JPS61119669A - Ion plating apparatus - Google Patents

Ion plating apparatus

Info

Publication number
JPS61119669A
JPS61119669A JP24137784A JP24137784A JPS61119669A JP S61119669 A JPS61119669 A JP S61119669A JP 24137784 A JP24137784 A JP 24137784A JP 24137784 A JP24137784 A JP 24137784A JP S61119669 A JPS61119669 A JP S61119669A
Authority
JP
Japan
Prior art keywords
filament
metal
magnetic field
thermal electron
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24137784A
Other languages
Japanese (ja)
Inventor
Zenji Taniguchi
谷口 善治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOWA ENG KK
Original Assignee
KOWA ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOWA ENG KK filed Critical KOWA ENG KK
Priority to JP24137784A priority Critical patent/JPS61119669A/en
Publication of JPS61119669A publication Critical patent/JPS61119669A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Abstract

PURPOSE:To form coating film stably on a material to be treated, by controlling strength of magnetic field for deflecting thermal electron, bias voltage, filament voltage, etc., impressed to a filament for generating thermal electron, in ion plating apparatus of metal. CONSTITUTION:A vaporizing source 7 of a metal 6 to be vapor deposited, a filament 9, the material 5 to be treated are arranged in a bell jar 1. Inside thereof is exhausted to decrease the pressure, inert gas such as Ar is introduced from a gas introducing apparatus 4, electricity is conducted to the filament 9 to generate thermal electron. Simultaneously electric discharge is caused between the filament 9 and the source 7 by a bias voltage 13, thermal electron is deflected by a magnetic field due to an electromagnetic apparatus 8, allowed to impinge to the metal 6 to vaporize it. Metal vapor is ionized by thermal electron when being passe through the filament 9, and ion plated on the surface of the material 5. In this case, magnetic field intensity, bias voltage, filament voltage 12 are controlled suitably to ion plate the vapor of the metal 6 stably on the surface of the treating material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオンプレーティング法によって被処理物上
に被膜を形成させるイオンプレーティング装置に間する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ion plating apparatus that forms a film on a workpiece by an ion plating method.

〔従来技術] 従来、工業的に実用化されているイオンプレーティング
法は、ホローカソードディスチャージ法(H,C,D、
法)、アーク放電法、高周波励起法(R,F、法)など
があり、前記H,C,D。
[Prior art] Ion plating methods that have been commercially put into practical use are hollow cathode discharge methods (H, C, D,
method), arc discharge method, and high frequency excitation method (R, F, method).

法はガス圧により放電強度が変わるため、電子ビームの
電流が変化し、そのためガス圧に依存して蒸発速度、イ
オン化率が変化する。従って、反応を行う場合、ガス圧
と蒸発速度及びイオン化率を独立にコントロールできな
いため、時計ケース、メガネなどの装飾品に対しては色
の再現性が悪い。
In this method, the discharge intensity changes depending on the gas pressure, so the electron beam current changes, and therefore the evaporation rate and ionization rate change depending on the gas pressure. Therefore, when performing a reaction, the gas pressure, evaporation rate, and ionization rate cannot be independently controlled, so color reproducibility is poor for decorative items such as watch cases and glasses.

またアーク放電法あるいはR,F、法は、一般的には、
数KV以上もの高い加速電圧を必要とする電子銃あるい
は高周波電源を使用するため、設備費が高く、さらに異
常放電が多いため、しばしばイオンプレーティングが中
断するという欠点があった。
In addition, the arc discharge method or R,F method is generally
Since an electron gun or a high frequency power source that requires a high accelerating voltage of several kilovolts or more is used, equipment costs are high, and there are many abnormal discharges, resulting in frequent interruptions of ion plating.

[発明の目的] 本発明の目的は、安定した被膜が被処理物に対して形成
できるイオンプレーティング装置を提供するにある。
[Object of the Invention] An object of the present invention is to provide an ion plating apparatus that can form a stable film on an object to be processed.

[発明の概要コ 上記目的を達成するために、本発明は、磁場中に設置さ
れた蒸発源と、この蒸発源に対し負のバイアス電圧を付
加されたフィラメントとからなり、このフィラメントか
ら出た熱電子を前記磁場によって蒸発源に集束させて衝
突させることにより、蒸発源中に載置した金属を溶解か
つ蒸発させ、この蒸発金属を、蒸発源からフィラメント
の間を通過する間に、熱電子と衝突させてイオン化して
被処理物にプレーティングするようにし、前記磁場の強
度、バイアス電圧あるいはフィラメントへの供給電圧の
少なくとも1つを制御することにより、金属の蒸発速度
及びイオン化率の定常状態を保つようにしたことを特徴
とするものである。
[Summary of the Invention] In order to achieve the above object, the present invention comprises an evaporation source installed in a magnetic field and a filament to which a negative bias voltage is applied to the evaporation source. By focusing the thermionic electrons on the evaporation source using the magnetic field and colliding with the evaporation source, the metal placed in the evaporation source is melted and evaporated. The steady state evaporation rate and ionization rate of the metal can be achieved by controlling at least one of the strength of the magnetic field, the bias voltage, or the voltage supplied to the filament. It is characterized by the fact that it maintains the

〔実施例] 以下、本発明の一実施例を図面に基づき説明する。〔Example] Hereinafter, one embodiment of the present invention will be described based on the drawings.

ベルジャ1に真空ポンプ2と、ニードル弁3を有するガ
ス導入装置4とを連結し、またベルジャ1内の上方には
被処理物5が配置され、また下方には蒸発する金属6を
収納するるつぼからなる蒸発R7と、この蒸発源7の周
側に設けられる電磁装置8が配置される。さらに前記蒸
発源7の上方には、フィラメント9を配置し、このフィ
ラメント9と被処理物5との間にシャッタ10を配置す
る。
A vacuum pump 2 and a gas introduction device 4 having a needle valve 3 are connected to the bell jar 1, and a workpiece 5 is disposed above the bell jar 1, and a crucible containing a metal 6 to be evaporated is disposed below. An evaporator R7 consisting of the evaporator R7 and an electromagnetic device 8 provided around the evaporator source 7 are arranged. Further, a filament 9 is placed above the evaporation source 7, and a shutter 10 is placed between the filament 9 and the object 5 to be processed.

図中11は、被処理物5に負電荷を加えるための電源で
あり、12はフィラメントに負電荷を加えるフィラメン
ト電源、13はバイアス用電源、14は電磁装置用の電
源である。
In the figure, 11 is a power source for applying negative charges to the object to be processed 5, 12 is a filament power source for applying negative charges to the filament, 13 is a bias power source, and 14 is a power source for the electromagnetic device.

そして、前記真空ポンプ2によりベルジャ1内を高真空
状態になるように排気した後に、ベルジャ1内に1〜1
OX10−3Torrまでガス導入装置4から不活性ガ
スを導入し、フィラメント9に電圧を印加する。次にフ
ィラメント9に0〜100Vの負のバイアス電圧を印加
し、フィラメント9と蒸発源7どの間で放電を起させる
。するとフィラメント9から出た熱電子は、電磁装置8
より発生する磁場により、旋回しながら蒸発R7に集束
して、蒸発R7中に収納された金属6と衝突する。この
衝突により金属6は溶解されて蒸発することになる。そ
してこの蒸発金属は、蒸発R7からフィラメント90間
を通過する間に、次々と発生している熱電子と衝突する
ことによりイオン化する。このように金属6の蒸発量が
一定量以上になると導入した不活性ガスの圧力に関係な
く、前記放電が持続するようになる。この時の放電電流
を磁場強度、バイアス電圧、フィラメント電圧により制
御することにより、一定の蒸発速度とイオン化率を得る
ことができる。この状態にした後、不活性ガスを遮断し
て反応性ガスを導入することにより、被処理物5に所期
の被膜が形成される。
After the inside of the bell jar 1 is evacuated to a high vacuum state by the vacuum pump 2, 1 to 1
Inert gas is introduced from the gas introduction device 4 to OX10-3 Torr, and a voltage is applied to the filament 9. Next, a negative bias voltage of 0 to 100 V is applied to the filament 9 to cause discharge between the filament 9 and the evaporation source 7. Then, the thermoelectrons emitted from the filament 9 are transferred to the electromagnetic device 8.
Due to the generated magnetic field, the magnetic field converges on the evaporator R7 while rotating, and collides with the metal 6 housed in the evaporator R7. This collision causes the metal 6 to melt and evaporate. While passing between the evaporation R7 and the filament 90, this evaporated metal is ionized by colliding with thermal electrons that are being generated one after another. In this way, when the amount of evaporation of the metal 6 reaches a certain level or more, the discharge continues regardless of the pressure of the introduced inert gas. By controlling the discharge current at this time by the magnetic field strength, bias voltage, and filament voltage, a constant evaporation rate and ionization rate can be obtained. After this state is established, the inert gas is shut off and the reactive gas is introduced, thereby forming a desired coating on the object to be processed 5.

ざらに具体的に説明すると、ベルジャl内を8XIO−
5Torrまで排気した後、ベルジャl内にアルゴンガ
スを3X10−3Torrまで導入し、フィラメント9
に6V印加する。次に、バイアス用tfX13によりフ
ィラメント9に一45V印加し、磁場を蒸発R7の中心
付近にて300ガウスになるようにする。
To explain in detail, the inside of Belljar is 8XIO-
After exhausting to 5 Torr, argon gas was introduced into the bell jar to 3X10-3 Torr, and the filament 9
Apply 6V to. Next, -45 V is applied to the filament 9 using the bias tfX13, and the magnetic field is set to 300 Gauss near the center of the evaporator R7.

蒸発R7に予め収納しである例えばチタニュウムなどの
金属6の蒸発が一定になった後被処理物5に一100V
を印加する。次にアルゴンガスを遮断し、シャッタを問
いて2分間チタニュウムをプレーティングする、そして
C2H2ガスを255CCMの一定量で導入し、N2ガ
スを8X10−’Torrを保つように導入し、10分
間プレーティングを行った。このブレーティグ中は、フ
ィラメント9と蒸発R7との間に120Aの一定電流が
流れるように、フィラメント電圧をコントロールした。
After the evaporation of the metal 6, such as titanium, which is stored in the evaporator R7 in advance, becomes constant, a voltage of -100V is applied to the object 5.
Apply. Next, cut off the argon gas, open the shutter and plate titanium for 2 minutes, then introduce C2H2 gas at a constant amount of 255 CCM, introduce N2 gas to maintain 8X10-' Torr, and plate for 10 minutes. I did it. During this blating, the filament voltage was controlled so that a constant current of 120 A flowed between the filament 9 and the evaporator R7.

このような条件で、よく研摩したステンレス板を被処理
物5として用い、10回のサンプルテストを行った結果
は次のようになった。
Under these conditions, using a well-polished stainless steel plate as the object to be processed 5, sample tests were conducted 10 times, and the results were as follows.

すなわち、CIE(国際照明委員会)表示系による色差
ΔE”abに基づき、NBS単位(National 
 Bureau  of  5tandard)にて、
サンプルNo、1に対する池の9個のサンプルの色差を
検査した結果、Ol】6〜0.47の範囲に入った。前
記NBS単位の数値に対する評語の一例を示すと下記の
通りであり、色差はほとんど無いと判断される。
That is, based on the color difference ΔE"ab according to the CIE (Commission Internationale de l'Eclairage) display system, the color difference is expressed in NBS units (National
At the Bureau of 5 Standards),
As a result of examining the color difference of nine samples of Ike with respect to sample No. 1, the color difference fell within the range of 0.16 to 0.47. An example of the evaluation for the numerical value in NBS units is as follows, and it is determined that there is almost no color difference.

[発明の効果] 以上説明したように、本発明は、極めて安定した被膜が
被処理物に対して形成できるイオンブレーティグ装置を
提供できるものである。
[Effects of the Invention] As explained above, the present invention can provide an ion blating apparatus that can form an extremely stable film on a workpiece.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す説明図である。 l・・・・ベルジャ、2・・・・真空ポンプ、4・・・
・ガス導入装置、5・・・・被処理物、6・・・・金属
、7・・・・蒸発源、8・・・・電磁装置、9・・・・
フィラメント、11・・・・tiL12=・・・フィラ
メント劃L13・・・・バイアス用電源。
The drawings are explanatory diagrams showing one embodiment of the present invention. l...belljar, 2...vacuum pump, 4...
・Gas introduction device, 5...Product to be treated, 6...Metal, 7...Evaporation source, 8...Electromagnetic device, 9...
Filament, 11...tiL12=...Filament L13...Bias power supply.

Claims (1)

【特許請求の範囲】[Claims] 磁場中に設置された蒸発源と、この蒸発源に対し負のバ
イアス電圧を付加されたフィラメントとからなり、この
フィラメントから出た熱電子を前記磁場によって蒸発源
に集束させて衝突させることにより、蒸発源中に載置し
た金属を溶解かつ蒸発させ、この蒸発金属を、蒸発源か
らフィラメントの間を通過する間に、熱電子と衝突させ
てイオン化して被処理物にプレーティングするようにし
、前記磁場の強度、バイアス電圧あるいはフィラメント
への供給電圧の少なくとも1つを制御することにより、
金属の蒸発速度及びイオン化率の定常状態を保つように
したことを特徴とするイオンプレーティング装置。
It consists of an evaporation source placed in a magnetic field and a filament to which a negative bias voltage is applied to the evaporation source, and by focusing the thermoelectrons emitted from the filament by the magnetic field and colliding with the evaporation source, Melting and evaporating the metal placed in the evaporation source, colliding the evaporated metal with thermoelectrons while passing between the evaporation source and the filament to ionize it and plate it on the object to be processed, By controlling at least one of the strength of the magnetic field, the bias voltage or the voltage supplied to the filament,
An ion plating apparatus characterized in that the evaporation rate and ionization rate of metal are maintained in a steady state.
JP24137784A 1984-11-15 1984-11-15 Ion plating apparatus Pending JPS61119669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24137784A JPS61119669A (en) 1984-11-15 1984-11-15 Ion plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24137784A JPS61119669A (en) 1984-11-15 1984-11-15 Ion plating apparatus

Publications (1)

Publication Number Publication Date
JPS61119669A true JPS61119669A (en) 1986-06-06

Family

ID=17073376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24137784A Pending JPS61119669A (en) 1984-11-15 1984-11-15 Ion plating apparatus

Country Status (1)

Country Link
JP (1) JPS61119669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987857A (en) * 1988-06-21 1991-01-29 Anelva Corporation Vacuum deposition apparatus with dust collector electrode
JPH0566059U (en) * 1992-02-07 1993-08-31 東芝タンガロイ株式会社 Coating device with electromagnetic coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987857A (en) * 1988-06-21 1991-01-29 Anelva Corporation Vacuum deposition apparatus with dust collector electrode
JPH0566059U (en) * 1992-02-07 1993-08-31 東芝タンガロイ株式会社 Coating device with electromagnetic coil

Similar Documents

Publication Publication Date Title
EP0328033B1 (en) Thin film forming apparatus and ion source utilizing plasma sputtering
CA2065581C (en) Plasma enhancement apparatus and method for physical vapor deposition
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
US3562141A (en) Vacuum vapor deposition utilizing low voltage electron beam
US3625848A (en) Arc deposition process and apparatus
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
JP3345009B2 (en) Method for ionizing material vapor produced by heating and apparatus for performing the method
US3492215A (en) Sputtering of material simultaneously evaporated onto the target
EP1239056A1 (en) Improvement of a method and apparatus for thin film deposition, especially in reactive conditions
JPS61119669A (en) Ion plating apparatus
EP0047456B1 (en) Ion plating without the introduction of gas
JPS5489983A (en) Device and method for vacuum deposition compound
JPH0625835A (en) Vacuum deposition method and vacuum deposition device
JPS60251269A (en) Method and apparatus for ionic plating
JP3406769B2 (en) Ion plating equipment
Barankova et al. Metastable assisted deposition of TiN films
JPH0417669A (en) Film forming method using plasma and rf ion plating device
Golan et al. Ring etching zones on magnetron sputtering targets
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip
JPH01168857A (en) Formation of titanium nitride film
RU2023742C1 (en) Method of applying protective, decorative and wear-restant coatings
JPS62280357A (en) Ion plating using electron beam evaporation and apparatus therefor
JPH01176072A (en) Ion plating device
JP2620474B2 (en) Ion plating equipment
JPH03150353A (en) Reactive ion plating method