JPH09143699A - Treatment of base material and device therefor - Google Patents

Treatment of base material and device therefor

Info

Publication number
JPH09143699A
JPH09143699A JP32960195A JP32960195A JPH09143699A JP H09143699 A JPH09143699 A JP H09143699A JP 32960195 A JP32960195 A JP 32960195A JP 32960195 A JP32960195 A JP 32960195A JP H09143699 A JPH09143699 A JP H09143699A
Authority
JP
Japan
Prior art keywords
base material
plasma
substrate
potential
intermediate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32960195A
Other languages
Japanese (ja)
Inventor
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP32960195A priority Critical patent/JPH09143699A/en
Publication of JPH09143699A publication Critical patent/JPH09143699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the etching phenomenon in any sharply projecting part of a base material from occurring without lowering the adhesion of a formed thin film to the base material or surface reforming effect on the base material in the treatment. SOLUTION: In this device, a mesh intermediate electrode 24 is placed between a base material 8 and a plasma generation section 17 that is located in the vicinity of the front surface of a cathode 16 of an arc type evaporation source 14, so as to cross the path through which ions in a plasma generated in the plasma generation section 17 move toward the base material 8. Further, the device is also provided with an intermediate electrode power source 26 for maintaining the potential of the intermediate electrode 24 at an intermediate potential value between potential values of the plasma generation section 17 and the base material 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えばイオンプ
レーティング、直流放電プラズマCVD、直流パルス電
圧印加イオン注入等の技術分野に属するものであって、
被処理物である基材に印加した負のバイアス電圧によっ
てプラズマ中のイオンを基材に向けて加速して、基材に
薄膜形成、イオン注入のような表面改質等の処理を施す
基材処理方法およびその装置に関し、より具体的には、
基材の尖った部分にイオンが集中してエッチング現象が
生じるのを抑制する手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of, for example, ion plating, DC discharge plasma CVD, DC pulse voltage application ion implantation, and the like.
Substrates that undergo treatment such as thin film formation and surface modification such as ion implantation on the substrate by accelerating the ions in the plasma toward the substrate by the negative bias voltage applied to the substrate to be treated. Regarding the processing method and the apparatus thereof, more specifically,
The present invention relates to a means for suppressing ions from concentrating on a sharp portion of a base material and causing an etching phenomenon.

【0002】[0002]

【従来の技術】この種の基材処理方法には、電子銃か
らの電子ビームによって蒸発材料を溶解させる電子銃溶
解型蒸発源を用いたイオンプレーティング、アーク放
電によって陰極を溶解させるアーク式蒸発源を用いたイ
オンプレーティング、直流放電型のプラズマCVD、
基材に直流パルス電圧を印加して周りのプラズマ中か
らイオンを引き出してそれを基材に注入する直流パルス
電圧印加イオン注入、等がある。
2. Description of the Related Art A substrate processing method of this type includes ion plating using an electron gun melting type evaporation source for melting an evaporation material by an electron beam from an electron gun, and arc evaporation for melting a cathode by arc discharge. Ion plating using a source, DC discharge type plasma CVD,
There is a DC pulse voltage application ion implantation in which a DC pulse voltage is applied to a substrate to extract ions from the surrounding plasma and implant them into the substrate.

【0003】これらの方法は、いずれも、真空容器内の
プラズマ生成部でプラズマを生成し、基材に印加した負
のバイアス電圧によってこのプラズマ中のイオンを基材
に向けて加速して、基材の表面に密着性の良い薄膜を形
成したり、基材の表面にイオン注入等の表面改質処理を
施すものである。
In all of these methods, plasma is generated in the plasma generating section in the vacuum container, and the ions in the plasma are accelerated toward the substrate by the negative bias voltage applied to the substrate to generate the plasma. A thin film having good adhesion is formed on the surface of the material, or a surface modification treatment such as ion implantation is performed on the surface of the base material.

【0004】一例として、上記のイオンプレーティン
グによる基材処理装置の例を図5に示す。この装置は、
図示しない真空排気装置によって真空排気される真空容
器2と、この真空容器2内に設けられていて被処理物で
ある基材8を保持するホルダ10と、この基材8に向く
ように真空容器2の壁面に取り付けられたアーク式蒸発
源14とを備えている。真空容器2内には、必要に応じ
て、図示しないガス源から、不活性ガス、反応ガス等の
ガス6が導入される。
As an example, FIG. 5 shows an example of a substrate processing apparatus using the above ion plating. This device is
A vacuum container 2 that is evacuated by a vacuum exhaust device (not shown), a holder 10 that is provided in the vacuum container 2 and holds a substrate 8 that is an object to be processed, and a vacuum container that faces the substrate 8. 2 and an arc type evaporation source 14 attached to the wall surface. If necessary, a gas 6 such as an inert gas or a reaction gas is introduced into the vacuum container 2 from a gas source (not shown).

【0005】アーク式蒸発源14は、所要の金属または
合金から成る陰極16を有していて、それと陽極兼用の
真空容器2との間のアーク放電によって陰極16を局部
的に溶解させて陰極物質を蒸発させるものである。この
とき、陰極16の前面近傍には、イオン化した陰極物質
を含むプラズマ18が生成される。即ち、陰極16の前
面近傍がプラズマ生成部17となる。陰極16と真空容
器2との間には、直流のアーク電源20から、前者を負
側にしてアーク放電電圧V1 が供給される。このアーク
放電電圧V1 の大きさは、例えば数十V〜数百V程度で
ある。なお、アーク起動用のトリガ電極等は図示を省略
している。
The arc evaporation source 14 has a cathode 16 made of a required metal or alloy, and the cathode 16 is locally melted by arc discharge between the cathode 16 and the vacuum container 2 which also serves as an anode. To evaporate. At this time, plasma 18 containing ionized cathode material is generated in the vicinity of the front surface of the cathode 16. That is, the vicinity of the front surface of the cathode 16 becomes the plasma generation unit 17. An arc discharge voltage V 1 is supplied between the cathode 16 and the vacuum vessel 2 from a DC arc power source 20 with the former as the negative side. The magnitude of the arc discharge voltage V 1 is, for example, about several tens V to several hundreds V. It should be noted that a trigger electrode and the like for starting the arc are not shown.

【0006】ホルダ10およびそれに保持された基材8
には、直流のバイアス電源22から、真空容器2の電位
(この例では接地電位)を基準にして負のバイアス電圧
2が印加される。このバイアス電圧V2 の大きさは、
例えば数百V〜数kV程度である。
[0006] Holder 10 and base material 8 held thereon
Is applied with a negative bias voltage V 2 from a DC bias power source 22 with reference to the potential of the vacuum container 2 (ground potential in this example). The magnitude of this bias voltage V 2 is
For example, it is about several hundred V to several kV.

【0007】処理に際しては、真空容器2内を例えば1
-6Torr程度に排気した後、真空容器2内に所要の
ガス6を導入し、そして基材8に前記のような負のバイ
アス電圧V2 を印加した状態で、アーク式蒸発源14に
おいてアーク放電を行わせる。それによって、陰極16
から陰極物質が蒸発させられると共に、陰極16の前面
近傍にアーク放電によるプラズマ18が生成される。そ
してこのプラズマ18中のイオンが、負のバイアス電圧
2 が印加された基材8に引き付けられて入射堆積し、
その表面に陰極物質から成る薄膜が形成される。ガス6
が反応ガスの場合は、それと陰極物質とが化合した化合
物薄膜が形成される。このようにして形成される薄膜
は、バイアス電圧V2 によるイオンの加速を利用するの
で、基材8に対する密着性が高い。
At the time of processing, the inside of the vacuum container 2 is
After evacuating to about 0 -6 Torr, the required gas 6 is introduced into the vacuum vessel 2 and the negative bias voltage V 2 is applied to the base material 8 in the arc evaporation source 14. Cause an arc discharge. Thereby, the cathode 16
While the cathode substance is evaporated from the cathode, plasma 18 is generated near the front surface of the cathode 16 by arc discharge. Then, the ions in the plasma 18 are attracted and deposited on the substrate 8 to which the negative bias voltage V 2 is applied,
A thin film of cathode material is formed on the surface. Gas 6
When is a reaction gas, a compound thin film in which it is combined with the cathode substance is formed. The thin film thus formed utilizes the acceleration of ions by the bias voltage V 2, and therefore has high adhesion to the substrate 8.

【0008】[0008]

【発明が解決しようとする課題】前述した各基材処理方
法は、基材に印加した負のバイアス電圧によってプラズ
マ中のイオンを基材に向けて加速して、基材に薄膜形成
等の処理を施すものであるため、密着性の良い薄膜を形
成することができる等の利点を有しているけれども、基
材に印加したバイアス電圧によって、基材の尖った部分
に電界が集中し、それによってプラズマ中のイオンが当
該尖った部分に集中して入射するため、この入射イオン
によって、基材の尖った部分にエッチング現象が生じる
という問題がある。これが生じると、例えば、基材の尖
った部分だけ薄膜が形成されなくなる。また、基材の尖
った部分に小さな(例えば大きさが数μm程度の)凹凸
が生じる。
In each of the above-described substrate processing methods, the negative bias voltage applied to the substrate accelerates the ions in the plasma toward the substrate to form a thin film on the substrate. However, the bias voltage applied to the base material concentrates the electric field on the pointed part of the base material, which results in the formation of a thin film with good adhesion. As a result, ions in the plasma are concentrated and incident on the pointed portion, so that there is a problem that the incident ions cause an etching phenomenon on the pointed portion of the substrate. When this occurs, for example, the thin film is not formed only in the sharp portion of the base material. In addition, small (for example, a size of about several μm) unevenness is generated in the pointed portion of the base material.

【0009】より具体例を挙げると、例えば刃物や工具
類に耐摩耗性薄膜を被覆したり表面硬化処理を施したり
する場合、その基材の刃先や稜線部だけ薄膜が形成され
なかったり、当該稜線部等に凹凸が生じたりするので、
所望の良好な処理を施すことができない。
More specifically, for example, when a blade or tool is coated with a wear resistant thin film or subjected to a surface hardening treatment, a thin film is not formed only on the cutting edge or ridge of the base material, Since unevenness may occur on the ridge part etc.,
The desired good treatment cannot be performed.

【0010】基材に印加するバイアス電圧を小さくすれ
ば、イオンの加速エネルギーが小さくなる等の理由によ
って、上記エッチング現象を緩和することはできるけれ
ども、そのようにすれば、イオンの加速エネルギーが小
さくなるので、薄膜の密着性が低下したり、当該イオン
による表面改質作用が低下したりする。
If the bias voltage applied to the base material is made small, the above-mentioned etching phenomenon can be alleviated for the reason that the acceleration energy of the ions becomes small. However, by doing so, the acceleration energy of the ions becomes small. Therefore, the adhesion of the thin film is reduced, and the surface modification action by the ions is reduced.

【0011】そこでこの発明は、基材に対する薄膜の密
着性や表面改質作用を低下させることなく、基材の尖っ
た部分でのエッチング現象を抑制することができる基材
処理方法およびその装置を提供することを主たる目的と
する。
Therefore, the present invention provides a substrate treating method and apparatus capable of suppressing the etching phenomenon at a sharp portion of the substrate without lowering the adhesion of the thin film to the substrate and the surface modifying action. The main purpose is to provide.

【0012】[0012]

【課題を解決するための手段】この発明の基材処理方法
は、前記プラズマ生成部と基材との間に、プラズマ生成
部で生成したプラズマ中のイオンが基材へ向かう経路を
遮るようにメッシュ状の中間電極を配置し、この中間電
極の電位をプラズマ生成部の電位と基材の電位との中間
電位に保って基材を処理することを特徴とする。
According to the method for treating a base material of the present invention, the path of the ions generated in the plasma generated in the plasma generating portion toward the base material is blocked between the plasma generating portion and the base material. The present invention is characterized in that a mesh-shaped intermediate electrode is arranged, and the substrate is treated while the potential of the intermediate electrode is maintained at an intermediate potential between the potential of the plasma generating part and the potential of the substrate.

【0013】また、この発明は基材処理装置は、前記プ
ラズマ生成部と基材との間に、プラズマ生成部で生成し
たプラズマ中のイオンが基材へ向かう経路を遮るように
メッシュ状の中間電極を配置し、かつ、この中間電極の
電位をプラズマ生成部の電位と基材の電位との中間電位
に保つ中間電極電源を設けたことを特徴とする。
Further, according to the present invention, in the base material processing device, a mesh-shaped intermediate portion is provided between the plasma generating portion and the base material so as to block a path of ions in the plasma generated in the plasma generating portion toward the base material. The present invention is characterized in that an electrode is arranged and an intermediate electrode power source is provided for keeping the potential of the intermediate electrode at an intermediate potential between the potential of the plasma generating portion and the potential of the substrate.

【0014】上記のような中間電位の中間電極を設けて
も、プラズマ生成部で生成したプラズマ中のイオンが基
材へ向けて加速される加速エネルギーは、プラズマ生成
部と基材との間の電位差によって決まるので、当該イオ
ンの加速エネルギーは低下しない。従って、基材に対す
る薄膜の密着性や表面改質作用は低下しない。
Even if the intermediate electrode having the intermediate potential as described above is provided, the acceleration energy for accelerating the ions in the plasma generated in the plasma generation part toward the base material is between the plasma generation part and the base material. Since it is determined by the potential difference, the acceleration energy of the ion does not decrease. Therefore, the adhesiveness of the thin film to the substrate and the surface modifying action do not decrease.

【0015】一方、中間電極と基材との間の領域での電
界強度は、中間電極と基材との間の電位差を両者間の距
離で割った値で決まるので、上記のような中間電位の中
間電極を設けることによって、基材近傍での電界強度は
小さくなる。従ってその分、基材の尖った部分への電界
集中が緩和されるので、当該尖った部分でのエッチング
現象が抑制される。
On the other hand, the electric field strength in the region between the intermediate electrode and the base material is determined by the value obtained by dividing the potential difference between the intermediate electrode and the base material by the distance between the two. By providing the intermediate electrode of, the electric field strength near the base material is reduced. Therefore, the electric field concentration on the sharp portion of the base material is reduced accordingly, and the etching phenomenon at the sharp portion is suppressed.

【0016】以上の結果、基材に対する薄膜の密着性や
表面改質作用を低下させることなく、基材の尖った部分
でのエッチング現象を抑制することができる。
As a result of the above, it is possible to suppress the etching phenomenon in the sharp portion of the base material without lowering the adhesiveness of the thin film to the base material or the surface modifying action.

【0017】[0017]

【発明の実施の形態】図1は、この発明に係る基材処理
装置の一例を示す断面図である。この装置は、アーク式
蒸発源を用いたイオンプレーティング装置の一種であ
り、図5に示した従来例に対応している。図5の従来例
と同一または相当する部分には同一符号を付し、以下に
おいては当該従来例との相違点を主に説明する。
1 is a sectional view showing an example of a substrate processing apparatus according to the present invention. This device is a type of ion plating device using an arc evaporation source and corresponds to the conventional example shown in FIG. Parts that are the same as or correspond to those in the conventional example of FIG. 5 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.

【0018】この実施例においては、前述したアーク式
蒸発源14の陰極16の前面近傍のプラズマ生成部17
と基材8との間に、プラズマ生成部17で生成したプラ
ズマ18中のイオンが基材8へ向かう経路を遮るよう
に、即ちプラズマ生成部17から基材8が直接見通せな
いように、メッシュ状(網目状)の中間電極24を配置
している。
In this embodiment, the plasma generating portion 17 near the front surface of the cathode 16 of the arc type evaporation source 14 described above.
Mesh between the base material 8 and the base material 8 so that ions in the plasma 18 generated by the plasma generation portion 17 block the path toward the base material 8, that is, the base material 8 cannot be directly seen through from the plasma generation portion 17. The intermediate electrode 24 having a shape (mesh) is arranged.

【0019】この中間電極24全体の形状は、この例で
は平板状であるが、その他の形状、例えば円筒等の筒
状、更には円筒や球の一部分のような形状等でも良い。
The overall shape of the intermediate electrode 24 is a flat plate in this example, but other shapes, for example, a cylindrical shape such as a cylinder, or a shape such as a cylinder or a part of a sphere may be used.

【0020】更に、この中間電極24に中間電圧V3
印加して、この中間電極24の電位を、プラズマ生成部
17の電位と基材8との電位との中間電位に保つ中間電
極電源26を設けている。プラズマ生成部17の電位
は、陰極16の前面近傍におけるプラズマ18中の電圧
降下等を無視すれば、陰極16の電位にほぼ等しいの
で、この例では、中間電極電源26から出力する中間電
圧V3 によって、中間電極24の電位を、陰極16の電
位と基材8の電位との間の負電位に保つようにしてい
る。より具体的にはこの例では、中間電極電源26から
中間電極24に、基材8に印加するバイアス電圧V2
りも絶対値の小さい負の中間電圧V3 を印加するように
している。
Further, an intermediate voltage V 3 is applied to the intermediate electrode 24 to maintain the potential of the intermediate electrode 24 at an intermediate potential between the potential of the plasma generating part 17 and the potential of the base material 26. Is provided. The potential of the plasma generation unit 17 is substantially equal to the potential of the cathode 16 if the voltage drop in the plasma 18 in the vicinity of the front surface of the cathode 16 is ignored. Therefore, in this example, the intermediate voltage V 3 output from the intermediate electrode power supply 26. Thus, the potential of the intermediate electrode 24 is kept at a negative potential between the potential of the cathode 16 and the potential of the base material 8. More specifically, in this example, a negative intermediate voltage V 3 whose absolute value is smaller than the bias voltage V 2 applied to the base material 8 is applied from the intermediate electrode power source 26 to the intermediate electrode 24.

【0021】上記のような中間電位の中間電極24を設
けても、プラズマ生成部17で生成したプラズマ18中
のイオンが基材8へ向けて加速される加速エネルギー
は、プラズマ生成部17と基材8との間の電位差、即ち
この例では陰極16と基材8との間の電位差|V2 −V
1 |によって決まるので、当該イオンの加速エネルギー
は低下しない。即ち、中間電極24を設けていない図5
に示した従来例の場合と同じである。従って、基材8に
対する薄膜の密着性や表面改質作用は低下しない。
Even if the intermediate electrode 24 having the intermediate potential as described above is provided, the acceleration energy for accelerating the ions in the plasma 18 generated in the plasma generation unit 17 toward the substrate 8 is the same as that in the plasma generation unit 17. The potential difference between the material 8 and the potential difference between the cathode 16 and the substrate 8 in this example | V 2 −V
The acceleration energy of the ion does not decrease because it is determined by 1 |. That is, FIG. 5 in which the intermediate electrode 24 is not provided
This is the same as the case of the conventional example shown in FIG. Therefore, the adhesion of the thin film to the base material 8 and the surface modifying action do not decrease.

【0022】一方、中間電極24と基材8との間の領域
での電界強度は、中間電極24と基材8との間の電位差
|V2 −V3 |を両者間の距離で割った値で決まるの
で、上記のような中間電位の中間電極24を設けること
によって、基材近傍の電界強度は小さくなる。これを詳
述すると、図5に示した従来例の場合、その線A−A上
での電位分布は例えば図6に示すようになり、基材8の
近傍での電界強度E1 は、陰極16と基材8との間の電
位差|V2 −V1 |を両者間の距離で割った値となる。
これに対して、この実施例の場合は、その線A−A上で
の電位分布は例えば図2に示すようになり、基材8の近
傍での電界強度E2 は、中間電極24と基材8との間の
電位差|V2 −V3 |を両者間の距離で割った値とな
る。図2中に参照用として、図6の場合の電界強度E1
を2点鎖線で示しているが、中間電極24の電位を上記
のような中間電位にすることによって、必ずE1 >E2
になる。従ってこの実施例では、基材近傍での電界強度
が小さくなる分、基材8の尖った部分への電界集中が緩
和され、それによってプラズマ18中のイオンが当該尖
った部分に集中して入射することも緩和されるので、当
該尖った部分でのエッチング現象が抑制される。
On the other hand, the electric field strength in the region between the intermediate electrode 24 and the base material 8 is obtained by dividing the potential difference | V 2 -V 3 | between the intermediate electrode 24 and the base material 8 by the distance between them. Since the value is determined by the value, by providing the intermediate electrode 24 having the intermediate potential as described above, the electric field strength near the base material becomes small. More specifically, in the case of the conventional example shown in FIG. 5, the potential distribution on the line AA is as shown in FIG. 6, for example, and the electric field intensity E 1 in the vicinity of the base material 8 is It is a value obtained by dividing the potential difference | V 2 −V 1 | between 16 and the base material 8 by the distance between the two.
On the other hand, in the case of this embodiment, the potential distribution on the line AA is as shown in FIG. 2, for example, and the electric field strength E 2 in the vicinity of the base material 8 is the same as that of the intermediate electrode 24. It is a value obtained by dividing the potential difference | V 2 −V 3 | with the material 8 by the distance between the two. For reference in FIG. 2, the electric field strength E 1 in the case of FIG.
Is indicated by a chain double-dashed line, but by setting the potential of the intermediate electrode 24 to the intermediate potential as described above, E 1 > E 2
become. Therefore, in this embodiment, since the electric field strength near the base material is reduced, the electric field concentration on the sharp portion of the base material 8 is alleviated, whereby the ions in the plasma 18 are concentrated and incident on the sharp portion. Since this is alleviated, the etching phenomenon at the pointed portion is suppressed.

【0023】以上の結果、この実施例によれば、基材8
に対する薄膜の密着性等を低下させることなく、基材8
の尖った部分でのエッチング現象を抑制することができ
る。従って例えば、刃物や工具類の刃先や稜線部にも、
他の部分と同じように、耐摩耗性膜等の所望の膜を被覆
する、しかも密着性良く被覆することができる。
As a result of the above, according to this embodiment, the substrate 8
The base material 8 without deteriorating the adhesion of the thin film to the
It is possible to suppress the etching phenomenon in the sharp portion of the. Therefore, for example, on the cutting edge of tools and tools, and on the ridge line,
As with the other portions, it is possible to coat a desired film such as a wear-resistant film and to coat it with good adhesion.

【0024】次に、より具体的な実施例を幾つか説明す
る。
Next, some more specific examples will be described.

【0025】〈実施例1〉図5に示した従来の装置にお
いて、陰極16をTiとして、これにアーク放電電圧V
1 として−40Vを印加し、一方、基材8にバイアス電
圧V2 として−900Vを印加し、真空容器2内にガス
6として窒素ガスを導入して、稜線部(エッジ部)を有
する基材8の表面にTiN膜を形成したところ、稜線部
近傍のTiN膜には数μm程度の大きさのエッチングが
生じていることが確認された。
<Embodiment 1> In the conventional apparatus shown in FIG. 5, the cathode 16 is made of Ti, and the arc discharge voltage V
Applying a -40V as 1, whereas, the -900V is applied as the bias voltage V 2 to the substrate 8, by introduction of nitrogen gas as the gas 6 into the vacuum chamber 2, a substrate having a ridge portion (edge portion) When a TiN film was formed on the surface of No. 8, it was confirmed that the TiN film in the vicinity of the ridge portion was etched to a size of several μm.

【0026】一方、図1に示した実施例の装置におい
て、ステンレス製のメッシュ状の中間電極24を配置
し、これに中間電圧V3 として−600Vを印加して、
上記と同様にしてTiN膜を基材8の表面に形成した。
その結果、基材8の稜線部近傍においてもTiN膜にエ
ッチングが生じていないことが確認された。
On the other hand, in the apparatus of the embodiment shown in FIG. 1, a mesh-shaped intermediate electrode 24 made of stainless steel is arranged, and an intermediate voltage V 3 of −600 V is applied to it.
A TiN film was formed on the surface of the base material 8 in the same manner as above.
As a result, it was confirmed that the TiN film was not etched even in the vicinity of the ridge of the base material 8.

【0027】また、TiN膜の基材8に対する密着性を
引っかき試験法で調べたところ、従来例の装置によるも
のと実施例の装置によるものとで特に差はなかった。
Further, when the adhesion of the TiN film to the substrate 8 was examined by the scratch test method, there was no particular difference between the device of the conventional example and the device of the embodiment.

【0028】〈実施例2〉従来例として、図5に示した
のとほぼ同様の装置において、陰極16をTiとして、
これにアーク放電電圧V1 として−40Vを印加し、一
方、基材8にバイアス電圧V2 として、20μsecの
オンオフ周期を持つ−35kVの直流パルス電圧を印加
して、このパルス電圧によって基材近傍のプラズマ中か
らTiイオンを基材8に向けて加速して、稜線部を有す
る基材8の表面にTiを注入した。そして、Tiが注入
された基材8の稜線部近傍を観察したところ、大きさが
5μm程度の凹凸が観察され、エッチング現象が生じて
いることが確認された。
<Example 2> As a conventional example, in a device similar to that shown in FIG.
An arc discharge voltage V 1 of −40 V was applied to this, while a bias voltage V 2 of −35 kV DC pulse voltage having an on / off cycle of 20 μsec was applied to the base material 8, and the pulse voltage caused the vicinity of the base material. Ti ions were accelerated toward the base material 8 from the plasma, and Ti was injected into the surface of the base material 8 having the ridge portion. Then, when the vicinity of the ridge line portion of the base material 8 into which Ti was injected was observed, irregularities having a size of about 5 μm were observed, and it was confirmed that an etching phenomenon occurred.

【0029】一方、実施例として、図1に示したのとほ
ぼ同様の装置において、ステンレス製のメッシュ状の中
間電極24を配置し、これに中間電圧V3 として−1k
Vを印加して、上記従来例と同様にしてTiを基材8の
表面に注入した。その結果、基材8の稜線部近傍におい
てもエッチングが生じていないことが確認された。ま
た、注入による基材8の表面処理効果は、いずれの場合
も同程度であった。
On the other hand, as an example, in a device substantially similar to that shown in FIG. 1, a mesh-shaped intermediate electrode 24 made of stainless steel is arranged, and an intermediate voltage V 3 is set to -1 k.
V was applied to inject Ti into the surface of the base material 8 in the same manner as in the above-mentioned conventional example. As a result, it was confirmed that etching did not occur even in the vicinity of the ridge of the base material 8. Further, the surface treatment effect of the base material 8 by the injection was similar in all cases.

【0030】〈実施例3〉図3は、直流プラズマCVD
装置の一種であり、真空容器2内に原料のガス6を適当
な圧力になるように導入すると共に、ホルダ10と真空
容器2間にバイアス電源22から適当なバイアス電圧V
2 を印加すると、両者間で直流放電が生じてプラズマ2
8が生成され、これによって原料ガスが分解されて基材
8の表面に薄膜が形成される。即ちこの例では、ホルダ
10と真空容器2との中間部分がプラズマ生成部27と
なる。
<Embodiment 3> FIG. 3 shows a DC plasma CVD.
It is a kind of apparatus, and introduces the raw material gas 6 into the vacuum container 2 so as to have an appropriate pressure, and also supplies an appropriate bias voltage V from the bias power source 22 between the holder 10 and the vacuum container 2.
When 2 is applied, a DC discharge is generated between the two and plasma 2
8 is generated, whereby the source gas is decomposed and a thin film is formed on the surface of the base material 8. That is, in this example, the intermediate portion between the holder 10 and the vacuum container 2 serves as the plasma generation unit 27.

【0031】従来例として、中間電極24を設けていな
いこのような装置を用いて、真空容器2内に原料として
TiCl4 、AlCl3 、NH3 およびN2 ガスを導入
して、超硬合金から成り稜線部を有する基材8にバイア
ス電圧V2 として−400V印加して、基材8の表面に
TiAlN膜を形成した。そして、この基材8の稜線部
を観察したところ、大きさが1〜2μm程度の凹凸が観
察され、エッチング現象が生じていることが確認され
た。
As a conventional example, TiCl 4 , AlCl 3 , NH 3 and N 2 gases as raw materials were introduced into the vacuum chamber 2 by using such a device without the intermediate electrode 24, and the cemented carbide was removed. A bias voltage V 2 of −400 V was applied to the base material 8 having a ridge portion to form a TiAlN film on the surface of the base material 8. Then, when the ridge line portion of the base material 8 was observed, irregularities having a size of about 1 to 2 μm were observed, and it was confirmed that an etching phenomenon occurred.

【0032】一方、実施例として、図3に示すように、
ステンレス製のメッシュ状の中間電極24を基材8の周
りを覆うようにして配置して、これに中間電極電源26
から中間電圧V3 として−200Vを印加して、上記と
同様にしてTiAlN膜を基材8の表面に形成した。そ
の結果、基材8の稜線部付近においてTiAlN膜にエ
ッチングが生じていないことが確認された。また、膜の
基材8に対する密着性は、引っかき試験法による測定で
は、従来例の場合と特に差は認められなかった。
On the other hand, as an example, as shown in FIG.
The mesh-shaped intermediate electrode 24 made of stainless steel is arranged so as to cover the base material 8, and the intermediate electrode power source 26
Then, −200 V was applied as an intermediate voltage V 3 to form a TiAlN film on the surface of the substrate 8 in the same manner as above. As a result, it was confirmed that the TiAlN film was not etched in the vicinity of the ridge of the base material 8. In addition, the adhesion of the film to the substrate 8 was not particularly different from that of the conventional example by the scratch test method.

【0033】〈実施例4〉図4は、電子銃溶解型蒸発源
を用いたイオンプレーティング装置の一種であり、真空
容器2内に、蒸発材料32を収納した蒸発源30を設置
し、その上方のホローカソード電子銃34からの電子ビ
ーム36を蒸発材料32に照射してそれを溶解させる。
このとき、溶解した蒸発材料32は電子ビーム36に叩
かれてイオン化しやすく、そのようなイオンを含むプラ
ズマ38が蒸発源30の上方近傍に生成される。即ちこ
の例では、蒸発源30の上方近傍がプラズマ生成部37
となる。そしてこのプラズマ38中のイオンが、バイア
ス電源22から負のバイアス電圧V2 が印加された基材
8に向けて加速され、基材8の表面に薄膜が形成され
る。真空容器2内に反応性のガス6を導入しておくと、
基材8の表面に化合物薄膜が形成される。なお、基材8
を保持したホルダ10を、蒸発源30の周りを回転させ
るようにする場合もあるが、この例ではそのようにして
いない。
<Embodiment 4> FIG. 4 is a type of ion plating apparatus using an electron gun melting type evaporation source. An evaporation source 30 containing an evaporation material 32 is installed in a vacuum container 2 and The evaporation material 32 is irradiated with an electron beam 36 from an upper hollow cathode electron gun 34 to melt it.
At this time, the dissolved evaporation material 32 is easily hit by the electron beam 36 and ionized, and a plasma 38 containing such ions is generated near the evaporation source 30. That is, in this example, the plasma generation unit 37 is located near the evaporation source 30.
Becomes Then, the ions in the plasma 38 are accelerated toward the base material 8 to which the negative bias voltage V 2 is applied from the bias power source 22, and a thin film is formed on the surface of the base material 8. If the reactive gas 6 is introduced into the vacuum container 2,
A compound thin film is formed on the surface of the base material 8. The base material 8
There is a case where the holder 10 holding the is rotated around the evaporation source 30, but this is not done in this example.

【0034】従来例として、中間電極24を設けていな
いこのような装置を用いて、蒸発材料32をTiとし、
ガス6として窒素ガスを導入して、基材8にバイアス電
圧V2 として−1kVを印加して、稜線部を有する基材
8の表面にTiN膜を形成した。そして、この基材8の
稜線部を観察したところ、大きさが1μm程度の凹凸が
観察され、エッチング現象が生じていることが確認され
た。
As a conventional example, using such a device without the intermediate electrode 24, the evaporation material 32 is Ti,
Nitrogen gas was introduced as the gas 6, and a bias voltage V 2 of −1 kV was applied to the base material 8 to form a TiN film on the surface of the base material 8 having the ridge portion. When the ridge line portion of the base material 8 was observed, irregularities having a size of about 1 μm were observed, and it was confirmed that an etching phenomenon occurred.

【0035】一方、実施例として、図4に示すように、
ステンレス製のメッシュ状の中間電極24を蒸発源30
と基材8との間に配置して、これに中間電極電源26か
ら中間電圧V3 として−500Vを印加して、上記と同
様にしてTiN膜を基材8の表面に形成した。その結
果、基材8の稜線部近傍においてTiN膜にエッチング
は全く認められなかった。また、膜の基材8に対する密
着性は、引っかき試験法による測定では、従来例の場合
と特に差は認められなかった。
On the other hand, as an example, as shown in FIG.
The mesh-shaped intermediate electrode 24 made of stainless steel is used as the evaporation source 30.
The intermediate electrode power source 26 applied −500 V as the intermediate voltage V 3 to the TiN film on the surface of the substrate 8 in the same manner as above. As a result, no etching was observed in the TiN film in the vicinity of the ridge of the base material 8. In addition, the adhesion of the film to the substrate 8 was not particularly different from that of the conventional example by the scratch test method.

【0036】[0036]

【発明の効果】以上のようにこの発明によれば、上記の
ような中間電位の中間電極を設けたことによって、プラ
ズマ生成部で生成されたプラズマ中のイオンが基材へ向
けて加速される加速エネルギーを低下させることなく、
中間電極と基材との間の領域での電界強度を小さくし
て、基材の尖った部分への電界集中を緩和することがで
きる。その結果、基材に対する薄膜の密着性や表面改質
作用を低下させることなく、基材の尖った部分でのエッ
チング現象を抑制することができる。従って例えば、刃
物や工具類の稜線部にも、エッチングによる凹凸のない
良好な処理を施すことができる。
As described above, according to the present invention, by providing the intermediate electrode having the intermediate potential as described above, the ions in the plasma generated in the plasma generating section are accelerated toward the substrate. Without reducing the acceleration energy
The electric field strength in the region between the intermediate electrode and the base material can be reduced to reduce the electric field concentration on the sharp portion of the base material. As a result, it is possible to suppress the etching phenomenon in the sharp portion of the base material without lowering the adhesion of the thin film to the base material or the surface modifying action. Therefore, for example, the ridge line portion of a cutting tool or tools can be subjected to a good treatment without unevenness due to etching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る基材処理装置の一例を示す断面
図である。
FIG. 1 is a cross-sectional view showing an example of a substrate processing apparatus according to the present invention.

【図2】図1中の線A−A上での電位分布の一例を示す
図である。
FIG. 2 is a diagram showing an example of a potential distribution on a line AA in FIG.

【図3】この発明に係る基材処理装置の他の例を示す断
面図である。
FIG. 3 is a sectional view showing another example of the substrate processing apparatus according to the present invention.

【図4】この発明に係る基材処理装置の更に他の例を示
す断面図である。
FIG. 4 is a sectional view showing still another example of the substrate processing apparatus according to the present invention.

【図5】従来の基材処理装置の一例を示す断面図であ
る。
FIG. 5 is a sectional view showing an example of a conventional substrate processing apparatus.

【図6】図5中の線A−A上での電位分布の一例を示す
図である。
6 is a diagram showing an example of a potential distribution on a line AA in FIG.

【符号の説明】[Explanation of symbols]

2 真空容器 8 基材 10 ホルダ 14 アーク式蒸発源 17 プラズマ生成部 18 プラズマ 20 アーク電源 22 バイアス電源 24 中間電極 26 中間電極電源 27 プラズマ生成部 28 プラズマ 30 蒸発源 37 プラズマ生成部 38 プラズマ 2 Vacuum container 8 Base material 10 Holder 14 Arc type evaporation source 17 Plasma generation part 18 Plasma 20 Arc power supply 22 Bias power supply 24 Intermediate electrode 26 Intermediate electrode power supply 27 Plasma generation part 28 Plasma 30 Evaporation source 37 Plasma generation part 38 Plasma

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内のプラズマ生成部でプラズマ
を生成し、基材に印加した負のバイアス電圧によってこ
のプラズマ中のイオンを基材に向けて加速して基材に薄
膜形成等の処理を施す基材処理方法において、前記プラ
ズマ生成部と基材との間に、プラズマ生成部で生成した
プラズマ中のイオンが基材へ向かう経路を遮るようにメ
ッシュ状の中間電極を配置し、この中間電極の電位をプ
ラズマ生成部の電位と基材の電位との中間電位に保って
基材を処理することを特徴とする基材処理方法。
1. A plasma generating part in a vacuum container generates plasma, and a negative bias voltage applied to the base material accelerates ions in the plasma toward the base material to form a thin film on the base material. In the method for treating a base material, a mesh-shaped intermediate electrode is arranged between the plasma generating portion and the base material so that the ions in the plasma generated by the plasma generating portion block the path toward the base material. A substrate treatment method, characterized in that the substrate is treated while the potential of the intermediate electrode is kept at an intermediate potential between the potential of the plasma generating part and the potential of the substrate.
【請求項2】 真空容器内のプラズマ生成部でプラズマ
を生成し、基材に印加した負のバイアス電圧によってこ
のプラズマ中のイオンを基材に向けて加速して基材に薄
膜形成等の処理を施す基材処理装置において、前記プラ
ズマ生成部と基材との間に、プラズマ生成部で生成した
プラズマ中のイオンが基材へ向かう経路を遮るようにメ
ッシュ状の中間電極を配置し、かつ、この中間電極の電
位をプラズマ生成部の電位と基材の電位との中間電位に
保つ中間電極電源を設けたことを特徴とする基材処理装
置。
2. A process for forming a thin film on a substrate by generating plasma in a plasma generation unit in a vacuum container and accelerating ions in the plasma toward the substrate by a negative bias voltage applied to the substrate. In the substrate processing apparatus for applying, a mesh-shaped intermediate electrode is arranged between the plasma generating unit and the substrate so that ions in the plasma generated by the plasma generating unit block the path toward the substrate, and A substrate processing apparatus, characterized in that an intermediate electrode power supply is provided for keeping the potential of the intermediate electrode at an intermediate potential between the potential of the plasma generating section and the potential of the substrate.
JP32960195A 1995-11-24 1995-11-24 Treatment of base material and device therefor Pending JPH09143699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32960195A JPH09143699A (en) 1995-11-24 1995-11-24 Treatment of base material and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32960195A JPH09143699A (en) 1995-11-24 1995-11-24 Treatment of base material and device therefor

Publications (1)

Publication Number Publication Date
JPH09143699A true JPH09143699A (en) 1997-06-03

Family

ID=18223180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32960195A Pending JPH09143699A (en) 1995-11-24 1995-11-24 Treatment of base material and device therefor

Country Status (1)

Country Link
JP (1) JPH09143699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157359B2 (en) 2000-12-29 2007-01-02 Hynix Semiconductor Inc. Method of forming a metal gate in a semiconductor device using atomic layer deposition process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157359B2 (en) 2000-12-29 2007-01-02 Hynix Semiconductor Inc. Method of forming a metal gate in a semiconductor device using atomic layer deposition process

Similar Documents

Publication Publication Date Title
JP3060876B2 (en) Metal ion implanter
JPS58221271A (en) Formation of film by ion plating method
CA2846434C (en) Stripping process for hard carbon coatings
EP2158977A1 (en) Method and apparatus for manufacturing cleaned substrates or clean substrates which are further processed
JPH09143699A (en) Treatment of base material and device therefor
JP3758248B2 (en) Method for forming compound thin film
CN112853323A (en) Surface treatment method of electrode plate and electrode plate
JPH11335832A (en) Ion implantation and ion implantation device
JPH02156066A (en) Method for cleaning base material
US9230778B2 (en) Method for removing hard carbon layers
JPS5842771A (en) Ion planting device
JP3260905B2 (en) Film forming equipment
JPS63458A (en) Vacuum arc vapor deposition device
JP3291088B2 (en) Coating method
JPH10140335A (en) Formation of chromium nitride film
KR100295618B1 (en) High vacuum magnetron sputtering method using ion beam
RU2272088C1 (en) Method of the vacuum-ionic-plasmic deposition of the multilayered composites, containing the complex carbides
JPH089776B2 (en) Ion plating method and apparatus
JP2000265277A (en) Formation of film using electron beam plasma
JPH09157837A (en) Arc type ion plating device
KR100295617B1 (en) High vacuum magnetron sputtering method
CN113366600A (en) Electrode arrangement for a plasma source for performing a plasma treatment
JPS6320450A (en) Cleaning device for substrate
JPH1068069A (en) Formation of metallic boride coating film
JPS61119669A (en) Ion plating apparatus