JP2002237469A - Method for forming metal gate of semiconductor element - Google Patents

Method for forming metal gate of semiconductor element

Info

Publication number
JP2002237469A
JP2002237469A JP2001393197A JP2001393197A JP2002237469A JP 2002237469 A JP2002237469 A JP 2002237469A JP 2001393197 A JP2001393197 A JP 2001393197A JP 2001393197 A JP2001393197 A JP 2001393197A JP 2002237469 A JP2002237469 A JP 2002237469A
Authority
JP
Japan
Prior art keywords
gate
film
source
metal
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001393197A
Other languages
Japanese (ja)
Inventor
Daikei Boku
大 奎 朴
Kozai Cho
興 在 趙
Kwan Yong Lim
寛 容 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of JP2002237469A publication Critical patent/JP2002237469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a metal gate which can prevent the degradation of a characteristic of a gate insulating film. SOLUTION: The method includes steps of providing a silicon substrate having a trench type element isolation film for definition of an active region; forming a gate insulating film on the substrate by a thermal oxidation process; sequentially depositing a barrier metal film and a gate metal film on the gate insulating film; and patterning the gate metal film, barrier metal film, and gate insulating film. The deposition of the barrier metal film and gate metal film is carried out by an atom layer deposition(ALD) and/or by a remote plasma chemical vapor deposition process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子の金属ゲ
ート形成方法に関し、特にゲート絶縁膜の特性低下を防
止することが可能な半導体素子の金属ゲート形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a metal gate of a semiconductor device, and more particularly to a method of forming a metal gate of a semiconductor device capable of preventing deterioration of characteristics of a gate insulating film.

【0002】[0002]

【従来の技術】周知の如く、MOSFETにおけるゲー
ト絶縁膜の材料としては、熱酸化によるシリコン酸化膜
SiO2が、ゲートの材料としてはポリシリコン膜が主
に用いられてきた。ところで、半導体素子の集積度が増
加するにつれて、ゲートの線幅は勿論、ゲート絶縁膜の
膜厚減少が共に要求されている。しかし、ゲート絶縁膜
の材料としてシリコン酸化膜が用いられる場合、ゲート
絶縁膜の膜厚が薄すぎるとと、前記ゲート絶縁膜を介し
てダイレクトトンネリング(direct tunneling)による漏
洩電流が大きくなるため、結果として素子特性が不安定
になる。
2. Description of the Related Art As is well known, a silicon oxide film SiO 2 formed by thermal oxidation has been mainly used as a material of a gate insulating film in a MOSFET, and a polysilicon film has been mainly used as a material of a gate. By the way, as the degree of integration of semiconductor elements increases, not only the line width of the gate but also the thickness of the gate insulating film must be reduced. However, when a silicon oxide film is used as the material of the gate insulating film, if the thickness of the gate insulating film is too small, the leakage current due to direct tunneling through the gate insulating film (direct tunneling) increases, and as a result, As a result, the device characteristics become unstable.

【0003】例えば、現在量産中のDRAM及び論理素
子のゲート絶縁膜としてシリコン酸化膜を70nmテク
ノロジー(technology)素子に適用するに際して、DRA
Mの場合には30〜35Å程度の厚さが、論理素子の場
合には13〜15Å程度の厚さが予想されるところ、ゲ
ートポリデプレション(gate poly depletion)によって
増加するキャパシタ成分が3〜8Å程度までとなり、1
5〜30Å程度のゲート酸化膜の占める電気的な厚さ
(Teff)を減少させるには困難であった。
For example, when a silicon oxide film is applied to a 70-nm technology device as a gate insulating film of a DRAM and a logic device currently mass-produced, a DRA is used.
In the case of M, a thickness of about 30 to 35 ° is expected, and in the case of a logic element, a thickness of about 13 to 15 ° is expected. However, a capacitor component which increases due to gate poly depletion is 3 to 35 °. Up to about 8Å
It has been difficult to reduce the electrical thickness (Teff) occupied by the gate oxide film of about 5 to 30 °.

【0004】従って、かかる問題を克服するための方法
の一環として、最近はシリコン酸化膜より相対的に誘電
率の高い高誘電物質をゲート絶縁膜の材料として用いる
研究が行われている。また、ポリゲートデプレションを
最小化するためにポリゲートの代わりに金属ゲートを利
用しようとする研究が行われている。
Therefore, as a part of a method for overcoming such a problem, recently, a study has been conducted using a high dielectric substance having a higher dielectric constant than a silicon oxide film as a material of a gate insulating film. In addition, research has been conducted to use a metal gate instead of a poly gate to minimize poly gate depletion.

【0005】前記金属ゲートの場合、ゲート用金属膜と
ゲート絶縁膜との間にはバリヤ金属としてTiNまたは
WN膜が介在され、ゲート用金属膜上にはエッチングマ
スクとして用いるためのハードマスク膜が配置される。
In the case of the metal gate, a TiN or WN film as a barrier metal is interposed between the gate metal film and the gate insulating film, and a hard mask film for use as an etching mask is formed on the gate metal film. Be placed.

【0006】ところが、従来の技術によってシリコン酸
化膜材質のゲート絶縁膜上に金属ゲートを形成する場合
には、次のようにゲート絶縁膜の特性の低下が生ずると
いう問題点がある。
However, when a metal gate is formed on a gate insulating film made of a silicon oxide film by a conventional technique, there is a problem that the characteristics of the gate insulating film deteriorate as follows.

【0007】通常、ゲート用金属膜の蒸着はスパッタリ
ング(sputtering)またはCVD工程によって行われる
が、この際、前記ゲート用金属膜、特にバリヤ金属膜を
ゲート酸化膜上に直接蒸着する場合、前記ゲート絶縁膜
の界面特性及び絶縁特性の低下が生ずる。
Usually, the deposition of the gate metal film is performed by sputtering or a CVD process. In this case, when the gate metal film, particularly, the barrier metal film is directly deposited on the gate oxide film, the gate metal film is deposited. The interface characteristics and insulating characteristics of the insulating film are reduced.

【0008】図1a及び図1bは従来の技術によってス
パッタリングを用いてシリコン酸化膜からなるゲート絶
縁膜上に直接バリヤ金属膜としてTiNまたはWN膜を
使用し、ゲート用金属膜としてタングステン(W)膜を
順次蒸着した場合におけるMOSキャパシタのC-V(Ca
pacitance-Voltage)曲線を示すグラフである。
FIGS. 1A and 1B show a conventional technique in which a TiN or WN film is directly used as a barrier metal film on a gate insulating film made of a silicon oxide film by sputtering, and a tungsten (W) film is used as a gate metal film. Are sequentially deposited, the CV (Ca
3 is a graph showing a pacitance-voltage curve.

【0009】同図に示すように、シリコン酸化膜からな
るゲート絶縁膜上にバリヤ金属膜(TiNまたはWN)
とタングステン膜を連続して蒸着する場合、後続の熱工
程が行われていない状態では、C-V特性が蒸着物質
(TiNまたはWN)及びスパッタリング法(IMP, coll
imated, conventional)に大きく拘ることなく、ハンプ
(hump)とヒステリシス(hysteresis)によって1E12/
eV-cm2程度の過度なインタフェーストラップ密度(i
nterface trap density)と1E12/cm2程度の酸化
物トラップチャージ(oxide trap charge)が現れる。こ
れにより、酸化物ディフェクトチャージがハイレベルに
なり、ゲート絶縁膜自体の損傷は勿論、基板との界面に
おいて望ましくない損傷を生じさせる。
As shown in FIG. 1, a barrier metal film (TiN or WN) is formed on a gate insulating film made of a silicon oxide film.
In the case where a tungsten film is continuously deposited, a CV characteristic is determined by a deposition material (TiN or WN) and a sputtering method (IMP, coll) when a subsequent thermal process is not performed.
imated, conventional)
(Hump) and hysteresis (1E12 /
Excessive interface trap density of eV-cm 2 (i
An oxide trap charge of about 1E12 / cm 2 appears. As a result, the oxide defect charge becomes high level, causing not only damage to the gate insulating film itself but also undesirable damage at the interface with the substrate.

【0010】一方、前述した損傷は800℃以上の高温
熱工程によってある程度治癒することができるが、完璧
なゲート絶縁膜の損傷回復は期待することができない。
特に、高温の熱工程を行わなければならないという工程
上の短所、及びゲート絶縁膜の電気的の厚さ(Tef
f)が増加するという短所がある。
On the other hand, the above-mentioned damage can be healed to some extent by a high-temperature heating step of 800 ° C. or more, but complete recovery of the damage of the gate insulating film cannot be expected.
In particular, a disadvantage in that a high-temperature thermal process must be performed, and the electrical thickness of the gate insulating film (Tef)
f) has the disadvantage of increasing.

【0011】図2a及び図2cは650℃の高温でTi
Cl4+HN3の熱分解方式で蒸着されたTiN金属ゲー
トにおけるC-V曲線を示すグラフである。
FIGS. 2a and 2c show the results at high temperatures of 650 ° C.
4 is a graph showing a CV curve of a TiN metal gate deposited by a thermal decomposition method of Cl 4 + HN 3 .

【0012】同図に示すように、蒸着後のMOSトラン
ジスタの特性は、スパッタリング法によって蒸着された
ものより相対的に良好である。しかし、後続する熱工程
の後、ゲート絶縁膜の電気的厚さ(Teff)の増加と
酸化物トラップチャージの増加、即ちヒステリシスの増
加によってGOI(Gate Oxide Integrity)の特性劣化が
来され、特にMOSキャパシタトランジスタの製造時に
無視できない特性劣化が生ずる虞がある。
As shown in FIG. 1, the characteristics of the MOS transistor after the deposition are relatively better than those deposited by the sputtering method. However, after a subsequent thermal process, an increase in the electrical thickness (Teff) of the gate insulating film and an increase in the oxide trap charge, that is, an increase in the hysteresis, degrade the characteristics of GOI (Gate Oxide Integrity). There is a possibility that characteristic degradation that cannot be ignored during the production of the capacitor transistor may occur.

【0013】[0013]

【発明が解決しようとする課題】従って、本発明は、か
かる問題点を解決するためのもので、その目的はゲート
絶縁膜の特性低下を防止することが可能な金属ゲート形
成方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method of forming a metal gate capable of preventing a deterioration in characteristics of a gate insulating film. It is in.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の金属ゲート形成方法は、アクティブ領域を
限定するトレンチ型の素子分離膜が備えられたシリコン
基板を提供する段階と、前記シリコン基板の表面上に熱
酸化工程によってゲート絶縁膜を形成する段階と、前記
ゲート絶縁膜上にバリヤ金属膜とゲート用金属膜を順次
蒸着する段階と、前記ゲート用金属膜、バリヤ金属膜及
びゲート絶縁膜をパターニングする段階とを含み、前記
バリヤ金属膜とゲート用金属膜の蒸着は原子層成長(Ato
mic layer deposition:ALD)工程、またはリモート
プラズマCVD工程で行うことを特徴とする。
In order to achieve the above object, a method of forming a metal gate according to the present invention comprises the steps of providing a silicon substrate provided with a trench type element isolation film defining an active region; Forming a gate insulating film on the surface of the silicon substrate by a thermal oxidation process, sequentially depositing a barrier metal film and a gate metal film on the gate insulating film; and forming the gate metal film, the barrier metal film and Patterning a gate insulating film, wherein the deposition of the barrier metal film and the gate metal film is performed by atomic layer growth (Ato).
(mic layer deposition: ALD) process or a remote plasma CVD process.

【0015】本発明によれば、バリヤ金属膜とゲート用
金属膜をALD工程またはリモートプラズマCVD工程
で蒸着するため、前記膜の蒸着過程中に発生する虞のあ
るゲート絶縁膜の損傷を最大限抑制することができる。
According to the present invention, since the barrier metal film and the gate metal film are deposited by the ALD process or the remote plasma CVD process, damage to the gate insulating film which may occur during the deposition process of the film is minimized. Can be suppressed.

【0016】[0016]

【発明の実施の形態】以下、本発明を添付図に基づいて
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

【0017】図3a乃至図3cは本発明の実施例による
金属ゲート形成方法を説明するための各工程別断面図で
ある。
FIGS. 3A through 3C are cross-sectional views illustrating a method of forming a metal gate according to an embodiment of the present invention.

【0018】図3aを参照すると、シリコン基板1を用
意し、前記シリコン基板1の所定の領域にアクティブ領
域を限定するトレンチ型の素子分離膜2を形成する。こ
の際、前記素子分離膜2は公知のLOCOS工程で形成
することも可能である。前記シリコン基板1の表面上に
熱酸化工程によって厚さ10〜40Åのシリコン酸化膜
からなるゲート絶縁膜3を形成する。この際、前記熱酸
化工程は650〜900℃のファーネス(furnace)で湿
式(H2/O2)または乾式(O2)方式で行うことが好
ましい。
Referring to FIG. 3A, a silicon substrate 1 is prepared, and a trench type element isolation film 2 for defining an active region is formed in a predetermined region of the silicon substrate 1. At this time, the device isolation film 2 can be formed by a known LOCOS process. A gate insulating film 3 made of a silicon oxide film having a thickness of 10 to 40 ° is formed on the surface of the silicon substrate 1 by a thermal oxidation process. In this case, the thermal oxidation process is preferably performed in a furnace at 650 to 900 ° C. by a wet (H 2 / O 2 ) or dry (O 2 ) method.

【0019】一方、前記ゲート絶縁膜3として前記熱酸
化工程によるシリコン酸化膜の代わりに、Al23、T
25、TiO2、ZrO2、HfO2、Zr-シリケー
ト、Hf-シリケート、La23、及び3次元系混合絶
縁膜(ZrAlO、HfAlO、ZrSiO4、HfS
iO4)の中から選択されたいずれかの高誘電絶縁膜を
形成することも可能である。また、前記高誘電絶縁膜の
蒸着の前に超薄膜(ultra thin)のシリコン酸化膜を形成
することも可能である。しかも、前記高誘電絶縁膜をゲ
ート絶縁膜として用いる場合、その特性改善のために、
酸素、窒素又は非活性雰囲気で10〜300秒間の急速
熱工程、或いは10〜100分間のファーネス工程を用
いてアニーリングを行うことができると共に、UV-オ
ゾン処理を行うこともできる。
On the other hand, instead of the silicon oxide film formed by the thermal oxidation step as the gate insulating film 3, Al 2 O 3 , T
a 2 O 5 , TiO 2 , ZrO 2 , HfO 2 , Zr-silicate, Hf-silicate, La 2 O 3 , and three-dimensional mixed insulating film (ZrAlO, HfAlO, ZrSiO 4 , HfS
It is also possible to form any high dielectric insulating film selected from iO 4 ). It is also possible to form an ultra-thin silicon oxide film before depositing the high dielectric insulating film. Moreover, when the high dielectric insulating film is used as a gate insulating film, to improve its characteristics,
Annealing can be performed using a rapid heating process for 10 to 300 seconds or a furnace process for 10 to 100 minutes in an oxygen, nitrogen or inert atmosphere, and UV-ozone treatment can also be performed.

【0020】また、図示してはいないが、前記ゲート絶
縁膜3の形成の前、トレンチ構造でキャパシタを形成す
ることもでき、この際の誘電膜としてはON膜、Ta2
5膜、Al23膜、BST膜及びSBT膜の中から選
択されるいずれかを用いることができる。
Although not shown, a capacitor having a trench structure can be formed before the gate insulating film 3 is formed. In this case, an ON film, Ta 2
Any one selected from an O 5 film, an Al 2 O 3 film, a BST film and an SBT film can be used.

【0021】図3bを参照すると、前記ゲート絶縁膜3
上にバリヤ金属膜4とゲート用金属膜5を順次蒸着し、
前記ゲート用金属膜5上にハードマスク膜6を蒸着す
る。ここで、前記バリヤ金属膜4とゲート用金属膜5
は、金属浸透(metal penetration)または注入(implanta
tion)のような効果を加えないで、高温熱分解方式でな
い蒸着工程、例えばALD工程またはリモートプラズマ
CVD工程を使用するのが好ましい。
Referring to FIG. 3B, the gate insulating film 3 is formed.
A barrier metal film 4 and a gate metal film 5 are sequentially deposited thereon,
A hard mask film 6 is deposited on the gate metal film 5. Here, the barrier metal film 4 and the gate metal film 5 are used.
Means metal penetration or injection (implanta
It is preferable to use a deposition process that is not a high-temperature pyrolysis method, such as an ALD process or a remote plasma CVD process, without adding an effect as described above.

【0022】ここで、前記ALD工程は150〜350
℃でサイクリックドージング(cyclic dosing)またはパ
ージング(purging)による蒸着が可能なので、ゲート絶
縁膜3と基板1間の界面及び前記ゲート絶縁膜3自体の
特性劣化を防止することができる。前記ALD工程の
際、前駆体(precursor)をパージングする物質として、
2、NH3またはND3のいずれかを使用し、温度50
〜550℃(より好ましくは50〜450℃)、圧力
0.05〜3Torrの条件で行うことが好ましい。
Here, the ALD process is performed at 150 to 350.
Since deposition by cyclic dosing or purging can be performed at a temperature of ° C., the interface between the gate insulating film 3 and the substrate 1 and the characteristic deterioration of the gate insulating film 3 itself can be prevented. At the time of the ALD step, as a substance for purging a precursor (precursor),
Using either N 2 , NH 3 or ND 3 , at a temperature of 50
550 ° C. (more preferably 50 ° C. to 450 ° C.) and a pressure of 0.05 to 3 Torr.

【0023】前記リモートプラズマCVD工程は、遠距
離でプラズマを形成して薄膜を蒸着するため、前記AL
D工程と同一の効果を得ることができる。前記リモート
プラズマCVD工程の際、プラズマソースとしてECR
(Electron cyclotron Resonance)を使用し、周波数を
2.0〜9GHzとし、プラズマ励起ガスとしてHe、
Ar、KrまたはXeを使用することが好ましい。ま
た、前記リモートプラズマCVD工程の際、Tiのよう
な金属ソースのチャンバー内への注入はウェーハの付近
から噴射し、Nのソースはプラズマの付近で励起させて
ウェーハの付近に導入されるようにする。
In the remote plasma CVD process, a plasma is formed at a long distance to deposit a thin film.
The same effect as in the step D can be obtained. In the remote plasma CVD process, ECR is used as a plasma source.
(Electron cyclotron Resonance), the frequency was 2.0 to 9 GHz, and He,
It is preferred to use Ar, Kr or Xe. In the remote plasma CVD process, a metal source such as Ti is injected into the chamber from the vicinity of the wafer, and the N source is excited near the plasma to be introduced near the wafer. I do.

【0024】一方、前記バリヤ金属膜4は、TiN、T
iAlN、TaN、MoN及びWNからなる群より選択
されるいずれか一つで形成され、その厚さは50〜50
0Åにするのが好ましい。また、前記ゲート用金属膜5
はW、Ta、Al、TiSix、CoSix及びNiS
ixの中から選択されるいずれか一つで形成し、或いは
ポリシリコン、タングステン窒化膜及びタングステン膜
の積層構造(poly-Si/WN/W)で形成し、その厚さは300
〜1,500Å程度とするのが好ましい。前記ハードマ
スク膜6はシリコン酸化膜SiO2、シリコン窒化膜S
34またはシリコン窒酸化膜SiONで形成し、30
0〜2,000Å程度の厚さにする。
On the other hand, the barrier metal film 4 is made of TiN, T
iN, TaN, MoN, and WN.
Preferably, it is 0 °. The gate metal film 5
Are W, Ta, Al, TiSix, CoSix and NiS
ix, or a stacked structure of polysilicon, tungsten nitride film and tungsten film (poly-Si / WN / W), the thickness of which is 300
It is preferable that the angle be about 1,500 °. The hard mask film 6 includes a silicon oxide film SiO 2 and a silicon nitride film S
formed of i 3 N 4 or silicon oxynitride film SiON,
The thickness is about 0 to 2,000 mm.

【0025】前記において、ALD工程及び/またはリ
モートプラズマCVD工程でバリヤ金属膜、例えばTi
Nの蒸着時には、TiのソースとしてTiCl4、TD
EATまたはTDMATのいずれか一つを使用し、Nの
ソースとしてはN2、NH3またはND3のいずれか一つ
を使用する。また、バリヤ金属膜としてTiAlNを蒸
着する場合、TiのソースとしてはTiCl4、TDE
ATまたはTDMATのいずれか一つを使用し、Nのソ
ースとしてはN2、NH3またはND3のいずれか一つを
使用し、AlのソースとしてはAlCl3またはTMA
[Al(CH3)3]を使用する。しかも、バリヤ金属膜とし
てTaNを蒸着する場合、TaのソースとしてはTaC
4またはTa tert-butoxide(タート−ブトキシド)
を使用し、NのソースとしてはN2、NH3またはND3
のいずれか一つを使用する。また、バリヤ金属膜として
MoNを蒸着する場合、MoのソースとしてはMoCl
4、MoF6またはMo tert-butoxide(タート−ブトキ
シド)を使用し、NのソースとしてはN2、NH3または
ND3のいずれか一つを使用する。バリヤ金属膜として
WNを蒸着する場合、WのソースとしてはWF6または
WCl4を使用し、NのソースとしてはN2、NH3また
はND3のいずれか一つを使用する。
In the above, a barrier metal film such as Ti is used in the ALD process and / or the remote plasma CVD process.
During the deposition of N, TiCl 4 , TD
One of EAT or TDMAT is used, and one of N 2 , NH 3 and ND 3 is used as a source of N. When TiAlN is deposited as a barrier metal film, TiCl 4 , TDE
One of AT or TDMAT is used, one of N 2 , NH 3 or ND 3 is used as a source of N, and AlCl 3 or TMA is used as a source of Al.
[Al (CH 3 ) 3 ] is used. Moreover, when TaN is deposited as a barrier metal film, TaC is used as a Ta source.
l 4 or Ta tert-butoxide (Start - butoxide)
And the source of N is N 2 , NH 3 or ND 3
Use any one of When MoN is deposited as a barrier metal film, the source of Mo is MoCl.
4 , MoF 6 or Mo tert-butoxide is used, and one of N 2 , NH 3 and ND 3 is used as a source of N. When WN is deposited as a barrier metal film, WF 6 or WCl 4 is used as a source of W, and any one of N 2 , NH 3 or ND 3 is used as a source of N.

【0026】図3cを参照すると、公知のフォトリソグ
ラフィ工程で前記ハードマスク膜6をパターニングす
る。その後、エッチングマスクとしてパターニングされ
たハードマスク膜6を用いたエッチング工程によって前
記ゲート用金属膜5、バリヤ膜4及びゲート絶縁膜3を
連続的にエッチングし、本発明による金属ゲート10を
形成する。
Referring to FIG. 3C, the hard mask film 6 is patterned by a known photolithography process. Thereafter, the gate metal film 5, the barrier film 4 and the gate insulating film 3 are successively etched by an etching process using a patterned hard mask film 6 as an etching mask to form a metal gate 10 according to the present invention.

【0027】このような工程によって形成される本発明
の金属ゲート10は、バリヤ金属膜4を含んだゲート用
金属膜5がALD工程またはリモートプラズマCVD工
程で蒸着されることに起因して、シリコン酸化膜からな
るゲート絶縁膜3の特性低下を防止することができる。
The metal gate 10 of the present invention formed by the above-described process is characterized in that the gate metal film 5 including the barrier metal film 4 is deposited by the ALD process or the remote plasma CVD process. It is possible to prevent the characteristics of the gate insulating film 3 made of an oxide film from being lowered.

【0028】一方、前述した実施例では、典型的なゲー
ト形成工程、即ちゲート絶縁膜とゲート用導電膜を蒸着
した後パターニングすることによりゲートを形成する工
程について説明したが、犠牲ゲートの形成及び除去によ
ってゲート形成領域を限定した後、前記ゲート形成領域
に金属ゲートを形成するダマシン(damascene)工程にも
適用可能であり、特にバリヤ金属膜トゲート用金属膜の
蒸着にALD工程またはリモートプラズマCVD工程を
用いる本発明の方法を、ダマシン工程を用いたゲート形
成工程に適用する場合、より向上した効果を得ることが
できる。
On the other hand, in the above-described embodiment, a typical gate forming step, that is, a step of forming a gate by depositing a gate insulating film and a conductive film for a gate and then patterning the same, has been described. After the gate formation region is limited by the removal, the present invention can be applied to a damascene process of forming a metal gate in the gate formation region. In the case where the method of the present invention is applied to a gate forming step using a damascene process, more improved effects can be obtained.

【0029】[0029]

【発明の効果】以上述べたように、本発明は、金属ゲー
トを形成するが、バリヤ金属膜とゲート用金属膜の蒸着
をALD工程またはリモートプラズマCVD工程で行う
ことにより、ゲート絶縁膜の特性低下を防止することが
できるから、金属ゲートの特性は勿論のこと、素子の特
性を向上させることができる。さらに、前記ALD工程
及びリモートプラズマCVD工程はステップカバレージ
(step coverage)に優れるから、それ自体で工程上の利
点がある。従って、高速/高密度素子の製造に極めて有
利に適用することができる。
As described above, according to the present invention, the metal gate is formed. By depositing the barrier metal film and the metal film for the gate by the ALD process or the remote plasma CVD process, the characteristics of the gate insulating film can be improved. Since the lowering can be prevented, not only the characteristics of the metal gate but also the characteristics of the element can be improved. Further, the ALD process and the remote plasma CVD process are step coverage.
(step coverage), there is an advantage in the process itself. Therefore, it can be very advantageously applied to the production of high-speed / high-density elements.

【0030】その他、本発明はその要旨から離脱しない
範囲内で、様々に変更して実施することができる。
In addition, the present invention can be variously modified and implemented without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)はそれぞれ、従来の技術によってス
パッタリングを用いてシリコン酸化膜上に直接TiNま
たはWN膜とW膜を蒸着した場合におけるC-V曲線を
示すグラフである。
FIGS. 1A and 1B are graphs showing CV curves when a TiN or WN film and a W film are directly deposited on a silicon oxide film by sputtering using a conventional technique.

【図2】(a)乃至(c)はそれぞれ、従来の技術によって6
50℃でTiCl4+NH3の熱分解方式で蒸着されたT
iN金属ゲートにおけるC-V曲線を示すグラフであ
る。
FIGS. 2 (a) to 2 (c) each show 6 figures according to a conventional technique.
T deposited by pyrolysis of TiCl 4 + NH 3 at 50 ° C.
It is a graph which shows the CV curve in an iN metal gate.

【図3】(a)乃至(c)はそれぞれ、本発明の実施例による
金属ゲート形成方法を説明するための各工程別断面図で
ある。
FIGS. 3A to 3C are cross-sectional views for explaining a method of forming a metal gate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 素子分離膜 3 ゲート絶縁膜 4 バリヤ金属膜 5 ゲート用金属膜 6 ハードマスク膜 10 金属ゲート DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 Element isolation film 3 Gate insulating film 4 Barrier metal film 5 Metal film for gate 6 Hard mask film 10 Metal gate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 (72)発明者 林 寛 容 大韓民国 京畿道 水原市 八達邑 霊通 洞 ファンコルマウルジョッコンアパート メント 139−1001 Fターム(参考) 4M104 BB01 BB02 BB17 BB18 BB20 BB21 BB25 BB30 BB31 BB32 BB33 BB36 CC05 FF18 GG09 GG14 GG16 5F083 AD01 AD15 GA09 GA27 JA02 JA03 JA06 JA12 JA13 JA14 JA35 JA36 JA39 JA40 NA01 PR12 PR21 PR22 PR34 PR40 5F140 AA00 AA01 AA39 AB09 AC32 AC33 BA01 BD01 BD05 BD11 BD12 BD13 BE07 BE09 BE13 BE17 BE18 BE19 BE20 BF04 BF10 BF11 BF15 BF17 BF18 BF20 BF21 BF27 BG01 BG27 BG28 BG36 BG39 CB01 CB04──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme Court ゛ (Reference) H01L 29/78 (72) Inventor Hiroshi Hayashi Republic of Korea Condominium 139-1001 F-term (reference) 4M104 BB01 BB02 BB17 BB18 BB20 BB21 BB25 BB30 BB31 BB32 BB33 BB36 CC05 FF18 GG09 GG14 GG16 5F083 AD01 AD15 GA09 GA27 JA02 JA03 JA06 JA12 JA13 PR14 5F140 AA00 AA01 AA39 AB09 AC32 AC33 BA01 BD01 BD05 BD11 BD12 BD13 BE07 BE09 BE13 BE17 BE18 BE19 BE20 BF04 BF10 BF11 BF15 BF17 BF18 BF20 BF21 BF27 BG01 BG27 BG28 BG36 BG39 CB01 CB04

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 アクティブ領域を限定するトレンチ形の
素子分離膜が備えられたシリコン基板を提供する段階
と、 前記シリコン基板の表面上に熱酸化工程によってゲート
絶縁膜を形成する段階と、 前記ゲート絶縁膜上にバリヤ金属膜とゲート用金属膜を
順次蒸着する段階と、 前記ゲート用金属膜、バリヤ金属膜及びゲート絶縁膜を
パターニングする段階とを含み、 前記バリヤ金属膜とゲート用金属膜の蒸着は原子層成長
(ALD)工程及び/またはリモートプラズマ化学気相
成長(RPCVD)工程で行うことを特徴とする半導体
素子の金属ゲート形成方法。
Providing a silicon substrate provided with a trench-type device isolation film defining an active region; forming a gate insulating film on a surface of the silicon substrate by a thermal oxidation process; A step of sequentially depositing a barrier metal film and a gate metal film on an insulating film; and a step of patterning the gate metal film, the barrier metal film and the gate insulating film. A method of forming a metal gate for a semiconductor device, wherein the deposition is performed by an atomic layer deposition (ALD) process and / or a remote plasma enhanced chemical vapor deposition (RPCVD) process.
【請求項2】 前記熱酸化工程は、650〜900℃の
ファーネスで湿式(H2/O2)または乾式(O2)方式
で行うことを特徴とする請求項1記載の半導体素子の金
属ゲート形成方法。
2. The metal gate of claim 1, wherein the thermal oxidation process is performed in a wet (H 2 / O 2 ) or dry (O 2 ) mode at a furnace temperature of 650 to 900 ° C. Forming method.
【請求項3】 前記バリヤ金属膜はTiN、TiAl
N、TaN、MoN及びWNからなる群より選択される
いずれか一つであることを特徴とする請求項1記載の半
導体素子の金属ゲート形成方法。
3. The barrier metal film is formed of TiN, TiAl.
2. The method according to claim 1, wherein the metal gate is selected from the group consisting of N, TaN, MoN, and WN.
【請求項4】 前記原子層成長(ALD)工程は、前駆
体をパージングする物質としてN2、NH3またはND3
の中からいずれか一つを使用し、温度50〜450℃、
圧力0.05〜3Torrの条件で行うことを特徴とす
る請求項1記載の半導体素子の金属ゲート形成方法。
4. An atomic layer deposition (ALD) step, wherein N 2 , NH 3 or ND 3 is used as a substance for purging a precursor.
Using any one of the temperature of 50 ~ 450 ℃,
2. The method according to claim 1, wherein the method is performed under a pressure of 0.05 to 3 Torr.
【請求項5】 前記リモートプラズマ化学気相成長(R
PCVD)工程は、プラズマソースとしてECR(Elect
ron Cyclotron Resonance)を使用し、周波数を2.0〜
9GHzとし、プラズマ励起ガスとしてHe、Ar、K
rまたはXeを使用することを特徴とする請求項1記載
の半導体素子の金属ゲート形成方法。
5. The remote plasma enhanced chemical vapor deposition (R)
In the PCVD (Electro-Chemical Vapor Deposition) process, ECR (Elect
ron Cyclotron Resonance) and change the frequency to 2.0
9 GHz, He, Ar, K as plasma excitation gas
2. The method of claim 1, wherein r or Xe is used.
【請求項6】 前記TiNの蒸着時、Tiのソースとし
てはTiCl4、TDEATまたはTDMATのいずれ
か一つを使用し、NのソースとしてはN2、NH3または
ND3のいずれか一つを使用することを特徴とする請求
項3記載の半導体素子の金属ゲート形成方法。
6. When depositing TiN, any one of TiCl 4 , TDEAT or TDMT is used as a source of Ti, and any one of N 2 , NH 3 or ND 3 is used as a source of N. 4. The method according to claim 3, wherein the metal gate is used.
【請求項7】 前記TiAlNの蒸着時、Tiのソース
としてはTiCl4、TDEATまたはTDMATのい
ずれか一つを使用し、AlのソースとしてはAlC3
TMA[Al(CH3)3]を使用し、NのソースとしてはN
2、NH3またはND3のいずれか一つを使用することを
特徴とする請求項3記載の半導体素子の金属ゲート形成
方法。
7. When depositing TiAlN, any one of TiCl 4 , TDEAT, and TDDMA is used as a Ti source, and AlC 3 ,
TMA [Al (CH 3 ) 3 ] is used, and the source of N is N
2, NH 3 or a metal gate formation method of a semiconductor device according to claim 3, wherein the use of any one of the ND 3.
【請求項8】 前記TaNの蒸着時、Taのソースとし
てはTaCl4、またはTa tert-butoxideを使用し、
NのソースとしてはN2、NH3またはND3のいずれか
一つを使用することを特徴とする請求項3記載の半導体
素子の金属ゲート形成方法。
8. When TaN is deposited, TaCl 4 or Ta tert-butoxide is used as a Ta source.
Metal gate formation method of a semiconductor device according to claim 3, wherein the as the N source that uses any one of N 2, NH 3 or ND 3.
【請求項9】 前記MoNの蒸着時、Moのソースとし
てはMoCl4、MoF6、またはMo tert-butoxideを
使用し、NのソースとしてはN2、NH3またはND3
いずれか一つを使用することを特徴とする請求項3記載
の半導体素子の金属ゲート形成方法。
9. During the deposition of MoN, MoCl 4 , MoF 6 , or Mo tert-butoxide is used as a source of Mo, and one of N 2 , NH 3, or ND 3 is used as a source of N. 4. The method according to claim 3, wherein the metal gate is used.
【請求項10】 前記WNの蒸着時、Wのソースとして
はWF6またはWCl4を使用し、NのソースとしてはN
2、NH3またはND3のいずれか一つを使用することを
特徴とする請求項3記載の半導体素子の金属ゲート形成
方法。
10. The method according to claim 10, wherein WF 6 or WCl 4 is used as a source of W and N is used as a source of N during the deposition of WN.
2, NH 3 or a metal gate formation method of a semiconductor device according to claim 3, wherein the use of any one of the ND 3.
【請求項11】 前記ゲート用金属膜はW、Ta、A
l、TiSiX、CoSiX及びNiSiXの中から選択
されるいずれか一つであることを特徴とする請求項1記
載の半導体素子の金属ゲート形成方法。
11. The gate metal film is made of W, Ta, A.
2. The method as claimed in claim 1, wherein the metal gate is selected from the group consisting of l, TiSi x , CoSi x and NiSi x .
【請求項12】 前記ゲート用金属膜はポリシリコン、
タングステン窒化膜及びタングステン膜の積層構造から
なることを特徴とする請求項1記載の半導体素子の金属
ゲート形成方法。
12. The gate metal film is polysilicon,
2. The method according to claim 1, wherein the metal gate has a stacked structure of a tungsten nitride film and a tungsten film.
JP2001393197A 2000-12-29 2001-12-26 Method for forming metal gate of semiconductor element Pending JP2002237469A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2000-85582 2000-12-29
KR1020000085582A KR20020056260A (en) 2000-12-29 2000-12-29 Method for forming metal gate of semiconductor devoie

Publications (1)

Publication Number Publication Date
JP2002237469A true JP2002237469A (en) 2002-08-23

Family

ID=19703940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393197A Pending JP2002237469A (en) 2000-12-29 2001-12-26 Method for forming metal gate of semiconductor element

Country Status (5)

Country Link
US (1) US7157359B2 (en)
JP (1) JP2002237469A (en)
KR (1) KR20020056260A (en)
CN (1) CN1180458C (en)
TW (1) TW516131B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009390A1 (en) * 2001-07-10 2003-01-30 Sony Corporation Mis type transistor and its manufacturing method
JP2006019693A (en) * 2004-06-30 2006-01-19 Hynix Semiconductor Inc Gate structure of semiconductor memory device
JP2006024894A (en) * 2004-07-05 2006-01-26 Samsung Electronics Co Ltd Semiconductor device having high dielectric constant-gate insulating film, and manufacturing method of the same
JP2006097100A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006097101A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2007158065A (en) * 2005-12-06 2007-06-21 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP2008518487A (en) * 2004-11-02 2008-05-29 インテル コーポレイション Method of manufacturing a semiconductor device having a high dielectric constant gate dielectric layer and a silicide gate electrode
JP2008529274A (en) * 2005-01-26 2008-07-31 フリースケール セミコンダクター インコーポレイテッド Metal gate transistor for CMOS process and manufacturing method thereof
JP2014078734A (en) * 2005-07-20 2014-05-01 Applied Materials Inc Gate electrode structures and methods of manufacture
JP2014187104A (en) * 2013-03-22 2014-10-02 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method, substrate processing apparatus, semiconductor device, program and storage medium

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974766B1 (en) 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US6936538B2 (en) 2001-07-16 2005-08-30 Applied Materials, Inc. Method and apparatus for depositing tungsten after surface treatment to improve film characteristics
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US7101795B1 (en) 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US6511911B1 (en) 2001-04-03 2003-01-28 Advanced Micro Devices, Inc. Metal gate stack with etch stop layer
US6596643B2 (en) * 2001-05-07 2003-07-22 Applied Materials, Inc. CVD TiSiN barrier for copper integration
US6849545B2 (en) * 2001-06-20 2005-02-01 Applied Materials, Inc. System and method to form a composite film stack utilizing sequential deposition techniques
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
JP2005518088A (en) 2001-07-16 2005-06-16 アプライド マテリアルズ インコーポレイテッド Formation of tungsten composite film
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US7049226B2 (en) * 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
TW589684B (en) 2001-10-10 2004-06-01 Applied Materials Inc Method for depositing refractory metal layers employing sequential deposition techniques
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US7081271B2 (en) 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US7175713B2 (en) 2002-01-25 2007-02-13 Applied Materials, Inc. Apparatus for cyclical deposition of thin films
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
JP2003282873A (en) * 2002-03-22 2003-10-03 Sony Corp Semiconductor device and its fabricating method
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US7160577B2 (en) 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7205218B2 (en) 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
JP4643884B2 (en) 2002-06-27 2011-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7221586B2 (en) 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7186385B2 (en) 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
US6921702B2 (en) 2002-07-30 2005-07-26 Micron Technology Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US7199023B2 (en) * 2002-08-28 2007-04-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed
US7101813B2 (en) 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
US7262133B2 (en) * 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US7019351B2 (en) * 2003-03-12 2006-03-28 Micron Technology, Inc. Transistor devices, and methods of forming transistor devices and circuit devices
US7183186B2 (en) 2003-04-22 2007-02-27 Micro Technology, Inc. Atomic layer deposited ZrTiO4 films
US7316950B2 (en) * 2003-04-22 2008-01-08 National University Of Singapore Method of fabricating a CMOS device with dual metal gate electrodes
US7049192B2 (en) * 2003-06-24 2006-05-23 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
KR100543207B1 (en) * 2003-06-30 2006-01-20 주식회사 하이닉스반도체 Method for fabricating gate-electrode of semiconductor device using hardmask
US6927136B2 (en) * 2003-08-25 2005-08-09 Macronix International Co., Ltd. Non-volatile memory cell having metal nano-particles for trapping charges and fabrication thereof
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8399934B2 (en) * 2004-12-20 2013-03-19 Infineon Technologies Ag Transistor device
US7241686B2 (en) * 2004-07-20 2007-07-10 Applied Materials, Inc. Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA
US7601649B2 (en) 2004-08-02 2009-10-13 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7081421B2 (en) 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
KR100575887B1 (en) * 2004-11-08 2006-05-03 주식회사 하이닉스반도체 Method for forming capacitor of semiconductor device
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
WO2007078306A1 (en) * 2005-03-28 2007-07-12 Massachusetts Institute Of Technology HIGH K-GATE OXIDE TFTs BUILT ON TRANSPARENT GLASS OR TRANSPARENT FLEXIBLE POLYMER SUBSTRATE
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7390756B2 (en) 2005-04-28 2008-06-24 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
KR100655658B1 (en) * 2005-07-26 2006-12-08 삼성전자주식회사 Gate electrode structure and method of manufacturing the gate electrode structure, and semiconductor transistor having the gate electrode structure and method of manufacturing the semiconductor transistor
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
TW200737307A (en) 2005-11-04 2007-10-01 Applied Materials Inc Apparatus and process for plasma-enhanced atomic layer deposition
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
US20080050879A1 (en) * 2006-08-23 2008-02-28 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of forming metal-containing gate structures
US7582549B2 (en) 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US7605030B2 (en) 2006-08-31 2009-10-20 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7521379B2 (en) 2006-10-09 2009-04-21 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US7759237B2 (en) 2007-06-28 2010-07-20 Micron Technology, Inc. Method of forming lutetium and lanthanum dielectric structures
US7678298B2 (en) 2007-09-25 2010-03-16 Applied Materials, Inc. Tantalum carbide nitride materials by vapor deposition processes
US8017183B2 (en) * 2007-09-26 2011-09-13 Eastman Kodak Company Organosiloxane materials for selective area deposition of inorganic materials
US7824743B2 (en) 2007-09-28 2010-11-02 Applied Materials, Inc. Deposition processes for titanium nitride barrier and aluminum
US7732872B2 (en) * 2007-10-25 2010-06-08 International Business Machines Corporation Integration scheme for multiple metal gate work function structures
US7911008B2 (en) * 2007-10-25 2011-03-22 International Business Machines Corporation SRAM cell having a rectangular combined active area for planar pass gate and planar pull-down NFETS
US7741217B2 (en) * 2007-10-25 2010-06-22 International Business Machines Corporation Dual workfunction silicide diode
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
CN101740369B (en) * 2008-11-19 2011-12-07 中国科学院微电子研究所 Method for preparing metallic metal nitride film
CN102315117B (en) * 2010-06-30 2013-05-22 中国科学院微电子研究所 Etching method for Mo base/TaN metal grid lamination structure
CN102956450B (en) * 2011-08-16 2015-03-11 中芯国际集成电路制造(北京)有限公司 Method for manufacturing semiconductor devices
KR20140003154A (en) * 2012-06-29 2014-01-09 에스케이하이닉스 주식회사 Method for manufacturing semiconductor device
CN102842620A (en) * 2012-09-11 2012-12-26 京东方科技集团股份有限公司 Thin film transistor and manufacturing method thereof as well as array substrate and display device
KR20210055148A (en) 2019-11-06 2021-05-17 삼성전자주식회사 Semiconductor device and method of manufacturing the same
CN113690178A (en) * 2021-08-23 2021-11-23 长江先进存储产业创新中心有限责任公司 Method for manufacturing metal conductive structure
CN116454132A (en) * 2022-01-06 2023-07-18 长鑫存储技术有限公司 Semiconductor structure and manufacturing method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065852A (en) 1992-06-23 1994-01-14 Oki Electric Ind Co Ltd Mosfet and manufacture thereof
JP3336747B2 (en) * 1994-06-09 2002-10-21 ソニー株式会社 Method for forming insulating film, method for manufacturing semiconductor device, and semiconductor device
JPH09143699A (en) 1995-11-24 1997-06-03 Nissin Electric Co Ltd Treatment of base material and device therefor
US5923056A (en) * 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US6197683B1 (en) 1997-09-29 2001-03-06 Samsung Electronics Co., Ltd. Method of forming metal nitride film by chemical vapor deposition and method of forming metal contact of semiconductor device using the same
US5907780A (en) * 1998-06-17 1999-05-25 Advanced Micro Devices, Inc. Incorporating silicon atoms into a metal oxide gate dielectric using gas cluster ion beam implantation
KR100275738B1 (en) 1998-08-07 2000-12-15 윤종용 Method for producing thin film using atomatic layer deposition
KR20000015134A (en) * 1998-08-27 2000-03-15 윤종용 GATE ELECTRODE HAVING TiN ELECTRODE LAYER AND METHOD THEREOF
JP2000091269A (en) 1998-09-10 2000-03-31 Fujitsu Ltd Manufacture of semiconductor device
JP3945043B2 (en) 1998-10-12 2007-07-18 ソニー株式会社 Method for forming metal nitride film and method for manufacturing electronic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009390A1 (en) * 2001-07-10 2003-01-30 Sony Corporation Mis type transistor and its manufacturing method
JP4573653B2 (en) * 2004-06-30 2010-11-04 株式会社ハイニックスセミコンダクター Method for manufacturing gate structure of semiconductor memory device
JP2006019693A (en) * 2004-06-30 2006-01-19 Hynix Semiconductor Inc Gate structure of semiconductor memory device
JP2006024894A (en) * 2004-07-05 2006-01-26 Samsung Electronics Co Ltd Semiconductor device having high dielectric constant-gate insulating film, and manufacturing method of the same
JP4591917B2 (en) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 Method for forming conductive molybdenum nitride film
JP2006097101A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006097100A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP4592373B2 (en) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 Method for forming conductive molybdenum nitride gate electrode film
JP2008518487A (en) * 2004-11-02 2008-05-29 インテル コーポレイション Method of manufacturing a semiconductor device having a high dielectric constant gate dielectric layer and a silicide gate electrode
JP2008529274A (en) * 2005-01-26 2008-07-31 フリースケール セミコンダクター インコーポレイテッド Metal gate transistor for CMOS process and manufacturing method thereof
JP4685882B2 (en) * 2005-01-26 2011-05-18 フリースケール セミコンダクター インコーポレイテッド Semiconductor device and manufacturing method thereof
JP2014078734A (en) * 2005-07-20 2014-05-01 Applied Materials Inc Gate electrode structures and methods of manufacture
JP2007158065A (en) * 2005-12-06 2007-06-21 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP2014187104A (en) * 2013-03-22 2014-10-02 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method, substrate processing apparatus, semiconductor device, program and storage medium

Also Published As

Publication number Publication date
KR20020056260A (en) 2002-07-10
CN1180458C (en) 2004-12-15
US20020086507A1 (en) 2002-07-04
US7157359B2 (en) 2007-01-02
CN1363949A (en) 2002-08-14
TW516131B (en) 2003-01-01

Similar Documents

Publication Publication Date Title
JP2002237469A (en) Method for forming metal gate of semiconductor element
US20060205143A1 (en) DRAM with high K dielectric storage capacitor and method of making the same
KR100545706B1 (en) Semiconductor device manufacturing method
US7564114B2 (en) Semiconductor devices and methods of manufacture thereof
US20020001906A1 (en) Method of manufacturing a gate in a semiconductor device
US8039337B2 (en) Nonvolatile memory device with multiple blocking layers and method of fabricating the same
KR20060100092A (en) Method for manufacturing a semiconductor device
US7112486B2 (en) Method for fabricating semiconductor device by using radical oxidation
US6514841B2 (en) Method for manufacturing gate structure for use in semiconductor device
CN100386842C (en) Method to control interfacial properties for capacitors using a metal flash layer
KR100543207B1 (en) Method for fabricating gate-electrode of semiconductor device using hardmask
KR100671722B1 (en) Tungsten silicide nitride as an electrode for tantalum pentoxide devices
US6800907B2 (en) Method for fabricating semiconductor device
KR100555541B1 (en) Forming method for cobalt silicide layer and manufacturing method for semiconductor device using the forming method
TWI739176B (en) Forming method of structure in semiconductor device for modifying effective oxide thickness
US20020079588A1 (en) Semiconductor device and method for manufacturing the same
KR100384848B1 (en) Method for fabricating semiconductor device
KR100611386B1 (en) Method For Treating The High Temperature Of Tantalium Oxide Capacitor
KR20060058813A (en) Method for forming a gate oxide layer in non-volatile memory device and method for forming a gate pattern including the same
JP3563288B2 (en) Method for manufacturing semiconductor device
KR20060032919A (en) Chemical vapor deposition methods of forming an ohmic layer and a barrier metal layer in a semiconductor device using plasma
KR20010004045A (en) method of forming gate insulating layer for semiconductor device
KR20060013283A (en) Method for manufacturing a capacitor of a semiconductor device
KR20040001882A (en) Method for forming ruthenium and method for fabricating capacitor using the same
KR20050099113A (en) Method for forming a cylindrical capacitor in a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060627

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060721