JPH0543665A - Production of aliphatic polyester - Google Patents
Production of aliphatic polyesterInfo
- Publication number
- JPH0543665A JPH0543665A JP22873991A JP22873991A JPH0543665A JP H0543665 A JPH0543665 A JP H0543665A JP 22873991 A JP22873991 A JP 22873991A JP 22873991 A JP22873991 A JP 22873991A JP H0543665 A JPH0543665 A JP H0543665A
- Authority
- JP
- Japan
- Prior art keywords
- aliphatic polyester
- reaction
- molecular weight
- acid
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はオキシ酸を出発原料とす
る脂肪族ポリエステルの製造方法に関するものであり、
さらに詳しくは上記脂肪族ポリエステルを高分子量で得
る方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aliphatic polyester starting from oxy acid,
More specifically, it relates to a method for obtaining the above aliphatic polyester in a high molecular weight.
【0002】[0002]
【従来の技術】従来よりポリ乳酸、ポリグリコール酸に
代表される脂肪族ポリエステルは、徐放性重合体とし
て、手術用縫合糸、注射薬用マイクロカプセル等の生体
分解性医用材料や、除草剤等の農薬組成物として利用さ
れている。また近年プラスチック公害が問題となり、酵
素や微生物による分解が期待される生分解性プラスチッ
クとしても注目され、研究開発が進められている。2. Description of the Related Art Conventionally, aliphatic polyesters represented by polylactic acid and polyglycolic acid have been used as sustained-release polymers as biodegradable medical materials such as surgical sutures and microcapsules for injections, and herbicides. It is used as a pesticide composition. In recent years, plastic pollution has become a problem, and it has been attracting attention as a biodegradable plastic that is expected to be decomposed by enzymes and microorganisms, and research and development has been advanced.
【0003】ところで、前記脂肪族ポリエステルを高分
子量化する方法として、従来より、例えばラクトン類ま
たは環状二量体であるラクチド類を、触媒存在下で加熱
し、開環重合することにより得る方法が知られている。
しかし前記方法では、まずグリコール酸から脱水反応に
よりオリゴマーを製造し、これを解重合することにより
環状二量体を得た後、再結晶により精製したものを出発
原料に使用しなければず、そのため環状二量体類の製造
と、精製に多くの労力と費用を必要としていた。また近
年、オキシ酸を出発原料として、直接脱水重縮合によっ
て、高分子量の脂肪族ポリエステルを得る方法が知られ
ているが、いまだに満足な分子量を有する重合体は得ら
れていない。By the way, as a method for increasing the molecular weight of the above-mentioned aliphatic polyester, conventionally, for example, a method in which a lactone or a lactide which is a cyclic dimer is heated in the presence of a catalyst and subjected to ring-opening polymerization is known. Are known.
However, in the above method, first, an oligomer is produced from glycolic acid by a dehydration reaction, a cyclic dimer is obtained by depolymerizing the oligomer, and the product purified by recrystallization must be used as a starting material. The production and purification of the cyclic dimers required a lot of labor and cost. In recent years, a method for obtaining a high molecular weight aliphatic polyester by direct dehydration polycondensation using an oxy acid as a starting material has been known, but a polymer having a satisfactory molecular weight has not yet been obtained.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明者らは、
オキシ酸から直接脱水重縮合により、高分子量の脂肪族
ポリエステルを得るべく検討を行ったところ、オキシ酸
の直接脱水重縮合は、逐次反応であり、反応時間ととも
に分子量は増大するが、この反応は平衡反応であり、そ
の平衡定数が小さいために、高分子量体を得るには触媒
が必要となることを見出し、さらに通常金属酸化物、金
属塩等、特に錫化合物が触媒として用いられるが、高分
子量体を得るためには、反応温度、減圧度を高めて反応
条件を厳しくしていくと、解重合を伴い、環状二量体の
副生やポリマーの劣化、着色がおこり、高分子量体を得
ることは困難であることが判った。Therefore, the present inventors have found that
When a study was conducted to obtain a high molecular weight aliphatic polyester by direct dehydration polycondensation from oxyacid, direct dehydration polycondensation of oxyacid is a sequential reaction, and the molecular weight increases with the reaction time. Since it is an equilibrium reaction and its equilibrium constant is small, it was found that a catalyst is required to obtain a high molecular weight substance. Further, metal oxides, metal salts, etc., especially tin compounds are usually used as catalysts. In order to obtain a molecular weight product, when the reaction temperature and the degree of reduced pressure are increased and the reaction conditions are stricter, depolymerization is accompanied, and by-products of the cyclic dimer, deterioration of the polymer and coloring occur, and the high molecular weight product is obtained. It turned out to be difficult to obtain.
【0005】[0005]
【課題を解決するための手段】本発明者らは上記事情を
鑑み、オキシ酸を出発原料とし、直接脱水重縮合により
高分子量の脂肪族ポリエステルを得るべく、鋭意検討を
重ねた結果、ゲルマニウム化合物を触媒として用いるこ
とにより、副反応を抑制し、劣化、着色の伴わない高分
子量の脂肪族ポリエステルが得られることを見いだし、
遂に本発明を完成するに到った。すなわち本発明は、オ
キシ酸を脱水重縮合することにより、脂肪族ポリエステ
ルを製造する際に、ゲルマニウム化合物存在下で、不活
性ガス気流下または減圧下で加熱脱水することを特徴と
する脂肪族ポリエステルの製造方法である。In view of the above circumstances, the inventors of the present invention have made earnest studies to obtain a high molecular weight aliphatic polyester by direct dehydration polycondensation using an oxy acid as a starting material, and as a result, a germanium compound has been obtained. By using as a catalyst, it was found that a side reaction is suppressed, and a high molecular weight aliphatic polyester without deterioration and coloration is obtained,
Finally, the present invention has been completed. That is, the present invention is characterized in that, when an aliphatic polyester is produced by dehydration polycondensation of an oxyacid, in the presence of a germanium compound, the aliphatic polyester is heated and dehydrated under an inert gas stream or under reduced pressure. Is a manufacturing method.
【0006】本発明において出発原料として使用するオ
キシ酸は、1分子中に各々1個のヒドロキシ基とカルボ
ン酸基を有しているものであり、例えばグリコール酸、
乳酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸等が挙
げられるが、これに限定されるものではない。それらは
単独でも、あるいは混合物で使用しても差し支えがな
い。また不斉炭素を有するものは、D体、L体、ラセミ
体のいずれでもよく、更にその形状は固体、液体あるい
は水溶液であっても問題はない。水溶液を用いる場合
は、反応開始前にあらかじめ適当に、濃縮を行うことが
望ましい。The oxyacid used as a starting material in the present invention has one hydroxy group and one carboxylic acid group in one molecule, for example, glycolic acid,
Examples thereof include lactic acid, 3-hydroxybutyric acid, and 4-hydroxybutyric acid, but are not limited thereto. They can be used alone or in a mixture. Further, the compound having asymmetric carbon may be any of D-form, L-form and racemic form, and there is no problem even if the form is solid, liquid or aqueous solution. When an aqueous solution is used, it is desirable to appropriately perform concentration before starting the reaction.
【0007】また触媒として用いるゲルマニウム化合物
としては、金属ゲルマニウム、四塩化ゲルマニウム、酸
化ゲルマニウム等が挙げられるが、これらに限定される
ものではなく、場合によっては他の触媒と併用すること
も可能である。触媒使用量は0.005〜0.50mo
l%が好ましく、特に0.03〜0.10mol%が望
ましい。0.005mol%以下では、触媒効果が殆ど
認められず、また0.5mol%以上用いると、重合中
に副反応および着色を伴うので好ましくない。触媒の添
加時期は、出発原料と共に仕込んでも、あるいは初期重
合が終了し、減圧状態にはいる際に投入してもよい。出
発原料が水溶液の場合は濃縮が終了した後に投入するの
が望ましい。また触媒は、固体あるいは液体のまま投入
しても、適当な溶媒に溶解したものを投入してもよい。The germanium compound used as the catalyst includes metal germanium, germanium tetrachloride, germanium oxide, etc., but is not limited to these and may be used in combination with other catalysts in some cases. .. The amount of catalyst used is 0.005-0.50mo
1% is preferable, and 0.03 to 0.10 mol% is particularly preferable. If it is 0.005 mol% or less, almost no catalytic effect is observed, and if it is 0.5 mol% or more, side reactions and coloration are accompanied during polymerization, which is not preferable. The catalyst may be added at the same time as the starting materials, or when the initial polymerization is completed and the system is in a reduced pressure state. When the starting material is an aqueous solution, it is desirable to add it after the concentration is completed. The catalyst may be added as a solid or liquid as it is, or may be added as a solution in a suitable solvent.
【0008】本発明における重縮合反応は、例えば以下
のようにして行うことができる。まず反応容器に投入し
た出発原料および触媒を不活性ガスで置換した後、不活
性ガス気流下で徐々に昇温し、所定の温度で所定の時
間、初期重合を行う。引き続き減圧を開始し、所定の時
間あるいは所定のトルクに達したところで、反応を停止
させる。重合温度は目的とするポリマーによって定めら
れるが、減圧度は最終的に10mmHg以下、特に1m
mHg以下にすることが望ましい。ゲルマニウム触媒を
用い、このような操作によって、充分に高分子量の脂肪
族ポリエステルを得ることが可能であるが、固相重合等
によって、更に高分子量化を行ってもいっこうに差し支
えはない。The polycondensation reaction in the present invention can be carried out, for example, as follows. First, after replacing the starting material and the catalyst charged in the reaction vessel with an inert gas, the temperature is gradually raised under an inert gas stream, and initial polymerization is carried out at a predetermined temperature for a predetermined time. Then, the pressure reduction is started, and the reaction is stopped when a predetermined time or a predetermined torque is reached. The polymerization temperature is determined by the target polymer, but the degree of vacuum is finally 10 mmHg or less, especially 1 m.
It is desirable to set it to mHg or less. Although it is possible to obtain a sufficiently high molecular weight aliphatic polyester by using a germanium catalyst by such an operation, it is possible to further increase the molecular weight by solid phase polymerization or the like.
【0009】[0009]
【実施例】本発明を更に具体的に説明するために、以下
に実施例を述べるが、本発明はこれらに限定されるもの
ではない。なお実施例における各特性値は以下の方法に
よって測定した。 還元粘度(ηsp/c):ポリマー0.125gをトリクロ
ロフェノール/フェノール(7/10wt%)混合溶媒
に溶解し、30℃で測定した。 融点、ガラス転移温度:パーキンエルマー社製DSC7
を用いて、窒素気流下昇降温速度10℃/分で測定し
た。EXAMPLES In order to describe the present invention more specifically, examples will be described below, but the present invention is not limited thereto. The characteristic values in the examples were measured by the following methods. Reduced viscosity (ηsp / c): 0.125 g of the polymer was dissolved in a mixed solvent of trichlorophenol / phenol (7/10 wt%) and measured at 30 ° C. Melting point, glass transition temperature: Perkin Elmer DSC7
Was measured at a temperature rising / falling rate of 10 ° C./min under a nitrogen stream.
【0010】実施例1 グリコール酸50gと酸化ゲルマニウム0.034g
(0.05mol%)を、撹拌装置、窒素導入管を備え
た反応容器に投入し、3回窒素置換を行った後、窒素気
流下で10℃/分で200℃に昇温し、1時間撹拌し
た。続いて240℃に昇温し、30分間かけて徐々に1
0mmHgまで減圧し、1時間撹拌反応させ、更に1m
mHgで2時間撹拌反応を続けた後、溶融状態のポリグ
リコール酸を取り出した。重合中に水以外の留出物は殆
ど認めらなかった。得られたポリマーは白色であり、還
元粘度0.69、融点232℃であった。Example 1 50 g of glycolic acid and 0.034 g of germanium oxide
(0.05 mol%) was charged into a reaction vessel equipped with a stirrer and a nitrogen introducing tube, and after performing nitrogen replacement three times, the temperature was raised to 200 ° C. at 10 ° C./min under a nitrogen stream for 1 hour. It was stirred. Then, the temperature was raised to 240 ° C and gradually increased to 1 over 30 minutes.
Reduce the pressure to 0 mmHg, stir and react for 1 hour, and further 1 m
After continuing the stirring reaction at mHg for 2 hours, the molten polyglycolic acid was taken out. Almost no distillate other than water was observed during the polymerization. The obtained polymer was white and had a reduced viscosity of 0.69 and a melting point of 232 ° C.
【0011】実施例2 実施例1と同様の反応容器にグリコール酸50g、L−
乳酸(90%水溶液)5g、酸化ゲルマニウム0.03
6gを投入し、最終反応温度を218℃にした以外は実
施例1と同様の操作を行い、白色の共重合ポリマーを得
た。このポリマーは還元粘度0.67、融点201℃で
あった。また得られたポリマーを220℃で、プランジ
ャー式紡糸機を用いて紡糸し、100℃で4倍に延伸し
たモノフィラメントは、強度7.2g/d、伸度25%
であった。Example 2 In a reaction vessel similar to that of Example 1, 50 g of glycolic acid, L-
Lactic acid (90% aqueous solution) 5g, germanium oxide 0.03
6 g was added and the same operation as in Example 1 was performed except that the final reaction temperature was set to 218 ° C. to obtain a white copolymer. This polymer had a reduced viscosity of 0.67 and a melting point of 201 ° C. The obtained polymer was spun at 220 ° C. using a plunger type spinning machine, and the monofilament stretched 4 times at 100 ° C. had a strength of 7.2 g / d and an elongation of 25%.
Met.
【0012】実施例3 実施例2で得られた共重合ポリマーを、180℃、0.
5mmHgで20時間固相重合を行ったところ、還元粘
度0.89のポリマーが得られた。Example 3 The copolymer obtained in Example 2 was treated at 180 ° C.
When solid phase polymerization was carried out at 5 mmHg for 20 hours, a polymer having a reduced viscosity of 0.89 was obtained.
【0013】比較例1 実施例1において触媒としてオクチル酸錫を0.05m
ol%使用した以外は、全く実施例1と同様にしてポリ
グリコール酸の合成を行ったところ、反応途中から着色
が認められ、得られたポリマーは褐色であった。また還
元粘度は0.32、融点227℃であった。Comparative Example 1 In Example 1, 0.05 m of tin octylate was used as a catalyst.
When polyglycolic acid was synthesized in exactly the same manner as in Example 1 except that ol% was used, coloring was observed during the reaction and the obtained polymer was brown. The reduced viscosity was 0.32 and the melting point was 227 ° C.
【0014】比較例2 無触媒で行った以外は、全く実施例1と同様にしてポリ
グリコール酸を合成した。得られたポリマーは白色であ
ったが、還元粘度は0.28であった。Comparative Example 2 Polyglycolic acid was synthesized in the same manner as in Example 1 except that the catalyst was not used. The obtained polymer was white, but the reduced viscosity was 0.28.
【0015】実施例4 実施例1と同様の反応容器にDL−乳酸(90%水溶
液)50gを投入し、撹拌および窒素気流下で、180
℃に昇温し濃縮した。この時点で酸化ゲルマニウム0.
026gを投入し、200℃で2時間反応を続けた後、
30分間で20mmHgまで減圧して1時間、更に5m
mHg、1mmHgで各々2時間反応を行った。溶融状
態のポリマーを取り出すことにより、無色透明のポリ乳
酸を得た。このポリマーは融点が認められず、非晶性で
あり、ガラス転移温度54℃、還元粘度0.74であっ
た。また反応中に水と共に、少量の副反応物の生成が認
められ、この物質は乳酸の環状二量体であるラクチドで
あった。Example 4 50 g of DL-lactic acid (90% aqueous solution) was placed in the same reaction vessel as in Example 1, and stirred at 180 ° C. under a nitrogen stream.
The temperature was raised to ℃ and concentrated. At this point, germanium oxide 0.
After adding 026 g and continuing the reaction at 200 ° C. for 2 hours,
Reduce pressure to 20 mmHg in 30 minutes for 1 hour, then 5 m
The reaction was performed at mHg and 1 mmHg for 2 hours each. By taking out the molten polymer, colorless and transparent polylactic acid was obtained. This polymer had no melting point, was amorphous, had a glass transition temperature of 54 ° C., and had a reduced viscosity of 0.74. During the reaction, a small amount of a side reaction product was observed along with water, and this substance was lactide, which is a cyclic dimer of lactic acid.
【0016】比較例3〜9 触媒を変えた以外は、実施例4と全く同様の操作を行
い、ポリ乳酸を合成した。その結果を表1に示す。Comparative Examples 3 to 9 Polylactic acid was synthesized in the same manner as in Example 4 except that the catalyst was changed. The results are shown in Table 1.
【表1】 前記表1に示したようにゲルマニウムを触媒として用い
ることにより、副反応物であるラクチドの留出を抑制
し、高分子量のポリ乳酸が得られることが判る。[Table 1] As shown in Table 1, it can be seen that by using germanium as a catalyst, the distillation of lactide, which is a by-product, is suppressed, and high molecular weight polylactic acid is obtained.
【0017】実施例5 実施例1と同様の反応容器に、グリコール酸50g、
(L−)3−ヒドロキシ酪酸10g、酸化ゲルマニウム
0.034gを投入し、180℃で2時間反応した後、
減圧度を高め、最終的に1mmHg、200℃で4時間
反応させた。取りだしたポリマーは淡黄色であり、還元
粘度0.68であった。Example 5 In a reaction vessel similar to Example 1, 50 g of glycolic acid,
(L-) 3-Hydroxybutyric acid (10 g) and germanium oxide (0.034 g) were added and reacted at 180 ° C. for 2 hours.
The degree of reduced pressure was increased, and finally the reaction was performed at 1 mmHg and 200 ° C. for 4 hours. The polymer taken out was pale yellow and had a reduced viscosity of 0.68.
【0018】[0018]
【発明の効果】以上かかる構成よりなる本発明方法を採
用することにより、オキシ酸を脱水重縮合して、副反応
を伴うことなく、高分子量の脂肪族ポリエステルを得る
ことが可能である。これらの脂肪族ポリエステルは、フ
ィルム、繊維等に成形加工されるに充分高分子量であ
り、広範囲な用途が期待できるので、産業界、また環境
保護にも寄与すること大である。By adopting the method of the present invention having the above constitution, it is possible to dehydrate polycondensate an oxyacid and obtain a high molecular weight aliphatic polyester without side reactions. These aliphatic polyesters have a sufficiently high molecular weight so that they can be molded into films, fibers and the like, and can be expected to have a wide range of applications, and therefore they greatly contribute to industry and environmental protection.
Claims (1)
脂肪族ポリエステルを製造する際に、ゲルマニウム化合
物存在下で、不活性ガス気流下または減圧下で加熱脱水
することを特徴とする脂肪族ポリエステルの製造方法。1. By dehydration polycondensation of an oxy acid,
A method for producing an aliphatic polyester, which comprises heating and dehydrating an aliphatic polyester in the presence of a germanium compound under an inert gas stream or under reduced pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22873991A JPH0543665A (en) | 1991-08-13 | 1991-08-13 | Production of aliphatic polyester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22873991A JPH0543665A (en) | 1991-08-13 | 1991-08-13 | Production of aliphatic polyester |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0543665A true JPH0543665A (en) | 1993-02-23 |
Family
ID=16881066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22873991A Pending JPH0543665A (en) | 1991-08-13 | 1991-08-13 | Production of aliphatic polyester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0543665A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0664309A2 (en) * | 1994-01-21 | 1995-07-26 | Shimadzu Corporation | Method for producing polylactic acid |
JPH09249477A (en) * | 1996-03-14 | 1997-09-22 | Yuukishitsu Hiryo Seibutsu Kassei Riyou Gijutsu Kenkyu Kumiai | Granular fertilizer coated with collapsible coating film |
EP0953589A3 (en) * | 1998-04-28 | 2001-05-02 | Mitsui Chemicals, Inc. | Process for preparing aliphatic hydroxycarboxylic acid polyesters |
JP2002249556A (en) * | 2001-02-27 | 2002-09-06 | Asahi Kasei Corp | Molded article for packaging |
JP2004137490A (en) * | 2002-09-24 | 2004-05-13 | Asahi Kasei Chemicals Corp | Glycolic acid copolymer and method for producing the same |
JP2009024179A (en) * | 2003-11-06 | 2009-02-05 | Mitsubishi Chemicals Corp | Polyester |
-
1991
- 1991-08-13 JP JP22873991A patent/JPH0543665A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0664309A2 (en) * | 1994-01-21 | 1995-07-26 | Shimadzu Corporation | Method for producing polylactic acid |
EP0664309A3 (en) * | 1994-01-21 | 1996-03-27 | Shimadzu Corp | Method for producing polylactic acid. |
JPH09249477A (en) * | 1996-03-14 | 1997-09-22 | Yuukishitsu Hiryo Seibutsu Kassei Riyou Gijutsu Kenkyu Kumiai | Granular fertilizer coated with collapsible coating film |
EP0953589A3 (en) * | 1998-04-28 | 2001-05-02 | Mitsui Chemicals, Inc. | Process for preparing aliphatic hydroxycarboxylic acid polyesters |
JP2002249556A (en) * | 2001-02-27 | 2002-09-06 | Asahi Kasei Corp | Molded article for packaging |
JP2004137490A (en) * | 2002-09-24 | 2004-05-13 | Asahi Kasei Chemicals Corp | Glycolic acid copolymer and method for producing the same |
JP2009024179A (en) * | 2003-11-06 | 2009-02-05 | Mitsubishi Chemicals Corp | Polyester |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009275899B2 (en) | Process for the continuous production of polyesters | |
JPH09505323A (en) | Polylactic acid production method | |
US6096855A (en) | Process for the preparation of polyhydroxy acids | |
JPH0543665A (en) | Production of aliphatic polyester | |
US8895760B2 (en) | Process for the preparation of L-lactide of high chemical yield and optical purity | |
JPH09124778A (en) | Production of polylactic acid | |
JP2015145345A (en) | METHOD FOR PRODUCING CYCLIC DIMERIC ESTER OF α-HYDROXYCARBOXYLIC ACID | |
JP4284709B2 (en) | Recycling of lactic acid by-products | |
JP3517857B2 (en) | Polylactic acid production method | |
JPH10158370A (en) | Production of polylactic acid | |
EP2209772B1 (en) | Method for producing cyclic diesters of l-, d- and d, l-lactic acid | |
JP3517856B2 (en) | Polylactic acid production method | |
JPH10287735A (en) | Polylactic acid composition, production thereof, and molded article prepared therefrom | |
JP3248597B2 (en) | Method for producing aliphatic polyester | |
JPH0616790A (en) | Aliphatic polyester and its production | |
JP3409441B2 (en) | Method for producing aliphatic polyester | |
JPH06345856A (en) | Production of aliphatic polyester | |
JPH09151244A (en) | Production of polylactic acid | |
KR102198137B1 (en) | A method for preparation of lactide using metal sulfite as a depolymerization catalyst | |
JP3248595B2 (en) | Production method of aliphatic polyester | |
JPH09327625A (en) | Lactide catalyst and preparation of lactide | |
JPH06329774A (en) | Production process of poly(hydroxyalkanoate) | |
WO2024160884A1 (en) | Process for producing a polymeso-lactide | |
JPH08295726A (en) | Aliphatic polyester and its production | |
JP2001181273A (en) | Method for producing glycolides |