JP4260526B2 - Composition of glycolic acid polymer - Google Patents

Composition of glycolic acid polymer Download PDF

Info

Publication number
JP4260526B2
JP4260526B2 JP2003108147A JP2003108147A JP4260526B2 JP 4260526 B2 JP4260526 B2 JP 4260526B2 JP 2003108147 A JP2003108147 A JP 2003108147A JP 2003108147 A JP2003108147 A JP 2003108147A JP 4260526 B2 JP4260526 B2 JP 4260526B2
Authority
JP
Japan
Prior art keywords
glycolic acid
polymer
acid polymer
composition
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003108147A
Other languages
Japanese (ja)
Other versions
JP2004315587A (en
Inventor
和明 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003108147A priority Critical patent/JP4260526B2/en
Publication of JP2004315587A publication Critical patent/JP2004315587A/en
Application granted granted Critical
Publication of JP4260526B2 publication Critical patent/JP4260526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、グリコール酸系重合体の組成物、及び該組成物を主体とする成形体に関する。更に詳しくは、成形性に優れるグリコール酸系重合体と窒化ホウ素からなる組成物、及び該組成物を主体とする耐熱性や機械的特性が優れる成形体に関するものである。
【0002】
【従来の技術】
従来から、押出成形や射出成形などにより製造されるプラスチック製品は、加工時や使用時の利便性ゆえに包装用資材、農業用資材、土木建築用資材、機械装置部品など様々な分野で利用されている。しかし、現在の大量消費社会では、その使用量は年々増加の一途をたどっており、同時にプラスチック廃棄物問題は年々深刻化している。プラスチック廃棄物は、多くは焼却や埋め立てにより処分されているが、近年は環境保全の観点から、回収して再びプラスチック製品の原料として用いるマテリアルリサイクルが提唱されている。
【0003】
例えば、包装用資材としては食肉や魚を個別包装するトレーや容器など、農業用資材としては保温などを目的としたマルチフィルムや植生ポットなど、また土木建築用資材としては土嚢袋や固定釘や杭などにプラスチック製品が利用されている。これらは、使用時に油脂や土壌と接触して汚れる用途であることから、マテリアルリサイクルする為には、消費者が使用後に洗浄し、他のゴミと分別し、回収業者に引き渡さなければならない。或いは、回収業者が回収し、洗浄する作業をしなければならない。従って、この様な用途のプラスチック製品は、回収洗浄作業や回収輸送に掛る手間やコスト等を考慮すると、実質的にはマテリアルリサイクルは困難である。
【0004】
このような状況下、土壌、水中等の自然界で分解する生分解性の樹脂が注目され、研究されている。
下記特許文献1には、土壌や海水中の湿った環境下において分解性を有する脂肪族ポリエステルに脂肪族カルボン酸アミドなどの特定の透明化結晶核剤を添加することにより、耐熱性(結晶性)/分解性を併有する成形体を得ることが出来ると記載されている。
【0005】
しかしながら、該特許文献1に記載の脂肪族ポリエステル成形体は、重合体を構成する繰返し単位が乳酸由来である乳酸系重合体からなる組成物を主体とする成形体であり、得られた成形体の耐熱性は不十分であった。なお、該特許文献1には、乳酸系重合体よりも高融点であるために耐熱性がより優れる成形体が得られると予想されるグリコール酸系重合体が脂肪族ポリエステルの一例として記載されているが、本発明者がグリコール酸系重合体に該公報記載の透明化結晶核剤である脂肪族カルボン酸アミドや脂肪族カルボン酸塩を添加したところ結晶性を高める効果は乏しく、得られた成形体は変色して機械的強度が劣るものであった
【0006】
(後述比較例)。
特許文献2には、平均粒径と添加量を規定したタルク及び/又は窒化ホウ素からなる無機粒子を含有する乳酸系重合体の組成物が開示され、該組成物は生分解性があり成形性に優れるものであると記載されている。しかしながら、該特許文献2に記載の組成物は、乳酸系重合体を主体とするために得られた成形体の耐熱性や機械的特性は不十分であった。
特許文献3には、融点が150℃以上、融解熱が20J/g以上、無配向結晶化物の密度が1.50g/cm以上であるグリコール酸系重合体を含有する熱可塑性樹脂材料を融点〜255℃の温度範囲で溶融押出しすることにより、強靭性やガスバリア性に優れた土中崩壊性を示すシート状成形体が得られると記載されている。
【0007】
しかしながら、該特許文献3に記載のシート状成形体は、非晶シートを試験片として加熱速度10℃/分で示差走査熱量測定した場合の融解熱が20J/g以上、無配向結晶化物の密度が1.50g/cm以上である結晶性が非常に高いグリコール酸系重合体を含有する熱可塑性樹脂材料から形成されることから、溶融押出し後に急冷し熱固定していない非晶状態のシート状成形体は耐熱性が劣るものであった。また、熱固定したシート状成形体では、脆く機械的特性が劣るものであった。
【0008】
更に、該特許文献3に規定されている溶融押出時の加熱温度は255℃までの高い温度範囲であるが、これは用いるグリコール酸系重合体の高度な結晶を十分融解させる為に融点よりもかなり高い温度に設定しなければならないからである。グリコール酸系重合体は、熱重量分析による重量減少を測定すると240℃から熱分解が始まる(K.Chujo,et al.,Die Makromolekulare Chemie,No.100,P.267(1967))にも係わらず、該公報に規定される255℃までの高い温度範囲の加熱温度で溶融押出する場合には、熱劣化して溶融粘度が著しく低下し溶融押出が困難になったり、得られるシート状成形体は脆く機械的特性が劣るものであった。
【0009】
【特許文献1】
特開平9−278991号公報
【特許文献2】
特開平8−3432号公報
【特許文献3】
特開平10−60137号公報
【0010】
【発明が解決しようとする課題】
本発明の課題は、生分解性を有し、且つ溶融押出や射出成形などの成形性に優れるグリコール酸系重合体を主体とした組成物を提供すること、及び該グリコール酸系重合体からなる組成物を主体とする耐熱性や機械的特性が優れる成形体を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上記課題を達成する為に鋭意検討した結果、生分解性樹脂のなかでも融点が比較的高いグリコール酸系重合体に特定量の窒化ホウ素系粒子を含有せしめることによって、耐熱性や機械的特性が優れた生分解性を有する成形体を製造することができることを見出し、本発明に到達した。
即ち、本発明は、
[1] グリコール酸系重合体と窒化ホウ素系粒子からなる組成物であって、グリコール酸系重合体100重量部に対し、窒化ホウ素系粒子の含有量が0.3重量部以上40重量部以下であることを特徴とするグリコール酸系重合体の組成物、
【0012】
[2] グリコール酸系重合体が、該重合体の非晶シートを150℃で100分間熱処理した試験片を用い、加熱速度および冷却速度が10℃/分で測定した示差走査熱量測定(JIS K7121、及びK7122準拠)において1回目の昇温過程での融点Tm(℃)、1回目の冷却過程での結晶化熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔHm(J/g)が下式(1)〜(3)を満たすグリコール酸系共重合体であることを特徴とする[1]記載のグリコール酸系重合体の組成物、
175≦Tm≦205 (1)
ΔHc=0 (2)
0≦ΔHm<20 (3)
【0013】
[3] グリコール酸系重合体が、対数粘度数0.15m/kg以上であることを特徴とする[1]又は[2]記載のグリコール酸系重合体の組成物、
[4] 窒化ホウ素系粒子の平均粒径が0.03μm以上5μm以下であることを特徴とする[1]〜[3]のいずれかに記載のグリコール酸系重合体の組成物、
[5] グリコール酸系重合体と窒化ホウ素系粒子からなる組成物を主体とする成形体であって、グリコール酸系重合体100重量部に対し、窒化ホウ素系粒子の含有量が0.3重量部以上40重量部以下であることを特徴とするグリコール酸系重合体の成形体、
【0014】
[6] グリコール酸系重合体が、該重合体の非晶シートを150℃で100分間熱処理した試験片を用い、加熱速度および冷却速度が10℃/分で測定した示差走査熱量測定(JIS K7121、及びK7122準拠)において1回目の昇温過程での融点Tm(℃)、1回目の冷却過程での結晶化熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔHm(J/g)が下式(1)〜(3)を満たすグリコール酸系共重合体であることを特徴とする[5]記載のグリコール酸系重合体の成形体、
175≦Tm≦205 (1)
ΔHc=0 (2)
0≦ΔHm<20 (3)
【0015】
[7] グリコール酸系重合体が、対数粘度数0.15m/kg以上であることを特徴とする[5]又は[6]記載のグリコール酸系重合体の成形体、
[8] 窒化ホウ素系粒子が、平均粒径0.03μm以上5μm以下であることを特徴とする[5]〜[7]のいずれかに記載のグリコール酸系重合体の成形体、
である。
【0016】
【発明の実施の形態】
以下、本発明のグリコール酸系重合体の組成物及び成形体について詳細に説明する。本発明のグリコール酸系重合体の組成物及び成形体は、生分解性樹脂のなかでも融点が比較的高いグリコール酸系重合体に、窒化ホウ素系粒子を特定量含有せしめることに特徴がある。
【0017】
従来の技術の欄に記載の特許文献1や、特許文献2において特に好ましい原料として記載されている乳酸系重合体は、該重合体を構成する繰返し単位が不斉炭素を有する乳酸由来であり、光学純度によって該重合体の融点が著しく変化することが一般に知られているが、光学純度100%のホモポリマーの場合でも融点は175℃程度である(辻秀人・筏義人、「ポリ乳酸−医療・製剤・環境のために−」、第1版、高分子刊行会、1997年9月20日、p.39、図2−27参照)。これに対し、グリコール酸系重合体は、ホモポリマーの融点は225℃程度である(同書、p.45参照)ので、耐熱性がより優れる成形体を得ることができる。
【0018】
本発明の組成物の原料として用いるグリコール酸系重合体とは、主たる繰返し単位がグリコール酸由来の繰返し単位である重合体をいい、単量体にグリコール酸の環状二量体であるグリコリド(1,4−ジオキサ−2,5−ジオン)を用いての開環重合、又はグリコール酸を用いての直接脱水重縮合、例えばグリコール酸メチルなどのグリコール酸エステル類を用いて脱アルコールしながらの重縮合などにより得られる重合体であって、これら単量体のホモポリマー、或いはこれら単量体を主たる単量体とするコポリマーである。該重合体の製造方法は、従来公知の一般的な方法で行われ、例えば主たる単量体にグリコール酸の環状二量体であるグリコリドを用いて開環重合してグリコール酸系重合体を得るには、Gildingらの方法(Polymer,vol.20,December(1979))などが挙げられるが、これに限定されるものではない。
【0019】
共重合で用いられる、上記の主たる単量体であるグリコール酸、グリコリド、及びグリコール酸エステル類と共重合しうる単量体としては、例えば、乳酸、2−ヒドロキシイソ酪酸、2−ヒドロキシ−2,2−ジアルキル酢酸、3−ヒドロキシ酪酸、3−ヒドロキシ吉草酸、3−ヒドロキシヘキサン酸、4−ヒドロキシブタン酸、その他公知の脂肪族ヒドロキシカルボン酸類、これら脂肪族ヒドロキシカルボン酸類のエステル誘導体、これら脂肪族ヒドロキシカルボン酸類の同種、又は異種の環状二量体など、およびβ−ブチロラクトン、β−プロピオラクトン、ピバロラクトン、γ−ブチロラクトン、δ−バレロラクトン、β−メチル−δ−バレロラクトン、ε−カプロラクトンなどのラクトン類から少なくとも一種が選ばれる。
【0020】
また、これらの他に、等モル量の多価アルコール類と多価カルボン酸類を組み合わせて、上記主たる単量体と共重合させたものでもよい。多価アルコール類としては、例えば、エチレングリコール、プロピレングリコール、1,2−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,3−シクロヘキサノール、1,4−シクロヘキサノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノールなどの脂肪族ジオール類、或いはこれら脂肪族ジオール類が複数結合した、例えばジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどが挙げられる。多価カルボン酸類としては、マロン酸、コハク酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、1,3−シクロペンタンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、ジグリコール酸などの脂肪族ジカルボン酸類、テレフタル酸、イソフタル酸、1,4−ナフタリンジカルボン酸、2,6−ナフタリンジカルボン酸などの芳香族ジカルボン酸類、これら脂肪族ジカルボン酸類や芳香族ジカルボン酸類のエステル誘導体、これら脂肪族ジカルボン酸類の無水物などが挙げられる。
【0021】
更に、上記の主たる単量体と共重合しうる単量体などが光学活性物質である場合には、L−体またはD−体の何れであってもよいし、D,L−体の混合割合が任意の混合組成物、D,L−体の共重合割合が任意の共重合体、或いはメソ体の何れであってもよい。
グリコール酸、グリコリド、及びグリコール酸エステル類の上記主たる単量体に、これらの共重合しうる単量体を共重合させる場合、若しくはこれらの共重合しうる単量体を多成分に組み合わせて共重合させる場合は、その配列は特に限定されるものではなく、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体などの何れでも良いが、生分解性ブラスチックの規格、例えば日本における生分解性プラスチック研究会が定める規格、米国におけるASTM D−6400、ドイツにおけるDIN V−54900などに適合するものとする。
【0022】
本発明においては、上記に例示した本発明の組成物の原料として用いるグリコール酸系重合体の中で、該重合体の融点と結晶性が特定の範囲にあるグリコール酸系共重合体を用いることが好ましい。該グリコール酸系共重合体を用いた組成物を主体とする成形材料はより優れた成形性を示し、該成形材料から得られる成形体は優れた耐熱性と優れた機械的特性を同時に併有することが可能となる。即ち、該成形材料を成形加工する際に、熱劣化が起こり難い条件で溶融成形が可能であり、温度変化による著しい溶融粘度変化が起こらない優れた成形性と、乳酸系重合体からなる成形体では不可能であった170℃以上の優れた耐熱性と、粗大結晶に成長して脆化することのない優れた機械的特性である。
【0023】
本発明で用いられる好ましいグリコール酸系重合体は、融点と結晶性が特定の範囲にあるグリコール酸系共重合体であり、該重合体の非晶シートを150℃で100分間熱処理した試験片を用い、加熱速度および冷却速度が10℃/分で測定した示差走査熱量測定(JIS K7121、及びK7122準拠)において1回目の昇温過程での融点Tm(℃)、1回目の冷却過程での結晶化熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔHm(J/g)が下式(1)〜(3)を満たすものである。
175≦Tm≦205 (1)
ΔHc=0 (2)
0≦ΔHm<20 (3)
【0024】
上記の好ましいグリコール酸系重合体は、該重合体の非晶シートを150℃に設定した熱風循環恒温槽中で100分間加熱した結晶化物を試験片として、加熱及び冷却速度が10℃/分の条件で測定した示差走査熱量測定(DSC、JISK7121準拠)で1回目の昇温過程での融点Tmが175℃以上205℃以下の範囲内である。該Tmの値が175℃以上であれば、該グリコール酸系重合体の組成物を主体とする成形体は耐熱性が十分なものとなる。一方、該Tmの値が205℃以下であれば、溶融成形の際の加工温度と重合体の分解温度の差が広くなり成形性が優れるものとなる。より好ましいグリコール酸系重合体は、該Tmは185℃以上200℃以下の範囲内である。更に優れた耐熱性と成形性を兼備することができる。尚、上記示差操作熱量測定において、結晶融解に起因する吸熱ピークが複数存在する場合は、最も高温の吸熱ピーク温度を融点Tmとする。
【0025】
本発明でいう重合体の結晶性とは、重合体の結晶化し易さを指しおり、結晶化速度や結晶化度を指標として表される。結晶化速度は、過冷却融体から結晶状態に非可逆的に転移するときの速度であり、その目安として熱分析における等速冷却過程での結晶化温度の測定が行われていて、結晶化速度が速い方が結晶化温度は高くなるとされている(日本分析化学会編、新版 高分子分析ハンドブック、p.339、紀伊国屋書店(1995)参照)。
【0026】
一方、結晶化度は、高分子固体における結晶領域の重量分率として定義されており、例えば熱分析法などにより測定される。熱分析法では、一般に理論融解熱ΔHfに対する試験片の実測融解熱ΔHmの比として、結晶化度Xc(%)=ΔHm/ΔHf×100より求められる(日本分析化学会編、新版 高分子分析ハンドブック、p.339、紀伊国屋書店(1995)参照)。該式において、ΔHmは示差走査熱量測定(DSC;JIS K7122準拠)により測定した値を用い、ΔHfはホモポリマーの場合は例えばPOLYMER HANDBOOK(JOHN WILEY & SONS)等に記載の値が用いられている。
【0027】
しかし、ΔHfは、共重合体の場合は共重合成分やその成分割合が多岐に亘るために文献値が無い場合が多い。結晶化度Xcを求める上記計算式では、試験片の実測融解熱ΔHmが大きい方が結晶化度は高くなることを意味していることから、本発明においてはΔHmの値によって結晶性を判断する。
上記の好ましいグリコール酸系重合体は、該重合体の非晶シートを150℃に設定した熱風循環恒温槽中で100分間加熱した結晶化物を試験片として、加熱及び冷却速度が10℃/分の条件で測定した示差走査熱量測定(DSC、JISK7122準拠)で1回目の冷却過程での結晶化熱ΔHcが0J/g、2回目の昇温過程での融解熱ΔHmが0J/g以上20J/g未満の範囲内である。
【0028】
示差走査熱量測定(DSC)における等速冷却過程で結晶化ピークが現れない場合(結晶化熱ΔHc=0J/g)は、試験片の結晶性は、非晶質であり全く結晶化しないか、或いは結晶化速度が遅いためDSCの測定条件(冷却速度10℃/分)では結晶化が起こらないかの二通りが考えられる。上記の好ましいグリコール酸系重合体は、前述のとおりDSCにおける1回目の昇温過程での融点Tmが175℃以上205℃以下であるので、非晶質で全く結晶化しない場合とは異なるものであり、DSCの測定条件(冷却速度10℃/分)では結晶化が起こらない結晶化速度を有するものである。該ΔHcが0J/gである場合には、該重合体の組成物を主体とする成形材料を用いて溶融成形する際に、急冷操作など特別な非晶化工程を経なくても粗大結晶が成長して脆化することがない。
【0029】
一方、好ましいグリコール酸系重合体の該ΔHmの値が0J/gということは、前述の結晶化熱ΔHcの場合と同様に、本発明の重合体がDSCにおける1回目の昇温過程での融点Tmが175℃以上205℃以下であるので非晶質で全く結晶化しない場合とは異なり、DSCの測定条件(昇温速度10℃/分)では結晶化が起こらない結晶化速度であることを意味しており、該重合体の組成物を主体とする成形体は、粗大結晶が成長して脆化することがない。該ΔHmの値が20J/g以下の場合は、該重合体の結晶性が比較的低いために、該重合体の組成物を主体とする成形体は、粗大結晶が成長して脆化することがない。より好ましいグリコール酸系重合体は、得られる成形体が優れた機械的特性を示す為には、該ΔHmの値は0J/g以上18J/g以下の範囲内である。
【0030】
本発明で用いられる好ましいグリコール酸系重合体は、具体的に例示すると、グリコリドとグリコリド以外の単量体を用いて開環重合し得られる共重合体であって、グリコリド以外の単量体としては脂肪族ヒドロキシカルボン酸類の環状二量体、およびラクトン類から少なくとも一種が選ばれる。或いは、グリコール酸とグリコール酸以外の単量体を用いて直接脱水重縮合し得られる共重合体であって、グリコール酸以外の単量体としては乳酸などの脂肪族ヒドロキシカルボン酸類から少なくとも一種が選ばれる。より分子量の高い共重合体を得易いという観点から、グリコリドとラクチド(3,6−ジメチル−1,4−ジオキサ−2,5−ジオン)を用いて開環重合し得られる共重合体が特に好ましい。なお、ラクチドは光学活性物質でありL−体、D−体のいずれであってもよいし、D,L−体混合物やメソ体であってもよい。また、グリコリド−L−ラクチド共重合体とグリコリド−D−ラクチド共重合体の混合物であってもよい。例えば、単量体単位がグリコリドとラクチドよりなる共重合体である場合には、共重合体中のグリコリド成分割合が78〜90mol%とラクチド成分割合が22〜10mol%である開環重合により得られたグリコール酸−乳酸共重合体が挙げられる。
【0031】
本発明で用いるグリコール酸系重合体の分子量は、該重合体からなる組成物を主体とした成形体が十分な機械的特性を有し、且つ溶融押出や射出成形などの成形加工時に温度変化による著しい溶融粘度変化が起こらず優れた成形性を有する為には、対数粘度数で0.15m/kg以上であることが好ましく、0.18m/kg以上であることがより好ましい。一方、該重合体の分子量の上限は、より容易に成形体に成形加工するためには対数粘度数で0.80m/kg以下に留めることが望ましいが、可塑剤などの添加により溶融流動性を調整すれば良く特に限定されるものではない。対数粘度数[η]は、一般に下式(4)により求められる値であり、濃度0.2%以下の希薄溶液では高分子の分子量の指標として用いられる固有粘度に近似できる(化学大辞典 縮刷版、p.746、共立出版(1963)、及び新版 高分子分析ハンドブック、p.120、紀伊国屋書店(1995)参照)。
[η]={ln(t/to)}/c (4)
(式中、tは毛管粘度計で測定される高分子溶液の流下時間(秒)を、toは毛管粘度計で測定される溶媒の流下時間(秒)を、cは溶質高分子の濃度(kg/m)を示す。)
【0032】
尚、本発明で用いるグリコール酸系重合体の分子量は、重量平均分子量で表すと5×10以上であることが望ましく、より望ましくは1×10以上である。分子量の上限は、可塑剤などの添加により溶融流動性を調整すれば良く特に限定されるものではないが、重量平均分子量で表すと8×10以下に留めることが望ましい。
【0033】
結晶核剤(造核剤)としては、金属酸化物、無機金属塩、粘土鉱物類などの無機粒子や、脂肪酸アミド、脂肪酸金属塩、リン酸エステル金属塩などの非相溶型有機系化合物、ソルビトール骨格を有する相溶型有機系化合物など様々な種類のものが知られているが、これら結晶核剤のうち窒化ホウ素系粒子に限ってグリコール酸系重合体の結晶性を著しく高めることができることを本発明者は見出した。
【0034】
本発明の組成物の原料として用いる窒化ホウ素系粒子とは、窒化ホウ素の成分割合が50wt%以上の無機粒子をいう。好ましい窒化ホウ素の成分割合は95wt%以上であるが、窒化ホウ素の成分割合が高い無機粒子に、希釈やその他の目的で窒化ホウ素以外の無機粒子を混合した粉末パウダーを用いてもよい。また、粒子形状は球状、針状、円盤状、柱状など特に限定されるものではない。窒化ホウ素以外の無機粒子としては、アルミナ、シリカ、酸化チタンなどの金属酸化物、炭酸カルシウム、リン酸カルシウムなどの無機金属塩、タルク、マイカ、カオリンなどの粘土鉱物類の無機粒子が挙げられる。
【0035】
本発明の組成物を構成する上記窒化ホウ素系粒子の含有量は、グリコール酸系重合体100重量部に対し、0.3重量部以上40重量部以下であることが必要である。該含有量が0.3重量部以上であれば、得られる成形品は、結晶性の低いグリコール酸系重合体を用いても結晶核剤として有効に作用し、結晶性が高まり機械的特性が優れるものとなる。また、該含有量が40重量部以下であれば、得られる成形品は耐衝撃性が悪化することなく機械的特性が優れるものとなる。該含有量は、効果的に結晶性を高め機械的強度を高める為には0.5重量部以上15重量部以下であることが好ましく、更にコストパフォーマンスに優れる成形体を得る為には0.5重量部以上1.5重量部以下であることがより好ましい。特に該添加量が0.5重量部より多い場合には、押出成形でメルトフラクチャーなどの流動不安定を抑制したり、射出成形でバリの発生を抑制する効果がある。
【0036】
上記窒化ホウ素系粒子の平均粒径は、レーザー回折・散乱法により測定した平均粒径が0.03μm以上20μm以下であることが好ましい。粉末パウダーの製造や取り扱い性の点から該平均粒径は0.03μm以上であることが好ましい。一方、該粒子の添加効率、耐衝撃性、機械的特性の点から該平均粒径は20μm以下が好ましい。より容易に粉末パウダーを製造し取り扱う為に、また窒化ホウ素系粒子による造核効果を高める為に、該平均粒径は、0.05μm以上10μm以下がより好ましく、0.1μm以上1μm以下であることが特に好ましい。該平均粒径が0.1μm以上1μm以下である場合には、特に結晶性の低いグリコール酸系重合体を用いても結晶核剤(造核剤)としての添加効果が顕著であり、得られる組成物の結晶性を著しく高めることができる。
【0037】
本発明のグリコール酸系重合体の組成物は、該組成物の溶融流動性を調整したり、結晶性を高めるなどの目的で可塑剤を含有しても良い。この場合、可塑剤の組成割合が5重量%程度より少ない場合は得られる成形体を硬質な用途で利用することができ、該組成割合が5〜15重量%の場合は得られる成形体を半硬質な用途で利用することができるが、得られる成形体が比較的優れた機械的特性を保つ為には該組成割合が10重量%以下であることが好ましい。
【0038】
本発明で使用される可塑剤の具体例としては、例えばジオクチルフタレートやジエチルフタレートなどのフタル酸エステル類、ラウリン酸エチルやオレイン酸ブチル、リノール酸オクチルなどの脂肪酸エステル類、ジオクチルアジペートやジブチルセバケートなどの脂肪族二塩基酸エステル類、アセチルくえん酸トリブチルやアセチルくえん酸トリエチルなどの脂肪族三塩基酸エステル類、グリセリンジアセテートラウレートやグリセリントリアセテートなどのグリセリン脂肪酸エステル類、ジグリセリンテトラアセテートやテトラグリセリンヘキサアセテートなどのポリグリセリン脂肪酸エステル類、リン酸ジオクチルなどのリン酸エステル類、エポキシ化大豆油やエポキシ化アマニ油などの変性植物油類、ポリブチレンセバケートなどのポリエステル系可塑剤などが挙げられ、これらから一種、または二種以上が選ばれる。安全衛生性の観点からグリセリン脂肪酸エステル類や脂肪族三塩基酸エステル類が望ましく、グリコール酸系重合体との相溶性の観点から溶解性パラメーター値(R.F.Fedors,Poly.Eng.Sci.,Vol.14,No.2,p.152(1974))が10(cal/cm0.5以上であるグリセリントリアセテート、ジグリセリンテトラアセテート、アセチルくえん酸トリエチルなどが特に望ましい。これらは、水酸基を持たないため、重合体と可塑剤とのエステル交換反応を起こす可能性が少ない。
【0039】
本発明のグリコール酸系重合体の組成物は、必要に応じて無機および/または有機化合物よりなる上記以外の添加剤、例えば、滑剤、帯電防止剤、防曇剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤等が適宜含有されていてもよい。使用される酸化防止剤としては、例えばフェノール系、フェニルアクリレート系、リン系、イオウ系などが挙げられ、これらから一種、又は二種以上を選び、添加量が組成物中に10重量%未満含有させることができる。
【0040】
本発明のグリコール酸系重合体の成形体は、グリコール酸系重合体と窒化ホウ素系粒子からなるグリコール酸系重合体の組成物を主体とするものであり、その原料である該グリコール酸系重合体を50重量%以上含有するものである。必須成分である窒化ホウ素系粒子の含有量も含めて50重量%未満の範囲で他の生分解性樹脂を混合しても良い。混合し得る生分解性樹脂としては、前述したグリコール酸、グリコリド、及びグリコール酸エステル類の主たる単量体と共重合し得る単量体として例示した、例えば、乳酸などの脂肪族ヒドロキシカルボン酸類の重縮合体、ラクチド(3,6−ジメチル−1,4−ジオキサ−2,5−ジオン)やε−カプロラクトンなどのラクトン類の開環重合体、エチレングリコールとアジピン酸などの多価アルコール類と多価カルボン酸類の重縮合体などの脂肪族ポリエステル類、この他にデンプン系やセルロース系などの天然高分子類、ポリアスパラギン酸などのポリアミノ酸類、酢酸セルロースなどのセルロースエステル類、脂肪族ポリエステルカーボネート類、ポリビニルアルコール類、ポリエチレンオキサイドなどのポリエーテル類、低分子量のポリエチレン、ポリリンゴ酸等が挙げられる。また、組成物や得られる成形体の生分解性を阻害しない範囲であれば、例えば、ポリオレフィン類、芳香族ポリエステル類、ポリアミド類、エチレン−ビニルアルコール系共重合体類、石油樹脂類やテルペン系樹脂類、その水素添加物、その他公知の熱可塑性樹脂などを混合しても良い。
【0041】
本発明の成形体の製造に用いられる成形材料は、本発明のグリコール酸系重合体の組成物に、必要に応じて上述の可塑剤、その他の添加剤、その他の熱可塑性樹脂類を含有せしめて得られるものであり、単軸、又は二軸押出機、バンバリーミキサー、ミキシングロール、ニーダー等を使用して溶融混合させて製造するのが望ましい。
【0042】
本発明でいう成形体とは、例えば溶融押出法、カレンダー法、溶融プレス成形法などにより作製されるフィルム状やシート状の成形体、及びそれらを延伸加工したり、プラグアシスト成形法やエアークッション成形法などの真空成形加工、圧空成形加工、雄雌型成形加工したものなどが挙げられる。本発明において、フィルムとシートの区別は、単に厚みの違いによって異なる呼称を用いているものであり、通常は厚み200μm未満をフィルム状成形体、厚み0.2mm以上をシート状成形体と呼んでいる。その他に、射出成形体、射出成形法で得られたプリフォームを加熱しながら気体を吹き込むブロー成形体、発泡成形体なども挙げられる。
【0043】
本発明の成形体の製造方法は、特に限定されるものではなく従来公知の一般的な方法で行なわれ、具体的に説明すると、例えば溶融押出法では、成形材料を、事前に水分率が200wtppm以下になるまで乾燥させてから押出機に供給して、加熱溶融しながら押出機の先端に接続したダイスから押出し、その後冷却固化させることにより、シート状、若しくはチューブ状の溶融成形物として製造することができる。また、溶融プレス成形法では、前述した成形材料を、事前に水分率が200wtppm以下になるまで乾燥させてから金型に供給して、常圧或いは減圧雰囲気下で加熱溶融させプレスし、その後冷却固化させることにより、シート状の溶融成形物として製造することができる。
【0044】
また、延伸成形体は、シート状、若しくはチューブ状成形体を加熱しながら少なくとも一軸方向に延伸して得られる成形体である。この延伸方法は、特に限定されるものではなく従来公知の一般的な方法で行われ、具体的には、例えば一軸延伸の場合は、溶融押出法でTダイより溶融押出し、キャストロールで冷却したシート状成形物を、ロール延伸機でシートの流れ方向に縦一軸延伸したり、該縦延伸倍率を極力抑えてテンターで横一軸延伸して製造する方法、或いは二軸延伸の場合は、溶融押出法でTダイより溶融押出し、キャストロールで冷却したシート状成形物を、先ずロール延伸機で縦延伸してからテンターで横延伸する逐次二軸延伸や、テンターで縦横両方向に延伸する同時二軸延伸で製造する方法、溶融押出法でサーキュラーダイより溶融押出し、水冷リング等で冷却したチューブ状成形物を、チューブラー延伸して製造する方法などがある。また、溶融プレス法で得られたシート状成形物を、バッチ式延伸装置で一軸或いは二軸延伸する方法などがある。これらの延伸操作は、延伸温度は延伸に供する成形物のガラス転移温度〜(冷結晶化温度+30℃)の温度範囲、延伸速度は10〜200000%/分の範囲、延伸倍率は少なくとも一軸方向に面積倍率で2〜50倍の範囲から適宜選ばれる延伸条件で行なわれることが望ましい。
【0045】
この様にして得られた延伸成形体は、熱収縮させながら結束する用途に利用する場合にはそのまま使用しても良いし、或いは熱収縮具合を調整する目的で熱処理やエージング処理を施しても良い。また、特に高度の耐熱性が要求される用途に利用する場合には熱処理を施すことが望ましい。更に、経時寸法安定性や物性安定性を向上させる目的で、エージング処理などを施すことが望ましい。熱処理は、通常は60〜160℃の温度範囲から適宜選ばれる温度で1秒〜3時間行われることが望ましく、エージング処理は、通常は25〜60℃の温度範囲から適宜選ばれる温度で3時間〜10日間程度行われることが望ましい。
【0046】
得られた成形体は、必要に応じて帯電防止剤や防曇性、防汚性を向上させる目的でコーティングやコロナ処理等の各種表面処理、ラミネート加工、真空蒸着などを施しても良い。得られた延伸成形体はマルチフィルムや、フラットヤーンにして織り製袋する土嚢袋などに好適である。更に、二次加工により、用途に応じた形状に成形して使用しても良い。二次加工品としては、例えば延伸シートの場合はプラグアシスト成形法やエアークッション成形法などの真空成形加工、圧空成形加工、雄雌型成形加工を施して、トレイやカップなどの容器、植生ポットなどに好適である。その他に、射出成形法により得られた成形体は、農業用資材や土木建築用資材としての固定釘や杭など、レジャー用品としてのテントペグや登山用ハーケンなど、その他機械装置の部品などに好適である。
【0047】
【発明の実施の形態】
以下、実施例を挙げて本発明を更に詳細に説明する。但し、これらの具体例は本発明の範囲を限定するものではない。また、物性測定方法と評価方法を下記に示すが、サンプルは特に断りのない限り測定サンプル作製後に温度(23±2)℃、相対湿度(50±5)%の雰囲気下に1〜2日間保管したものを物性測定や評価に供した。
【0048】
[物性測定方法]
(1)対数粘度数
純溶媒1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール(以下HFIPと略記する。)と、グリコール酸系重合体の濃度cが1.0kg/mとなるよう溶解したHFIP溶液をサンプルとして、キャピラリーNo.0aのウベローデ型毛管粘度計(柴山科学器械製作所製 毛細管式自動粘度測定装置SS−170−L1)を使用し20℃で毛管中を流下する時間を測定し、式(4)により対数粘度数[η]を求めた。
[η]={ln(t/to)}/c (4)
(式中、tは毛管粘度計で測定される高分子溶液の流下時間(秒)を、toは毛管粘度計で測定される溶媒の流下時間(秒)、cは溶質高分子の濃度(kg/m)を表す。)
【0049】
(2)示差走査熱量測定(DSC)
融点Tm、結晶化熱ΔHc、融解熱ΔHmは、測定装置にセイコー電子工業(株)製DSC6200を使用し、JIS K7121、及びK7122に準拠して測定した。サンプルは、加熱プレス機(テスター産業(株)製圧縮成形機SA−301)を用いて、原料として用いる重合体の小片をそのまま示差走査熱量測定した際の融解ピーク終了時より約20℃高い温度に設定し、該重合体を5分間約12MPa加圧した後、冷却し厚み約200μmの非晶シートを得て、該非晶シートを150℃に設定した熱風循環恒温槽中で100分間加熱結晶化させて作製した。サンプル量は約7.5mgとして、先ず−20℃で3分間保持した後、加熱速度10℃/分で260℃まで加熱し1回目の昇温過程での融点Tmを測定した。該温度で1分間保持した後、冷却速度10℃/分で−20℃まで冷却し、1回目の冷却過程での結晶化熱ΔHcを測定した。次いで、−20℃で1分間保持した後、再び加熱速度10℃/分で260℃まで加熱し2回目の昇温過程での融解熱ΔHmを測定した。尚、温度と熱量の校正は、標準物質としてインジウムを用いて行った。尚、本発明でいう非晶シートとは、上記手順で作製したシートをサンプルとして、広角X線回折法により回折強度曲線を測定し、該回折強度曲線に結晶に起因する回折ピークが存在しないものを指す。
(3)平均粒径
平均粒径は、蒸留水を分散媒体とした濃度100ppmの分散液をサンプルとして、測定装置に(株)島津製作所製レーザー回折式粒度分布測定装置SALD−2100を使用して測定し、メディアン径として求めた。尚、分散媒体には、必要に応じてステアリン酸マグネシウムなどの分散剤を適宜添加してもよい。
【0050】
[評価方法]
(1)耐熱性
耐熱性は、厚み100μmのシート状成形体をサンプルとして、耐荷重切断試験を行い評価した。耐荷重切断試験は、短冊状試験片に荷重100gをかけた状態で、一定温度に設定した熱風循環恒温槽中で1時間加熱し試験片の切断の有無を調べ、試験片が切断しない最高温度を測定した。サンプルは、加熱プレス機(テスター産業(株)製 圧縮成形機SA−301)を用いて、材料として用いる組成物の小片をそのまま示差走査熱量測定した際の融解ピーク終了時より約20℃高い温度に設定し、該組成物を5分間約12MPa加圧した後、冷却し厚み約100μmの非晶シートを得て、該非晶シートを140℃に設定した熱風循環恒温槽中で1分間熱処理して作製した。サンプルを縦140mm、横30mmの短冊状に切り出した。短冊状試験片の上下端20mmづつの部分に固定治具と荷重治具を各々取り付け、一定温度に設定した熱風循環恒温槽中で1時間加熱し試験片の切断の有無を調べた。短冊状試験片が切断しない場合は、新しい試験片で設定温度を5℃上げて前記手順を繰返し試験した。短冊状試験片が切断しない最高温度の測定結果は、この試験を各サンプルにつき5回づつ行い最頻値で示した。
【0051】
(2)機械的特性(耐折強さ)
機械的特性(耐折強さ)は、測定装置に(株)東洋精機製作所製MIT耐揉疲労試験機を使用して、JIS P8115を参考にシート状成形体の耐折強さを測定し評価した。上記耐熱性評価方法で示した手順により得られたシート状成形体サンプルを、縦150mm、幅15mmの短冊状に切り出した。折り曲げ角度135°、折り曲げ速度175cpm、荷重0.5kgの条件で試験を行い、破断するまでの折り曲げ回数を測定した。折り曲げ回数の測定結果は、上記手順によりサンプル数5個づつ測定し平均値で示した。
【0052】
(3)機械的特性(ロックウェル硬度)
機械的特性(ロックウェル硬度)は、測定装置に(株)東洋精機製作所製ロックウェル硬度試験機を使用して、JIS K7202に準拠しRスケールにて成形体サンプルのロックウェル硬度を測定し評価した。成形体サンプルは、加熱プレス機(テスター産業(株)製圧縮成形機SA−301)を用いて、材料として用いる組成物の小片をそのまま示差走査熱量測定した際の融解ピーク終了時より約20℃高い温度に設定し、該組成物を5分間約12MPaで加圧した後、冷却して取り出し、更に80℃に設定した熱風循環恒温槽中で20分間熱処理して得られた縦50mm、横50mm、厚み7mmの板状成形体を用いた。ロックウェル硬度の測定結果は、5回づつ測定し平均値で示した。
【0053】
【実施例1】
[単量体の精製]
グリコリド1kgを、酢酸エチル3kgに75℃で溶解させた後、室温にて48時間放置し析出させた。濾取した析出物を、室温で約3kgの酢酸エチルを用いて洗浄を行った。再度この洗浄操作を繰返した後、洗浄物を真空乾燥機内に入れ、60℃で24時間真空乾燥を行った。この乾燥物を、窒素雰囲気下で6〜7mmHgに減圧し単蒸留にて133〜134℃の留出物として蒸留精製グリコリド480gを得た。
L−ラクチド1kgを、トルエン3kgに80℃で溶解させた後、室温にて48時間放置して析出させた。濾取した析出物を、室温で約3kgのトルエンを用いて洗浄を行った。再度この洗浄操作を繰返した後、洗浄物を真空乾燥機内に入れ60℃で24時間真空乾燥を行い、精製L−ラクチド560gを得た。
【0054】
[グリコール酸系重合体の調製]
上記単量体の精製で得られたグリコリド430gとラクチド270g、及び触媒として2−エチルヘキサン酸すず0.2gとラウリルアルコール0.05gを、内面をガラスライニングしたジャケット付反応機に仕込み、乾燥窒素を吹き込みながら約1時間室温で乾燥した。次いで、乾燥窒素を吹き込みながら130℃に昇温し、40時間撹拌して重合を行った。重合操作の終了後、ジャケットに冷却水を通水して冷却し、反応機から取り出した塊状ポリマーを約3mm以下の細粒に粉砕した。この粉砕物を、テトラヒドロフランを用いて60時間ソックスレー抽出した後、ヘキサフルオロイソプロパノール3kgに50℃で溶解し、次いで7kgのメタノールで再沈殿させた。この再沈殿物を、130℃に設定した真空乾燥機内で60時間真空乾燥を行い、グリコール酸系重合体550gを得た。得られた該重合体を樹脂記号P1とする。
【0055】
グリコール酸系重合体P1は、該重合体70mgをトリフルオロ酢酸−D1mlに溶解してH−NMRにより共重合成分割合を解析したところ、グリコール酸の成分割合が80mol%と乳酸の成分割合が20mol%であった。前述した物性測定方法に従って対数粘度数を測定したところ、該重合体の対数粘度数[η]は0.42(m/kg)であった。前述した物性測定方法に従って示差走査熱量測定を行なったところ、該重合体の1回目の昇温過程での融点Tmは188℃、1回目の冷却過程での結晶化熱ΔHcは0J/g、2回目の昇温過程での融解熱ΔHmは0J/gであった。
【0056】
[溶融混合、シート状成形体の作製、及び評価]
窒化ホウ素成分割合が98%である平均粒径0.8μmの窒化ホウ素系粒子(電気化学工業社製デンカボロンナイトライドSP−2)を核剤記号N1とする。該粒子N1を3.4g量り取り、40℃に設定した真空乾燥機中で、含有水分量が200ppm以下になるまで約48時間放置して乾燥操作を行った。上記重合体の調製で得られたグリコール酸系重合体P1を170g量り取り、130℃に設定した熱風循環恒温槽中で、含有水分量が200ppm以下になるまで約2時間放置して乾燥操作を行った。この乾燥させたグリコール酸系重合体P1と窒化ホウ素系粒子N1を、220℃に設定したニーダー(入江商会社製卓上型ニーダーPBV−0.3型)に供給し、流量10L/分の乾燥窒素(露点−60℃)を吹き込みながら変速ハンドル目盛りを7に設定(ローター平均回転数38rpm、平均せん断速度約100/秒)して15分間溶融混合した。その後、ニーダーから溶融混合物を直ちに取り出し、冷却プレスにて冷却固化させ板状のグリコール酸系重合体の組成物を得た。
【0057】
該板状物を、40℃に設定した真空乾燥機中で含有水分量が200ppm以下になるまで約24時間放置して乾燥操作を行った後、前述の評価方法に従って熱処理したシート状成形体、及び板状成形体を作製した。得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は185℃、折り曲げ回数は38回、ロックウェル硬度は121であった。
【0058】
【実施例2〜3、及び比較例1〜3】
次いで、窒化ホウ素成分割合が99%である平均粒径3.5μmの窒化ホウ素系粒子(電気化学工業社製デンカボロンナイトライドGP)を核剤記号N2とし、窒化ホウ素系粒子N2を用いることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は185℃、折り曲げ回数は26回、ロックウェル硬度は118であった(実施例2)。
【0059】
ステアリン酸ナトリウム(東京化成工業(株)製)を核剤記号N3とし、窒化ホウ素系粒子の代わりにN3を用いることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は150℃、折り曲げ回数は0回、ロックウェル硬度は88であった。該成形体は茶褐色への変色が著しく、N3はグリコール酸系重合体を分解した(比較例1)。
【0060】
m−キシリレンビスステアリン酸アミド(日本化成(株)製スリパックスPXS)を核剤記号N4とし、窒化ホウ素系粒子の代わりにN4を用いることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は135℃、折り曲げ回数は7回、ロックウェル硬度は86であった(比較例2)。窒化ホウ素系粒子N1の添加量を0.68gとすることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は180℃、折り曲げ回数は43回、ロックウェル硬度は115であった(実施例3)。
【0061】
窒化ホウ素系粒子N1の添加量を0.17gとすることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は180℃、折り曲げ回数は50回、ロックウェル硬度は95であった(比較例3)。
【0062】
これら実施例1〜3、及び比較例1〜3の評価結果を表1にまとめる。
表1によると、グリコール酸系重合体では、結晶核剤として窒化ホウ素系粒子を用いる場合に限って核剤作用が現れ、得られた成形体の耐熱性と機械的特性を著しく高めることができる。更に、窒化ホウ素系粒子は、平均粒径が小さいほど造核効果が高く機械的特性が著しく高められた。
【0063】
【表1】

Figure 0004260526
【0064】
【実施例4〜6、及び比較例4〜5】
グリコール酸系重合体の調製でラウリルアルコールを0.1g、重合時間を15時間とすることの他は上記実施例1と同じ実験を繰返し、得られたグリコール酸系重合体を樹脂記号P2とする。該重合体P2は、共重合成分割合がグリコール酸成分割合80mol%と乳酸成分割合20mol%、対数粘度数[η]が0.17(m/kg)、示差走査熱量測定で融点Tmが189℃、結晶化熱ΔHcが0J/g、融解熱ΔHmが0J/gであった。該重合体P2を用いることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は185℃、折り曲げ回数は22回、ロックウェル硬度は120であった(実施例4)。
【0065】
グリコール酸系重合体の調製でグリコリドを700g、ラクチドを使用せず、重合時間を15時間とすることの他は上記実施例1と同じ実験を繰返し、得られたグリコール酸系重合体を樹脂記号P3とする。該重合体P3は、グリコール酸成分のホモポリマーであり、対数粘度数[轣nが0.25(m/kg)、示差走査熱量測定で融点Tmが223℃、結晶化熱ΔHcが−70J/g、融解熱ΔHmが70J/gであった。該重合体P3を用い、ニーダー設定温度を250℃とすることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は220℃、折り曲げ回数は18回、ロックウェル硬度は122であった(実施例5)。
【0066】
グリコール酸系重合体の調製でグリコリドを490g、ラクチドを200g、重合時間を30時間とすることの他は上記実施例1と同じ実験を繰返し、得られたグリコール酸系重合体を樹脂記号P4とする。該重合体P4は、共重合成分割合がグリコール酸成分割合88mol%と乳酸成分割合12mol%、対数粘度数[η]が0.39(m/kg)、示差走査熱量測定で融点Tmが202℃、結晶化熱ΔHcが0J/g、融解熱ΔHmが9J/gであった。該重合体P4を用い、ニーダー設定温度を230℃とすることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は195℃、折り曲げ回数は33回、ロックウェル硬度は121であった(実施例6)。
【0067】
ポリ乳酸(島津製作所製LACTY9400)を樹脂記号P5とし、グリコール酸系重合体の代わりにP5を用い、ニーダー設定温度を200℃とすることの他は上記実施例1と同じ実験を繰返し、得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は165℃、折り曲げ回数は28回、ロックウェル硬度は94であった。得られたシート状成形体は、融点がより低いポリ乳酸からなるため、耐熱性は劣るものであった(比較例4)。
【0068】
これら実施例1、4〜6、及び比較例4の評価結果を表2にまとめる。表2によると、グリコール酸系重合体の対数粘度数が小さく、分子量が低い場合には、得られるシート状成形体は非常に脆く機械的特性が劣る。一方、グリコール酸系重合体の対数粘度数が大きく、分子量が高い場合には、得られるシート状成形体は機械的特性が優れる。更に、グリコール酸系重合体の融点と結晶性が特定範囲にある場合は、耐熱性と機械的特性に優れ、且つ溶融成形温度を分解温度よりはるかに低く設定できることから成形性が優れるものである。
【0069】
【表2】
Figure 0004260526
【0070】
【実施例7】
実施例1と同様に乾燥させたグリコール酸系重合体P1(170g)と窒化ホウ素系粒子N1(3.4g)を220℃に設定したニーダーに供給して、乾燥窒素を通気できるバルブ付き密閉蓋で閉じ、混練しながらニーダー槽内を乾燥窒素で十分置換した。可塑剤としてアセチルくえん酸トリエチル(東京化成工業(株)製)を8.8g量り取り、ニーダー槽内の乾燥窒素通気を止めた後、バルブからシリンジを用いて可塑剤を注入した。実施例1と同様に、15分間溶融混合から評価サンプル成形体の作製操作までを行なった。得られた該成形体をサンプルとして、前述の耐熱性と機械的特性の評価を行なったところ、試験片が切断しない最高温度は185℃、折り曲げ回数は74回、ロックウェル硬度は120であった(実施例7)。
【0071】
【発明の効果】
本発明によれば、生分解性樹脂のなかでも融点が比較的高いグリコール酸系重合体に窒化ホウ素系粒子を特定量含有せしめることによって、成形性が優れる成形材料組成物を提供することができ、また該組成物を用いることによって、生分解性を有し、且つ耐熱性や機械的特性が優れた包装用資材、農業用資材、土木建築用資材、機械装置部品など様々な分野に好適な成形体を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composition of a glycolic acid polymer and a molded body mainly composed of the composition. More specifically, the present invention relates to a composition comprising a glycolic acid polymer and boron nitride having excellent moldability, and a molded article having excellent heat resistance and mechanical properties mainly composed of the composition.
[0002]
[Prior art]
Conventionally, plastic products manufactured by extrusion molding or injection molding have been used in various fields such as packaging materials, agricultural materials, civil engineering and building materials, and mechanical equipment parts because of their convenience during processing and use. Yes. However, in the current mass consumer society, the amount of use has been increasing year by year, and at the same time, the plastic waste problem has become more serious every year. Most plastic waste is disposed of by incineration or landfill, but in recent years, from the viewpoint of environmental conservation, material recycling has been proposed for use as a raw material for plastic products.
[0003]
For example, trays and containers for individually wrapping meat and fish as packaging materials, multi-films and vegetation pots for heat insulation as agricultural materials, and sandbags, fixed nails, etc. Plastic products are used for piles. Since these are intended to be contaminated by contact with oil or soil during use, in order to recycle the material, the consumer must wash after use, separate it from other garbage, and hand it over to a collection company. Alternatively, the collector must collect and clean it. Therefore, material recycling of plastic products for such applications is practically difficult in view of the labor and costs involved in recovery and cleaning operations and recovery transportation.
[0004]
Under such circumstances, biodegradable resins that decompose in nature such as soil and water have attracted attention and have been studied.
In the following Patent Document 1, heat resistance (crystallinity) is obtained by adding a specific crystallizing crystal nucleating agent such as aliphatic carboxylic acid amide to an aliphatic polyester having decomposability in a moist environment in soil or seawater. ) / It is described that a molded product having both degradability can be obtained.
[0005]
However, the aliphatic polyester molded article described in Patent Document 1 is a molded article mainly composed of a composition comprising a lactic acid-based polymer in which the repeating unit constituting the polymer is derived from lactic acid, and the obtained molded article The heat resistance of was insufficient. In Patent Document 1, a glycolic acid polymer, which has a higher melting point than a lactic acid polymer and is expected to obtain a molded product having better heat resistance, is described as an example of an aliphatic polyester. However, when the present inventors added an aliphatic carboxylic acid amide or an aliphatic carboxylate, which is a crystallizing crystal nucleating agent described in the publication, to a glycolic acid polymer, the effect of increasing crystallinity was poor and obtained. The molded body was discolored and the mechanical strength was poor.
[0006]
(Comparative example described later).
Patent Document 2 discloses a composition of a lactic acid-based polymer containing inorganic particles made of talc and / or boron nitride that defines an average particle diameter and an addition amount, and the composition is biodegradable and moldable. It is described that it is excellent. However, the composition described in Patent Document 2 is insufficient in heat resistance and mechanical properties of the molded product obtained because it is mainly composed of a lactic acid polymer.
In Patent Document 3, the melting point is 150 ° C. or more, the heat of fusion is 20 J / g or more, and the density of the non-oriented crystallized product is 1.50 g / cm. 3 A thermoplastic resin material containing the glycolic acid polymer as described above is melt-extruded in a temperature range of a melting point to 255 ° C., thereby obtaining a sheet-like molded article exhibiting soil disintegration having excellent toughness and gas barrier properties. It is stated that
[0007]
However, the sheet-like molded article described in Patent Document 3 has a heat of fusion of 20 J / g or more when the differential scanning calorimetry is performed at a heating rate of 10 ° C./min using an amorphous sheet as a test piece, and the density of the non-oriented crystallized product. 1.50 g / cm 3 Since it is formed from a thermoplastic resin material containing a glycolic acid polymer having a very high crystallinity as described above, a sheet-like molded body in an amorphous state that is rapidly cooled and not heat-set after melt extrusion has heat resistance. It was inferior. Further, the heat-set sheet-like molded body was brittle and inferior in mechanical properties.
[0008]
Furthermore, although the heating temperature at the time of melt extrusion specified in Patent Document 3 is a high temperature range up to 255 ° C., this is more than the melting point in order to sufficiently melt the advanced crystals of the glycolic acid polymer used. This is because it has to be set to a considerably high temperature. The glycolic acid-based polymer begins to thermally decompose at 240 ° C. when the weight loss by thermogravimetric analysis is measured (K. Chujo, et al., Die Makromolekule Chemie, No. 100, P. 267 (1967)). However, when melt extrusion is performed at a heating temperature in the high temperature range up to 255 ° C. specified in the publication, the melt viscosity is remarkably lowered due to thermal deterioration, and melt extrusion becomes difficult. Was brittle and had poor mechanical properties.
[0009]
[Patent Document 1]
JP-A-9-278991
[Patent Document 2]
JP-A-8-3432
[Patent Document 3]
Japanese Patent Laid-Open No. 10-60137
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a composition mainly composed of a glycolic acid polymer having biodegradability and excellent moldability such as melt extrusion and injection molding, and comprising the glycolic acid polymer. An object of the present invention is to provide a molded article having excellent heat resistance and mechanical properties mainly composed of a composition.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventor has included a specific amount of boron nitride-based particles in a glycolic acid-based polymer having a relatively high melting point among biodegradable resins. The present inventors have found that it is possible to produce a molded article having excellent biodegradability and excellent mechanical characteristics.
That is, the present invention
[1] A composition comprising a glycolic acid polymer and boron nitride particles, wherein the content of the boron nitride particles is 0.3 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the glycolic acid polymer. A glycolic acid polymer composition, characterized in that
[0012]
[2] Differential scanning calorimetry (JIS K7121) in which a glycolic acid polymer was measured at a heating rate and a cooling rate of 10 ° C / min using a test piece obtained by heat-treating an amorphous sheet of the polymer at 150 ° C for 100 minutes. , And K7122), the melting point Tm (° C.) in the first temperature raising process, the heat of crystallization ΔHc (J / g) in the first cooling process, and the heat of fusion ΔHm (J in the second temperature raising process) / G) is a glycolic acid copolymer satisfying the following formulas (1) to (3), the glycolic acid polymer composition according to [1],
175 ≦ Tm ≦ 205 (1)
ΔHc = 0 (2)
0 ≦ ΔHm <20 (3)
[0013]
[3] Glycolic acid polymer has logarithmic viscosity of 0.15 m 3 / The composition of glycolic acid polymer according to [1] or [2], which is not less than / kg,
[4] The composition of glycolic acid polymer according to any one of [1] to [3], wherein the average particle size of the boron nitride particles is 0.03 μm or more and 5 μm or less,
[5] A molded body mainly composed of a composition comprising a glycolic acid-based polymer and boron nitride-based particles, wherein the content of boron nitride-based particles is 0.3% by weight with respect to 100 parts by weight of the glycolic acid-based polymer. A molded product of glycolic acid polymer, characterized in that it is not less than 40 parts by weight and not more than 40 parts by weight,
[0014]
[6] Differential scanning calorimetry (JIS K7121) in which the glycolic acid polymer was measured at a heating rate and a cooling rate of 10 ° C / min using a test piece obtained by heat-treating an amorphous sheet of the polymer at 150 ° C for 100 minutes. , And K7122), the melting point Tm (° C.) in the first temperature raising process, the heat of crystallization ΔHc (J / g) in the first cooling process, and the heat of fusion ΔHm (J in the second temperature raising process) / G) is a glycolic acid copolymer satisfying the following formulas (1) to (3), a molded article of glycolic acid polymer according to [5],
175 ≦ Tm ≦ 205 (1)
ΔHc = 0 (2)
0 ≦ ΔHm <20 (3)
[0015]
[7] Glycolic acid polymer has logarithmic viscosity of 0.15 m 3 A molded article of glycolic acid polymer according to [5] or [6], wherein
[8] The molded article of the glycolic acid polymer according to any one of [5] to [7], wherein the boron nitride-based particles have an average particle size of 0.03 μm to 5 μm,
It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The glycolic acid polymer composition and molded product of the present invention will be described in detail below. The glycolic acid polymer composition and molded product of the present invention are characterized in that a specific amount of boron nitride particles is contained in a glycolic acid polymer having a relatively high melting point among biodegradable resins.
[0017]
The lactic acid-based polymer described as a particularly preferable raw material in Patent Document 1 and Patent Document 2 described in the column of conventional technology is derived from lactic acid in which the repeating unit constituting the polymer has an asymmetric carbon, Although it is generally known that the melting point of the polymer varies significantly depending on the optical purity, even in the case of a homopolymer having an optical purity of 100%, the melting point is about 175 ° C. (Hidehito Tsuji, Yoshito Tsuji, “Polylactic acid— For medical treatment / preparation / environment- ”, 1st edition, Polymer publication society, September 20, 1997, p.39, see FIG. 2-27). On the other hand, since the melting point of the homopolymer of the glycolic acid polymer is about 225 ° C. (see the same book, p. 45), it is possible to obtain a molded body having more excellent heat resistance.
[0018]
The glycolic acid polymer used as a raw material of the composition of the present invention refers to a polymer whose main repeating unit is a repeating unit derived from glycolic acid, and glycolide (1) which is a cyclic dimer of glycolic acid as a monomer. , 4-dioxa-2,5-dione), or direct dehydration polycondensation using glycolic acid, for example, polyalcoholation while dealcoholizing with glycolic acid esters such as methyl glycolate. A polymer obtained by condensation or the like, which is a homopolymer of these monomers or a copolymer having these monomers as main monomers. The polymer is produced by a conventionally known general method. For example, a glycolic acid polymer is obtained by ring-opening polymerization using glycolide which is a cyclic dimer of glycolic acid as a main monomer. Examples of the method include Gilding et al. (Polymer, vol. 20, December (1979)), but are not limited thereto.
[0019]
Examples of monomers that can be copolymerized with glycolic acid, glycolide, and glycolic acid esters, which are the main monomers used in copolymerization, include lactic acid, 2-hydroxyisobutyric acid, and 2-hydroxy-2. , 2-dialkylacetic acid, 3-hydroxybutyric acid, 3-hydroxyvaleric acid, 3-hydroxyhexanoic acid, 4-hydroxybutanoic acid, other known aliphatic hydroxycarboxylic acids, ester derivatives of these aliphatic hydroxycarboxylic acids, these fats The same or different cyclic dimers of aromatic hydroxycarboxylic acids, and β-butyrolactone, β-propiolactone, pivalolactone, γ-butyrolactone, δ-valerolactone, β-methyl-δ-valerolactone, ε-caprolactone And at least one selected from lactones.
[0020]
Besides these, an equimolar amount of polyhydric alcohols and polycarboxylic acids may be combined and copolymerized with the main monomer. Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, and 2,2-dimethyl-1. Aliphatic diols such as 1,3-propanediol, 1,6-hexanediol, 1,3-cyclohexanol, 1,4-cyclohexanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, or For example, diethylene glycol, triethylene glycol, tetraethylene glycol, and the like in which a plurality of these aliphatic diols are bonded. Examples of the polyvalent carboxylic acids include malonic acid, succinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, pimelic acid, peric acid, azelaic acid, sebacic acid, 1,3-cyclopentanedicarboxylic acid, 1, Aliphatic dicarboxylic acids such as 3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and diglycolic acid, and aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 1,4-naphthalene dicarboxylic acid and 2,6-naphthalene dicarboxylic acid Examples thereof include acids, ester derivatives of these aliphatic dicarboxylic acids and aromatic dicarboxylic acids, and anhydrides of these aliphatic dicarboxylic acids.
[0021]
Further, when the monomer that can be copolymerized with the main monomer is an optically active substance, it may be either L-form or D-form, or a mixture of D and L-forms. The composition may be any mixture composition, the copolymerization ratio of D, L-forms may be any copolymer, or meso form.
When the above main monomers of glycolic acid, glycolide, and glycolic acid esters are copolymerized with these copolymerizable monomers, or these copolymerizable monomers are combined in a multicomponent combination. In the case of polymerization, the arrangement is not particularly limited, and any of random copolymer, alternating copolymer, block copolymer, graft copolymer, etc. may be used, but the standard of biodegradable plastic, For example, it shall conform to the standards defined by the Biodegradable Plastics Research Society in Japan, ASTM D-6400 in the United States, DIN V-54900 in Germany, and the like.
[0022]
In the present invention, among glycolic acid polymers used as raw materials for the composition of the present invention exemplified above, a glycolic acid copolymer having a melting point and crystallinity within a specific range is used. Is preferred. A molding material mainly composed of a composition using the glycolic acid copolymer exhibits better moldability, and a molding obtained from the molding material has both excellent heat resistance and excellent mechanical properties at the same time. It becomes possible. That is, when molding the molding material, it can be melt-molded under conditions where thermal degradation does not easily occur, and has excellent moldability that does not cause a significant change in melt viscosity due to a temperature change, and a molded body made of a lactic acid polymer. Therefore, it has excellent heat resistance of 170 ° C. or higher, which is impossible, and excellent mechanical properties that do not grow into a coarse crystal and become brittle.
[0023]
A preferred glycolic acid polymer used in the present invention is a glycolic acid copolymer having a melting point and crystallinity within a specific range, and a test piece obtained by heat-treating an amorphous sheet of the polymer at 150 ° C. for 100 minutes is used. In the differential scanning calorimetry (based on JIS K7121 and K7122) measured at a heating rate and a cooling rate of 10 ° C./min, the melting point Tm (° C.) in the first temperature rising process, and the crystal in the first cooling process Heat of formation ΔHc (J / g) The heat of fusion ΔHm (J / g) in the second temperature raising process satisfies the following equations (1) to (3).
175 ≦ Tm ≦ 205 (1)
ΔHc = 0 (2)
0 ≦ ΔHm <20 (3)
[0024]
The preferred glycolic acid-based polymer has a heating and cooling rate of 10 ° C./min using a crystallized product obtained by heating an amorphous sheet of the polymer for 100 minutes in a hot air circulating thermostat set at 150 ° C. In the differential scanning calorimetry (DSC, based on JISK7121) measured under the conditions, the melting point Tm in the first temperature rising process is in the range of 175 ° C. or higher and 205 ° C. or lower. When the value of Tm is 175 ° C. or higher, a molded article mainly composed of the glycolic acid polymer composition has sufficient heat resistance. On the other hand, if the value of Tm is 205 ° C. or less, the difference between the processing temperature during melt molding and the decomposition temperature of the polymer becomes wide, and the moldability becomes excellent. In a more preferred glycolic acid polymer, the Tm is in the range of 185 ° C. or more and 200 ° C. or less. Furthermore, it has excellent heat resistance and moldability. In the differential operation calorimetry, when there are a plurality of endothermic peaks due to crystal melting, the highest endothermic peak temperature is defined as the melting point Tm.
[0025]
The crystallinity of the polymer as used in the present invention refers to the ease of crystallization of the polymer, and is expressed using the crystallization speed and the crystallinity as an index. The crystallization speed is the speed when irreversibly transitioning from the supercooled melt to the crystalline state. As a guideline, the crystallization temperature is measured during the constant cooling process in thermal analysis. It is said that the higher the speed, the higher the crystallization temperature (see Japan Analytical Chemistry Society, New Edition Polymer Analysis Handbook, p.339, Kinokuniya (1995)).
[0026]
On the other hand, the crystallinity is defined as the weight fraction of the crystal region in the polymer solid, and is measured by, for example, thermal analysis. In the thermal analysis method, the ratio of the measured melting heat ΔHm of the test piece to the theoretical melting heat ΔHf is generally obtained from the crystallinity Xc (%) = ΔHm / ΔHf × 100 (Edited by Japan Analytical Society, New Edition Polymer Analysis Handbook) , P.339, Kinokuniya (1995)). In this equation, ΔHm is a value measured by differential scanning calorimetry (DSC; conforming to JIS K7122), and ΔHf is a value described in, for example, POLYMER HANDBOOK (JOHN WILEY & SONS) in the case of a homopolymer. .
[0027]
However, in the case of a copolymer, ΔHf often has no literature value because of a wide variety of copolymer components and component ratios. In the above formula for obtaining the crystallinity Xc, the larger the measured melting heat ΔHm of the test piece means that the crystallinity becomes higher. Therefore, in the present invention, the crystallinity is judged by the value of ΔHm. .
The preferred glycolic acid-based polymer has a heating and cooling rate of 10 ° C./min using a crystallized product obtained by heating an amorphous sheet of the polymer for 100 minutes in a hot air circulating thermostat set at 150 ° C. In differential scanning calorimetry (DSC, JISK7122) measured under the conditions, the heat of crystallization ΔHc in the first cooling process is 0 J / g, and the heat of fusion ΔHm in the second temperature raising process is 0 J / g or more and 20 J / g Within the range of less than.
[0028]
When no crystallization peak appears in the constant cooling process in differential scanning calorimetry (DSC) (crystallization heat ΔHc = 0 J / g), the crystallinity of the test piece is amorphous and does not crystallize at all. Alternatively, since the crystallization rate is slow, there are two possible cases where crystallization does not occur under the DSC measurement conditions (cooling rate 10 ° C./min). As described above, the preferred glycolic acid polymer is amorphous and has a melting point Tm of 175 ° C. or higher and 205 ° C. or lower in the first temperature rising process in DSC. There is a crystallization rate at which crystallization does not occur under DSC measurement conditions (cooling rate 10 ° C./min). In the case where the ΔHc is 0 J / g, the coarse crystals can be formed without undergoing a special amorphous process such as a rapid cooling operation when melt-molding using a molding material mainly composed of the polymer composition. It does not grow and become brittle.
[0029]
On the other hand, the ΔHm value of the preferred glycolic acid polymer is 0 J / g, as in the case of the above-described crystallization heat ΔHc, the polymer of the present invention has a melting point during the first temperature rising process in DSC. Unlike the case where the Tm is 175 ° C. or higher and 205 ° C. or lower and is not amorphous and does not crystallize at all, the crystallization rate is such that crystallization does not occur under the DSC measurement conditions (temperature increase rate 10 ° C./min). This means that in a molded body mainly composed of the polymer composition, coarse crystals do not grow and become brittle. When the value of ΔHm is 20 J / g or less, since the crystallinity of the polymer is relatively low, in the molded body mainly composed of the polymer composition, coarse crystals grow and become brittle. There is no. A more preferable glycolic acid-based polymer has a value of ΔHm in the range of 0 J / g or more and 18 J / g or less in order that the obtained molded product exhibits excellent mechanical properties.
[0030]
A preferred glycolic acid polymer used in the present invention is, specifically, a copolymer obtained by ring-opening polymerization using a monomer other than glycolide and glycolide, and as a monomer other than glycolide Is at least one selected from cyclic dimers of aliphatic hydroxycarboxylic acids and lactones. Alternatively, a copolymer obtained by direct dehydration polycondensation using monomers other than glycolic acid and glycolic acid, wherein the monomer other than glycolic acid is at least one kind from aliphatic hydroxycarboxylic acids such as lactic acid To be elected. From the viewpoint of easily obtaining a copolymer having a higher molecular weight, a copolymer obtained by ring-opening polymerization using glycolide and lactide (3,6-dimethyl-1,4-dioxa-2,5-dione) is particularly preferable. preferable. Lactide is an optically active substance and may be either L-form or D-form, or a D, L-form mixture or meso form. Further, it may be a mixture of glycolide-L-lactide copolymer and glycolide-D-lactide copolymer. For example, when the monomer unit is a copolymer composed of glycolide and lactide, it is obtained by ring-opening polymerization in which the glycolide component ratio in the copolymer is 78 to 90 mol% and the lactide component ratio is 22 to 10 mol%. And the resulting glycolic acid-lactic acid copolymer.
[0031]
The molecular weight of the glycolic acid polymer used in the present invention depends on temperature changes during molding such as melt extrusion and injection molding, and the molded body mainly composed of the polymer composition has sufficient mechanical properties. In order to have excellent moldability without significant change in melt viscosity, the logarithmic viscosity number is 0.15 m. 3 / Kg or more, preferably 0.18 m 3 / Kg or more is more preferable. On the other hand, the upper limit of the molecular weight of the polymer is 0.80 m in terms of logarithmic viscosity for easier molding into a molded product. 3 / Kg or less is preferable, but it is not particularly limited as long as the melt fluidity is adjusted by adding a plasticizer or the like. The logarithmic viscosity number [η] is generally a value obtained by the following equation (4), and can be approximated to an intrinsic viscosity used as an index of a molecular weight of a polymer in a dilute solution having a concentration of 0.2% or less (Chemical Dictionary Dictionary Reprint) Edition, p.746, Kyoritsu Shuppan (1963), and New Edition Polymer Analysis Handbook, p.120, Kinokuniya (1995)).
[Η] = {ln (t / to)} / c (4)
(Where, t is the flow time (second) of the polymer solution measured with a capillary viscometer, to is the flow time (second) of the solvent measured with a capillary viscometer, and c is the concentration of the solute polymer ( kg / m 3 ). )
[0032]
In addition, the molecular weight of the glycolic acid polymer used in the present invention is 5 × 10 in terms of weight average molecular weight. 4 Or more, more preferably 1 × 10 5 That's it. The upper limit of the molecular weight is not particularly limited as long as the melt fluidity is adjusted by adding a plasticizer or the like. 5 It is desirable to keep it below.
[0033]
Crystal nucleating agents (nucleating agents) include inorganic particles such as metal oxides, inorganic metal salts, clay minerals, incompatible organic compounds such as fatty acid amides, fatty acid metal salts, and phosphate metal salts, Various types of compounds such as compatible organic compounds having a sorbitol skeleton are known. Of these crystal nucleating agents, the crystallinity of glycolic acid polymers can be remarkably enhanced only by boron nitride particles. The inventor found out.
[0034]
The boron nitride-based particles used as a raw material for the composition of the present invention refer to inorganic particles having a boron nitride component ratio of 50 wt% or more. A preferable component ratio of boron nitride is 95 wt% or more. However, powder particles obtained by mixing inorganic particles other than boron nitride with inorganic particles having a high component ratio of boron nitride for dilution or other purposes may be used. The particle shape is not particularly limited, such as a spherical shape, a needle shape, a disk shape, or a column shape. Examples of inorganic particles other than boron nitride include metal oxides such as alumina, silica and titanium oxide, inorganic metal salts such as calcium carbonate and calcium phosphate, and inorganic particles of clay minerals such as talc, mica and kaolin.
[0035]
The content of the boron nitride particles constituting the composition of the present invention needs to be 0.3 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the glycolic acid polymer. If the content is 0.3 parts by weight or more, the obtained molded product can effectively act as a crystal nucleating agent even when a glycolic acid polymer having low crystallinity is used, and the crystallinity is increased and the mechanical properties are improved. It will be excellent. Moreover, if this content is 40 weight part or less, the molded article obtained will be excellent in mechanical characteristics, without deteriorating impact resistance. The content is preferably 0.5 parts by weight or more and 15 parts by weight or less in order to effectively increase the crystallinity and increase the mechanical strength. More preferably, it is 5 parts by weight or more and 1.5 parts by weight or less. In particular, when the amount added is more than 0.5 parts by weight, there is an effect of suppressing flow instability such as melt fracture in extrusion molding or suppressing the occurrence of burrs in injection molding.
[0036]
The average particle size of the boron nitride-based particles is preferably 0.03 μm or more and 20 μm or less as measured by a laser diffraction / scattering method. The average particle size is preferably 0.03 μm or more from the viewpoints of powder powder production and handling. On the other hand, the average particle size is preferably 20 μm or less from the viewpoint of the addition efficiency of the particles, impact resistance, and mechanical properties. In order to manufacture and handle powder powder more easily and to enhance the nucleation effect by boron nitride-based particles, the average particle diameter is more preferably 0.05 μm or more and 10 μm or less, and 0.1 μm or more and 1 μm or less. It is particularly preferred. When the average particle size is 0.1 μm or more and 1 μm or less, the addition effect as a crystal nucleating agent (nucleating agent) is remarkable even when a glycolic acid polymer having low crystallinity is used. The crystallinity of the composition can be significantly increased.
[0037]
The composition of the glycolic acid polymer of the present invention may contain a plasticizer for the purpose of adjusting the melt fluidity of the composition or improving the crystallinity. In this case, when the composition ratio of the plasticizer is less than about 5% by weight, the obtained molded body can be used for hard applications, and when the composition ratio is 5 to 15% by weight, the obtained molded body is half Although it can be used in hard applications, it is preferable that the composition ratio is 10% by weight or less in order that the obtained molded product maintains relatively excellent mechanical properties.
[0038]
Specific examples of the plasticizer used in the present invention include, for example, phthalates such as dioctyl phthalate and diethyl phthalate, fatty acid esters such as ethyl laurate, butyl oleate, and octyl linoleate, dioctyl adipate and dibutyl sebacate. Aliphatic dibasic esters such as acetyl citrate tributyl and acetyl citrate triethyl, glycerin fatty acid esters such as glycerol diacetate laurate and glycerol triacetate, diglycerol tetraacetate and tetra Polyglycerol fatty acid esters such as glycerol hexaacetate, phosphate esters such as dioctyl phosphate, modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil, and polybutylene sebacate Riesuteru based plasticizer and the like, one or two or more, are selected from these. Glycerin fatty acid esters and aliphatic tribasic acid esters are desirable from the viewpoint of safety and health, and solubility parameter values (R. F. Fedors, Poly. Eng. Sci.) From the viewpoint of compatibility with glycolic acid polymers. , Vol.14, No.2, p.152 (1974)) is 10 (cal / cm 3 ) 0.5 Particularly preferred are glycerol triacetate, diglycerol tetraacetate, and triethyl acetylcitrate. Since these do not have a hydroxyl group, they are less likely to cause a transesterification reaction between the polymer and the plasticizer.
[0039]
The composition of the glycolic acid polymer of the present invention may contain additives other than those described above, if necessary, such as a lubricant, an antistatic agent, an antifogging agent, an antioxidant, and a heat stabilizer. , A light stabilizer, an ultraviolet absorber, a colorant, a flame retardant, and the like may be appropriately contained. Examples of the antioxidant used include phenol, phenyl acrylate, phosphorus, sulfur, etc., and one or two or more of these are selected, and the amount added is less than 10% by weight in the composition. Can be made.
[0040]
The molded product of the glycolic acid polymer of the present invention is mainly composed of a glycolic acid polymer composition comprising a glycolic acid polymer and boron nitride particles, and the glycolic acid heavy polymer that is the raw material thereof. It contains 50% by weight or more of the coalescence. Other biodegradable resins may be mixed within a range of less than 50% by weight including the content of boron nitride-based particles which are essential components. Examples of biodegradable resins that can be mixed are exemplified as monomers that can be copolymerized with the main monomers of glycolic acid, glycolide, and glycolic acid esters described above, for example, aliphatic hydroxycarboxylic acids such as lactic acid. Polycondensates, ring-opening polymers of lactones such as lactide (3,6-dimethyl-1,4-dioxa-2,5-dione) and ε-caprolactone, polyhydric alcohols such as ethylene glycol and adipic acid, Aliphatic polyesters such as polycondensates of polyvalent carboxylic acids, other natural polymers such as starch and cellulose, polyamino acids such as polyaspartic acid, cellulose esters such as cellulose acetate, aliphatic polyesters Polycarbonates such as carbonates, polyvinyl alcohol, polyethylene oxide, low molecular weight Riechiren, etc. polymalic acid. Moreover, as long as it does not inhibit the biodegradability of the composition and the obtained molded article, for example, polyolefins, aromatic polyesters, polyamides, ethylene-vinyl alcohol copolymers, petroleum resins and terpene series Resins, hydrogenated products thereof, and other known thermoplastic resins may be mixed.
[0041]
The molding material used for producing the molded article of the present invention contains the above-described plasticizer, other additives, and other thermoplastic resins as necessary in the glycolic acid polymer composition of the present invention. It is desirable to manufacture by melt mixing using a single or twin screw extruder, Banbury mixer, mixing roll, kneader or the like.
[0042]
The molded product referred to in the present invention is, for example, a film-like or sheet-like molded product produced by a melt extrusion method, a calender method, a melt press molding method, and the like. Examples include vacuum forming such as a forming method, pressure forming, male and female die forming, and the like. In the present invention, the distinction between a film and a sheet simply uses different names depending on the difference in thickness. Usually, a thickness of less than 200 μm is referred to as a film-shaped molded body, and a thickness of 0.2 mm or more is referred to as a sheet-shaped molded body. Yes. In addition, an injection molded body, a blow molded body in which a gas is blown while heating a preform obtained by an injection molding method, and a foam molded body are also included.
[0043]
The method for producing the molded body of the present invention is not particularly limited, and is performed by a conventionally known general method. Specifically, for example, in the melt extrusion method, a molding material is previously provided with a moisture content of 200 wtppm. It is dried to the following, then supplied to the extruder, extruded from a die connected to the tip of the extruder while being heated and melted, and then cooled and solidified to produce a sheet-like or tube-like melt-formed product. be able to. In the melt press molding method, the above-described molding material is dried in advance until the moisture content becomes 200 wtppm or less, then supplied to the mold, heated and melted under normal pressure or reduced pressure atmosphere, and then cooled. By solidifying, it can be produced as a sheet-like melt-formed product.
[0044]
The stretched molded body is a molded body obtained by stretching a sheet-shaped or tube-shaped molded body in at least a uniaxial direction. This stretching method is not particularly limited and is performed by a conventionally known general method. Specifically, for example, in the case of uniaxial stretching, melt extrusion is performed from a T die by a melt extrusion method, and cooling is performed by a cast roll. A method of producing a sheet-like molded product by longitudinally uniaxially stretching in the flow direction of the sheet with a roll stretching machine, transversely uniaxially stretching with a tenter while suppressing the longitudinal stretching ratio as much as possible, or in the case of biaxial stretching, melt extrusion The sheet-shaped product melt-extruded from the T-die by the method and cooled by the cast roll is first stretched longitudinally with a roll stretcher and then stretched transversely with a tenter, or simultaneously biaxially stretched in both longitudinal and transverse directions with a tenter There are a method of manufacturing by stretching, a method of manufacturing a tubular molded product that is melt-extruded from a circular die by a melt extrusion method and cooled by a water-cooling ring, etc. Moreover, there exists the method of extending | stretching the sheet-like molding obtained by the melt-pressing method uniaxially or biaxially with a batch type extending | stretching apparatus. In these stretching operations, the stretching temperature ranges from the glass transition temperature of the molded article to be stretched to (cold crystallization temperature + 30 ° C.), the stretching speed ranges from 10 to 200,000% / min, and the stretching ratio is at least uniaxial. It is desirable to carry out under the stretching conditions appropriately selected from the range of 2 to 50 times in area magnification.
[0045]
The stretched molded body thus obtained may be used as it is when it is used for binding while being thermally contracted, or may be subjected to heat treatment or aging treatment for the purpose of adjusting the heat shrinkage. good. In addition, it is desirable to perform heat treatment particularly when used for applications requiring a high degree of heat resistance. Furthermore, it is desirable to perform an aging treatment or the like for the purpose of improving dimensional stability over time and physical property stability. The heat treatment is preferably performed at a temperature appropriately selected from a temperature range of 60 to 160 ° C. for 1 second to 3 hours, and the aging treatment is usually performed at a temperature appropriately selected from a temperature range of 25 to 60 ° C. for 3 hours. It is desirable to be performed for about 10 days.
[0046]
The obtained molded body may be subjected to various surface treatments such as coating and corona treatment, laminating, vacuum deposition and the like for the purpose of improving the antistatic agent, antifogging property and antifouling property as necessary. The obtained stretched molded article is suitable for a multi-film, a sandbag bag made of flat yarn and woven. Furthermore, you may shape | mold and use it according to a use by the secondary process. As secondary processed products, for example, in the case of stretched sheets, vacuum forming processing such as plug assist molding method and air cushion molding method, pressure forming processing, male and female molding processing are performed, containers such as trays and cups, vegetation pots It is suitable for such as. In addition, the moldings obtained by injection molding are suitable for parts of machinery and equipment such as fixed nails and piles as agricultural materials and civil engineering materials, tent pegs and mountain climbing harkens as leisure goods, etc. is there.
[0047]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples. However, these specific examples do not limit the scope of the present invention. The physical property measurement method and evaluation method are shown below. Unless otherwise specified, samples are stored for 1 to 2 days in a temperature (23 ± 2) ° C. and relative humidity (50 ± 5)% atmosphere after preparation of the measurement sample. The product was subjected to physical property measurement and evaluation.
[0048]
[Physical property measurement method]
(1) Logarithmic viscosity number
Pure solvent 1,1,1,3,3,3-hexafluoro-2-propanol (hereinafter abbreviated as HFIP) and glycolic acid polymer concentration c is 1.0 kg / m. 3 As a sample, the HFIP solution dissolved so that Using a 0a Ubbelohde type capillary viscometer (capillary automatic viscometer SS-170-L1 manufactured by Shibayama Scientific Instruments), the time for flowing down the capillary at 20 ° C. is measured, and the logarithmic viscosity number [ η] was determined.
[Η] = {ln (t / to)} / c (4)
(Where, t is the flow time (second) of the polymer solution measured with a capillary viscometer, to is the flow time (second) of the solvent measured with a capillary viscometer, and c is the concentration of the solute polymer (kg / M 3 ). )
[0049]
(2) Differential scanning calorimetry (DSC)
The melting point Tm, the heat of crystallization ΔHc, and the heat of fusion ΔHm were measured according to JIS K7121 and K7122 using a DSC6200 manufactured by Seiko Denshi Kogyo Co., Ltd. as a measuring device. The temperature of the sample is about 20 ° C. higher than the end of the melting peak when the differential scanning calorimetry is performed on the polymer piece used as a raw material as it is using a heating press machine (compression molding machine SA-301 manufactured by Tester Sangyo Co., Ltd.). The polymer was pressurized for about 12 MPa for 5 minutes, then cooled to obtain an amorphous sheet having a thickness of about 200 μm, and the amorphous sheet was heated and crystallized for 100 minutes in a hot air circulating thermostat set at 150 ° C. Made. The sample amount was about 7.5 mg. First, the sample was held at −20 ° C. for 3 minutes, then heated to 260 ° C. at a heating rate of 10 ° C./min, and the melting point Tm in the first temperature rising process was measured. After maintaining at this temperature for 1 minute, it was cooled to −20 ° C. at a cooling rate of 10 ° C./min, and the crystallization heat ΔHc in the first cooling process was measured. Next, after maintaining at −20 ° C. for 1 minute, the mixture was again heated to 260 ° C. at a heating rate of 10 ° C./min, and the heat of fusion ΔHm in the second temperature rising process was measured. In addition, the calibration of temperature and heat quantity was performed using indium as a standard substance. The amorphous sheet in the present invention is a sheet prepared by the above procedure as a sample, a diffraction intensity curve is measured by a wide angle X-ray diffraction method, and the diffraction intensity curve does not have a diffraction peak due to the crystal. Point to.
(3) Average particle size
The average particle diameter is measured by using a dispersion of 100 ppm in distilled water as a dispersion medium as a sample and using a laser diffraction particle size distribution analyzer SALD-2100 manufactured by Shimadzu Corporation as a measuring device, Asked. In addition, you may add suitably dispersing agents, such as magnesium stearate, to a dispersion medium as needed.
[0050]
[Evaluation methods]
(1) Heat resistance
The heat resistance was evaluated by performing a load-resistant cutting test using a sheet-like molded body having a thickness of 100 μm as a sample. In the load-resistant cutting test, with a load of 100 g applied to a strip-shaped test piece, the test piece is heated for 1 hour in a hot air circulation thermostat set at a constant temperature to check whether the test piece is cut or not. Was measured. The temperature of the sample is about 20 ° C. higher than that at the end of the melting peak when a differential scanning calorimetry is performed on a small piece of the composition used as a material as it is using a heating press machine (compression molding machine SA-301 manufactured by Tester Sangyo Co., Ltd.) The composition was pressurized for about 12 MPa for 5 minutes, then cooled to obtain an amorphous sheet having a thickness of about 100 μm, and the amorphous sheet was heat-treated in a hot air circulating thermostat set at 140 ° C. for 1 minute. Produced. Samples were cut into strips having a length of 140 mm and a width of 30 mm. A fixing jig and a load jig were respectively attached to the upper and lower ends 20 mm each of the strip-shaped test piece, and heated for 1 hour in a hot-air circulating thermostat set at a constant temperature to examine whether or not the test piece was cut. In the case where the strip-shaped test piece did not cut, the above procedure was repeated by increasing the set temperature by 5 ° C. with a new test piece. The measurement result of the maximum temperature at which the strip-shaped test piece was not cut was indicated by the mode value by performing this test five times for each sample.
[0051]
(2) Mechanical properties (bending strength)
The mechanical properties (folding strength) were evaluated by measuring the bending strength of the sheet-like molded product with reference to JIS P8115, using an MIT fatigue resistance tester manufactured by Toyo Seiki Seisakusho Co., Ltd. as a measuring device. did. A sheet-like molded body sample obtained by the procedure shown in the heat resistance evaluation method was cut into strips having a length of 150 mm and a width of 15 mm. A test was performed under the conditions of a bending angle of 135 °, a bending speed of 175 cpm, and a load of 0.5 kg, and the number of times of bending until breakage was measured. The measurement result of the number of bendings was measured by 5 samples per the above procedure and indicated as an average value.
[0052]
(3) Mechanical properties (Rockwell hardness)
Mechanical properties (Rockwell hardness) are evaluated by measuring the Rockwell hardness of a molded product sample on an R scale according to JIS K7202, using a Rockwell hardness tester manufactured by Toyo Seiki Seisakusho Co., Ltd. as a measuring device. did. The molded body sample is about 20 ° C. from the end of the melting peak when a differential scanning calorimetry is performed on a small piece of the composition used as a material as it is using a heating press machine (compression molding machine SA-301 manufactured by Tester Sangyo Co., Ltd.). Set to a high temperature, pressurize the composition at about 12 MPa for 5 minutes, cool and take it out, and heat-treat in a hot air circulating thermostat set at 80 ° C. for 20 minutes. A plate-like molded body having a thickness of 7 mm was used. The measurement result of Rockwell hardness was measured 5 times and expressed as an average value.
[0053]
[Example 1]
[Purification of monomer]
1 kg of glycolide was dissolved in 3 kg of ethyl acetate at 75 ° C., and then allowed to stand at room temperature for 48 hours for precipitation. The precipitate collected by filtration was washed with about 3 kg of ethyl acetate at room temperature. After repeating this washing operation again, the washed product was placed in a vacuum dryer and vacuum dried at 60 ° C. for 24 hours. The dried product was decompressed to 6-7 mmHg under a nitrogen atmosphere, and 480 g of distilled and purified glycolide was obtained as a distillate at 133-134 ° C. by simple distillation.
1 kg of L-lactide was dissolved in 3 kg of toluene at 80 ° C. and then left to stand at room temperature for 48 hours to precipitate. The precipitate collected by filtration was washed with about 3 kg of toluene at room temperature. After repeating this washing operation again, the washed product was put in a vacuum dryer and vacuum dried at 60 ° C. for 24 hours to obtain 560 g of purified L-lactide.
[0054]
[Preparation of glycolic acid polymer]
430 g of glycolide and 270 g of lactide obtained by purification of the above monomer and 0.2 g of 2-ethylhexanoic acid tin and 0.05 g of lauryl alcohol as a catalyst were charged into a jacketed reactor whose inner surface was glass-lined, and dried nitrogen For about 1 hour at room temperature. Next, the temperature was raised to 130 ° C. while blowing dry nitrogen, and the mixture was stirred for 40 hours for polymerization. After completion of the polymerization operation, cooling water was passed through the jacket for cooling, and the bulk polymer taken out from the reactor was pulverized into fine particles of about 3 mm or less. This ground product was Soxhlet extracted with tetrahydrofuran for 60 hours, dissolved in 3 kg of hexafluoroisopropanol at 50 ° C., and then reprecipitated with 7 kg of methanol. This re-precipitate was vacuum-dried in a vacuum dryer set at 130 ° C. for 60 hours to obtain 550 g of a glycolic acid polymer. The obtained polymer is designated as resin symbol P1.
[0055]
Glycolic acid polymer P1 was prepared by dissolving 70 mg of the polymer in trifluoroacetic acid-D1 ml. 1 When the copolymerization component ratio was analyzed by H-NMR, the glycolic acid component ratio was 80 mol% and the lactic acid component ratio was 20 mol%. When the logarithmic viscosity number was measured according to the above-described physical property measuring method, the logarithmic viscosity number [η] of the polymer was 0.42 (m 3 / Kg). When differential scanning calorimetry was performed according to the above-described physical property measurement method, the melting point Tm of the polymer during the first heating process was 188 ° C., and the crystallization heat ΔHc during the first cooling process was 0 J / g, 2 The heat of fusion ΔHm in the second temperature raising process was 0 J / g.
[0056]
[Melt-mixing, production of sheet-like molded product, and evaluation]
Boron nitride particles having an average particle diameter of 0.8 μm with a boron nitride component ratio of 98% (DENKABORON NITRIDE SP-2, manufactured by Denki Kagaku Kogyo Co., Ltd.) are designated as nucleating agent symbol N1. 3.4 g of the particles N1 were weighed and dried in a vacuum dryer set at 40 ° C. for about 48 hours until the water content was 200 ppm or less. 170 g of the glycolic acid polymer P1 obtained in the preparation of the above polymer was weighed and left in a hot air circulating thermostat set at 130 ° C. for about 2 hours until the water content was 200 ppm or less, followed by a drying operation. went. The dried glycolic acid polymer P1 and boron nitride particles N1 are supplied to a kneader set at 220 ° C. (desk type kneader PBV-0.3 type manufactured by Irie Trading Co., Ltd.) and dried nitrogen at a flow rate of 10 L / min. The speed change handle scale was set to 7 while blowing (dew point -60 ° C.) (rotor average rotation speed 38 rpm, average shear rate about 100 / sec) and melt mixed for 15 minutes. Thereafter, the molten mixture was immediately taken out from the kneader and solidified by cooling with a cooling press to obtain a plate-like glycolic acid polymer composition.
[0057]
The plate-shaped product was left to dry for about 24 hours in a vacuum dryer set at 40 ° C. until the water content was 200 ppm or less, and then heat-treated according to the evaluation method described above, And the plate-shaped molded object was produced. When the obtained molded product was used as a sample and the heat resistance and mechanical properties were evaluated, the maximum temperature at which the test piece was not cut was 185 ° C., the number of bendings was 38, and the Rockwell hardness was 121. .
[0058]
Examples 2-3 and Comparative Examples 1-3
Next, boron nitride particles having an average particle size of 3.5 μm having a boron nitride component ratio of 99% (DENKABORON NITRIDE GP manufactured by Denki Kagaku Kogyo Co., Ltd.) are used as the nucleating agent symbol N2, and boron nitride particles N2 are used. Otherwise, the same experiment as in Example 1 was repeated, and the obtained molded body was used as a sample to evaluate the heat resistance and mechanical properties. As a result, the maximum temperature at which the test piece was not cut was 185 ° C. and the number of bendings. Was 26 times and the Rockwell hardness was 118 (Example 2).
[0059]
The same experiment as in Example 1 was repeated except that sodium stearate (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the nucleating agent symbol N3, and N3 was used in place of the boron nitride-based particles. When the heat resistance and mechanical properties were evaluated as samples, the maximum temperature at which the test piece did not cut was 150 ° C., the number of bendings was 0, and the Rockwell hardness was 88. The molded body was remarkably discolored to brown, and N3 decomposed the glycolic acid polymer (Comparative Example 1).
[0060]
The same experiment as in Example 1 was repeated except that m-xylylene bis stearamide (Nippon Kasei Co., Ltd., SLIPAX PXS) was used as the nucleating agent symbol N4, and N4 was used instead of boron nitride particles. When the molded product thus obtained was used as a sample and the heat resistance and mechanical properties were evaluated, the maximum temperature at which the test piece was not cut was 135 ° C., the number of bendings was 7, and the Rockwell hardness was 86 ( Comparative Example 2). The same experiment as in Example 1 was repeated except that the amount of boron nitride-based particles N1 added was 0.68 g, and the heat resistance and mechanical properties were evaluated using the obtained molded body as a sample. As a result, the maximum temperature at which the test piece was not cut was 180 ° C., the number of bendings was 43, and the Rockwell hardness was 115 (Example 3).
[0061]
The same experiment as in Example 1 was repeated except that the amount of boron nitride-based particles N1 added was 0.17 g, and the heat resistance and mechanical properties were evaluated using the obtained molded body as a sample. As a result, the maximum temperature at which the test piece was not cut was 180 ° C., the number of bendings was 50, and the Rockwell hardness was 95 (Comparative Example 3).
[0062]
The evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1.
According to Table 1, in the glycolic acid polymer, the nucleating agent action appears only when boron nitride particles are used as the crystal nucleating agent, and the heat resistance and mechanical properties of the obtained molded product can be remarkably improved. . Furthermore, the boron nitride-based particles have a higher nucleation effect and significantly improved mechanical properties as the average particle size is smaller.
[0063]
[Table 1]
Figure 0004260526
[0064]
Examples 4 to 6 and Comparative Examples 4 to 5
The same experiment as in Example 1 was repeated except that 0.1 g of lauryl alcohol and 15 hours of polymerization time were used in the preparation of the glycolic acid polymer, and the resulting glycolic acid polymer was designated as resin symbol P2. . The polymer P2 has a copolymer component ratio of glycolic acid component ratio of 80 mol% and a lactic acid component ratio of 20 mol%, and a logarithmic viscosity number [η] of 0.17 (m 3 / Kg), the differential scanning calorimetry showed a melting point Tm of 189 ° C., a crystallization heat ΔHc of 0 J / g, and a heat of fusion ΔHm of 0 J / g. The same experiment as in Example 1 was repeated except that the polymer P2 was used, and when the obtained heat resistance and mechanical properties were evaluated using the obtained molded product as a sample, the test piece was not cut. The maximum temperature was 185 ° C., the number of bendings was 22, and the Rockwell hardness was 120 (Example 4).
[0065]
In the preparation of glycolic acid polymer, the same experiment as in Example 1 was repeated except that 700 g of glycolide, no lactide was used, and the polymerization time was 15 hours. The resulting glycolic acid polymer was designated as a resin symbol. Let P3. The polymer P3 is a homopolymer of a glycolic acid component and has a logarithmic viscosity number [轣 n of 0.25 (m 3 / Kg), the differential scanning calorimetry showed a melting point Tm of 223 ° C., a crystallization heat ΔHc of −70 J / g, and a heat of fusion ΔHm of 70 J / g. The same experiment as in Example 1 was repeated except that the polymer P3 was used and the kneader set temperature was 250 ° C., and the obtained heat resistance and mechanical properties were evaluated using the obtained molded body as a sample. As a result, the maximum temperature at which the test piece was not cut was 220 ° C., the number of bendings was 18, and the Rockwell hardness was 122 (Example 5).
[0066]
The same experiment as in Example 1 was repeated except that 490 g of glycolide, 200 g of lactide, and 30 hours of polymerization time were prepared in the preparation of glycolic acid polymer, and the resulting glycolic acid polymer was designated as resin symbol P4. To do. The polymer P4 has a copolymer component ratio of 88 mol% of glycolic acid component and 12 mol% of lactic acid component, and a logarithmic viscosity number [η] of 0.39 (m 3 / Kg), a differential scanning calorimetry showed a melting point Tm of 202 ° C., a crystallization heat ΔHc of 0 J / g, and a heat of fusion ΔHm of 9 J / g. The same experiment as in Example 1 was repeated except that the polymer P4 was used and the kneader set temperature was set to 230 ° C., and the obtained heat resistance and mechanical properties were evaluated using the obtained molded body as a sample. As a result, the maximum temperature at which the test piece was not cut was 195 ° C., the number of bendings was 33, and the Rockwell hardness was 121 (Example 6).
[0067]
It was obtained by repeating the same experiment as in Example 1 except that polylactic acid (LACTY 9400, manufactured by Shimadzu Corporation) was made resin symbol P5, P5 was used instead of glycolic acid polymer, and the kneader set temperature was 200 ° C. Further, when the molded body was used as a sample and the heat resistance and mechanical properties were evaluated, the maximum temperature at which the test piece was not cut was 165 ° C., the number of bending was 28, and the Rockwell hardness was 94. Since the obtained sheet-like molded product was made of polylactic acid having a lower melting point, the heat resistance was inferior (Comparative Example 4).
[0068]
The evaluation results of Examples 1, 4 to 6 and Comparative Example 4 are summarized in Table 2. According to Table 2, when the logarithmic viscosity number of the glycolic acid polymer is small and the molecular weight is low, the obtained sheet-like molded product is very brittle and has poor mechanical properties. On the other hand, when the logarithmic viscosity number of the glycolic acid polymer is large and the molecular weight is high, the obtained sheet-like molded article has excellent mechanical properties. Further, when the melting point and crystallinity of the glycolic acid polymer are in a specific range, the heat resistance and mechanical properties are excellent, and the moldability is excellent because the melt molding temperature can be set much lower than the decomposition temperature. .
[0069]
[Table 2]
Figure 0004260526
[0070]
[Example 7]
A closed lid with a valve capable of supplying dry nitrogen by supplying glycolic acid polymer P1 (170 g) and boron nitride particles N1 (3.4 g) dried in the same manner as in Example 1 to a kneader set at 220 ° C. The inside of the kneader tank was sufficiently replaced with dry nitrogen while kneading. 8.8 g of triethyl acetylcitrate (manufactured by Tokyo Chemical Industry Co., Ltd.) was weighed out as a plasticizer, and after the dry nitrogen ventilation in the kneader tank was stopped, the plasticizer was injected from the valve using a syringe. In the same manner as in Example 1, the process from melt mixing for 15 minutes to the preparation of the evaluation sample molded body was performed. When the obtained molded body was used as a sample and the heat resistance and mechanical properties were evaluated as described above, the maximum temperature at which the test piece was not cut was 185 ° C., the number of bendings was 74, and the Rockwell hardness was 120. (Example 7).
[0071]
【The invention's effect】
According to the present invention, a molding material composition having excellent moldability can be provided by incorporating a specific amount of boron nitride-based particles in a glycolic acid-based polymer having a relatively high melting point among biodegradable resins. Moreover, by using the composition, it is suitable for various fields such as packaging materials, agricultural materials, civil engineering and building materials, machinery and equipment parts that are biodegradable and have excellent heat resistance and mechanical properties. A molded body can be provided.

Claims (8)

グリコール酸系重合体と窒化ホウ素系粒子からなる組成物であって、グリコール酸系重合体100重量部に対し、窒化ホウ素系粒子の含有量が0.3重量部以上40重量部以下であることを特徴とするグリコール酸系重合体の組成物。A composition comprising a glycolic acid polymer and boron nitride particles, wherein the content of the boron nitride particles is from 0.3 parts by weight to 40 parts by weight with respect to 100 parts by weight of the glycolic acid polymer. A composition of a glycolic acid polymer characterized by the above. グリコール酸系重合体が、該重合体の非晶シートを150℃で100分間熱処理した試験片を用い、加熱速度および冷却速度が10℃/分で測定した示差走査熱量測定(JIS K7121、及びK7122準拠)において1回目の昇温過程での融点Tm(℃)、1回目の冷却過程での結晶化熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔHm(J/g)が下式(1)〜(3)を満たすグリコール酸系共重合体であることを特徴とする請求項1記載のグリコール酸系重合体の組成物。
175≦Tm≦205 (1)
ΔHc=0 (2)
0≦ΔHm<20 (3)
A differential scanning calorimetry (JIS K7121 and K7122) in which a glycolic acid polymer was measured at a heating rate and a cooling rate of 10 ° C / min using a test piece obtained by heat-treating an amorphous sheet of the polymer at 150 ° C for 100 minutes. The melting point Tm (° C.) in the first temperature raising process, the heat of crystallization ΔHc (J / g) in the first cooling process, and the heat of fusion ΔHm (J / g) in the second temperature raising process. The glycolic acid-based polymer composition according to claim 1, wherein is a glycolic acid-based copolymer satisfying the following formulas (1) to (3).
175 ≦ Tm ≦ 205 (1)
ΔHc = 0 (2)
0 ≦ ΔHm <20 (3)
グリコール酸系重合体が、対数粘度数0.15m/kg以上であることを特徴とする請求項1又は2記載のグリコール酸系重合体の組成物。The glycolic acid polymer composition according to claim 1 or 2, wherein the glycolic acid polymer has a logarithmic viscosity of 0.15 m 3 / kg or more. 窒化ホウ素系粒子の平均粒径が0.03μm以上5μm以下であることを特徴とする請求項1〜3のいずれかに記載のグリコール酸系重合体の組成物。The composition of a glycolic acid polymer according to any one of claims 1 to 3, wherein the boron nitride particles have an average particle size of 0.03 µm to 5 µm. グリコール酸系重合体と窒化ホウ素系粒子からなる組成物を主体とする成形体であって、グリコール酸系重合体100重量部に対し、窒化ホウ素系粒子の含有量が0.3重量部以上40重量部以下であることを特徴とするグリコール酸系重合体の成形体。A molded body mainly composed of a composition comprising a glycolic acid-based polymer and boron nitride-based particles, wherein the content of boron nitride-based particles is 0.3 parts by weight or more and 40 parts by weight with respect to 100 parts by weight of the glycolic acid-based polymer. A molded article of a glycolic acid polymer characterized by being less than or equal to parts by weight. グリコール酸系重合体が、該重合体の非晶シートを150℃で100分間熱処理した試験片を用い、加熱速度および冷却速度が10℃/分で測定した示差走査熱量測定(JIS K7121、及びK7122準拠)において1回目の昇温過程での融点Tm(℃)、1回目の冷却過程での結晶化熱ΔHc(J/g)、2回目の昇温過程での融解熱ΔHm(J/g)が下式(1)〜(3)を満たすグリコール酸系共重合体であることを特徴とする請求項5記載のグリコール酸系重合体の成形体。
175≦Tm≦205 (1)
ΔHc=0 (2)
0≦ΔHm<20 (3)
A differential scanning calorimetry (JIS K7121 and K7122) in which a glycolic acid polymer was measured at a heating rate and a cooling rate of 10 ° C / min using a test piece obtained by heat-treating an amorphous sheet of the polymer at 150 ° C for 100 minutes. The melting point Tm (° C.) in the first temperature raising process, the heat of crystallization ΔHc (J / g) in the first cooling process, and the heat of fusion ΔHm (J / g) in the second temperature raising process. 6 is a glycolic acid copolymer satisfying the following formulas (1) to (3), the molded article of glycolic acid polymer according to claim 5.
175 ≦ Tm ≦ 205 (1)
ΔHc = 0 (2)
0 ≦ ΔHm <20 (3)
グリコール酸系重合体が、対数粘度数0.15m/kg以上であることを特徴とする請求項5又は6記載のグリコール酸系重合体の成形体。The molded article of glycolic acid polymer according to claim 5 or 6, wherein the glycolic acid polymer has a logarithmic viscosity number of 0.15 m 3 / kg or more. 窒化ホウ素系粒子が、平均粒径0.03μm以上5μm以下であることを特徴とする請求項5〜7のいずれかに記載のグリコール酸系重合体の成形体。The molded article of glycolic acid polymer according to any one of claims 5 to 7, wherein the boron nitride-based particles have an average particle size of 0.03 µm to 5 µm.
JP2003108147A 2003-04-11 2003-04-11 Composition of glycolic acid polymer Expired - Fee Related JP4260526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108147A JP4260526B2 (en) 2003-04-11 2003-04-11 Composition of glycolic acid polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108147A JP4260526B2 (en) 2003-04-11 2003-04-11 Composition of glycolic acid polymer

Publications (2)

Publication Number Publication Date
JP2004315587A JP2004315587A (en) 2004-11-11
JP4260526B2 true JP4260526B2 (en) 2009-04-30

Family

ID=33469769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108147A Expired - Fee Related JP4260526B2 (en) 2003-04-11 2003-04-11 Composition of glycolic acid polymer

Country Status (1)

Country Link
JP (1) JP4260526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481773A (en) * 2009-08-31 2012-05-30 株式会社吴羽 Laminate and stretched laminate using same

Also Published As

Publication number Publication date
JP2004315587A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4112568B2 (en) Biodegradable resin composition
TWI572645B (en) Porous film
JP5285834B2 (en) Method for producing polylactic acid
JP2004524426A (en) Film made from plasticized polyester
JP5376749B2 (en) Polylactic acid film
JPH09111107A (en) Biodegradable film or sheet and biodegradable plastic molding
WO2015057694A2 (en) Optically clear biodegradable oplyester blends
JPH11302521A (en) Polylactic acid composition and its molding product
JP5794498B2 (en) Polylactic acid resin composition
JP2003082140A (en) Biodegradable porous film and its production process
JP3182077B2 (en) Biodegradable film
JPH06256480A (en) Biodegradable packaging film
JP6102315B2 (en) Polyester resin composition and film formed by molding the polyester resin composition
JPH10147653A (en) Biodegradable oriented film
JP4245306B2 (en) Biodegradable polyester stretch molding
JP2009062532A (en) Thermally molded product and composition containing poly (hydroxyalkanoic acid) and polyoxymethylene
JP4260526B2 (en) Composition of glycolic acid polymer
JP4511099B2 (en) Lactic acid-based resin composition, sheet-like product thereof, and bag-like product
JP3860163B2 (en) Aliphatic polyester resin composition and film
JP4326828B2 (en) Composition of glycolic acid copolymer
JP4245300B2 (en) Method for producing biodegradable polyester stretch molded article
JP4260521B2 (en) Glycolic acid polymer composition
JP4790920B2 (en) Stretched molded product for packaging materials
JP4186477B2 (en) Resin composition and molded article comprising the same
JP4993238B2 (en) Molded body for packaging materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees