50℃で溶解し、次いで2
000gの精製メタノールで再沈殿させた。この再沈殿
物を、110℃に設定した真空乾燥機内で24時間真空
乾燥を行い、グリコール酸系共重合体85gを得た。
L-lactide (first-class reagent manufactured by Wako Pure Chemical Industries) 2
50 g was dissolved in 500 g of dehydrated toluene at 80 ° C., and left standing at room temperature for 10 hours to precipitate. The precipitate collected by filtration was washed with about 500 g of dehydrated toluene at room temperature. After repeating this washing operation again, the washed matter was placed in an eggplant-shaped flask, immersed in an oil bath set at 60 ° C., and vacuum-dried for 24 hours to obtain purified L-lactide 12.
0 g was obtained. [Preparation of polymer] 70 g of glycolide and 32 g of lactide obtained by purification of the above monomer, 0.03 g of tin 2-ethylhexanoate (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.01 g of dehydrated lauryl alcohol were used as a catalyst. The tube was charged and dried at room temperature for about 30 minutes while blowing dry nitrogen. Then
It was immersed in an oil bath set at 130 ° C. while blowing dry nitrogen, and stirred for 20 hours to carry out polymerization. After the completion of the polymerization operation, the mixture was cooled to room temperature, and the bulk polymer taken out of the pressure-resistant tube was pulverized into fine particles of about 3 mm or less. The pulverized product was subjected to Soxhlet extraction for 10 hours using dehydrated ethyl acetate, and then dissolved in 200 g of HFIP at 50 ° C.
Reprecipitated with 000 g of purified methanol. This reprecipitate was vacuum-dried in a vacuum drier set at 110 ° C. for 24 hours to obtain 85 g of a glycolic acid copolymer.

【0055】得られた該共重合体をP1とする。該共重
合体P1は、グリコリドからなる繰返し単位の成分割合
が86mol%、ラクチドからなる繰返し単位の成分割
合が14mol%であった。該共重合体P1をHFIP
に溶解しガスクロマトグラフィーにて残存する単量体を
定量したところ、単量体であるグリコリドとラクチドの
残量は両者の合計で490ppmであった。該共重合体
P1をサンプルとして、前述のDSC、相対結晶化度、
対数粘度数の測定を行ったところ、DSCにおける1回
目の昇温過程での融点Tmは194℃、1回目の冷却過
程での結晶化熱ΔHcは0J/g、2回目の昇温過程で
の融解熱ΔHmは0J/g、相対結晶化度Xrは33
%、対数粘度数[η]は0.25m3/kgであった。
The obtained copolymer is designated as P1. In the copolymer P1, the proportion of the repeating unit composed of glycolide was 86 mol%, and the proportion of the repeating unit composed of lactide was 14 mol%. HFIP
And the remaining monomer was quantified by gas chromatography, and the residual amounts of the monomers glycolide and lactide were 490 ppm in total. Using the copolymer P1 as a sample, the aforementioned DSC, relative crystallinity,
When the logarithmic viscosity number was measured, the melting point Tm in the first heating process in the DSC was 194 ° C., and the heat of crystallization ΔHc in the first cooling process was 0 J / g, and the melting temperature Tm was 0 J / g in the second heating process. The heat of fusion ΔHm is 0 J / g, and the relative crystallinity Xr is 33.
% And logarithmic viscosity number [η] were 0.25 m 3 / kg.

【0056】[シート状成形体の作製、及び評価]上記
重合体の調製で得られたグリコール酸系共重合体P1
を、130℃に設定した熱風循環恒温槽中で含有水分量
が200ppm以下になるまで約2時間放置して乾燥操
作を行った後、250℃に設定した加熱プレス機で5分
間加熱加圧し、その後冷却プレスで急冷し厚み約200
μmの非晶シートを得た。該非晶シートをサンプルとし
て、前述の透明性、機械的強度、ガスバリア性、耐熱性
の評価を行ったところ、ヘーズ比Hc/Haは45、ヘ
ーズ比Hk/Haは1、折り曲げ回数は140回、酸素
透過度は10.7cc・10μm/m2・day・at
m、切断しない最高温度は185℃であり、判定は透明
性が◎、機械的強度が◎、ガスバリア性が◎、耐熱性が
◎、総合判定が◎であった。以上の評価結果から、グリ
コール酸系共重合体P1を主体とする熱可塑性樹脂組成
物よりなるシート状成形体は、生分解性樹脂よりなり、
且つガスバリア性、耐熱性、透明性、機械的強度に優れ
た包装材用途に好適な成形体であることが判る。
[Preparation and evaluation of sheet-like molded product] Glycolic acid-based copolymer P1 obtained in the preparation of the above polymer
Was dried in a hot air circulating thermostat set at 130 ° C. for about 2 hours until the water content became 200 ppm or less, followed by heating and pressurizing with a heating press set at 250 ° C. for 5 minutes, After that, it is quenched with a cooling press and the thickness is about 200
A μm amorphous sheet was obtained. The transparency, mechanical strength, gas barrier properties, and heat resistance were evaluated using the amorphous sheet as a sample. The haze ratio Hc / Ha was 45, the haze ratio Hk / Ha was 1, the number of times of bending was 140, Oxygen permeability is 10.7cc ・ 10μm / m 2・ day ・ at
m, the maximum temperature at which cutting was not performed was 185 ° C., and the judgment was が for transparency, ◎ for mechanical strength, ガ ス for gas barrier properties, ◎ for heat resistance, and ◎ for overall judgment. From the above evaluation results, the sheet-shaped molded body composed of the thermoplastic resin composition mainly composed of the glycolic acid-based copolymer P1 is composed of the biodegradable resin,
Moreover, it turns out that it is a molded object suitable for the use of packaging materials excellent in gas barrier property, heat resistance, transparency, and mechanical strength.

【0057】[0057]

【実施例2〜7、及び比較例1〜4】次いで、グリコリ
ドを65g、ラクチドを36g、重合時間を30時間と
することの他は上記実施例1と同じ実験を繰返し、得ら
れたグリコール酸系共重合体をP2とする。該共重合体
P2は、グリコリドからなる繰返し単位の成分割合が8
3mol%、ラクチドからなる繰返し単位の成分割合が
17mol%であった。該共重合体P2は、DSCにお
ける1回目の昇温過程での融点Tmが188℃、1回目
の冷却過程での結晶化熱ΔHcが0J/g、2回目の昇
温過程での融解熱ΔHmが0J/g、相対結晶化度Xr
が34%、対数粘度数[η]が0.36m3/kgであ
った(実施例2)。
Examples 2 to 7 and Comparative Examples 1 to 4 Next, the same experiment as in Example 1 was repeated except that the glycolide was 65 g, the lactide was 36 g, and the polymerization time was 30 hours. The system copolymer is designated as P2. In the copolymer P2, the component ratio of the repeating unit composed of glycolide was 8%.
The proportion of the repeating unit composed of 3 mol% and lactide was 17 mol%. The copolymer P2 has a melting point Tm of 188 ° C. in the first heating process in DSC and a crystallization heat ΔHc of 0 J / g in the first cooling process, and a heat of fusion ΔHm in the second heating process. Is 0 J / g, relative crystallinity Xr
Was 34% and the logarithmic viscosity number [η] was 0.36 m 3 / kg (Example 2).

【0058】ラクチドを29g、重合時間を25時間と
することの他は上記実施例1と同じ実験を繰返し、得ら
れたグリコール酸系共重合体をP3とする。該共重合体
P3は、グリコリドからなる繰返し単位の成分割合が8
8mol%、ラクチドからなる繰返し単位の成分割合が
12mol%であった。該共重合体P3は、DSCにお
ける1回目の昇温過程での融点Tmが199℃、1回目
の冷却過程での結晶化熱ΔHcが0J/g、2回目の昇
温過程での融解熱ΔHmが5.8J/g、相対結晶化度
Xrが33%、対数粘度数[η]が0.29m3/kg
であった(実施例3)。
The same experiment as in Example 1 was repeated except that the lactide was 29 g and the polymerization time was 25 hours, and the obtained glycolic acid copolymer was designated as P3. In the copolymer P3, the component ratio of the repeating unit composed of glycolide was 8%.
8 mol%, the component ratio of the repeating unit composed of lactide was 12 mol%. The copolymer P3 has a melting point Tm of 199 ° C. in the first heating step in DSC, a crystallization heat ΔHc of 0 J / g in the first cooling step, and a heat of fusion ΔHm in the second heating step. Is 5.8 J / g, relative crystallinity Xr is 33%, and logarithmic viscosity number [η] is 0.29 m 3 / kg.
(Example 3).

【0059】グリコリドを60g、ラクチドを38g、
重合時間を40時間とすることの他は上記実施例1と同
じ実験を繰返し、得られたグリコール酸系共重合体をP
4とする。該共重合体P4は、グリコリドからなる繰返
し単位の成分割合が80mol%、ラクチドからなる繰
返し単位の成分割合が20mol%であった。該共重合
体P4は、DSCにおける1回目の昇温過程での融点T
mが182℃、1回目の冷却過程での結晶化熱ΔHcが
0J/g、2回目の昇温過程での融解熱ΔHmが0J/
g、相対結晶化度Xrが19%、対数粘度数[η]が
0.40m3/kgであった(実施例4)。
60 g of glycolide, 38 g of lactide,
The same experiment as in Example 1 was repeated except that the polymerization time was changed to 40 hours, and the obtained glycolic acid-based copolymer was
4 is assumed. In the copolymer P4, the component ratio of the repeating unit composed of glycolide was 80 mol%, and the component ratio of the repeating unit composed of lactide was 20 mol%. The copolymer P4 has a melting point T in the first heating process in DSC.
m is 182 ° C., the heat of crystallization ΔHc in the first cooling process is 0 J / g, and the heat of fusion ΔHm in the second heating process is 0 J / g.
g, the relative crystallinity Xr was 19%, and the logarithmic viscosity number [η] was 0.40 m 3 / kg (Example 4).

【0060】グリコリドを75g、ラクチドを26g、
重合時間を15時間とすることの他は上記実施例1と同
じ実験を繰返し、得られたグリコール酸系共重合体をP
5とする。該共重合体P5は、グリコリドからなる繰返
し単位の成分割合が90mol%、ラクチドからなる繰
返し単位の成分割合が10mol%であった。該共重合
体P5は、DSCにおける1回目の昇温過程での融点T
mが203℃、1回目の冷却過程での結晶化熱ΔHcが
0J/g、2回目の昇温過程での融解熱ΔHmが18.
2J/g、相対結晶化度Xrが30%、対数粘度数
[η]が0.19m 3/kgであった(実施例5)。
75 g of glycolide, 26 g of lactide,
Same as Example 1 except that the polymerization time was 15 hours.
The same experiment was repeated, and the resulting glycolic acid copolymer was
5 is assumed. The copolymer P5 is composed of a repeating glycol glycolide.
The unit ratio of lactide is 90 mol%
The component ratio of the return unit was 10 mol%. The copolymerization
The body P5 has a melting point T in the first heating process in DSC.
m is 203 ° C., and the heat of crystallization ΔHc in the first cooling process is
0J / g, heat of fusion ΔHm in the second heating process
2J / g, relative crystallinity Xr is 30%, logarithmic viscosity number
[Η] is 0.19 m Three/ Kg (Example 5).

【0061】グリコリドを60g、ラクチドを46gと
することの他は上記実施例1と同じ実験を繰返し、得ら
れたグリコール酸系共重合体をP6とする。該共重合体
P6は、グリコリドからなる繰返し単位の成分割合が7
8mol%、ラクチドからなる繰返し単位の成分割合が
22mol%であった。該共重合体P6は、DSCにお
ける1回目の昇温過程での融点Tmが175℃、1回目
の冷却過程での結晶化熱ΔHcが0J/g、2回目の昇
温過程での融解熱ΔHmが0J/g、相対結晶化度Xr
が14%、対数粘度数[η]が0.24m3/kgであ
った(実施例6)。
The same experiment as in Example 1 was repeated except that the glycolide was changed to 60 g and the lactide was changed to 46 g, and the obtained glycolic acid copolymer was designated as P6. The copolymer P6 has a repeating unit composed of glycolide having a component ratio of 7%.
8 mol%, the component ratio of the repeating unit composed of lactide was 22 mol%. The copolymer P6 has a melting point Tm of 175 ° C. in the first heating step in DSC and a crystallization heat ΔHc of 0 J / g in the first cooling step, and a heat of fusion ΔHm in the second heating step. Is 0 J / g, relative crystallinity Xr
Was 14%, and the logarithmic viscosity number [η] was 0.24 m 3 / kg (Example 6).

【0062】グリコリドを55g、ラクチドを24g、
無水炭酸カリウムで脱水乾燥後に蒸留して精製したε−
カプロラクトン(6−ヘキサノラクトン)を2g、触媒
をジブチルすずジメトキシド0.2g、重合時間を30
時間とすることの他は上記実施例1と同じ実験を繰返
し、得られたグリコール酸系共重合体をP7とする。該
共重合体P7は、グリコリドからなる繰返し単位の成分
割合が86mol%、ラクチドからなる繰返し単位の成
分割合が10mol%、ε−カプロラクトンよりなる繰
返し単位の成分割合が4mol%であった。該共重合体
P7は、DSCにおける1回目の昇温過程での融点Tm
が185℃、1回目の冷却過程での結晶化熱ΔHcが0
J/g、2回目の昇温過程での融解熱ΔHmが0J/
g、相対結晶化度Xrが25%、対数粘度数[η]が
0.22m3/kgであった(実施例7)。
55 g of glycolide, 24 g of lactide,
Ε-purified by distillation after dehydration and drying with anhydrous potassium carbonate
2 g of caprolactone (6-hexanolactone), 0.2 g of dibutyltin dimethoxide as a catalyst, and a polymerization time of 30 g
The same experiment as in Example 1 was repeated except that the time was changed, and the obtained glycolic acid-based copolymer was designated as P7. In the copolymer P7, the component ratio of the repeating unit composed of glycolide was 86 mol%, the component ratio of the repeating unit composed of lactide was 10 mol%, and the component ratio of the repeating unit composed of ε-caprolactone was 4 mol%. The copolymer P7 had a melting point Tm in the first heating process in DSC.
Is 185 ° C. and the heat of crystallization ΔHc in the first cooling process is 0.
J / g, heat of fusion ΔHm in the second heating process is 0 J / g.
g, the relative crystallinity Xr was 25%, and the logarithmic viscosity number [η] was 0.22 m 3 / kg (Example 7).

【0063】グリコリドを80g、ラクチドを22g、
重合時間を10時間とすることの他は上記実施例1と同
じ実験を繰返し、得られたグリコール酸系共重合体をP
8とする。該共重合体P8は、グリコリドからなる繰返
し単位の成分割合が93mol%、ラクチドからなる繰
返し単位の成分割合が7mol%であった。該共重合体
P8は、DSCにおける1回目の昇温過程での融点Tm
が206℃、1回目の冷却過程での結晶化熱ΔHcが−
36.5J/g、2回目の昇温過程での融解熱ΔHmが
51.6J/g、相対結晶化度Xrが78%、対数粘度
数[η]が0.10m3/kgであった(比較例1)。
80 g of glycolide, 22 g of lactide,
The same experiment as in Example 1 was repeated except that the polymerization time was changed to 10 hours, and the obtained glycolic acid-based copolymer was
8 is assumed. In the copolymer P8, the component ratio of the repeating unit composed of glycolide was 93 mol%, and the component ratio of the repeating unit composed of lactide was 7 mol%. The copolymer P8 had a melting point Tm in the first heating process in DSC.
Is 206 ° C. and the heat of crystallization ΔHc during the first cooling process is −
36.5 J / g, heat of fusion ΔHm in the second heating process was 51.6 J / g, relative crystallinity Xr was 78%, and logarithmic viscosity number [η] was 0.10 m 3 / kg ( Comparative example 1).

【0064】グリコリドを90g、ラクチドを10g、
重合時間を15時間とすることの他は上記実施例1と同
じ実験を繰返し、得られたグリコール酸系共重合体をP
9とする。該共重合体P9は、グリコリドからなる繰返
し単位の成分割合が97mol%、ラクチドからなる繰
返し単位の成分割合が3mol%であった。該共重合体
P9は、DSCにおける1回目の昇温過程での融点Tm
が218℃、1回目の冷却過程での結晶化熱ΔHcが−
58.2J/g、2回目の昇温過程での融解熱ΔHmが
55.5J/g、相対結晶化度Xrが100%、対数粘
度数[η]が0.19m3/kgであった(比較例
2)。
90 g of glycolide, 10 g of lactide,
The same experiment as in Example 1 was repeated except that the polymerization time was changed to 15 hours, and the resulting glycolic acid-based copolymer was
9 is assumed. In the copolymer P9, the component ratio of the repeating unit composed of glycolide was 97 mol%, and the component ratio of the repeating unit composed of lactide was 3 mol%. The copolymer P9 had a melting point Tm in the first heating process in DSC.
Is 218 ° C., and the heat of crystallization ΔHc during the first cooling process is −
58.2 J / g, heat of fusion ΔHm during the second heating process was 55.5 J / g, relative crystallinity Xr was 100%, and logarithmic viscosity number [η] was 0.19 m 3 / kg ( Comparative Example 2).

【0065】グリコリドを100g、ラクチドを使用せ
ず、重合時間を5時間とすることの他は上記実施例1と
同じ実験を繰返し、得られたグリコール酸単独重合体を
P10とする。該共重合体P10は、グリコリドからな
る繰返し単位の成分割合が100mol%であった。該
重合体P10は、DSCにおける1回目の昇温過程での
融点Tmが222℃、1回目の冷却過程での結晶化熱Δ
Hcが−69.6J/g、2回目の昇温過程での融解熱
ΔHmが72.6J/g、相対結晶化度Xrが100
%、対数粘度数[η]が0.08m3/kgであった
(比較例3)。グリコリドを55g、ラクチドを46g
とすることの他は上記実施例1と同じ実験を繰返し、得
られたグリコール酸系共重合体をP11とする。該共重
合体P11は、グリコリドからなる繰返し単位の成分割
合が75mol%、ラクチドからなる繰返し単位の成分
割合が25mol%であった。該共重合体P11は、D
SCにおける1回目の昇温過程での融点Tmが現れず、
1回目の冷却過程での結晶化熱ΔHcが0J/g、2回
目の昇温過程での融解熱ΔHmが0J/g、相対結晶化
度Xrが0%、対数粘度数[η]が0.25m3/kg
であった(比較例4)。これらグリコール酸系共重合
体、及びグリコール酸単独重合体のP1〜11につい
て、前述のDSC、相対結晶化度、対数粘度数の測定結
果を表1、及び表2にまとめる。
The same experiment as in Example 1 was repeated except that the polymerization time was 5 hours without using 100 g of glycolide and lactide, and the obtained glycolic acid homopolymer was designated as P10. In the copolymer P10, the proportion of the repeating unit composed of glycolide was 100 mol%. The polymer P10 has a melting point Tm of 222 ° C. in the first heating process in DSC and a crystallization heat Δ in the first cooling process.
Hc is −69.6 J / g, heat of fusion ΔHm in the second heating process is 72.6 J / g, and relative crystallinity Xr is 100.
% And logarithmic viscosity number [η] were 0.08 m 3 / kg (Comparative Example 3). 55 g of glycolide and 46 g of lactide
Other than that, the same experiment as in Example 1 was repeated, and the obtained glycolic acid-based copolymer was designated as P11. In the copolymer P11, the proportion of the repeating unit composed of glycolide was 75 mol%, and the proportion of the repeating unit composed of lactide was 25 mol%. The copolymer P11 has a D
The melting point Tm in the first heating process in SC did not appear,
The heat of crystallization ΔHc in the first cooling process is 0 J / g, the heat of fusion ΔHm in the second heating process is 0 J / g, the relative crystallinity Xr is 0%, and the logarithmic viscosity number [η] is 0. 25m 3 / kg
(Comparative Example 4). Tables 1 and 2 summarize the measurement results of DSC, relative crystallinity, and logarithmic viscosity of the glycolic acid-based copolymer and glycolic acid homopolymers P1 to P11 described above.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【表2】 [Table 2]

【0068】上記グリコール酸系共重合体、及びグリコ
ール酸単独重合体のP2〜11について、前述のシート
状成形体の作製、及び評価と同様に非晶シートを作製
し、該非晶シートをサンプルとして評価を行った。これ
ら重合体P1〜11の評価結果を表3、及び表4にまと
める。
For the glycolic acid-based copolymers and glycolic acid homopolymers P2 to P11, an amorphous sheet was prepared in the same manner as in the preparation and evaluation of the sheet-like molded article described above, and the amorphous sheet was used as a sample. An evaluation was performed. Tables 3 and 4 summarize the evaluation results of these polymers P1 to P11.

【0069】[0069]

【表3】 [Table 3]

【0070】[0070]

【表4】 [Table 4]

【0071】表3によると、DSCにおける1回目の昇
温過程での融点Tmが175℃以上205℃以下、1回
目の冷却過程での結晶化熱ΔHcが0J/g、2回目の
昇温過程での融解熱ΔHmが0J/g以上20J/g未
満、相対結晶化度Xrが3%以上50%以下、対数粘度
数[η]が0.15m3/kgであるグリコール酸系共
重合体を主体とする熱可塑性樹脂組成物よりなるシート
状成形体は、生分解性樹脂よりなり、且つガスバリア
性、耐熱性、透明性、機械的強度に優れた包装材用途に
好適な成形体であることが判る(実施例1〜7)。なか
でも、グリコール酸系共重合体のDSCにおける1回目
の昇温過程での融点Tmが185℃以上200℃以下、
2回目の昇温過程での融解熱ΔHmが0J/g以上18
J/g以下である場合には、該共重合体を主体とする熱
可塑性樹脂組成物よりなるシート状成形体は耐熱性と透
明性の両特性が著しく優れ、包装材用途に特に好適であ
ることが判る(実施例1〜3)。
According to Table 3, the melting point Tm in the first heating process in the DSC was 175 ° C. or more and 205 ° C. or less, and the heat of crystallization ΔHc in the first cooling process was 0 J / g, and the second heating process was performed. A glycolic acid-based copolymer having a heat of fusion ΔHm of from 0 J / g to less than 20 J / g, a relative crystallinity Xr of from 3% to 50%, and a logarithmic viscosity number [η] of 0.15 m 3 / kg. The sheet-shaped molded article composed mainly of the thermoplastic resin composition is a molded article composed of a biodegradable resin and having excellent gas barrier properties, heat resistance, transparency, and mechanical strength, which is suitable for use as a packaging material. (Examples 1 to 7). Above all, the melting point Tm of the glycolic acid-based copolymer in the first heating process in DSC is from 185 ° C to 200 ° C,
The heat of fusion ΔHm in the second heating process is 0 J / g or more and 18
In the case of J / g or less, a sheet-shaped molded article made of a thermoplastic resin composition containing the copolymer as a main component has remarkably excellent properties of both heat resistance and transparency, and is particularly suitable for use as a packaging material. (Examples 1-3).

【0072】これらに対し、表4によると、グリコール
酸系共重合体、或いはグリコール酸単独重合体のDSC
における1回目の昇温過程での融点Tmが205℃より
高く、1回目の冷却過程での結晶化熱ΔHcが0J/g
ではなく、2回目の昇温過程での融解熱ΔHmが20J
/g以上であり、相対結晶化度Xrが50%より高い場
合には、該重合体を主体とする熱可塑性樹脂組成物より
なるシート状成形体は、ガスバリア性や耐熱性は優れて
いるものの、透明性や機械的強度が著しく劣り、包装材
用途には適さないことが判る(比較例1〜3)。更に詳
しくは、前述した1回目の冷却過程での結晶化熱ΔHc
が0J/gではない場合には、例え対数粘度数[η]が
0.15m3/kg以上であっても、結晶性が高い為に
包装材用途として使用する厚み5〜500μm程度のシ
ート状成形体、或いはフィルム状成形体が非常に脆弱な
ものになることが判る(比較例2)。
On the other hand, according to Table 4, the DSC of glycolic acid-based copolymer or glycolic acid homopolymer was determined.
, The melting point Tm in the first heating step is higher than 205 ° C., and the heat of crystallization ΔHc in the first cooling step is 0 J / g.
Instead, the heat of fusion ΔHm in the second heating process is 20 J
/ G or more, and when the relative crystallinity Xr is higher than 50%, the sheet-shaped molded article composed of the thermoplastic resin composition mainly composed of the polymer has excellent gas barrier properties and heat resistance. It was found that the transparency and mechanical strength were remarkably inferior, and were not suitable for use in packaging materials (Comparative Examples 1 to 3). More specifically, the heat of crystallization ΔHc in the first cooling process described above
Is not 0 J / g, even if the logarithmic viscosity number [η] is 0.15 m 3 / kg or more, a sheet having a thickness of about 5 to 500 μm used as a packaging material because of high crystallinity. It can be seen that the molded article or the film-shaped molded article becomes very brittle (Comparative Example 2).

【0073】また、結晶性が非常に高いグリコール酸単
独重合体P10では、非晶シートを得ることが困難であ
った。該単独重合体P10を使用して上記方法と同様に
し得られた結晶化しているシートは、脆弱で割れ易く、
透明性、ガスバリア性、耐熱性の評価は行えなかった
(比較例3)。一方、グリコール酸系共重合体のDSC
における1回目の昇温過程での融点Tmが175℃より
低い場合、詳しくは該融点Tmを175℃より低くなる
であろう共重合成分割合のグリコール酸系共重合体の場
合には、著しく結晶性が低い為に150℃で加熱しても
結晶化せず、該共重合体を主体とする熱可塑性樹脂組成
物よりなるシート状成形体は、透明性は優れているもの
の、耐熱性が著しく劣り、包装材用途には適さないこと
が判る(比較例4)。
In the case of glycolic acid homopolymer P10 having extremely high crystallinity, it was difficult to obtain an amorphous sheet. The crystallized sheet obtained by using the homopolymer P10 in the same manner as the above method is fragile and easily broken,
The transparency, gas barrier properties, and heat resistance could not be evaluated (Comparative Example 3). On the other hand, DSC of glycolic acid copolymer
In the case where the melting point Tm in the first heating process is lower than 175 ° C., more specifically, in the case of a glycolic acid-based copolymer having a copolymerization component ratio in which the melting point Tm will be lower than 175 ° C., Because of its low property, it does not crystallize even when heated at 150 ° C., and a sheet-shaped molded article made of a thermoplastic resin composition mainly containing the copolymer has excellent transparency, but has remarkable heat resistance. It is inferior and not suitable for use as a packaging material (Comparative Example 4).

【0074】[0074]

【発明の効果】本発明によれば、特定範囲の結晶性を有
するグリコール酸系共重合体を用いることにより、生分
解性を有し、且つガスバリア性、耐熱性、透明性、機械
的強度に優れた包装材用途に好適な成形体を提供するこ
とができる。
According to the present invention, by using a glycolic acid-based copolymer having a specific range of crystallinity, it has biodegradability, and has improved gas barrier properties, heat resistance, transparency and mechanical strength. It is possible to provide a molded article suitable for excellent packaging material use.

フロントページの続き Fターム(参考) 3E086 BA02 BA15 BB01 BB41 BB85 BB90 CA01 CA28 4F071 AA43 AF07 AF17 AF30 AF45 AH04 BB03 BC01 4J029 AA02 AC01 AC02 AD06 AD08 AD10 AE03 EA02 EA05 EG02 EG03 EG05 EG07 EG09 EH02 JB161 JF371 KB02 KD02 KE05 Continued on the front page F-term (reference) 3E086 BA02 BA15 BB01 BB41 BB85 BB90 CA01 CA28 4F071 AA43 AF07 AF17 AF30 AF45 AH04 BB03 BC01 4J029 AA02 AC01 AC02 AD06 AD08 AD10 AE03 EA02 EA05 EG02 E02 EB03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 グリコール酸系共重合体の非晶シートを
150℃で100分間熱処理した試験片を用い、加熱速
度および冷却速度が10℃/分で測定した示差走査熱量
測定(JIS K7121、及びK7122準拠)にお
いて1回目の昇温過程での融点Tm(℃)、1回目の冷
却過程での結晶化熱ΔHc(J/g)、2回目の昇温過
程での融解熱ΔHm(J/g)が下式(1)〜(3)を
満たし、且つ下式(4)で表される相対結晶化度Xrが
3%以上50%以下、対数粘度数[η]が0.15m3
/kg以上であるグリコール酸系共重合体を主体とする
熱可塑性樹脂組成物よりなることを特徴とする包装材用
成形体。 式(1)175≦Tm≦205 式(2)ΔHc=0 式(3)0≦ΔHm<20 式(4)Xr=[(ρb−ρa)/(ρc−ρa)]×
(ρc/ρb)×100 但し、ρa:非晶物の密度(g/cm3) ρb:150℃で5分間加熱した結晶化物の密度(g/
cm3) ρc:150℃で100分間加熱した結晶化物の密度
(g/cm3
1. A differential scanning calorimeter (JIS K7121) in which an amorphous sheet of a glycolic acid copolymer is heat-treated at 150 ° C. for 100 minutes and a heating rate and a cooling rate are measured at 10 ° C./min. K7122), the melting point Tm (° C.) during the first heating process, the crystallization heat ΔHc (J / g) during the first cooling process, and the heat of fusion ΔHm (J / g) during the second heating process. ) Satisfies the following formulas (1) to (3), the relative crystallinity Xr represented by the following formula (4) is 3% or more and 50% or less, and the logarithmic viscosity number [η] is 0.15 m 3.
A molded article for a packaging material, comprising a thermoplastic resin composition mainly composed of a glycolic acid-based copolymer of not less than / kg. Equation (1) 175 ≦ Tm ≦ 205 Equation (2) ΔHc = 0 Equation (3) 0 ≦ ΔHm <20 Equation (4) Xr = [(ρb−ρa) / (ρc−ρa)] ×
(Ρc / ρb) × 100, where ρa: density of amorphous substance (g / cm 3 ) ρb: density of crystallized substance heated at 150 ° C. for 5 minutes (g / cm 3 )
cm 3 ) ρc: density of crystallized material heated at 150 ° C. for 100 minutes (g / cm 3 )
【請求項2】 グリコール酸系共重合体が、グリコリド
とグリコリド以外の単量体を用いて開環重合し得られる
共重合体であって、グリコリドよりなる繰返し単位の成
分割合が78〜90mol%であり、グリコリド以外の
単量体よりなる繰返し単位の成分割合が22〜10mo
l%であることを特徴とする請求項1記載の包装材用成
形体。
2. A copolymer obtained by subjecting a glycolic acid-based copolymer to ring-opening polymerization using glycolide and a monomer other than glycolide, wherein the proportion of a repeating unit composed of glycolide is 78 to 90 mol%. And a component ratio of a repeating unit composed of a monomer other than glycolide is 22 to 10 mo.
The molded product for a packaging material according to claim 1, wherein the content is 1%.
【請求項3】 グリコリド以外の単量体が、脂肪族ヒド
ロキシカルボン酸類の環状二量体およびラクトン類から
選ばれる少なくとも一種からなることを特徴とする請求
項2記載の包装材用成形体。
3. The molded article for packaging material according to claim 2, wherein the monomer other than glycolide comprises at least one selected from cyclic dimers of aliphatic hydroxycarboxylic acids and lactones.
JP2001052016A 2001-02-27 2001-02-27 Molded body for packaging materials Expired - Fee Related JP4993238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001052016A JP4993238B2 (en) 2001-02-27 2001-02-27 Molded body for packaging materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001052016A JP4993238B2 (en) 2001-02-27 2001-02-27 Molded body for packaging materials

Publications (2)

Publication Number Publication Date
JP2002249556A true JP2002249556A (en) 2002-09-06
JP4993238B2 JP4993238B2 (en) 2012-08-08

Family

ID=18912707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001052016A Expired - Fee Related JP4993238B2 (en) 2001-02-27 2001-02-27 Molded body for packaging materials

Country Status (1)

Country Link
JP (1) JP4993238B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264206A (en) * 2001-03-07 2002-09-18 Asahi Kasei Corp Stretched molding for packaging material
JP2005126490A (en) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp Aliphatic polyhydroxy carboxylic acid granular crystallized product and its manufacturing process
JP2010229243A (en) * 2009-03-26 2010-10-14 Kureha Corp Ultraviolet-screening material, and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147691A (en) * 1976-06-01 1977-12-08 American Cyanamid Co Polymerization product having bioabsorption and hydrolysis* being solid in normal state
JPH0543665A (en) * 1991-08-13 1993-02-23 Toyobo Co Ltd Production of aliphatic polyester
JPH0616790A (en) * 1991-08-13 1994-01-25 Toyobo Co Ltd Aliphatic polyester and its production
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH06278785A (en) * 1993-03-24 1994-10-04 Chuo Kagaku Kk Biodegradable sauce bottle
JPH1060137A (en) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd Polyglycolic acid sheet and process for preparing the same
JPH10337772A (en) * 1996-05-09 1998-12-22 Kureha Chem Ind Co Ltd Stretching blown container and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147691A (en) * 1976-06-01 1977-12-08 American Cyanamid Co Polymerization product having bioabsorption and hydrolysis* being solid in normal state
JPH0543665A (en) * 1991-08-13 1993-02-23 Toyobo Co Ltd Production of aliphatic polyester
JPH0616790A (en) * 1991-08-13 1994-01-25 Toyobo Co Ltd Aliphatic polyester and its production
JPH06256480A (en) * 1993-03-04 1994-09-13 Toyobo Co Ltd Biodegradable packaging film
JPH06278785A (en) * 1993-03-24 1994-10-04 Chuo Kagaku Kk Biodegradable sauce bottle
JPH1060137A (en) * 1996-04-30 1998-03-03 Kureha Chem Ind Co Ltd Polyglycolic acid sheet and process for preparing the same
JPH10337772A (en) * 1996-05-09 1998-12-22 Kureha Chem Ind Co Ltd Stretching blown container and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264206A (en) * 2001-03-07 2002-09-18 Asahi Kasei Corp Stretched molding for packaging material
JP2005126490A (en) * 2003-10-21 2005-05-19 Asahi Kasei Chemicals Corp Aliphatic polyhydroxy carboxylic acid granular crystallized product and its manufacturing process
JP4693346B2 (en) * 2003-10-21 2011-06-01 旭化成ケミカルズ株式会社 Process for producing aliphatic polyhydroxycarboxylic acid granular crystallized product
JP2010229243A (en) * 2009-03-26 2010-10-14 Kureha Corp Ultraviolet-screening material, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4993238B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4363325B2 (en) Polylactic acid polymer composition, molded article thereof, and film
KR100981484B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
TWI405812B (en) Polyether-polylactic acid composition and polylactic acid-based film containing the same
US11208551B2 (en) Polymer composition containing PLLA and PDLA
JP3138196B2 (en) Biodegradable film or sheet and biodegradable plastic molded product
JP5400271B2 (en) Aromatic polyester resin molded body and method for producing the same
JPH07504227A (en) Melt stable lactide polymer film and its manufacturing method
KR20130010080A (en) Process for producing cling films
JP2007204727A (en) Polylactic acid composition and molded product composed of the composition
JP4180606B2 (en) Biodegradable sheet, molded body using this sheet, and molding method thereof
JP5145695B2 (en) Method for producing polylactic acid resin film
JP2004143432A (en) Polylactic acid-based resin oriented film and method for producing the same
JP4146625B2 (en) Biodegradable soft film
JP2002249556A (en) Molded article for packaging
JP4245306B2 (en) Biodegradable polyester stretch molding
JP2003231798A (en) Lactic acid resin composition and sheet product of the same, and bag product
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP4790920B2 (en) Stretched molded product for packaging materials
JP3280927B2 (en) Degradable recording sheet and recording card
JP4260521B2 (en) Glycolic acid polymer composition
JP4326828B2 (en) Composition of glycolic acid copolymer
KR102410624B1 (en) Biodegradable polyester resin composition, biodegradable polyester film and preperation method thereof
JP4260526B2 (en) Composition of glycolic acid polymer
JP2008200860A (en) Method for producing polylactic acid resin film
JP2002088173A (en) Lactic acid polymer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees