JPH0616790A - Aliphatic polyester and its production - Google Patents

Aliphatic polyester and its production

Info

Publication number
JPH0616790A
JPH0616790A JP22874091A JP22874091A JPH0616790A JP H0616790 A JPH0616790 A JP H0616790A JP 22874091 A JP22874091 A JP 22874091A JP 22874091 A JP22874091 A JP 22874091A JP H0616790 A JPH0616790 A JP H0616790A
Authority
JP
Japan
Prior art keywords
aliphatic polyester
acid
polymer
reaction
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22874091A
Other languages
Japanese (ja)
Inventor
Masaya Tokai
正也 東海
Takeshi Ito
武 伊藤
Yoshimitsu Sakaguchi
佳充 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP22874091A priority Critical patent/JPH0616790A/en
Publication of JPH0616790A publication Critical patent/JPH0616790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To provide a new aliphatic polyester expected to have a high biodegradability, and to provide the method for producing the same. CONSTITUTION:The aliphatic polyester is characterized by comprising an aliphatic polyester in which the monomer units are randomly arranged in the polymer molecule and which has a reducing viscosity of >=0.1, the polyester substantially comprising the condensation reaction product of lactic acid or/and glycolic acid with 3-hydroxybutyric acid, and the method for producing the same. Since both the copolymerization units of the aliphatic polyester have biodegradability, respectively, the copolymer is expected to have a high biodegradability, and since the copolymer has a moldable mol.wt., a wide range of uses can be expected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な脂肪族ポリエス
テルおよびその製造方法に関するものであり、更に詳し
くは、生体吸収性や生分解性を有し、成形可能な分子量
を有する共重合脂肪族ポリエステルおよびその製造法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel aliphatic polyester and a method for producing the same, more specifically, a bio-absorbable or biodegradable copolymerizable aliphatic compound having a moldable molecular weight. The present invention relates to polyester and a method for producing the same.

【0002】[0002]

【従来の技術】従来よりポリ乳酸、ポリグリコール酸お
よびそれらの共重合体は、徐放性重合体として、手術用
縫合糸、注射薬用マイクロカプセル等の生体分解性医用
材料や、除草剤等の農薬組成物として利用されている。
また近年プラスチック公害が深刻な問題となり、酵素や
微生物による分解が期待できる生分解性プラスチックと
しても注目され、研究開発が進められている。また中で
もポリ(3−ヒドロキシ酪酸)は微生物産生プラスチッ
クとして古くから知られており、最近、生分解性プラス
チックとしての研究開発が進められている。
2. Description of the Related Art Conventionally, polylactic acid, polyglycolic acid and their copolymers have been used as sustained-release polymers as biodegradable medical materials such as surgical sutures and microcapsules for injections, and herbicides. It is used as an agrochemical composition.
In recent years, plastic pollution has become a serious problem, and attention has been paid to it as a biodegradable plastic that can be expected to be decomposed by enzymes and microorganisms, and research and development is proceeding. Among them, poly (3-hydroxybutyric acid) has long been known as a microorganism-produced plastic, and recently research and development as a biodegradable plastic has been advanced.

【0003】[0003]

【発明が解決しようとする課題】前記ポリ乳酸、ポリグ
リコール酸またはそれらの共重合体は、化学合成によっ
て得られる生分解性ポリマーとして注目され、そして他
の脂肪族ポリエステルとの共重合体の研究も進められて
いる。一方生分解性プラスチック材料としてのポリ(3
−ヒドロキシ酪酸)の研究も精力的に行われている。と
ころでポリ(3-ヒドロキシ酪酸)は、高い生分解性を
有しているが、ガラス転移点が低く、また堅くて脆く、
成形が困難であるため、その成形性を改善する共重合体
の検討が行われている。しかしそれらの検討は、殆どす
べてが微生物による発酵合成によるものであり、化学合
成による検討は殆どなされていない。
The above-mentioned polylactic acid, polyglycolic acid or copolymers thereof have attracted attention as biodegradable polymers obtained by chemical synthesis, and research on copolymers with other aliphatic polyesters. Is being advanced. On the other hand, poly (3
-Hydroxybutyric acid) is also being actively researched. By the way, poly (3-hydroxybutyric acid) has high biodegradability, but has a low glass transition point, is hard and brittle,
Since molding is difficult, investigations have been made on copolymers that improve the moldability. However, almost all of these studies are based on fermentation synthesis by microorganisms, and few studies are conducted by chemical synthesis.

【0004】[0004]

【課題を解決するための手段】そこで本発明者らは、化
学合成により得られる生分解性を有する脂肪族ポリエス
テルに関して、鋭意検討を行った結果、遂に本発明を完
成するに到った。すなわち本発明は、モノマー単位がポ
リマー分子中で、ランダムに配列した脂肪族ポリエステ
ルであって、該ポリエステルが実質的に、乳酸または/
およびグリコール酸と3- ヒドロキシ酪酸の縮合反応生
成物であることを特徴とする脂肪族ポリエステルおよび
その製造方法である。
SUMMARY OF THE INVENTION The inventors of the present invention have made earnest studies on the biodegradable aliphatic polyester obtained by chemical synthesis, and as a result, have finally completed the present invention. That is, the present invention is an aliphatic polyester in which monomer units are randomly arranged in a polymer molecule, and the polyester is substantially lactic acid or /
And an aliphatic polyester which is a condensation reaction product of glycolic acid and 3-hydroxybutyric acid, and a method for producing the same.

【0005】本発明における脂肪族ポリエステルは、た
とえばオキシ酸の脱水重縮合またはラクトンおよびラク
チドの開環重合によって得ることができる。前記脱水重
縮合を行う場合、乳酸および/またはグリコール酸と3
−ヒドロキシ酪酸の混合物を、減圧下または窒素等の不
活性ガス気流下で加熱して行う。乳酸、3−ヒドロキシ
酪酸はD、L、ラセミ体のいずれでもよく、またメチル
エステル等のエステル体を用いることも可能であり、こ
の場合は脱アルコール反応となる。更に、これらのモノ
マーの形状は、固体、液体、あるいは水溶液で用いても
よい。但し、水溶液を用いる場合は反応開始前に、あら
かじめ適度に濃縮を行うのが望ましい。
The aliphatic polyester in the present invention can be obtained, for example, by dehydration polycondensation of oxyacid or ring-opening polymerization of lactone and lactide. When performing the dehydration polycondensation, lactic acid and / or glycolic acid and 3
-Hydroxybutyric acid mixture is heated under reduced pressure or under a stream of an inert gas such as nitrogen. Lactic acid and 3-hydroxybutyric acid may be any of D, L and racemates, and it is also possible to use an ester such as methyl ester, in which case a dealcoholization reaction is carried out. Furthermore, the forms of these monomers may be used as solids, liquids, or aqueous solutions. However, when an aqueous solution is used, it is desirable to appropriately pre-concentrate before starting the reaction.

【0006】前記オキシ酸の脱水重縮合は逐次反応であ
り、反応時間と共に分子量は増大する。しかしこの反応
は平衡反応であり、その平衡定数が小さいために触媒を
用いてもよい。触媒としては金属あるいは金属化合物、
例えばスズ、チタン、アンチモン、ゲルマニウム、亜
鉛、タングステン、ニオブ等の化合物を用いることがで
きるが、これらに限定されるものではない。これらの触
媒を用いる場合、その添加時期はモノマーと同時に仕込
んでもよいし、初期重合が終了して、減圧状態にはいる
際に投入してもよい。モノマーに水溶液を用いる際は、
その濃縮操作が終了してから投入するのが望ましい。更
に触媒は、適当な溶剤に溶解して投入しても、そのまま
投入しても差し支えはない。触媒使用量は0.005〜
0.50mol%が好ましく、特に0.03〜0.10
mol%が好ましい。0.005mol%以下では触媒
効果が殆ど認められず、0.50mol%以上では反応
中に、ポリマーの着色、劣化が認められるので好ましく
ない。
The dehydration polycondensation of the oxyacid is a sequential reaction, and the molecular weight increases with the reaction time. However, this reaction is an equilibrium reaction, and a catalyst may be used because its equilibrium constant is small. As a catalyst, a metal or a metal compound,
For example, compounds such as tin, titanium, antimony, germanium, zinc, tungsten, and niobium can be used, but the compounds are not limited to these. When these catalysts are used, they may be added at the same time as the monomers, or may be added when the reduced pressure is reached after the initial polymerization is completed. When using an aqueous solution for the monomer,
It is desirable to add after the concentration operation is completed. Further, the catalyst may be dissolved in a suitable solvent and added, or may be added as it is. The amount of catalyst used is 0.005
0.50 mol% is preferable, and 0.03 to 0.10.
mol% is preferred. If it is 0.005 mol% or less, almost no catalytic effect is recognized, and if it is 0.50 mol% or more, coloring and deterioration of the polymer are recognized during the reaction, which is not preferable.

【0007】次に本発明における重縮合反応は、例えば
以下に示す方法によって行うことができる。反応容器に
投入したモノマーおよび触媒を窒素等の不活性ガスで置
換し、不活性ガス気流下で徐々に昇温し、所定の温度で
所定の時間、初期重合を行う。引き続き減圧を開始し、
所定の時間あるいは所定のトルクに達したところで反応
を停止させる。反応温度は生成するポリマー組成によっ
て定められるが、減圧度は10mmHg以下、特に1m
mHg以下にすることが望ましい。
Next, the polycondensation reaction in the present invention can be carried out by the following method, for example. The monomer and catalyst charged in the reaction vessel are replaced with an inert gas such as nitrogen, the temperature is gradually raised under an inert gas stream, and initial polymerization is performed at a predetermined temperature for a predetermined time. Continue to decompress,
The reaction is stopped for a predetermined time or when a predetermined torque is reached. The reaction temperature is determined by the composition of the polymer produced, but the degree of vacuum is 10 mmHg or less, especially 1 m.
It is desirable to set it to mHg or less.

【0008】一方開環重合でポリマーを合成する場合、
ラクチドおよび/またはグリコリドとβ−ブチロラクト
ンを出発原料とし、不活性ガス気流下あるいは減圧下で
加熱して行う。ラクチドおよびβ−ブチロラクトンは、
D、L、ラセミ、メソ体のいずれを用いても差し支えは
ない。但し、ラクトンおよびラクチド類を出発原料とす
る場合は、再結晶等によってあらかじめ精製しておくこ
とが望ましい。開環重合は通常、触媒が用いられ、触媒
としてはスズ、亜鉛、アルミニウム、アンチモン等の金
属化合物が用いられる。また反応系中にアルコール類等
の末端封鎖剤、分子量調節剤を加えておくこともでき
る。
On the other hand, when the polymer is synthesized by ring-opening polymerization,
Lactide and / or glycolide and β-butyrolactone are used as starting materials, and heated under an inert gas stream or under reduced pressure. Lactide and β-butyrolactone are
Any of D, L, racemate and meso form may be used. However, when lactones and lactides are used as starting materials, it is desirable to purify them by recrystallization or the like in advance. A catalyst is usually used for the ring-opening polymerization, and a metal compound such as tin, zinc, aluminum or antimony is used as the catalyst. It is also possible to add an end-capping agent such as alcohols and a molecular weight modifier to the reaction system.

【0009】開環重合は例えば次のようにして行うこと
ができる。反応容器にモノマーおよび触媒を投入し、不
活性ガスで置換した後、所定の温度で減圧下反応を行
う。反応終了後、生成したポリマーを直接、あるいは適
当な溶媒に溶解して取り出す。溶解して取り出した場合
は、水等に再沈することによって単離することができ
る。
Ring-opening polymerization can be carried out, for example, as follows. After the monomer and the catalyst are put into a reaction vessel and replaced with an inert gas, the reaction is carried out at a predetermined temperature under reduced pressure. After completion of the reaction, the produced polymer is taken out directly or after being dissolved in an appropriate solvent. When dissolved and taken out, it can be isolated by reprecipitation in water or the like.

【0010】なお本発明において、直接重合と開環重合
を併用することも可能であり、例えばオキシ酸とラクチ
ド類の混合物を出発物質として用いることもできる。以
上述べてきた方法で得られたポリマーは充分に高分子量
体であるが、更に高分子量化するために、固相重合等を
用いて後処理を行っても一向に差し支えはない。
In the present invention, direct polymerization and ring-opening polymerization may be used in combination, and for example, a mixture of oxyacid and lactide may be used as a starting material. The polymer obtained by the method described above is a sufficiently high molecular weight polymer, but post-treatment using solid-phase polymerization or the like may be sufficient to further increase the molecular weight.

【0011】[0011]

【実施例】次に本発明を実施例を用いて具体的に説明す
るが、本発明はこれらに限定されるものではない。なお
実施例における各特性値は以下の方法によって測定し
た。 還元粘度(ηsp/c):ポリマー0.125gをトリクロ
ロフェノール/フェノール(7/10wt%)混合溶媒
に溶解して、30℃で測定した。 融点:パーキンエルマー社製DSC7を用いて、窒素気
流下、昇降温速度10℃/分で測定した。 NMR:バリアン社製NMR、Gemini−200を
用いて、トリフロロ酢酸/重水素化クロロホルム混合溶
媒で測定した。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto. The characteristic values in the examples were measured by the following methods. Reduced viscosity (ηsp / c): 0.125 g of a polymer was dissolved in a mixed solvent of trichlorophenol / phenol (7/10 wt%) and measured at 30 ° C. Melting point: Using a DSC7 manufactured by Perkin Elmer Co., Ltd., it was measured under a nitrogen stream at a temperature rising / falling rate of 10 ° C./min. NMR: Measured with a mixed solvent of trifluoroacetic acid / deuterated chloroform using Gemini-200 manufactured by Varian.

【0012】実施例1 撹拌装置、窒素導入管を備えた反応容器に、グリコール
酸50g、3−ヒドロキシ酪酸(L体)5g、触媒とし
て酸化ゲルマニウム0.04gを投入し、3回窒素置換
を行った。窒素気流下、10℃/分で180℃まで昇温
して1時間撹拌した。続いて30分間で20mmHgま
で減圧し、1時間撹拌した。更に1mmHgまで減圧度
を高めると同時に、220℃に昇温してそのまま3時間
撹拌反応を続けた。反応終了後、溶融状態にあるポリマ
ーを取り出した。得られたポリマーは白色であり、還元
粘度0.41、融点198℃であった。
Example 1 50 g of glycolic acid, 5 g of 3-hydroxybutyric acid (L-form) and 0.04 g of germanium oxide as a catalyst were placed in a reaction vessel equipped with a stirrer and a nitrogen introducing tube, and nitrogen substitution was carried out three times. It was Under a nitrogen stream, the temperature was raised to 180 ° C. at 10 ° C./minute, and the mixture was stirred for 1 hour. Subsequently, the pressure was reduced to 20 mmHg in 30 minutes, and the mixture was stirred for 1 hour. Further, the degree of vacuum was further raised to 1 mmHg, and at the same time, the temperature was raised to 220 ° C. and the stirring reaction was continued for 3 hours. After the reaction was completed, the polymer in a molten state was taken out. The obtained polymer was white and had a reduced viscosity of 0.41 and a melting point of 198 ° C.

【0013】実施例2 実施例1において3−ヒドロキシ酪酸の代わりに、3−
ヒドロキシ酪酸メチルエステルを用いた以外は、実施例
1と同様の操作を行い、白色のポリマーを得た。還元粘
度0.48、融点201℃であった。このポリマーのN
MRスペクトルを図1に示す。図1より明らかなように
4.9ppmにグリコール酸単位、1.3、2.8、
5.3ppmに3−ヒドロキシ酪酸単位に起因する吸収
が認められた。さらに得られたポリマーを180℃/
0.5mmHgで24時間、アンプル中で固相重合を行
ったところ、このポリマーの還元粘度は0.68であっ
た。
Example 2 Instead of 3-hydroxybutyric acid in Example 1, 3-hydroxybutyric acid was used.
The same operation as in Example 1 was carried out except that hydroxybutyric acid methyl ester was used to obtain a white polymer. The reduced viscosity was 0.48 and the melting point was 201 ° C. N of this polymer
The MR spectrum is shown in FIG. As is clear from FIG. 1, glycolic acid unit, 1.3, 2.8
Absorption due to 3-hydroxybutyric acid units was observed at 5.3 ppm. Further, the obtained polymer is 180 ° C /
When solid phase polymerization was carried out in an ampoule at 0.5 mmHg for 24 hours, the reduced viscosity of this polymer was 0.68.

【0014】比較例1 実施例1と同様の反応容器に、グリコール酸50g、D
L−乳酸6g、触媒として酸化ゲルマニウム0.04g
を投入し、窒素置換を行った後、200℃まで昇温して
1時間撹拌した。引き続き、200℃/10mmHgで
1時間、230℃/0.5mmHgで2時間撹拌反応を
行い、白色のポリマーを得た。還元粘度0.57、融点
198℃であった。このポリマーのNMRスペクトルを
図2に示す。図2より明らかなように4.9ppmにグ
リコール酸単位、1.6ppm、5.3ppmに乳酸単
位に起因する吸収が認められた。
COMPARATIVE EXAMPLE 1 50 g of glycolic acid and D were placed in the same reaction vessel as in Example 1.
L-lactic acid 6g, germanium oxide 0.04g as a catalyst
Was charged, the atmosphere was replaced with nitrogen, the temperature was raised to 200 ° C., and the mixture was stirred for 1 hour. Subsequently, a stirring reaction was performed at 200 ° C./10 mmHg for 1 hour and at 230 ° C./0.5 mmHg for 2 hours to obtain a white polymer. The reduced viscosity was 0.57 and the melting point was 198 ° C. The NMR spectrum of this polymer is shown in FIG. As is clear from FIG. 2, absorption due to glycolic acid unit was observed at 4.9 ppm, and absorption due to lactic acid unit was observed at 1.6 ppm and 5.3 ppm.

【0015】実施例3 実施例1と同様の反応容器に、グリコール酸40g、D
L−乳酸5g、3−ヒドロキシ酪酸5g、触媒として酸
化アンチモン0.06gを投入した。3回窒素置換を行
った後、180℃に昇温して2時間、撹拌反応を行っ
た。更に180℃/20mmHgで2時間、200℃/
1mmHgで3時間反応を続けることにより、淡黄色の
ポリマーを得た。このポリマーは非晶性であり、融点が
認められず、ガラス転移温度41℃であった。
Example 3 A reaction vessel similar to that used in Example 1 was charged with 40 g of glycolic acid and D.
5 g of L-lactic acid, 5 g of 3-hydroxybutyric acid, and 0.06 g of antimony oxide as a catalyst were added. After purging with nitrogen three times, the temperature was raised to 180 ° C. and the stirring reaction was carried out for 2 hours. 180 ° C / 20 mmHg for 2 hours, 200 ° C /
A light yellow polymer was obtained by continuing the reaction at 1 mmHg for 3 hours. This polymer was amorphous, had no melting point, and had a glass transition temperature of 41 ° C.

【0016】実施例4 実施例1と同様の反応容器に、再結晶により精製したD
L−ラクチド40g、β−ブチロラクトン7g、触媒と
してオクチル酸スズ0。06gを1ccトルエン溶液と
して投入した。窒素気流下で10℃/分で200℃まで
昇温し、5時間反応を続け、溶融状態にあるポリマーを
取り出した。このポリマーの還元粘度は0.66であ
り、また融点は認められず、ガラス転移点48℃であっ
た。
Example 4 In a reaction vessel similar to that of Example 1, D purified by recrystallization was used.
40 g of L-lactide, 7 g of β-butyrolactone and 0.06 g of tin octylate as a catalyst were added as a 1 cc toluene solution. The temperature was raised to 200 ° C. at 10 ° C./min in a nitrogen stream, the reaction was continued for 5 hours, and the polymer in a molten state was taken out. The polymer had a reduced viscosity of 0.66, no melting point, and a glass transition point of 48 ° C.

【0017】実施例5 ガラスアンプル中にグリコール酸10g、3−ヒドロキ
シ酪酸2gを投入し、窒素気流下で150℃まで昇温し
た。1時間反応させた後、10mmHgに減圧し、更に
1時間反応を続けると系中が固化してきた。そのまま固
化した状態で0.5mmHgまで減圧度を高め、20時
間反応を行った。アンプルを冷却し、砕いて中のポリマ
ーを取り出した。得られたポリマーは白色であり、融点
188℃であった。
Example 5 10 g of glycolic acid and 2 g of 3-hydroxybutyric acid were placed in a glass ampoule and heated to 150 ° C. under a nitrogen stream. After reacting for 1 hour, the pressure was reduced to 10 mmHg, and when the reaction was continued for 1 hour, the system solidified. In the solidified state as it was, the degree of reduced pressure was increased to 0.5 mmHg and the reaction was carried out for 20 hours. The ampoule was cooled and crushed to remove the polymer inside. The obtained polymer was white and had a melting point of 188 ° C.

【0018】[0018]

【発明の効果】以上かかる構成よりなる本発明脂肪族ポ
リエステルは、高い生分解性が期待でき、更にその組成
により結晶性、非晶性等の物性を変化させられることか
ら、広範な用途が期待できるので、産業界、また環境保
護にも寄与すること大である。
The aliphatic polyester of the present invention having the above-mentioned constitution can be expected to have high biodegradability, and its physical properties such as crystallinity and amorphousness can be changed depending on its composition, so that it can be widely used. As a result, it will greatly contribute to industry and environmental protection.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例2によって得られた本発明ポリマ
ーのNMRスペクトルである。
1 is an NMR spectrum of the polymer of the present invention obtained in Example 2. FIG.

【図2】図2は比較例1によて得られたポリマーのNM
Rスペクトルである。
FIG. 2 is an NM of the polymer obtained according to Comparative Example 1.
It is an R spectrum.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 モノマー単位がポリマー分子中で、ラン
ダムに配列した還元粘度が0.1以上の脂肪族ポリエス
テルであって、該ポリエステルが実質的に、乳酸または
/およびグリコール酸と3−ヒドロキシ酪酸の縮合反応
生成物であることを特徴とする脂肪族ポリエステル。
1. An aliphatic polyester in which monomer units are randomly arranged in a polymer molecule and have a reduced viscosity of 0.1 or more, wherein the polyester is substantially lactic acid or / and glycolic acid and 3-hydroxybutyric acid. An aliphatic polyester which is a condensation reaction product of
【請求項2】 乳酸または/およびグリコール酸と3-
ヒドロキシ酪酸を出発原料とし、直接脱水重縮合するこ
とを特徴とする脂肪族ポリエステルの製造方法。
2. Lactic acid or / and glycolic acid and 3-
A method for producing an aliphatic polyester, which comprises subjecting hydroxybutyric acid as a starting material to direct dehydration polycondensation.
【請求項3】 ラクチドおよび/またはグリコリドとβ
−ブチロラクトンを出発原料とし、開環重合することを
特徴とする脂肪族ポリエステルの製造方法。
3. Lactide and / or glycolide and β
-A method for producing an aliphatic polyester, which comprises using butyrolactone as a starting material and performing ring-opening polymerization.
JP22874091A 1991-08-13 1991-08-13 Aliphatic polyester and its production Pending JPH0616790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22874091A JPH0616790A (en) 1991-08-13 1991-08-13 Aliphatic polyester and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22874091A JPH0616790A (en) 1991-08-13 1991-08-13 Aliphatic polyester and its production

Publications (1)

Publication Number Publication Date
JPH0616790A true JPH0616790A (en) 1994-01-25

Family

ID=16881083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22874091A Pending JPH0616790A (en) 1991-08-13 1991-08-13 Aliphatic polyester and its production

Country Status (1)

Country Link
JP (1) JPH0616790A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249556A (en) * 2001-02-27 2002-09-06 Asahi Kasei Corp Molded article for packaging
WO2002008428A3 (en) * 2000-07-21 2003-01-09 Metabolix Inc Production of polyhydroxyalkanoates from polyols
JP2004137490A (en) * 2002-09-24 2004-05-13 Asahi Kasei Chemicals Corp Glycolic acid copolymer and method for producing the same
JP2010510372A (en) * 2006-11-21 2010-04-02 エルジー・ケム・リミテッド Copolymer containing 3-hydroxyalkanoate unit and lactate unit and method for producing the same
JP2017025138A (en) * 2015-07-16 2017-02-02 大阪瓦斯株式会社 Biodegradable copolymer and production process therefor as well as biodegradability improvement method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008428A3 (en) * 2000-07-21 2003-01-09 Metabolix Inc Production of polyhydroxyalkanoates from polyols
US8741624B2 (en) 2000-07-21 2014-06-03 Metabolix, Inc. Production of polyhydroxyalkanoates from polyols
JP2002249556A (en) * 2001-02-27 2002-09-06 Asahi Kasei Corp Molded article for packaging
JP2004137490A (en) * 2002-09-24 2004-05-13 Asahi Kasei Chemicals Corp Glycolic acid copolymer and method for producing the same
JP2010510372A (en) * 2006-11-21 2010-04-02 エルジー・ケム・リミテッド Copolymer containing 3-hydroxyalkanoate unit and lactate unit and method for producing the same
EP2087025A4 (en) * 2006-11-21 2011-10-19 Lg Chemical Ltd Copolymer containing 3-hydroxyalkanoate unit and lactate unit, and its manufacturing method
US8765402B2 (en) 2006-11-21 2014-07-01 Lg Chem, Ltd. Copolymer containing 3-hydroxyalkanoate unit and lactate unit, and its manufacturing method
JP2017025138A (en) * 2015-07-16 2017-02-02 大阪瓦斯株式会社 Biodegradable copolymer and production process therefor as well as biodegradability improvement method

Similar Documents

Publication Publication Date Title
US5714618A (en) Polymer containing lactic acid as its constituting unit and method for producing the same
JP4231781B2 (en) Polyglycolic acid and method for producing the same
JPH07126358A (en) Preparation of polymer of alpha hydroxy acid
JP2003096285A (en) Polyactic acid resin composition, production method thereof and molded article
JPH06329768A (en) Biodegradable optically active polymer and preparation thereof
JP4476808B2 (en) High molecular weight aliphatic polyester and process for producing the same
US5840811A (en) Optically active block polyester copolymer and method for production thereof
JP3379841B2 (en) Block copolymerized poly (ester-carbonate) and method for producing the same
JP7116169B2 (en) Lactic acid-glycolic acid copolymer and method for producing the same
JPH0616790A (en) Aliphatic polyester and its production
JPH09124778A (en) Production of polylactic acid
JP3353468B2 (en) Aliphatic polyester copolymer and method for producing the same
JP3374530B2 (en) Method for producing aliphatic polyester copolymer
JP2022146911A (en) Polyester and method for producing the same
JP3448927B2 (en) Method for producing lactone-based copolymer
JP3339601B2 (en) Polylactic acid based polyester block copolymer
JP2020189905A (en) Manufacturing method of polyester copolymer
JPH10168167A (en) Production of polyhydroxycarboxylic acid
JP2001002763A (en) Lactide-lactone copolymer and its production
WO2008054727A2 (en) Degradable 1,4-benzodioxepin-3-hexyl-2,5-dione monomer derived polymer with a high glass transition temperature
JPH1135663A (en) Production of lactic acid-based polyester and lactic acid-based polyester
JP3287426B2 (en) Method for producing aliphatic polyester
JP2004331782A (en) Manufacturing process of polyester
JPH06345856A (en) Production of aliphatic polyester
JPH11209463A (en) Preparation of homopolymer or copolymer of beta-butyrolactone