TWI739176B - Forming method of structure in semiconductor device for modifying effective oxide thickness - Google Patents
Forming method of structure in semiconductor device for modifying effective oxide thickness Download PDFInfo
- Publication number
- TWI739176B TWI739176B TW108137856A TW108137856A TWI739176B TW I739176 B TWI739176 B TW I739176B TW 108137856 A TW108137856 A TW 108137856A TW 108137856 A TW108137856 A TW 108137856A TW I739176 B TWI739176 B TW I739176B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- plasma
- species
- silicon
- excited
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 390
- 239000004065 semiconductor Substances 0.000 title claims description 110
- 229910052751 metal Inorganic materials 0.000 claims abstract description 317
- 239000002184 metal Substances 0.000 claims abstract description 317
- 230000008569 process Effects 0.000 claims abstract description 307
- 150000004767 nitrides Chemical class 0.000 claims abstract description 170
- 239000010410 layer Substances 0.000 claims description 526
- 238000012545 processing Methods 0.000 claims description 241
- 239000000758 substrate Substances 0.000 claims description 119
- 238000000137 annealing Methods 0.000 claims description 100
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 85
- 239000007789 gas Substances 0.000 claims description 67
- 238000000151 deposition Methods 0.000 claims description 59
- 229910052739 hydrogen Inorganic materials 0.000 claims description 55
- 229910052710 silicon Inorganic materials 0.000 claims description 54
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 53
- 239000001257 hydrogen Substances 0.000 claims description 53
- 239000010703 silicon Substances 0.000 claims description 53
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 48
- 229910052757 nitrogen Inorganic materials 0.000 claims description 38
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 26
- 239000011247 coating layer Substances 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 2
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 148
- 125000004430 oxygen atom Chemical group O* 0.000 abstract description 68
- 125000004433 nitrogen atom Chemical group N* 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 10
- 238000007796 conventional method Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 description 27
- 238000005121 nitriding Methods 0.000 description 24
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 23
- 229910017840 NH 3 Inorganic materials 0.000 description 20
- 239000010408 film Substances 0.000 description 20
- 230000003647 oxidation Effects 0.000 description 18
- 238000007254 oxidation reaction Methods 0.000 description 18
- 238000005229 chemical vapour deposition Methods 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000000231 atomic layer deposition Methods 0.000 description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 12
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 238000005137 deposition process Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000009616 inductively coupled plasma Methods 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 229910021332 silicide Inorganic materials 0.000 description 9
- 239000003989 dielectric material Substances 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 238000001465 metallisation Methods 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005240 physical vapour deposition Methods 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000005524 ceramic coating Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000007517 polishing process Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000008719 thickening Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910011208 Ti—N Inorganic materials 0.000 description 3
- 229910003077 Ti−O Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000224 chemical solution deposition Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 239000012761 high-performance material Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 238000001636 atomic emission spectroscopy Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- WYEMLYFITZORAB-UHFFFAOYSA-N boscalid Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC=C1NC(=O)C1=CC=CN=C1Cl WYEMLYFITZORAB-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- -1 tungsten nitride Chemical class 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- JUINSXZKUKVTMD-UHFFFAOYSA-N hydrogen azide Chemical compound N=[N+]=[N-] JUINSXZKUKVTMD-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/456—Ohmic electrodes on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32532—Electrodes
- H01J37/32568—Relative arrangement or disposition of electrodes; moving means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32623—Mechanical discharge control means
- H01J37/32651—Shields, e.g. dark space shields, Faraday shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
- H01J37/32972—Spectral analysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28088—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28518—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/3003—Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76855—After-treatment introducing at least one additional element into the layer
- H01L21/76856—After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76861—Post-treatment or after-treatment not introducing additional chemical elements into the layer
- H01L21/76864—Thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/511—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
- H01L29/513—Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76853—Barrier, adhesion or liner layers characterized by particular after-treatment steps
- H01L21/76855—After-treatment introducing at least one additional element into the layer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- Analytical Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrodes Of Semiconductors (AREA)
- Formation Of Insulating Films (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemical Vapour Deposition (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本文描述的實施例通常係關於一種用於處理半導體基板的方法及設備,並且更特定而言,關於改良膜的有效氧化物厚度之氫化與氮化製程。 The embodiments described herein generally relate to a method and apparatus for processing semiconductor substrates, and more specifically, to hydrogenation and nitridation processes for improving the effective oxide thickness of the film.
在積體電路中,非常需要諸如金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor;MOSFET)的較小電晶體。首先,較小電晶體賦能在給定晶片區域中形成更多電晶體,由此減小晶片尺寸。其次,較小電晶體通常可比較大電晶體更快地切換,由此改良晶片效能。 In integrated circuits, smaller transistors such as metal oxide semiconductor field effect transistors (MOSFETs) are highly needed. First, smaller transistors enable the formation of more transistors in a given wafer area, thereby reducing the wafer size. Secondly, smaller transistors can usually switch faster than larger transistors, thereby improving chip performance.
一用於減小MOSFET的尺寸的方法係按比例縮放,其中按比例減小重要的元件尺寸,諸如電晶體長度、電晶體寬度、及氧化物(或介電質)厚度。在此方法中,電晶體通道電阻不隨著電晶體大小減小而改變,而電晶體的閘極電容及RC延遲與尺寸減小成比例地降低。 One method for reducing the size of MOSFETs is scaling, in which important component sizes such as transistor length, transistor width, and oxide (or dielectric) thickness are reduced proportionally. In this method, the transistor channel resistance does not change as the size of the transistor decreases, and the gate capacitance and RC delay of the transistor decrease in proportion to the size reduction.
然而,儘管在MOSFET中的介電質厚度減小對於將MOSFET按比例縮小為未來技術節點所需的尺寸而言係關鍵的,但亦存在重要折衷。具體而言,隨著MOSFET中的習知氧化物/氮氧化物介電層的厚度的線性減小,閘極洩漏存在指數增加,從而導致增加的功率消耗。此外,介電層的厚度現接近少數個原子層,從而產生了可靠性問題。因此,使電晶體中的氧化物厚度或有效氧化物厚度(effective oxide thickness; EOT)可在閘極洩漏不存在指數增加的情況下減小的任何方式都係非常需要的。此需要及其他需要在本揭示案中解決。However, although the reduction of the dielectric thickness in the MOSFET is critical for scaling the MOSFET to the size required by future technology nodes, there are important trade-offs. Specifically, as the thickness of the conventional oxide/oxynitride dielectric layer in the MOSFET decreases linearly, there is an exponential increase in gate leakage, resulting in increased power consumption. In addition, the thickness of the dielectric layer is now close to a few atomic layers, causing reliability problems. Therefore, any way in which the oxide thickness or effective oxide thickness (EOT) in the transistor can be reduced without exponential increase in gate leakage is highly desirable. This need and other needs are resolved in this disclosure.
本文所描述的實施例通常係關於用於減少半導體元件中的導電結構中的界面及主體O原子的連續氫化及氮化製程。在一個實施例中,提供了一種在半導體元件中形成結構的方法,該方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數介電層上沉積覆蓋層以形成結構的一部分,所沉積的覆蓋層具有已暴露表面;及將已暴露表面暴露於電漿激發的氫物種及電漿激發的氮物種。基板的部分包括覆蓋層及高介電常數介電質。The embodiments described herein generally relate to a continuous hydrogenation and nitridation process for reducing the interface and host O atoms in the conductive structure in a semiconductor device. In one embodiment, there is provided a method of forming a structure in a semiconductor element, the method comprising: depositing a high-k dielectric layer on a semiconductor substrate; depositing a capping layer on the high-k dielectric layer to form the structure A part of the deposited covering layer has an exposed surface; and exposing the exposed surface to plasma-excited hydrogen species and plasma-excited nitrogen species. The part of the substrate includes a cover layer and a high-k dielectric.
在一個實施例中,一種在半導體元件中形成結構的方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數金屬介電層上沉積金屬氮化物層以形成結構的一部分,其中該部分包括金屬氮化物層及高介電常數金屬介電層並且具有第一有效氧化物厚度,並且其中所沉積的金屬氮化物層具有已暴露表面;將已暴露表面連續地暴露於非氧化的電漿激發的氫物種,隨後暴露於電漿激發的氮物種以將第一有效氧化物厚度減小到第二有效氧化物厚度。In one embodiment, a method of forming a structure in a semiconductor device includes: depositing a high-k dielectric layer on a semiconductor substrate; depositing a metal nitride layer on the high-k metal dielectric layer to form a part of the structure , Where the part includes a metal nitride layer and a high-k metal dielectric layer and has a first effective oxide thickness, and the deposited metal nitride layer has an exposed surface; the exposed surface is continuously exposed to the non- The oxidized plasma excited hydrogen species are then exposed to the plasma excited nitrogen species to reduce the first effective oxide thickness to the second effective oxide thickness.
在另一實施例中,一種在半導體元件中形成結構的方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數金屬介電層上沉積金屬氮化物層;將已暴露表面連續地暴露於電漿激發的氫物種,隨後暴露於電漿激發的氮物種;在將已暴露表面連續地暴露於電漿激發的氫物種,隨後暴露於電漿激發的氮物種之後,將已暴露表面暴露於空氣;及在將已暴露表面暴露於空氣之後,在高介電常數介電層及金屬氮化物層上在特定溫度下執行熱退火製程達特定時間。In another embodiment, a method of forming a structure in a semiconductor device includes: depositing a high-k dielectric layer on a semiconductor substrate; depositing a metal nitride layer on the high-k metal dielectric layer; The surface is continuously exposed to plasma-excited hydrogen species and subsequently to plasma-excited nitrogen species; after exposing the exposed surface to plasma-excited hydrogen species and subsequently to plasma-excited nitrogen species, the The exposed surface is exposed to air; and after exposing the exposed surface to air, a thermal annealing process is performed on the high-k dielectric layer and the metal nitride layer at a specific temperature for a specific time.
在另一實施例中,一種在半導體元件中形成結構的方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數金屬介電層上沉積金屬氮化物層以形成基板的一部分,其中該部分包括金屬氮化物層及高介電常數金屬介電層並且具有第一有效氧化物厚度,並且其中所沉積的金屬氮化物層具有已暴露表面;藉由將已暴露表面連續地暴露於非氧化的電漿激發的氫物種,隨後暴露於電漿激發的氮物種,將第一有效氧化物厚度減小至第二有效氧化物厚度。In another embodiment, a method for forming a structure in a semiconductor device includes: depositing a high-k dielectric layer on a semiconductor substrate; depositing a metal nitride layer on the high-k metal dielectric layer to form the substrate A part, where the part includes a metal nitride layer and a high-k metal dielectric layer and has a first effective oxide thickness, and the deposited metal nitride layer has an exposed surface; by continuously connecting the exposed surface Exposure to non-oxidized plasma excited hydrogen species, and subsequent exposure to plasma excited nitrogen species, reduces the first effective oxide thickness to the second effective oxide thickness.
在另一實施例中,提供了一種在半導體元件中形成結構的方法,該方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數金屬介電層上沉積覆蓋層;將覆蓋層的已暴露表面暴露於電漿激發的氫物種及電漿激發的氮物種;將已暴露表面暴露於空氣;及在高介電常數介電層及覆蓋層上在特定溫度下執行熱退火製程達特定時間。In another embodiment, a method of forming a structure in a semiconductor element is provided, the method comprising: depositing a high-k dielectric layer on a semiconductor substrate; depositing a capping layer on the high-k metal dielectric layer; Expose the exposed surface of the cover layer to plasma-excited hydrogen species and plasma-excited nitrogen species; expose the exposed surface to air; and perform heat at a specific temperature on the high-permittivity dielectric layer and the cover layer The annealing process reaches a specific time.
在另一實施例中,提供了一種在半導體元件中形成結構的方法,該方法包括:在半導體基板上沉積高介電常數介電層;在高介電常數介電層上沉積覆蓋層以形成結構的一部分,其中所沉積的覆蓋層具有已暴露表面;及將已暴露表面暴露於電漿激發的氫物種及電漿激發的氮物種,其中電漿激發的氫物種包括氨,並且電漿激發的氮物種包括氮氣(N2 )。結構的部分包括覆蓋層及高介電常數介電質。In another embodiment, a method of forming a structure in a semiconductor element is provided, the method comprising: depositing a high-k dielectric layer on a semiconductor substrate; and depositing a capping layer on the high-k dielectric layer to form A part of the structure in which the deposited covering layer has an exposed surface; and exposing the exposed surface to plasma excited hydrogen species and plasma excited nitrogen species, wherein the plasma excited hydrogen species include ammonia, and the plasma excited The nitrogen species include nitrogen (N 2 ). The part of the structure includes a cover layer and a high-k dielectric.
在另一實施例中,提供了一種在半導體元件中形成結構的方法,包括:在基板表面上方形成的高介電常數介電層上沉積金屬氮化物覆蓋層;及將所沉積的金屬氮化物覆蓋層的已暴露表面暴露於包含第一氣體及第二氣體的電漿,第一氣體包括含氫物種,第二氣體包括含氮物種,其中在第一氣體中的含氫物種包括氮。In another embodiment, a method for forming a structure in a semiconductor device is provided, including: depositing a metal nitride coating layer on a high-k dielectric layer formed on the surface of a substrate; and depositing the deposited metal nitride The exposed surface of the cover layer is exposed to a plasma containing a first gas and a second gas. The first gas includes a hydrogen-containing species and the second gas includes a nitrogen-containing species, wherein the hydrogen-containing species in the first gas includes nitrogen.
在另一實施例中,提供了一種在半導體元件中形成結構的方法,包括:在半導體基板上沉積高介電常數介電層;在高介電常數介電層上沉積覆蓋層;將覆蓋層的已暴露表面暴露於電漿激發的氫物種及電漿激發的氮物種;將已暴露表面暴露於空氣;及在高介電常數介電層及覆蓋層上在特定溫度下執行熱退火製程達特定時間。In another embodiment, a method for forming a structure in a semiconductor element is provided, including: depositing a high-permittivity dielectric layer on a semiconductor substrate; depositing a cover layer on the high-permittivity dielectric layer; The exposed surface is exposed to plasma-excited hydrogen species and plasma-excited nitrogen species; the exposed surface is exposed to air; and a thermal annealing process is performed at a specific temperature on the high-permittivity dielectric layer and the cover layer. Specific time.
在另一實施例中,提供了一種在半導體元件中形成結構的方法,包括:在半導體基板上沉積高介電常數介電層;在高介電常數介電層上沉積覆蓋層以形成結構的一部分,其中該部分包括覆蓋層及高介電常數介電層,並且其中所沉積的覆蓋層具有已暴露表面;及將已暴露表面暴露於電漿激發的氫物種及電漿激發的氮物種,其中電漿激發的氫物種包括氨,並且電漿激發的氮物種包括氮氣(N2 )。In another embodiment, a method for forming a structure in a semiconductor element is provided, which includes: depositing a high-permittivity dielectric layer on a semiconductor substrate; depositing a cover layer on the high-permittivity dielectric layer to form a structure A part, where the part includes a cover layer and a high-permittivity dielectric layer, and the deposited cover layer has an exposed surface; and exposing the exposed surface to plasma-excited hydrogen species and plasma-excited nitrogen species, The hydrogen species excited by the plasma includes ammonia, and the nitrogen species excited by the plasma includes nitrogen (N 2 ).
本文所描述的實施例通常係關於用於在基板上形成的半導體元件內的結構中氮化層的方法及設備。單步電漿氫化及氮化製程可在金屬層或導電結構中包括的金屬層堆疊上執行,該等金屬層例如在沉積金屬覆蓋層之前熱退火的金屬層。在各個實施例中,在熱退火製程之前、在熱退火製程之後、或在熱退火製程之前及之後,可執行單步電漿氫化及氮化製程。在各個實施例中,在導電結構中的氮原子濃度有利地增加,由此減小在導電結構中的電阻。在第1圖中示出一個此種導電結構。具有減少的界面及主體氧的導電結構 The embodiments described herein generally relate to methods and apparatuses for nitriding layers in structures within semiconductor devices formed on substrates. The single-step plasma hydrogenation and nitridation process can be performed on a metal layer or a stack of metal layers included in the conductive structure, such as metal layers that are thermally annealed before depositing the metal capping layer. In various embodiments, a single-step plasma hydrogenation and nitridation process may be performed before the thermal annealing process, after the thermal annealing process, or before and after the thermal annealing process. In various embodiments, the concentration of nitrogen atoms in the conductive structure is advantageously increased, thereby reducing the resistance in the conductive structure. One such conductive structure is shown in Figure 1. Conductive structure with reduced interface and main oxygen
第1圖示出了根據本揭示案的一實施例的在半導體基板110上形成作為半導體元件的部分的導電結構100或接觸結構的橫截面圖。導電結構100可係經配置為傳導電流的半導體元件的任何部分,並且由此獲益於減小的電阻。在第1圖中示出的實施例中,將導電結構100繪示為用於向源極或汲極結構101提供電氣接觸的接觸結構,且在已經形成導電結構100之後圖示,並且諸如化學機械拋光(chemical-mechanical polishing; CMP)的平坦化製程已經在半導體基板110上完成。例如,導電結構100可係用於場效電晶體(field-effect transistor; FET)的接觸結構。FIG. 1 shows a cross-sectional view of a
導電結構100在接觸阱109或孔中設置,該孔係在絕緣材料120中形成的空腔。絕緣材料120(或者被稱為淺溝槽隔離(shallow trench isolation; STI))可包括一或更多種介電材料,如二氧化矽(SiO2
)、氮化矽(Si3
N4
)、或上述各者之多個層。絕緣材料120可藉由高密度電漿(high-density plasma; HDP)、可流動化學氣相沉積(flowable chemical vapor deposition; FCVD)、正矽酸四乙酯(tetraethyl orthosilicate; TEOS)、或類似者形成。導電結構100可包括多個金屬層的堆疊,例如,第一金屬層102、金屬氮化物層103、及在第一金屬層102及金屬氮化物層103上方設置的至少一導電部分。導電部分可包括覆蓋層104及/或導電層106。The
源極或汲極結構101可由半導體基板110形成或由在半導體基板110上沉積的不同半導體材料形成。在後者情況下,不同的半導體材料可包括鍺矽、第III-V族化合物半導體材料、或類似者。例如,在一些實施例中,可執行磊晶製程以生長源極或汲極結構101。The source or
第一金屬層102在源極或汲極結構101上形成,並且包括一或更多種金屬,該等金屬經選擇為在適宜的熱退火製程之後在與源極或汲極結構101的界面處形成矽化物105。例如,在一些實施例中,第一金屬層102包括鈦(Ti)或整體由Ti構成,並且可具有約40 Å至約50 Å的厚度。金屬氮化物層103在第一金屬層102上形成,並且包括金屬氮化物,例如,用作導電結構100中的擴散阻障層。在一些實施例中,金屬氮化物層103包括氮化鈦(TiN)、氮化鉭(TaN)及/或氮化鎢(W3
N2
),並且可具有約10 Å至20 Å的厚度。覆蓋層104通常在熱退火製程之後在金屬氮化物層103上形成,矽化物105藉由該熱退火製程在導電結構100中形成,並且包括一或更多種金屬。在一些實施例中,導電結構100可包括單獨形成的導電層106,該導電層可包括金屬,如鈷、銅、釕、鎳、鎢、鋁、或其他可用金屬、或其組合。在一些實施例中,覆蓋層104包括Co,並且可具有約10 Å至20 Å的厚度。在其他實施例中,覆蓋層104包括金屬(例如,鈷),該金屬完全填充接觸阱109的剩餘部分。The
如先前提及,在第一金屬層102及/或金屬氮化物層103中存在O原子不利地影響導電結構100的有效導電性。首先,在任何金屬層中的氧化物增加所形成的金屬層的主體導電性。其次,界面氧化物(亦即,在金屬氮化物層103與覆蓋層104之間的界面處形成的金屬氧化物)加劇了在金屬氮化物層103與覆蓋層104之間的不良黏著力,潛在地導致顯著減小導電結構100的有效橫截面積的空隙。遺憾的是,在導電結構100的金屬層的主體部分中幾乎總是存在一定程度的低濃度的O原子。此外,在眾多情況下,氧化物可以較高濃度在金屬表面上形成,該等金屬表面在製造步驟之間暴露於空氣。根據本揭示案的實施例,在導電結構100中存在主體及界面O原子可經由連續氫化及電漿氮化製程來減少。在第2A圖至第2E圖及第3A圖至第3D圖中示出針對連續製程將導電結構100中的主體及界面O原子減少程度的實體模型。減少界面及主體氧的實體模型 As mentioned earlier, the presence of O atoms in the
第2A圖至第2E圖係根據本揭示案的一實施例的在製造接觸結構100的各個階段處的接觸結構100內的金屬氮化物層103的示意圖。應注意到,第2A圖至第2E圖僅示出了金屬氮化物層103的一個可能的表面末端,並且僅僅表示常見的TiN結構。在一些實施例中,金屬氮化物層103可具有任何其他可能的表面末端或與TiN層相關聯的晶體結構。2A to 2E are schematic diagrams of the
在第2A圖中,示意性地示出緊接在金屬氮化物層103已經在第一金屬層102上沉積之後並且在將部分200暴露於空氣之前的金屬氮化物層103的部分200。部分200包括其上將最終沉積有覆蓋層104的部分200的表面201。如圖所示,部分200具有NACl立方結構,並且主要由Ti及N原子構成。此外,部分200包括通常在表面201下方的部分200的主體區域中設置的低濃度的主體O原子211(交叉影線)。主體O原子211可由污染帶入,該污染在用於形成部分200的沉積製程期間在處理環境中發現。另外,部分200通常包括空位213,該等空位係其中正失去原子的部分200的晶格內的位點。空位213係當將氮化物層103暴露於空氣時可在部分200內發生額外氧化的位置。注意到,當金屬氮化物層103藉由原子層沉積(atomic layer deposition; ALD)製程形成時,歸因於在ALD製程中發現的膜成核及生長機制,相對於傳統化學氣相沉積(chemical vapor deposition; CVD)或物理氣相沉積(physical vapor deposition; PVD)製程,空位213相對常見。因此,相對於習知PVD或CVD類型的製程,本文提供的揭示內容的一或更多個實施例可當在藉由ALD製程形成的膜上使用時提供顯著益處。In Figure 2A, the
在第2B圖中,示出在從沉積金屬氮化物層103的處理系統去除之後的部分200。例如,在準備熱退火製程時,可將其上形成部分200的半導體基板110暴露於空氣。通常,歸因於形成目前的大部分先進元件節點應用所需的要求清潔度、熱管理控制及真空位準要求的差異,習知熱處理腔室(如退火處理腔室)在與用於形成第一金屬層102及金屬氮化物層103的處理系統不同的處理系統中執行。因此,在第2B圖中,示出了在暴露於空氣之後的部分200。如圖所示,已經部分氧化表面201,其中表面O原子212佔據大部分或所有在表面201上設置的空位213。在一些情況下,由於將部分200暴露於空氣,在部分200內設置的一些空位213由主體O原子211佔據。In Figure 2B, the
在第2C圖中,示出了在經歷熱退火製程以形成矽化物105(如第1圖所示)之後的部分200。一些或所有剩餘空位213用主體O原子211或表面O原子212填充。在一些實施例中,主體O原子211亦可移位在部分200內設置的N原子的一部分。因此,退火製程通常增加部分200中的主體O原子211及表面O原子212二者的數量。甚至當表面201上的表面O原子212的深度係僅一或兩個單層時,對導電結構100的電阻率的影響可係顯著的,特定係針對較小元件結構,如與先進元件節點(例如,65 nm技術節點及以下的技術節點)相關聯的彼等結構。In FIG. 2C, the
在第2D圖中,示出了根據本揭示案的各個實施例的在暴露於氫原子之後的部分200,該等氫原子與包括在部分200中的主體O原子211及/或表面O原子212反應。在一些實施例中,作為熱氫化製程的部分,主體O原子211及/或表面O原子212與來自熱解離的氫氣(H2
)的氫原子反應,而在其他實施例中,作為電漿氫化製程的部分,主體O原子211及/或表面O原子212與來自含氫電漿的氫原子反應。In Figure 2D, the
熱氫化製程可在某些處理條件下在適宜的快速熱處理腔室中執行,包括將部分200加熱至至少約550℃至約650℃。電漿氫化製程可在某些處理條件下在適宜的電漿處理腔室中執行。示例性電漿處理腔室及電漿處理條件各者在下文針對電漿氫化製程描述。如圖所示,氫化製程減少或另外從表面201去除所有或實質上所有的表面O原子212,從而留下空位213。此外,電漿氫化製程亦可去除在表面201下方設置的一些或所有主體O原子211。The thermal hydrogenation process can be performed in a suitable rapid thermal processing chamber under certain processing conditions, including heating the
在第2E圖中,示出了根據本揭示案的各個實施例在經歷電漿氮化製程之後的部分200。電漿氮化製程可在某些處理條件下在適宜的電漿處理腔室中執行,並且示例性電漿處理腔室及電漿處理條件各者在下文針對電漿氮化製程描述。在一些實施例中,電漿氮化製程可在相同的執行電漿氫化製程的電漿處理腔室中執行。此外,在電漿或熱氫化製程與電漿氮化製程之間不發生空斷。亦即,在電漿或熱氫化製程之後並且在電漿氮化製程之前,不將部分200暴露於空氣。In FIG. 2E, the
如圖所示,氮化製程導致用N原子填充空位213,使得表面201上設置的表面O原子212非常少或沒有。因此,表面201可達到N原子飽和,並且因此,表面201的後續氧化大幅度減少或消除,甚至當在沉積覆蓋層104之前再次將表面201暴露於空氣時。由此,改良在金屬氮化物層103的表面201與覆蓋層104之間的黏著力。此外,在表面201下方的一些或所有空位可用N原子替代主體O原子211來填充,從而進一步整體改進金屬氮化物層103、第一金屬層102、及導電結構100的導電性。As shown in the figure, the nitridation process results in filling the
第3圖係根據本揭示案的一實施例的用於在處理之前沉積及熱退火的TiN膜的X射線光電子光譜學(X-ray Photoelectron Spectroscopy; XPS)光譜310及用於在處理之後的相同沉積及熱退火的TiN膜的XPS光譜320。處理包括電漿或熱氫化製程,及隨後的電漿氮化製程。熱退火製程係在約550℃與600℃之間的溫度下在氮氣(N2
)或氨(NH3
)環境中的快速熱製程。在約340℃與500℃之間的溫度下、在約10 mTorr與150 mTorr之間的處理壓力下、在約250 W與2000 W之間的電漿功率下、在約5 sccm與100 sccm之間的H2
流率下、及在約250 sccm與2000 sccm之間的氬(Ar)流率下,電漿氫化製程在基板底座上的感應耦合電漿(inductively coupled plasma; ICP)腔室中執行達約30秒與約200秒之間的持續時間。在約350℃與500℃之間的溫度下的基板底座上、在約10 mTorr與100 mTorr之間的處理壓力下、在約250 W與2000 W之間的電漿功率下、在約5 sccm與100 sccm之間的NH3
流率下、在約300 sccm與500 sccm之間的氮氣(N2
)流率下、及在約20 sccm與500 sccm之間的氬(Ar)流率下,電漿氮化製程可在相同ICP腔室中執行達約30秒與約200秒之間的持續時間。Figure 3 is an X-ray Photoelectron Spectroscopy (X-ray Photoelectron Spectroscopy; XPS)
如在本領域中熟知,TiN膜的XPS光譜可包括多個峰,各者指示不同含鈦材料的不同相對濃度。例如,具有約458.5 eV的結合能的Ti-O峰通常指示存在Ti-O鍵,並且由此,指示在含鈦材料中存在O原子;具有約457 eV的結合能的Ti-O-N峰通常指示存在Ti-O-N鍵,並且由此,指示在含鈦材料中存在N原子及O原子;並且具有約454.9 eV的結合能的Ti-N峰通常指示存在Ti-N鍵,並且由此,指示在含鈦材料中存在氮(N)原子。As is well known in the art, the XPS spectrum of a TiN film may include multiple peaks, each indicating a different relative concentration of different titanium-containing materials. For example, a Ti-O peak with a binding energy of about 458.5 eV generally indicates the presence of a Ti-O bond, and thus, the presence of O atoms in a titanium-containing material; a Ti-ON peak with a binding energy of about 457 eV generally indicates The presence of Ti-ON bonds, and thus, indicates the presence of N atoms and O atoms in the titanium-containing material; and the Ti-N peak with a binding energy of about 454.9 eV generally indicates the presence of Ti-N bonds, and thus, indicates that there are Nitrogen (N) atoms are present in titanium-containing materials.
針對在其上執行上文描述的熱退火製程之後的TiN沉積膜,XPS光譜310與Ti 2p殼相關聯,且針對在經歷上文描述的電漿氫化製程,隨後經歷上文描述的電漿氮化製程之後的TiN沉積及熱退火膜,XPS光譜320與Ti 2p殼相關聯。如圖所示,與在XPS光譜310中相比,在XPS光譜320中指示存在Ti-O鍵的峰及指示存在Ti-O-N鍵的峰顯著較低,從而清楚地指示在TiN膜中存在的O原子減少。此外,與在XPS光譜310中相比,在XPS光譜320中指示存在Ti-N鍵的峰顯著較高,從而清楚地指示N原子在TiN膜中的濃度的增加。因此,藉由在退火製程之後執行氫化及氮化製程,O原子在金屬氮化物膜103中的濃度可顯著減小,並且N原子在金屬氮化物膜103中的濃度可顯著增加。For the TiN deposited film after the thermal annealing process described above is performed thereon, the
第2A圖至第2E圖及第3圖示出了退火後連續氫化及氮化製程對金屬氮化物層103的效應。在一些實施例中,在熱退火製程之前在部分200上採用電漿或熱氫化製程,隨後採用電漿氮化製程可具有類似的有益效應。具體而言,因為歸因於電漿氮化製程(如第2E圖所示),表面201可大部分或全部達到N原子飽和,後續的空氣暴露及熱退火表面201導致極少氧化或沒有氧化。因此,在部分200中發現的主體O原子211的濃度及表面O原子212在表面201上的濃度不顯著增加。
FIGS. 2A to 2E and 3 show the effect of the continuous hydrogenation and nitridation process on the
第4圖係經配置為實施本揭示案的一或更多個態樣的電漿處理腔室400的示意性橫截面。電漿處理腔室400可係任何適宜的電漿處理腔室,如感應耦合電漿(inductively coupled plasma;ICP)處理腔室。如第4圖所示,處理腔室400可包括腔室壁406、腔室蓋408及在腔室壁406內設置的基板支撐底座404。通常,腔室壁406耦合到電氣接地416。腔室蓋408可由任何適宜介電質(如石英)構成。針對一些實施例,腔室蓋408可假設不同形狀(例如,圓頂形狀)。在一些實施例中,腔室蓋408可用陶瓷塗層(如含釔氧化物)塗覆,用於抵禦電漿物種。在一個實施例中,陶瓷塗層係高效能材料(high performance material;HPM),該高效能材料由Y4Al2O9化合物及固溶液Y2-xZrxO3(Y2O3-ZrO2固溶液)構成。陶瓷塗層可具有從約100微米至約300微米變化的厚度,如約200微米。Figure 4 is a schematic cross-section of a
在腔室蓋408之上,可設置包括至少一個感應線圈元件410的射頻(radio frequency; RF)天線(圖示了兩個同軸線圈元件)。在一些實施例中,感應線圈元件410可在腔室壁406的至少一部分周圍設置。感應線圈元件410的一端可經由第一阻抗匹配網路412耦合到RF電源414,並且另一端可連接到如圖所示的電氣接地417。在範圍從2至160 MHz的可調諧頻率下,電源414通常能夠產生多達10千瓦(kW)電力,其中13.56 MHz係常見操作頻率。供應到感應線圈元件410的RF功率可係脈衝的(亦即,在開啟與關閉狀態之間切換)或功率循環(亦即,使功率輸入從高位準到低位準變化),其頻率在從1至100 kHz變化的範圍中。On the
屏蔽電極418可插入RF天線的感應線圈元件410與腔室壁408之間。屏蔽電極418可經由任何適宜構件交替地電氣浮動或耦合到電氣接地419,該構件用於構成及斷開電氣連接,如第4圖中示出的開關420。The
針對一些實施例,偵測器422可附接到腔室壁406以促進決定何時將腔室400內的氣體混合物激勵為電漿。例如,偵測器422可偵測由激發的氣體發射的輻射或使用光學發射光譜學(optical emission spectroscopy; OES)以量測與所產生的電漿相關聯的光的一或更多個波長的強度。For some embodiments, the
底座404可經由第二阻抗匹配網路424耦合到偏置電源426。類似於RF電源414,偏置電源426通常能夠產生具有從2至160 MHz變化及在0與10 kW之間的功率的可調諧頻率的RF訊號。可選地,偏置電源426可係直流(direct current; DC)或脈衝DC源。The base 404 may be coupled to the
在操作中,基板428(如半導體基板)可放置在底座404上,並且處理氣體可從氣體面板430經由入口埠432供應以致力於形成氣體混合物434。下文描述了可在本文描述的一或更多個製程中使用的常見處理氣體。入口埠432可用陶瓷塗層(如HPM)塗佈。氣體混合物434可在處理腔室400中藉由施加來自RF電源414的功率而激勵為電漿436。在處理腔室400的內部容積內的壓力可使用節流閥438及真空泵440控制。在一些實施例中,腔室壁406的溫度可使用行進穿過腔室壁406的含液體管道(未圖示)或者嵌入腔室壁406中(例如,加熱筒或線圈)或纏繞在處理腔室400周圍(例如,加熱器包或帶)的加熱元件控制。In operation, a substrate 428 (such as a semiconductor substrate) may be placed on the
基板428的溫度可藉由穩定底座404的溫度來控制。在一些實施例中,可將來自氣體來源442的氦(He)氣體經由氣體管道444提供到在基板428下方的底座表面中形成的通道(未圖示)。氦氣可促進在底座404與基板428之間的熱傳遞。在處理期間,可將底座404加熱至穩態溫度,並且隨後氦氣可促進基板428的均勻加熱。底座可藉由加熱元件(未圖示)如此加熱,該加熱元件諸如嵌入底座404內的電阻式加熱器、或通常瞄準其上的底座404或基板428的燈。使用此種熱控制,可將基板428維持在約攝氏20度至攝氏350度(℃)之間的溫度下。The temperature of the
為了允許控制如本文描述的處理腔室400的部件,可提供控制器446。控制器446可包含中央處理單元(central processing unit; CPU) 448、記憶體450、及用於CPU 448的支援電路452。控制器446可與RF電源414、開關420、偵測器422、及偏置電源426對接。To allow control of the components of the
控制器446可係任何適宜類型的通用電腦處理器,該通用電腦處理器可在用於控制各個腔室及子處理器的工業設置中使用。記憶體450、或用於CPU 448的其他電腦可讀取媒體可係任何容易獲得的記憶體形式的一或更多個,如隨機存取記憶體(random access memory; RAM)、唯讀記憶體(read only memory; ROM)、軟碟、硬碟、或任何其他形式的數位儲存器(本端或遠端)。支援電路452可耦合到CPU 448,以致力於以習知方式支援處理器。此等電路可包括快取記憶體、電源供應器、時鐘電路、輸入/輸出(I/O)電路系統及子系統、及類似者。針對一些實施例,本文揭示的用於激勵及維持電漿的技術可儲存在記憶體450中作為軟體常式。軟體常式亦可由第二CPU(未圖示)儲存及/或執行,該第二CPU位於由CPU 448控制的硬體遠端。The
根據本揭示案的一些實施例,熱或電漿氫化製程隨後係電漿氮化製程,後文稱為「連續氫化/氮化製程」,在基板上執行熱退火之前及/或之後在基板上執行。連續氫化/氮化製程可包括電容耦合電漿製程或感應耦合電漿製程。在一些實施例中,用於氫化/氮化製程的電漿可在處理腔室400外部的遠端電漿源中形成,並且在其他實施例中,用於電漿製程的電漿可原位形成,亦即,在處理腔室400中形成。氫化及氮化可在相同步驟中執行,後文稱為「單步電漿氫化及氮化製程」。在一些實施例中,用於單步電漿氫化及氮化製程的電漿可在處理腔室400外部的遠端電漿源中形成,並且在其他實施例中,用於電漿製程的電漿可原位形成,亦即,在處理腔室400中形成。According to some embodiments of the present disclosure, the thermal or plasma hydrogenation process is followed by a plasma nitridation process, hereinafter referred to as a "continuous hydrogenation/nitridation process", on the substrate before and/or after thermal annealing is performed on the substrate implement. The continuous hydrogenation/nitridation process may include a capacitively coupled plasma process or an inductively coupled plasma process. In some embodiments, the plasma used in the hydrogenation/nitridation process can be formed in a remote plasma source outside the
在電漿氫化製程中,電漿激發的H自由基及/或離子與主體O原子211及/或表面O原子212反應以產生空位213。在熱氫化製程的情況下,解離的H原子與主體O原子211及/或表面O原子212反應以產生空位213。在氮化製程中,N自由基及/或離子佔據空位213。In the plasma hydrogenation process, H radicals and/or ions excited by the plasma react with the
注意到,在電漿氫化製程期間,歸因於存在H原子,如解離的H原子、H自由基、及/或H離子,在處理腔室400內的處理環境通常包括相對低的較低濃度的O原子。因此,與在氮化製程期間在處理腔室400內的處理環境或在沉積金屬氮化物層期間在處理腔室內的處理環境相比,在電漿氫化製程期間在處理腔室400內的處理環境可包括較低濃度的O原子。然而,對於氫化或氮化二者,較低濃度的O原子通常係有利的。因此,在一些實施例中,在電漿氫化製程及/或氮化製程之前,處理腔室可用電漿製程(如H2
製程)調節,以去除任何痕量的O物種。Note that during the plasma hydrogenation process, due to the presence of H atoms, such as dissociated H atoms, H radicals, and/or H ions, the processing environment in the
當待用本文描述的氫化/氮化製程或單步電漿氫化及氮化製程處理的金屬氮化物層係具有約200 Å或更小的厚度的薄膜時,ICP製程通常較不易於在氫化或氮化期間破壞金屬氮化物層。具體地,在ICP製程中,電漿鞘通常小於在CCP腔室中的電漿鞘,並且由此進行穿過其中的離子通常具有成比例較小的能量,例如,在10倍ev的數量級上,諸如10至20 eV。相比之下,在CCP腔室中的離子通常具有在100倍eV的數量級上的能量(例如,>200-400 eV),並且隨後可產生對金屬氮化物層的顯著破壞。此外,歸因於較高密度的離子、自由基、及通常在ICP處理腔室中並且相對於CCP及在其他類型的處理腔室中使用的遠端電漿源靠近基板形成的其他電漿激發物種,與藉由使用CCP或遠端電漿製程相比,ICP製程可提供從金屬氮化物層的更多氧去除。相比之下,來自CCP及遠端電漿源的自由基的濃度係相對低的。When the metal nitride layer to be processed by the hydrogenation/nitridation process or the single-step plasma hydrogenation and nitridation process described herein is a thin film with a thickness of about 200 Å or less, the ICP process is generally less easy to perform hydrogenation or nitridation. The metal nitride layer is destroyed during nitriding. Specifically, in the ICP process, the plasma sheath is usually smaller than the plasma sheath in the CCP chamber, and thus the ions passing through it usually have a proportionally smaller energy, for example, on the order of 10 times EV , Such as 10 to 20 eV. In contrast, the ions in the CCP chamber typically have energy on the order of 100 times eV (eg, >200-400 eV), and can subsequently cause significant damage to the metal nitride layer. In addition, due to the higher density of ions, free radicals, and other plasma excitations that are usually formed in the ICP processing chamber and close to the substrate relative to the remote plasma source used in CCP and other types of processing chambers Species, the ICP process can provide more oxygen removal from the metal nitride layer than by using CCP or remote plasma processes. In contrast, the concentration of free radicals from CCP and remote plasma sources is relatively low.
在其中原位形成用於電漿製程的電漿的實施例中,電漿可經由感應線圈元件410、第一阻抗匹配網路412、RF電源414形成,並且在一些實施例中,經由第二阻抗匹配網路424及偏置電源426形成。在此種實施例中,電漿製程可包括將一或更多種處理氣體引入處理腔室400中,該處理氣體經選擇為產生某些電漿物種(亦即,離子、中性原子、及/或自由基)。更具體地,在電漿氫化製程的情況下,一或更多種處理氣體經選擇為產生電漿激發的氫物種,而在電漿氮化製程的情況下,一或更多種處理氣體經選擇為產生電漿激發的氮物種。因此,針對電漿氫化製程,一或更多種處理氣體可包括氫(H2
)、及/或D2
,並且針對電漿氮化製程,一或更多種處理氣體可包括氮(N2
)或氨(NH3
)。替代或額外地,電漿製程可包括將一或更多種載體及/或惰性氣體(如氬(Ar))引入處理腔室400中。針對單步電漿氫化及氮化製程,一或更多種處理氣體可包括氫(H2
)、D2
、氮(N2
)、氨(NH3
)、或肼(N2
H4
)。In the embodiment where the plasma for the plasma process is formed in situ, the plasma may be formed through the
在一些實施例中,電漿氫化製程主要包括形成電漿,該電漿包括基本上由氫(H2 )組成的處理氣體,該處理氣體形成由電漿提供的反應物種。將注意到,與使用含H2 的處理氣體的熱氫化製程相比,使用電漿(例如,感應耦合電漿)(該電漿使用H2 形成)形成含氫物種將具有顯著更多的含氫自由基及離子,因此改良電漿氫化製程的有效性,並且減少當使用不純含氫反應氣體時發現的不期望反應。In some embodiments, the plasma hydrogenation process mainly includes forming a plasma, the plasma including a process gas consisting essentially of hydrogen (H 2 ), and the process gas forms a reactive species provided by the plasma. It will be noted that the use of plasma (for example, inductively coupled plasma) (which is formed using H 2 ) to form hydrogen-containing species will have significantly more hydrogen-containing species than a thermal hydrogenation process using a process gas containing H 2 Hydrogen radicals and ions therefore improve the effectiveness of the plasma hydrogenation process and reduce undesirable reactions found when using impure hydrogen-containing reaction gas.
在一些實施例中,一或更多種處理氣體藉由RF電源(如RF電源414)激勵。RF功率可在2%至70%的工作循環下脈衝,並且可從約100 W至約2500 W變化。RF功率可係從約100 W至約2500 W變化的連續波。處理腔室可具有在電漿製程期間從約10 mTorr至約200 mTorr變化的腔室壓力,而處理溫度(例如,底座404的溫度)可從20℃至約500℃變化。In some embodiments, one or more process gases are excited by an RF power source (such as RF power source 414). The RF power can be pulsed at a duty cycle of 2% to 70%, and can vary from about 100 W to about 2500 W. The RF power can be a continuous wave varying from about 100 W to about 2500 W. The processing chamber may have a chamber pressure that varies from about 10 mTorr to about 200 mTorr during the plasma process, and the processing temperature (for example, the temperature of the base 404) may vary from 20°C to about 500°C.
在示例性實施例中,在約400℃與約500℃之間的處理溫度下、在約5 mTorr與約20 mTorr之間的腔室壓力下、在約1000 W與約2000 W之間的RF功率下、及在約175 V與約250 V之間的偏置電壓下,其中H2
流量在約20 sccm與約40 sccm之間及Ar流量在約400 sccm與約500 sccm之間,執行電漿氫化製程達約50秒與約300秒之間的持續時間。由處理腔室400內部的電漿產生的電漿激發的氫物種可減少在部分形成的導電結構(例如,導電結構100)的金屬氮化物層(例如,金屬氮化物層103)的已暴露表面上存在的一些或所有氧化物。在一些實施例中,電漿激發的氫物種亦可減少在導電結構的金屬氮化物層(如導電結構100的第一金屬層102)或其他金屬層的主體材料中存在的一些或所有O原子。上文結合第2D圖及第3B圖描述了O原子的此種減少。In an exemplary embodiment, at a processing temperature between about 400° C. and about 500° C., at a chamber pressure between about 5 mTorr and about 20 mTorr, an RF between about 1000 W and about 2000 W At power, and at a bias voltage between about 175 V and about 250 V, where the H 2 flow rate is between about 20 sccm and about 40 sccm and the Ar flow rate is between about 400 sccm and about 500 sccm, the electrical The slurry hydrogenation process has a duration between about 50 seconds and about 300 seconds. The hydrogen species excited by the plasma generated by the plasma inside the
在另一示例性實施例中,在約400℃與約500℃之間的處理溫度下、在約5 mTorr與約25 mTorr之間的腔室壓力下、在約1000 W與約2000 W之間的RF功率下、及在約175 V與約250 V之間的偏置壓力下,其中NH3
流量在約20 sccm與約40 sccm之間、N2
流量在約400 sccm與約600 sccm之間,並且Ar流量在約400 sccm與約500 sccm之間,執行電漿氮化製程達約50秒與約300秒之間的持續時間。由處理腔室400內部的電漿產生的電漿激發的氮物種可使部分形成的導電結構的金屬氮化物層的已暴露表面(例如,金屬氮化物層103的表面201)飽和。在一些實施例中,電漿激發的氮物種亦可填充在導電結構的金屬氮化物層或其他金屬層的主體材料中存在的空位。上文結合第2E圖及第3C圖描述了此種氮化。In another exemplary embodiment, at a processing temperature between about 400° C. and about 500° C., at a chamber pressure between about 5 mTorr and about 25 mTorr, between about 1000 W and about 2000 W Under the RF power of about 175 V and about 250 V, the NH 3 flow rate is between about 20 sccm and about 40 sccm, and the N 2 flow rate is between about 400 sccm and about 600 sccm. And the Ar flow rate is between about 400 sccm and about 500 sccm, and the plasma nitriding process is performed for a duration between about 50 seconds and about 300 seconds. The nitrogen species excited by the plasma generated by the plasma inside the
在一些實施例中,在約10 mTorr與約100 mTorr之間的腔室壓力下、在約350℃與約500℃之間的處理溫度(如基板底座溫度)下,其中RF功率在約300 W與約2000 W之間,NH3 的流率在約5 sccm與約100 sccm之間,N2 的流率在約50 sccm與約1000 sccm之間,氦(He)流率在約1至約1000 sccm之間,執行單步電漿氫化及氮化製程達約30秒與約150秒的持續時間,並且施加基板偏壓,其中頻率從約2 MHz至約160 MHz,並且偏壓功率在約0 kW與約10 kW之間。In some embodiments, at a chamber pressure between about 10 mTorr and about 100 mTorr, at a processing temperature (such as substrate base temperature) between about 350° C. and about 500° C., where the RF power is about 300 W And about 2000 W, the flow rate of NH 3 is between about 5 sccm and about 100 sccm, the flow rate of N 2 is between about 50 sccm and about 1000 sccm, and the flow rate of helium (He) is between about 1 to about Between 1000 sccm, perform a single-step plasma hydrogenation and nitridation process for a duration of about 30 seconds and about 150 seconds, and apply a substrate bias, where the frequency is from about 2 MHz to about 160 MHz, and the bias power is about Between 0 kW and approximately 10 kW.
在一些實施例中,在約15 mTorr與約25 mTorr之間的腔室壓力下、在約350℃與約500℃之間的處理溫度下,其中RF功率在約300 W與約1600 W之間、NH3 的流率在約10 sccm與約40 sccm之間、N2 的流率在約200 sccm至約550 sccm之間、Ar的流率從約200 sccm至約550 sccm,執行單步電漿氫化及氮化製程達約85秒與約95秒之間的持續時間,並且不施加基板偏壓功率。In some embodiments, at a chamber pressure between about 15 mTorr and about 25 mTorr, at a processing temperature between about 350° C. and about 500° C., where the RF power is between about 300 W and about 1600 W , The flow rate of NH 3 is between about 10 sccm and about 40 sccm, the flow rate of N 2 is between about 200 sccm and about 550 sccm, and the flow rate of Ar is between about 200 sccm and about 550 sccm. The slurry hydrogenation and nitridation process has a duration between about 85 seconds and about 95 seconds, and no substrate bias power is applied.
在其中遠端地形成用於電漿製程的電漿的實施例中,電漿可經由任何技術上可行的遠端電漿源來形成。在此種實施例中,電漿製程可包括將一或更多種處理氣體引入遠端電漿源中,該處理氣體經選擇為產生電漿激發的氫物種或電漿激發的氮物種。替代或額外地,遠端電漿製程可包括將一或更多種載體及/或惰性氣體(如氬(Ar))引入遠端電漿源中。遠端產生的電漿物種隨後流入處理腔室400中,並且處理在處理腔室400中設置的基板上形成的導電結構的金屬氮化物層。如上文描述,取決於電漿物種是電漿激發的氫物種還是電漿激發的氮物種,減少在金屬氮化物層中的界面及主體O原子,或者增強金屬氮化物層的氮化。In embodiments where the plasma for the plasma process is formed remotely, the plasma can be formed via any technically feasible remote plasma source. In such an embodiment, the plasma process may include introducing one or more process gases into the remote plasma source, the process gases being selected to generate plasma-excited hydrogen species or plasma-excited nitrogen species. Alternatively or additionally, the remote plasma process may include introducing one or more carriers and/or inert gases (such as argon (Ar)) into the remote plasma source. The plasma species generated at the remote end then flows into the
在一些實施例中,與電漿氫化製程不同,可採用熱氫化製程以將金屬氮化物層暴露於氫原子。在此種實施例中,熱氫化製程通常在高溫(例如在約500℃與約650℃之間)下發生。在此種高溫下,H2
氣體解離為單獨的原子,該等原子可隨後與金屬氮化物層103中的O原子反應,並且產生空位213。此外,在此種實施例中,熱氫化製程通常在與處理腔室400不同的處理腔室中執行。例如,在一些實施例中,熱氫化製程在快速熱處理腔室中執行。在此種實施例中,矽化製程可與熱氫化製程同時執行,由此消除後續退火製程。In some embodiments, unlike the plasma hydrogenation process, a thermal hydrogenation process may be used to expose the metal nitride layer to hydrogen atoms. In such an embodiment, the thermal hydrogenation process usually occurs at a high temperature (for example, between about 500°C and about 650°C). At such a high temperature, the H 2 gas dissociates into individual atoms, which can subsequently react with the O atoms in the
在其中採用熱退火製程以將金屬氮化物層暴露於氫原子的實施例中,在沒有空斷的情況下執行電漿氮化製程,該空斷將金屬氮化物層103暴露於空氣。例如,在此種實施例中,多腔室處理系統的一個腔室可經配置為執行熱氫化製程,並且同一多腔室處理系統的另一腔室可經配置為執行電漿氮化製程。因此,其上形成金屬氮化物層103的基板可經歷熱氫化製程,隨後在不暴露於空氣的情況下直接傳遞到電漿氮化腔室。In an embodiment in which a thermal annealing process is used to expose the metal nitride layer to hydrogen atoms, the plasma nitridation process is performed without a break, which exposes the
第5圖係經配置為實施本揭示案的一或更多個態樣的多腔室處理系統500的俯視平面圖。多腔室處理系統500經配置為在獨立基板(如矽晶圓)上執行一或更多個製造製程,用於形成半導體元件。多腔室處理系統500包括一些或所有傳遞腔室506、緩衝腔室508、單晶圓裝載閘510及512、處理腔室514、516、518、520、522、及524、預熱腔室523及525、及機器人526及528。單晶圓裝載閘510及512可包括加熱元件513並且附接到緩衝腔室508。處理腔室514、516、518、及520附接到傳遞腔室506。處理腔室522及524附接到緩衝腔室508。多腔室處理系統500的操作由電腦系統530控制。電腦系統530可係經配置為實施本文提供的本發明操作的任何元件或元件組合。因此,電腦系統530可係控制器或控制器陣列及/或經配置有軟體的通用電腦,當執行該軟體時,該軟體執行本發明的操作。適宜的多腔室處理系統500的一個實例係由美國加州聖克拉拉市應用材料公司製造的Endura® RTM CL系統。Figure 5 is a top plan view of a
處理腔室514、516、518、520、522、及524的每一者可經配置為在半導體元件中製造導電結構(如用於場效電晶體(field-effect transistor; FET)的接觸結構)時執行一或更多個處理步驟。更具體地,處理腔室514、516、518、520、522、及524可包括一或更多個金屬沉積腔室、表面清潔及製備腔室、熱退火及/或熱氫化腔室、及電漿氫化/氮化腔室。Each of the
例如,針對包括在矽源極或汲極結構上形成的Ti-TiN-Co堆疊的接觸結構,在一些實施例中,多腔室處理系統500可經配置為在此種導電結構的製造製程中連續執行數個處理步驟。在此種實施例中,處理腔室514可經配置為在矽源極或汲極結構的已暴露表面上執行表面清潔及製備製程,處理腔室516可經配置為在製備的矽源極或汲極結構上連續沉積Ti及TiN層,處理腔室522及/或524可經配置為藉由在Ti/TiN層及源極/或汲極結構上執行快速熱處理(rapid thermal processing; RTP)或其他熱退火製程來形成矽化物,處理腔室518可經配置為在退火的Ti/TiN層上沉積Co覆蓋層,並且處理腔室520可經配置為在熱退火製程之前或之後執行氫化製程及隨後的氮化製程。因此,在此種實施例中,在不發生空斷及所得的一或更多層接觸結構的不期望氧化的情況下,可形成完整的接觸結構。For example, for a contact structure including a Ti-TiN-Co stack formed on a silicon source or drain structure, in some embodiments, the
在替代實施例中,並非用於形成完整接觸結構的所有處理步驟皆在單個多腔室處理系統500上執行。例如,在一些實施例中,多腔室處理系統500可包括金屬沉積處理腔室,而熱退火矽化製程可在不同的基板處理系統上執行。在此種實施例中,在熱退火製程之前發生空斷,並且已知此種空斷可增加O原子在金屬氮化物層的界面表面及在接觸結構的金屬氮化物層的主體材料中的存在。然而,在空斷之前,由於多腔室處理系統500可配置有金屬沉積腔室及一或更多個電漿處理腔室二者,可執行連續電漿(或熱)氫化/電漿氮化製程或單步電漿氫化及氮化製程。因此,多腔室處理系統500可經配置為在沉積第一金屬層102及金屬氮化物層103之後但在從多腔室處理系統500移除基板並且將基板暴露於空氣之前在基板上執行連續氫化/氮化製程或單步電漿氫化及氮化製程。如上文論述,在空斷之前的金屬氮化物層103的已暴露表面的氮化可大幅度減少已暴露表面在空斷期間並且在後續熱退火製程期間的氧化。In an alternative embodiment, not all processing steps for forming a complete contact structure are performed on a single
在一些實施例中,多腔室處理系統500可包括一或更多個熱退火及電漿處理腔室。在此種實施例中,連續氫化及氮化製程或單步電漿氫化及氮化製程可在熱退火製程之後執行,由此去除藉由預退火空斷並且藉由熱退火製程自身而引入的O原子。通常,歸因於在熱處理期間處理部件(例如,密封件、處理套組部件、泵等)達到的高溫,熱退火製程不能維持大部分先進元件節點所需的期望低氧位準。In some embodiments, the
替代或額外地,連續氫化/氮化製程或單步電漿氫化及氮化製程可在熱退火製程之前執行。因此,在此種實施例中,即使在沉積金屬氮化物層103之後並且在熱退火製程之前不發生空斷,界面O原子及在金屬氮化物層的主體部分中存在的O原子亦可在執行熱退火製程之前減少或消除。由此,在一些配置中,連續氫化及電漿氮化製程或單步電漿氫化及氮化製程可在熱退火製程之前並且亦在熱退火製程之後但在空斷發生之前執行。Alternatively or additionally, a continuous hydrogenation/nitridation process or a single-step plasma hydrogenation and nitridation process may be performed before the thermal annealing process. Therefore, in this embodiment, even if no vacancy occurs after the
在一些實施例中,多腔室處理系統500可包括經配置為沉積覆蓋層104及/或導電層106的一或更多個金屬沉積腔室及一或更多個電漿處理腔室以執行連續氫化及氮化製程或單步電漿氫化及氮化製程。在此種實施例中,連續氫化及氮化製程或單步電漿氫化及氮化製程可在導電結構中沉積覆蓋層之前執行,由此去除由空斷及由用於形成矽化物105的熱退火製程引入的界面及主體O原子。注意到,在此種實施例中,在連續氫化及氮化製程與沉積覆蓋層104及/或導電層106之間不發生空斷。因此,在此種實施例中,當在熱退火製程與沉積覆蓋層104之間發生空斷時,可減少或消除界面O原子及在金屬氮化物層的主體部分中存在的O原子。減少接觸結構中的主體及界面氧 In some embodiments, the
第6圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。第7A圖至第7E圖係根據本揭示案的各個實施例的對應於第6圖的製程的不同階段的半導體元件的示意性橫截面圖。儘管第7A圖至第7E圖示出了如選擇性沉積(例如,如第1圖所示,層不在孔109上方保形地形成)的填充孔109的第一金屬層102、金屬氮化物層103及覆蓋層104,此不意欲限制為本文所描述的揭示內容的範疇,並且因此第一金屬層102、金屬氮化物層103及覆蓋層104可選擇性形成或非選擇性形成,並且包括一或更多個額外層。FIG. 6 illustrates a flowchart of processing steps for reducing the main body and interface oxygen in the contact structure according to some embodiments of the present disclosure. FIGS. 7A to 7E are schematic cross-sectional views of semiconductor devices at different stages of the manufacturing process corresponding to FIG. 6 according to various embodiments of the present disclosure. Although FIGS. 7A to 7E show the
在步驟601之前,清潔製程或其他表面製備製程可在半導體基板的表面上執行,在該表面上將形成觸點,如在第7A圖中的源極或汲極結構101的已暴露表面701。在一些實施例中,可執行乾式蝕刻製程以去除基板701的原始氧化物。例如,可執行習知電漿蝕刻、或遠端電漿輔助的乾式蝕刻製程,如可獲自位於美國聖克拉拉市的應用材料公司的SiCoNiTM
蝕刻製程。在SiCoNiTM
蝕刻製程中,將其上待形成觸點的半導體基板的表面暴露於H2
、NF3
、及/或NH3
電漿物種,例如,電漿激發的氫及氟物種。例如,在一些實施例中,此種表面可經歷同時暴露於H2
、NF3
、及NH3
電漿。SiCoNiTM
蝕刻製程可在SiCoNiTM
預清潔腔室中執行,該預清潔腔室可整合到各種多處理平臺的一個中,包括可獲自應用材料公司的ProducerTM
GT、CenturaTM
AP及Endura平臺。Before
如第7B圖所示,方法600開始於步驟601,其中第一金屬層102及金屬氮化物層103在半導體基板上沉積。例如,在一些實施例中,沉積Ti層,隨後沉積TiN阻障層。可採用任何適宜的PVD、CVD、或ALD製程以執行此種沉積。因此,沉積製程可係選擇性製程或非選擇性沉積製程。在選擇性沉積製程中,第一金屬層102及金屬氮化物層103在表面701上沉積,但不在半導體基板110的其他表面上沉積,而在非選擇性製程中,第一金屬層102及金屬氮化物層103可在半導體基板110的所有未遮蔽的表面上沉積。在一些實施例中,在上文描述的表面製備製程之後,在無空斷的情況下執行步驟601的沉積。亦即,半導體基板不暴露於表面製備製程與步驟601的沉積之間的大氣。在此種實施例中,步驟601的沉積及表面製備製程可各自藉由同一多腔室處理系統(如多腔室處理系統500)上的不同腔室執行。As shown in FIG. 7B, the
在步驟603中,熱退火製程在半導體基板110上執行,該半導體基板包括第一金屬層102、金屬氮化物層103、及源極或汲極結構101。如第7C圖所示,熱退火製程形成矽化物105。例如,在一些實施例中,達到在約500℃與約600℃之間的峰值溫度的尖端退火製程可在步驟603中執行。或者,可替代地執行任何其他適宜的退火製程以在源極或汲極結構101與步驟601中沉積的第一金屬層102之間形成矽化物105。In
在一些實施例中,用於執行步驟603的腔室可經配置為同一多腔室處理系統的執行步驟601的金屬沉積的腔室。因此,在此種實施例中,在步驟601的金屬沉積之後,在沒有空斷的情況下執行步驟603的熱退火製程,由此進一步減少界面O在金屬氮化物層103的表面702上的存在。然而,出於上文論述的原因,多腔室處理系統的此種構造係不常見的,並且步驟601與步驟603之間通常發生空斷。In some embodiments, the chamber for performing
在步驟604中,連續氫化/電漿氮化製程在金屬氮化物層103的表面702上執行。亦即,如第7D圖所示,將表面702暴露於氫原子並且暴露於電漿激發的氮物種703。在一些實施例中,在步驟604中執行電漿氫化製程,隨後執行電漿氮化製程。在氫化製程係電漿氫化製程的實施例中,電漿氫化製程及電漿氮化製程均可在處理腔室400中執行並且使用上文結合第4圖所描述的處理參數。或者,電漿氫化製程可在多腔室處理系統500的處理腔室514、516、518、520、522、及524的一個中執行,而電漿氮化製程可在處理腔室514、516、518、520、522、及524的另一個中執行。In
如先前提及,在一些實施例中,經由熱氫化製程將金屬氮化物層103的表面702暴露於氫原子。在此種實施例中,步驟604的熱氫化製程在多腔室處理系統500的處理腔室514、516、518、520、522、及524的一個中執行,例如,經配置為使用H2
氣體作為處理氣體的快速熱處理腔室。此外,在此種實施例中,電漿氮化製程在處理腔室514、516、518、520、522、及524的另一個中執行,如與第4圖中的電漿處理腔室400類似的處理腔室。因此,儘管熱氫化製程及電漿氮化製程各自在不同的處理腔室中執行,此等兩個製程之間不發生空斷。As mentioned earlier, in some embodiments, the
在步驟605中,如第7E圖所示,覆蓋層104在退火的第一金屬層102及金屬氮化物層103上沉積。例如,在一個實施例中,金屬覆蓋層係Co層或含鈷合金層。因為在步驟604中去除了可在金屬氮化物層103的表面702上存在的界面O原子,因此改良在覆蓋層104與金屬氮化物層103之間的黏著力,優於在經由習知技術形成的接觸結構中的黏著力。此外,去除金屬氮化物層103內的O原子減小導電結構100的電阻率。In
在一些實施例中,步驟604及605在同一多腔室處理系統上執行,使得在步驟604的連續氫化及氮化製程之後不發生空斷。隨後,避免可在暴露於大氣期間發生的金屬氮化物層103的氧化。在其他實施例中,用於執行步驟604的連續氫化及氮化處理的處理腔室可配置在與用於執行步驟605的處理腔室不同的多腔室處理系統上。注意到,在此種實施例中,步驟604的氮化製程徹底地氮化金屬氮化物層103的表面,由此最小化或以其他方式防止在步驟604與605之間的空斷期間可能發生的氧化。In some embodiments,
第8圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。在步驟801之前,如上文結合第7圖所描述,可執行清潔製程或其他表面製備製程。Figure 8 illustrates a flow chart of processing steps for reducing body and interface oxygen in the contact structure according to some embodiments of the present disclosure. Before
方法800開始於步驟801,其中金屬層102及金屬氮化物層103在源極或汲極結構101上沉積。步驟801可實質上類似於方法600中的步驟601。The
在步驟802中,連續氫化/電漿氮化製程在金屬氮化物層103的表面702上執行。亦即,將表面702暴露於氫原子並且暴露於電漿激發的氮物種。步驟802可實質上類似於方法600中的步驟604。然而,注意到,不似步驟604,步驟802的連續氫化/電漿氮化製程是在熱退火製程之前執行。此外,在一些實施例中,步驟802在腔室中執行,該腔室經配置為包括用於執行步驟803的熱退火腔室(如快速熱處理腔室)的多腔室處理系統的部分。在此種實施例中,由於在步驟803的退火製程之前去除此種O原子,在第一金屬層102及步驟801中沉積的金屬氮化物層103內的O原子的影響進一步減小。In
在步驟803中,熱退火製程在半導體基板110上執行,該半導體基板包括第一金屬層102、金屬氮化物層103、及源極或汲極結構101。步驟803可實質上類似於方法600中的步驟603。或者,在其中在步驟802中發生熱氫化製程的實施例中,熱退火製程在步驟802中執行,並且可跳過步驟803。例如,在一些實施例中,藉此形成矽化物105的熱退火製程在與步驟802的熱氫化製程相同的處理腔室中執行。在此種實施例中,緊接在熱氫化製程之前、或緊接在熱氫化製程之後,熱退火製程可與熱氫化製程同時執行。In
在可選步驟804中,電漿處理製程在金屬氮化物層103的表面702上執行。步驟804可實質上類似於方法600中的步驟604。因此,在其中執行步驟804的方法800的實施例中,在步驟803的熱退火製程之前及之後執行連續氫化/氮化製程。在一些實施例中,在步驟804中執行的連續氫化/氮化製程實質上與步驟802中執行的電漿處理製程相同。在其他實施例中,步驟804的連續氫化/氮化製程可與步驟802的連續氫化/氮化製程不同。例如,在步驟802中採用的連續氫化/氮化製程的處理參數可與在步驟804中採用的連續氫化/氮化的處理參數不同。In an
在步驟805中,覆蓋層104及/或導電層106在退火的第一金屬層102及金屬氮化物層103上沉積。步驟805可實質上類似於方法600中的步驟605。類似地,在一些實施例中,步驟804及805可在同一多腔室處理系統上執行,使得在步驟804的電漿處理製程之後不發生空斷。隨後,避免可在暴露於空氣期間發生的金屬氮化物層103的氧化,並且改良在覆蓋層104與金屬氮化物層103之間的黏著力,該黏著力優於經由習知技術形成的接觸結構中的黏著力。In
第9圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。在步驟901之前,如上文結合方法600所描述,可執行清潔製程或其他表面製備製程。如圖所示,方法900開始於步驟901,其中第一金屬層102及金屬氮化物層103在源極或汲極結構101上沉積。步驟901可實質上類似於方法600中的步驟601。在步驟902中,連續氫化/氮化製程在金屬氮化物層103的表面702上執行。步驟902可實質上類似於方法800中的步驟802。在步驟903中,熱退火製程在半導體基板110上執行,該半導體基板包括第一金屬層102、金屬氮化物層103、及源極或汲極結構101。步驟903可實質上類似於方法600中的步驟603。在步驟905中,覆蓋層104在退火的第一金屬層102及金屬氮化物層103上沉積。步驟905可實質上類似於方法600中的步驟605。因此,在方法900中,在步驟903的熱退火製程之前而不在步驟903的熱退火製程之後執行連續氫化/氮化製程。連續氫化/氮化製程通常包括電漿或熱氫化製程及電漿氮化製程。Figure 9 illustrates a flow chart of processing steps for reducing the body and interface oxygen in the contact structure according to some embodiments of the present disclosure. Before
儘管描述了用於在基板上形成接觸結構的方法600及800,但亦可採用方法600及800在基板上形成其他導電結構。因此,包括金屬氮化物層的任何導電結構可獲益於藉由方法600或800形成。具有減小的 EOT 的金屬閘結構 Although the
根據本揭示案的各個實施例,在製造高介電常數介電質/金屬閘極堆疊時採用連續氫化及氮化製程以減小堆疊的有效氧化物厚度(effective oxide thickness; EOT)。在此種實施例中,在洩漏增加及平帶電壓偏移方面無損的情況下減小堆疊的EOT,該洩漏增加及平帶電壓偏移已知在堆疊中的高介電常數介電層的厚度僅減小或另外經由習知技術按比例縮小時發生。第10圖中示出了一個此種堆疊。According to various embodiments of the present disclosure, continuous hydrogenation and nitridation processes are used to reduce the effective oxide thickness (EOT) of the stack when manufacturing the high-k dielectric/metal gate stack. In such an embodiment, the stacked EOT is reduced without loss of leakage increase and flat-band voltage offset, which is known to be in the high-permittivity dielectric layer of the stack. Occurs when the thickness is only reduced or otherwise scaled down via conventional techniques. Figure 10 shows one such stack.
第10圖示出了根據本揭示案的一實施例形成的金屬閘結構1000的橫截面圖。金屬閘結構1000在半導體基板1001上形成作為半導體元件(如MOSFET或其他FET)的部分。金屬閘結構1000係在半導體基板1001上形成的多個材料層的堆疊,並且例如包括在半導體基板1001上設置的界面層1002、在界面層1002上設置的高介電常數介電層1003、在高介電常數介電層1003上設置的金屬氮化物覆蓋層1004、及在金屬氮化物覆蓋層1004上設置的金屬閘電極層1005。在第10圖中示出的實施例中,將金屬閘結構1000的各個層繪示為在半導體基板1001上形成的簡單膜堆疊。實際上,金屬閘結構1000可在接觸阱或其他空腔中形成,該空腔在與第1圖中的絕緣材料120類似的絕緣或介電材料中形成。因此,界面層1002、高介電常數介電層1003、金屬氮化物覆蓋層1004、及金屬閘電極層1005的一或更多個可係在此空腔內保形地沉積的材料層。FIG. 10 shows a cross-sectional view of a
半導體基板1001可係其上可形成金屬閘結構1000的任何適宜的半導體基板。因此,半導體基板1001可由任何適宜的半導體材料形成,包括但不限於Si(Si)、Ge(鍺)、鍺矽(Si-Ge)、碳鍺矽(SiGeC)、鎵(Ga)、砷化鎵(GaAs)、砷化銦(InAs)、磷化銦(InP)、及所有其他第III/V族或第II/VI族化合物半導體。替代或額外地,半導體基板1001可係層化半導體,例如,Si/Si-Ge、絕緣體上半導體(SOI)或絕緣體上Si-Ge(SiGOI)。此外,在一些實施例中,半導體基板1001包括摻雜及/或未摻雜的區域,如鄰近界面氧化物層1002的n摻雜或p摻雜區域。The
界面氧化物層1002在半導體基板1001與高介電常數介電層1003之間的半導體基板1001上設置,並且經配置為適用於在金屬閘結構1000中應用的界面氧化物層。在其中半導體基板1001包括含Si材料的實施例中,界面氧化物1002層可包括氧化矽(SiOx
)、氮氧化矽(SiNO、Si2
NO、Si2
N2
O)、及/或氮化的氧化矽。在半導體1001不係含Si半導體材料的實施例中,界面氧化物層1002可包含半導體氧化物、半導體氮氧化物及/或氮化的半導體氧化物。The
界面氧化物層1002可經由任何適宜的熱或濕式生長技術(例如,氧化或氮氧化)形成。例如,並且不作限制,界面氧化物層1002可藉由濕式化學氧化製程形成,該濕式化學氧化製程包括用氫氧化銨、過氧化氫及水的混合物處理半導體基板1001的已清潔表面,如上次由HF處理過的半導體表面。或者,界面氧化物層1002可藉由在臭氧化的水溶液中處理上次由HF處理過的半導體表面來形成。或者,界面氧化物層1002可藉由任何適宜的熱氧化技術形成。The
界面氧化物層1002的厚度係隨金屬閘結構1000係其部分的半導體元件變化。此外,界面氧化物層1002與高介電常數介電層1003、金屬氮化物覆蓋層1004、及金屬閘電極層1005相比顯著較薄。通常,界面氧化物層1002具有從約0.5至2.0 nm的厚度,儘管在一些實施例中界面氧化物層1002可較厚。在一些實施例中,在形成金屬閘結構1000之後發生的用於元件製造的熱製程可進一步增加界面氧化物層1002的厚度。The thickness of the
高介電常數介電層1003可係閘極介電層或金屬閘結構1000中的其他介電層,並且包括所謂的「高介電常數介電」材料。更具體地,高介電常數介電層1003包括一或更多種材料,該等材料具有大於SiO2
的介電常數,如具有至少約4.0、或理想地至少約10.0的介電常數的材料。此外,在高介電常數介電層1003中包括的高介電常數介電材料適用於在積體電路中使用。因此,除了高介電常數之外,在高介電常數介電層1003中包括的一或更多種高介電常數介電材料亦理想地具有防止摻雜劑擴散的能力、較少的可損害擊穿效能的電氣缺陷、良好熱穩定性、及再結晶高溫。適於在高介電常數介電層1003中使用的此種高介電常數介電材料的實例包括但不限於氮化矽、氮氧化矽、金屬氧化物、金屬氮化物、金屬氮氧化物及/或金屬矽酸鹽。在一些實施例中,高介電常數介電層1003包括下列的一或更多種:氧化鉿(Hfx
Oy
)、氧化鋯(ZrO2
)、氧化矽酸鉿(Hfx
Si1-x
Oy
)、或其他基於鉿的介電質、氧化鑭(La2
O3
)、氧化鋁(Al2
O3
)、氧化鈦(TiO2
)、鈦酸鍶(SrTiO3
)、鋁酸鑭(LaAlO3
)、氧化釔(Y2
O3
)、氧化矽酸鉿(Hfx
Si1-x
Oy
)、氧化鑭(La2
O3
)、及/或上述各者之多個層堆疊。The high-
高介電常數介電層1003可經由任何適宜的沉積方法形成,包括熱生長製程,例如,氧化、氮化或氮氧化製程。或者,高介電常數介電層1003可藉由一或更多種沉積製程形成,包括但不限於化學氣相沉積(chemical vapor deposition; CVD)、電漿增強化學氣相沉積(plasma enhanced chemical vapor deposition; PECVD)、金屬有機化學氣相沉積(metalorgano chemical vapor deposition; MOCVD)、原子層沉積(atomic layer deposition; ALD)、蒸發、反應性濺鍍、化學溶液沉積及/或其任何組合。The high-
高介電常數介電層1003的厚度1003A可取決於其中包括的介電材料、用於形成高介電常數介電層1003的製程、及其中包括金屬閘結構1000的半導體元件的幾何形狀及操作而變化。在一些實施例中,高介電常數介電層1003的厚度1003A係從約1.0 nm至約20 nm。The
金屬氮化物覆蓋層1004係在高介電常數介電層1003上設置的金屬層,該金屬層通常經配置為在高介電常數介電層1003上的導電保護層。因此,在一些實施例中,金屬氮化物覆蓋層1004經配置為防止半導體基板1001及/或高介電常數介電層1003的不期望的氧化。此外,在此種實施例中,金屬氮化物覆蓋層1004亦可經配置為允許氧在沉積金屬氮化物覆蓋層1004之後發生的熱退火製程期間擴散出高介電常數介電層1003。在此種實施例中,金屬氮化物覆蓋層1004亦可經配置為允許氧在熱退火製程期間擴散出在高介電常數介電層1003與金屬氮化物覆蓋層1004之間形成的界面層1009。The metal
在一些實施例中,金屬氮化物覆蓋層1004包括金屬氮化物,如氮化矽(TiN)、氮化鉭(TaN)、氮化鉭矽(TaSiN)、及類似者。注意到,在一些實施例中,在高介電常數介電層1003上沉積氮化物覆蓋層1004可導致形成界面層1009,該界面層在高介電常數介電層1003與金屬氮化物覆蓋層1004之間的界面處設置。根據一些實施例,當將如本文描述的連續電漿氫化及氮化製程應用到金屬氮化物覆蓋層1004的已暴露表面時,界面層1009隨後消除或厚度減小。In some embodiments, the metal
金屬氮化物覆蓋層1004可經由任何適宜的沉積方法形成,包括但不限於PVD製程、CVD製程、PECVD製程、MOCVD製程、ALD蒸發製程、反應性濺鍍、化學溶液沉積及/或其任何組合。The metal
在一些實施例中,金屬氮化物覆蓋層1004與高介電常數介電層1003及金屬閘電極層1005相比顯著較薄。例如,在金屬閘結構1000的實施例中,其中高介電常數介電層1003層係具有約20 nm至約40 nm的厚度1003A的HfO2
層並且金屬閘電極層1005係具有約20 nm至約40 nm的厚度的TiN層,金屬氮化物覆蓋層1004可具有約5 nm至約15 nm的厚度1004A。In some embodiments, the metal
在一些實施例中,金屬氮化物覆蓋層1004的厚度1004A經選擇為促進氧原子從高介電常數介電層1003及/或界面層1009擴散。具體地,在此種實施例中,選擇厚度1004A,使得在沉積金屬氮化物覆蓋層1004之後發生的熱退火製程期間O原子從高介電常數介電層1003及/或界面層1009擴散。在此種實施例中,將厚度1004A選擇為小於在熱退火製程期間O原子穿過金屬氮化物覆蓋層1004的擴散長度。在一個實例中,一個此種熱退火製程係在金屬閘結構1000上執行達1-2秒的持續時間及約700至約900℃的峰值溫度的尖端退火製程。In some embodiments, the
金屬閘電極層1005係在金屬氮化物覆蓋層1004上形成的金屬層,並且包括一或更多個沉積的金屬層。在一些實施例中,金屬閘電極層1005經配置為金屬閘結構1000的閘電極及/或工作函數金屬。在此種實施例中,在金屬閘電極層1005中包括的一或更多個金屬層經選擇為具有共同閘電極工作函數值,該共同閘電極工作函數值促進金屬閘結構1000及其中包括金屬閘結構1000的半導體元件的操作。金屬閘電極1005可經由任何適宜的沉積方法形成,包括但不限於CVD、PECVD、MOCVD、ALD、蒸發、反應性濺鍍、化學溶液沉積及/或其任何組合。The metal
在一些實施例中,金屬閘電極層1005係p金屬閘極材料,如TiN。或者,在一些實施例中,金屬閘電極層1005係n金屬閘極。適於在金屬閘電極層1005中使用的N金屬包括碳化鈦鋁(Tix
AlC)。形成具有減小的 EOT 的金屬閘結構 In some embodiments, the metal
根據各個實施例,在製造金屬閘結構1000期間,在沉積金屬閘電極層1005之前,在金屬氮化物覆蓋層1004上執行連續電漿氫化及氮化製程。在此種實施例中,減小金屬閘結構1000的EOT,而金屬閘結構1000的洩漏電流以低於期望量值增加。此外,在此種實施例中,金屬閘結構1000顯示極少或不顯示通常與減小的EOT相關聯的平帶電壓偏移。According to various embodiments, during the manufacturing of the
例如,在金屬閘結構1000的一個實施例中,界面氧化物層1002具有約1-2 nm的厚度,高介電常數介電層1003具有約2-3 nm的厚度1003A,並且金屬氮化物覆蓋層1004具有約3-4 nm的厚度1004A。在此種實施例中,用本文描述的連續電漿氫化及氮化製程處理金屬氮化物覆蓋層1004的一個可量測效應係金屬閘結構1000的可量測EOT減小約1 Å(亦即,從約9 Å下降至約8 Å)。金屬氮化物覆蓋層1004的此種處理的另一效應係(在-1 V的平帶電壓下)洩漏電流增加約2.4倍(亦即,從約0.268 A/cm2
至約.658 A/cm2
)。相比之下,根據在本領域中已知的已經建立的比例化趨勢,當金屬閘結構1000的EOT替代地藉由習知技術減小(如藉由將厚度1003A按比例下降約1 Å)時,期望洩漏電流增加約10的因數。因此,已經發現,用本文描述的連續電漿氫化及氮化製程處理金屬氮化物覆蓋層1004具有用如與僅按比例縮小金屬氮化物覆蓋層1004的厚度1004A相關聯的增加的洩漏電流的約四分之一來減小金屬閘結構1000的EOT的影響。For example, in one embodiment of the
此外,除了上文描述的EOT減小之外,已經圖示了當利用連續電漿氫化及氮化製程形成金屬閘結構1000時在金屬閘結構1000中量測的平帶電壓偏移維持實質上穩定。因此,將連續電漿氫化及氮化製程應用到金屬氮化物覆蓋層1004實現製造具有減小的EOT而無平帶電壓偏移並且不對元件設計產生影響的金屬閘結構1000。In addition, in addition to the reduction in EOT described above, it has been illustrated that when the
第11圖闡明了根據本揭示案的各個實施例的用於減小金屬閘結構中的EOT的處理步驟的流程圖。第12A圖至第12J圖係根據本揭示案的各個實施例的對應於第11圖的製程的不同階段的半導體元件的示意性橫截面圖。FIG. 11 illustrates a flowchart of processing steps for reducing EOT in a metal gate structure according to various embodiments of the present disclosure. FIGS. 12A to 12J are schematic cross-sectional views of semiconductor devices at different stages of the manufacturing process corresponding to FIG. 11 according to various embodiments of the present disclosure.
方法1100開始於步驟1101,如第12A圖所示,其中高介電常數介電層1003在界面氧化物層1002上沉積。高介電常數介電層1003可經由上文結合第10圖描述的任何適宜的沉積方法形成。The
在步驟1102中,如第12B圖所示,金屬氮化物覆蓋層1004在高介電常數介電層1003上沉積。金屬氮化物覆蓋層1004可經由上文結合第10圖描述的任何適宜的沉積方法形成。在一些實施例中,沉積金屬氮化物覆蓋層1004導致形成界面層1009,該界面層在高介電常數介電層1003與金屬氮化物覆蓋層1004之間的界面處設置。在此種實施例中,界面層1009通常包括空位(其可類似於第2A圖中的空位213)及/或在步驟1102的沉積製程期間由處理環境中存在的污染帶入的O原子。In
在可選步驟1103中,將第12B圖所示的已暴露表面1201暴露於空氣。例如,在一些實施例中,金屬氮化物覆蓋層1004在一個處理系統中沉積,諸如第5圖中的多腔室處理系統500,而待在半導體基板1001上執行的下一處理步驟在不同的處理系統中執行。因此,在此種實施例中,在沉積金屬氮化物層1004之後,將半導體基板1001暴露於空氣。在實施例中,其中金屬氮化物覆蓋層1004在多腔室處理系統的一個腔室中沉積,並且步驟1104在同一多腔室處理系統的一個或兩個其他處理腔室中執行,不執行可選步驟1103。In
在實施例中,其中在步驟1102中沉積的金屬氮化物覆蓋層1004係隨後去除的犧牲金屬氮化物層,方法1100繼續進行到步驟1131。在實施例中,其中在步驟1102中沉積的金屬氮化物覆蓋層1004保留在金屬閘結構1000中,方法1100繼續進行到步驟1104。在一些實施例中,犧牲金屬氮化物層可藉由使用後續濕式或乾式蝕刻製程來去除,該蝕刻製程對金屬氮化物覆蓋層1004的去除具有選擇性。In an embodiment, where the metal
在步驟1104中,如第12C圖所示,連續電漿氫化及氮化製程在金屬氮化物覆蓋層1004的表面1201上執行。電漿氫化及氮化製程可實質上類似於上文結合第4圖描述的電漿氫化及氮化製程。另外,電漿氫化製程包括非氧化的電漿激發的氫物種,並且不包括任何氧化的電漿激發的氫物種。In
在一些實施例中,在約20 mTorr與約100 mTorr之間的腔室壓力下、在約400℃與約500℃之間的處理溫度(如基板底座溫度)下,其中RF功率在約500 W與約1500 W之間,H2
的流率在約20 sccm與約100 sccm之間,並且Ar的流率在約900 sccm與約980 sccm之間,執行步驟1104的電漿氫化製程達約30秒與約150秒之間的持續時間。在一些實施例中,H2
的流率係引入腔室中的總處理氣體的約1%與約15%之間。在一些實施例中,在約45 mTorr與約55 mTorr之間的腔室壓力下、在約425℃與約475℃之間的處理溫度下,其中RF功率在約700 W與約800 W之間,H2
的流率在約45 sccm與約55 sccm之間,並且Ar的流率在約965 sccm與約955 sccm之間,執行步驟1104的電漿氫化製程達約85秒與約95秒之間的持續時間。In some embodiments, at a chamber pressure between about 20 mTorr and about 100 mTorr, at a processing temperature between about 400° C. and about 500° C. (such as substrate base temperature), where the RF power is at about 500 W And about 1500 W, the flow rate of H 2 is between about 20 sccm and about 100 sccm, and the flow rate of Ar is between about 900 sccm and about 980 sccm, and the plasma hydrogenation process of
在一些實施例中,在約10 mTorr與約50 mTorr之間的腔室壓力下、在約400℃與約500℃之間的處理溫度下,其中RF功率在約500W與約1500W之間,NH3的流率在總處理氣體流率的約1%與約10%之間,N2的流率在總處理氣體流率的約45%與約55%之間,並且Ar的流率經選擇為等於處理氣體流量的剩餘部分,執行步驟1104的電漿氮化製程達約30秒與約150秒之間的持續時間。在一些實施例中,在約15mTorr與約25mTorr之間的腔室壓力下,在約425℃與約475℃之間的處理溫度下,其中RF功率在約700W與約800W之間,NH3的流率在總處理氣體流率的約2%與約3%之間,N2的流率在總處理氣體流率的約45%與約55%之間,並且Ar的流率經選擇為等於處理氣體流量的剩餘部分,執行步驟1104的電漿氮化製程達約85秒與約95秒之間的持續時間。
In some embodiments, at a chamber pressure between about 10 mTorr and about 50 mTorr, at a processing temperature between about 400° C. and about 500° C., where the RF power is between about 500 W and about 1500 W, NH The flow rate of 3 is between about 1% and about 10% of the total process gas flow rate, the flow rate of N 2 is between about 45% and about 55% of the total process gas flow rate, and the flow rate of Ar is selected To be equal to the remaining part of the processing gas flow rate, the plasma nitriding process of
總而言之,在步驟1104中,將表面1201暴露於在電漿氫化製程中產生的電漿激發的氫物種,並且減少在表面1201上存在的一些或所有氧化物。此外,在一些實施例中,此種電漿激發的氫物種亦可減少在金屬氮化物覆蓋層1004的主體材料中存在的一些或所有氧(O)原子。此外,在步驟1104中,將表面1201暴露於在電漿氮化製程中產生的電漿激發的氮物種,由此使表面1201達到N原子飽和,並且在一些實施例中,用N原子填充在金屬氮化物覆蓋層1004的主體材料中存在的空位。因此,在一些實施例中,如第12D圖所示,消除或顯著減少界面層1009。
In summary, in
在一些實施例中,步驟1104的電漿氫化製程在與步驟1104的電漿氮化製程相同的處理腔室中執行,例如,在第4圖的處理腔室400中執行。或者,步驟1104的電漿氫化製程在多腔室處理系統的第一處理腔室中執行,而步驟1104的電漿氮化製程在同一多腔室處理系統的第二處理腔室中執行。在任一情況下,注意到,在步驟1104的電漿氫化製程與電漿氮化製程之間不將表面1201暴露於空氣。因此,在任一實施例中,在暴露於電漿激發的氫物種之後並且在暴露於電漿激發的氮物種之前,不將表面1201暴露於空氣。
In some embodiments, the plasma hydrogenation process in
在一些實施例中,在處理腔室中執行電漿氫化製程之前,無氧調節製程在處理腔室中執行,例如用於減少在處理腔室中的痕量氧污染。在此種實施例中,在其中不放置基板的情況下並且在經由上文描述的電漿氫化製程處理基板之前,處理腔室用無氧電漿處理。在將基板引入腔室之前的處理腔室的此種電漿處理有時被稱為每晶圓電漿(plasma every wafer;PEW)製程或PEW處理。 In some embodiments, before the plasma hydrogenation process is performed in the process chamber, the oxygen-free conditioning process is performed in the process chamber, for example, to reduce trace oxygen pollution in the process chamber. In this embodiment, the processing chamber is treated with oxygen-free plasma without placing the substrate therein and before processing the substrate through the plasma hydrogenation process described above. This type of plasma processing in the processing chamber before the substrate is introduced into the chamber is sometimes referred to as a plasma every wafer (PEW) process or PEW processing.
在一些實施例中,此種PEW製程包括將一或更多種非含氧氣體(如N2、NH3、Ar、H2、或其任何適宜組合)引入處理腔室中,並且激勵一或更多種氣體以形成無氧電漿。或者,PEW製程可包括將含電漿自由基及/或N、H、或NH3的離子或其任何適宜組合引入處理腔室中,其中電漿在處理腔室外部的遠端電漿源中形成。在一個實施例中,將NH3 氣體或NH3 及Ar氣體的組合引入處理腔室中。在另一實施例中,將H2 氣體或H2 及Ar氣體的組合引入處理腔室中。在又一實施例中,將N2 氣體或N2 及Ar氣體的組合引入處理腔室中。In some embodiments, this PEW process includes introducing one or more non-oxygen-containing gases (such as N 2 , NH 3 , Ar, H 2 , or any suitable combination thereof) into the processing chamber, and energizing one or More kinds of gases to form oxygen-free plasma. Alternatively, the PEW process may include introducing plasma free radicals and/or N, H, or NH 3 ions or any suitable combination thereof into the processing chamber, wherein the plasma is in a remote plasma source outside the processing chamber form. In one embodiment, NH 3 gas or a combination of NH 3 and Ar gas is introduced into the processing chamber. In another embodiment, H 2 gas or a combination of H 2 and Ar gas is introduced into the processing chamber. In yet another embodiment, N 2 gas or a combination of N 2 and Ar gas is introduced into the processing chamber.
通常,在引入基板之前的處理腔室的電漿處理涉及在處理腔室中引入或形成含氫及/或氮電漿。在一些實施例中,在PEW製程期間由處理腔室內部的電漿產生的自由基(如N*、NH*、及/或H*)在處理腔室內與痕量O原子反應。Generally, plasma processing in a processing chamber prior to introduction of the substrate involves introducing or forming hydrogen and/or nitrogen-containing plasma in the processing chamber. In some embodiments, free radicals (such as N*, NH*, and/or H*) generated by the plasma inside the processing chamber during the PEW process react with trace O atoms in the processing chamber.
在一些實施例中,在PEW製程期間,引入處理腔室中的一或更多種氣體由RF電源激勵,如第4圖的RF電源414。RF功率可在2%至70%的工作循環下脈衝,並且可從約100 W至約2500 W變化。RF功率可係從約100 W至約2500 W變化的連續波。在此種實施例中,在約10 mTorr至約200 mTorr的腔室壓力下、在約400℃與約500℃之間的處理溫度下,其中RF功率在約250 W與約750 W之間,H2
的流率在約50 sccm與約200 sccm之間,並且O2
的流率在約450 sccm與約550 sccm之間,執行步驟1104的PEW製程達約20秒與約100秒之間的持續時間。In some embodiments, during the PEW process, one or more gases introduced into the processing chamber are excited by an RF power source, such as the
在可選步驟1105中,將已暴露表面1201暴露於空氣。例如,在一些實施例中,上文描述的連續氫化及氮化製程在一個處理系統中執行,而待在半導體基板1001上執行的下一處理步驟在不同處理系統中執行。因此,在此種實施例中,在沉積金屬氮化物層1004之後,將半導體基板1001暴露於空氣。在實施例中,其中連續氫化及氮化製程在多腔室處理系統的一個腔室中執行,並且步驟1106在同一多腔室處理系統的另一處理腔室中執行,不執行可選步驟1105。In an
在實施例中,其中犧牲含矽層隨後經沉積並且去除作為形成金屬閘結構1000的部分,方法1100從步驟1105繼續進行到步驟1121。在實施例中,其中在形成金屬閘結構1000時不沉積犧牲矽層,方法1100繼續進行到步驟1106。犧牲含矽層可藉由使用CVD或ALD製程形成,該製程使用一或更多種含矽前驅物氣體來形成沉積層。In an embodiment, where the sacrificial silicon-containing layer is subsequently deposited and removed as part of forming the
在步驟1106中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、及金屬氮化物覆蓋層1004上執行。例如,在一些實施例中,尖端退火製程在步驟1106中執行,其中達到約600至900℃的峰值溫度。覆蓋後退火在部分形成的金屬閘結構1000上執行以平滑界面、修復不飽和鍵、並且將熱能注入金屬氮化覆蓋層中。In
在步驟1107中,如第12E圖所示,金屬閘電極層1005在處理的金屬氮化物覆蓋層1004上沉積,由此完成金屬閘結構1000的形成。金屬閘電極1005可經由上文結合第10圖描述的任何適宜沉積方法來形成。In
在步驟1121中,如第12F圖所示,犧牲矽層1202在金屬氮化物覆蓋層1004上沉積。在金屬氮化物覆蓋層1004的表面1201由步驟1104的連續電漿氫化及氮化製程及步驟1105的可選空氣暴露處理之後執行步驟1121。In
犧牲矽層1202可包括任何適宜的含矽材料,諸如非晶矽,並且可使用在本領域中已知的任何適宜沉積製程沉積,如CVD製程。犧牲矽層1202在金屬氮化物覆蓋層1004上沉積以在後續熱退火製程(如所謂的覆蓋後退火製程)期間減少在金屬氮化物覆蓋層1004、界面層1009(若仍存在)、及高介電常數介電層1003中氧化物的形成。在一些實施例中,覆蓋後退火製程包括大氣熱退火製程。隨後,可發生金屬閘結構1000的非常薄層的進一步氧化,包括界面層1002、高介電常數介電層1003、及金屬氮化物覆蓋層1004,由此增加金屬閘結構1000的EOT。然而,存在犧牲矽層1202可在覆蓋前退火製程期間從大氣O原子屏蔽金屬閘結構1000的層。此外,犧牲矽層1202可與O原子反應並且由此保留O原子,該等O原子在熱退火製程期間擴散出高介電常數介電層1003、界面層1009(若仍存在)、及金屬氮化物覆蓋層1004。因此,犧牲矽層1202最小化或消除在後續熱退火製程期間不期望地氧化金屬閘結構1000的部分的可能。The
在步驟1122中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、金屬氮化物覆蓋層1004、及犧牲矽層1202上執行。步驟1122的熱退火製程可實質上類似於上文描述的步驟1106的熱退火製程。In
在步驟1123中,從金屬閘結構1000去除犧牲矽層1202。任何技術上可行的去除製程可在步驟1123中採用,包括選擇性濕式蝕刻製程、基於電漿的乾式蝕刻製程、化學機械拋光製程、或其任何組合。方法1100隨後繼續進行到步驟1107,其中沉積金屬閘結構1000的最終層。In
在步驟1131中,如第12G圖所示,犧牲矽層1203在金屬氮化物覆蓋層1004上沉積。犧牲矽層1203可實質上類似於在步驟1131中沉積的犧牲矽層1202。然而,注意到在步驟1131中,金屬氮化物覆蓋層1004尚未用連續電漿氫化及氮化製程處理。隨後,金屬氮化物覆蓋層1004仍可包括如圖所示的界面層1009。In
在步驟1132中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、金屬氮化物覆蓋層1004、界面層1009、及犧牲矽層1203上執行。步驟1132的熱退火製程可實質上類似於上文描述的步驟1106的熱退火製程。In
在步驟1133中,如第12H圖所示,從金屬閘結構1000去除犧牲矽層1203、金屬氮化物覆蓋層1004、及界面層1009。任何技術上可行的去除製程或製程組合可在步驟1123中採用,包括選擇性濕式蝕刻製程、基於電漿的乾式蝕刻製程、化學機械拋光製程、或其任何組合。方法1100隨後繼續進行到步驟1134。In
在步驟1134中,如第12I圖所示,最終金屬氮化物覆蓋層1204在高介電常數介電層1003上沉積。最終金屬氮化物覆蓋層1204可實質上類似於金屬氮化物覆蓋層1004,並且可包括界面層1009。In
在可選步驟1135中,將第12I圖所示的已暴露表面1205暴露於空氣。例如,在一些實施例中,最終金屬氮化物覆蓋層1204在一個處理系統中沉積,而待在半導體基板1001上執行的下一處理步驟(亦即,步驟1136)在不同處理系統中執行。因此,在此種實施例中,在沉積最終金屬氮化物層1204之後將半導體基板1001暴露於空氣。在實施例中,其中最終金屬氮化物覆蓋層1204在多腔室處理系統的一個腔室中執行,並且步驟1136在同一多腔室處理系統的一或兩個其他處理腔室中執行,不執行可選步驟1135。In
在步驟1136中,如第12J圖所示,連續電漿氫化及氮化製程在最終金屬氮化物覆蓋層1204的表面1205上執行。在步驟1136中執行的連續電漿氫化及氮化製程可實質上類似於在步驟1104中採用的製程。隨後,界面層1009可在步驟1136期間消除或減少,由此去除在最終金屬氮化物覆蓋層1204、界面層1009、及在一些實施例中高介電常數介電層1003中存在的O原子。因此,在不按比例縮小高介電常數介電層1003的厚度1003A的情況下,金屬閘結構1000的EOT減小。In
在步驟1136中執行連續電漿氫化及氮化製程之後,方法1100繼續進行到步驟1107,其中沉積金屬閘結構1000的最終層。在實施例中,其中在不同處理系統中執行步驟1136及1107,必須將半導體基板1001暴露於空氣。然而,因為步驟1136的電漿氮化製程可完全或幾乎完全氮化最終金屬氮化物覆蓋層1204的已暴露表面1205,在此空氣暴露期間通常極少發生其氧化或不發生其氧化。單步氮化 - 氫化處理 After performing the continuous plasma hydrogenation and nitridation process in
方法1300開始於步驟1301,如第14A圖所示,其中高介電常數介電層1003在界面氧化物層1002上沉積。界面氧化物層1002可藉由任何適當方法沉積,諸如化學氧化下層半導體基板1001、熱氧化下層基板、原子層沉積(atomic layer deposition; ALD)、化學氣相沉積(chemical vapor deposition; CVD)、或類似者。高介電常數介電層1003可經由上文結合第10圖描述的任何適宜的沉積方法形成。高介電常數介電層1003可包括可氧化的任何高介電常數材料。根據一個實施例,高介電常數介電層1003包括二氧化矽(SiO2
)或氧化鉿(HfO2
)。The
在步驟1302中,如第14B圖所示,覆蓋層1404在高介電常數介電層1003上沉積。覆蓋層1404可經由上文結合第10圖描述的任何適宜沉積方法來形成。覆蓋層1404可包含金屬氮化物。根據一個實施例,覆蓋層可包括金屬氮化物,如氮化鈦(TiN)、氮化鎢(WN)、氮化鉭(TAN)或氮化鈦矽(TiSiN)。在一些實施例中,沉積覆蓋層1404導致形成界面層1409,該界面層在高介電常數介電層1003與覆蓋層1404之間的界面處設置。在此種實施例中,界面層1409通常包括缺陷,如空位(其可類似於第2A圖中的空位213)及/或在步驟1302的沉積製程期間由處理環境中存在的污染帶入的O原子。歸因於缺陷之間的電子跳躍,缺陷可允許不期望的電荷傳遞。電荷傳遞可導致電流洩漏或介電擊穿,從而減小金屬閘結構1000的電氣可靠性。In
在可選步驟1303中,將第14B圖所示的已暴露表面1401暴露於空氣。例如,在一些實施例中,覆蓋層1404在一個處理系統中沉積,諸如第5圖中的多腔室處理系統500,而待在半導體基板1001上執行的下一處理步驟在不同處理系統中執行。因此,在此種實施例中,在沉積覆蓋層1404之後,將半導體基板1001暴露於空氣。在實施例中,其中覆蓋層1404在多腔室處理系統的一個腔室中沉積,並且步驟1304在同一多腔室處理系統的一個或兩個其他處理腔室中執行,不執行可選步驟1303。In
在實施例中,其中在步驟1302中沉積的覆蓋層1404係隨後去除的犧牲層,方法1400繼續進行到步驟1331。在實施例中,其中在步驟1302中沉積的覆蓋層1404保留在金屬閘結構1000中,方法1300繼續進行到步驟1304。在一些實施例中,犧牲層可藉由使用後續濕式或乾式蝕刻製程來去除,該製程對覆蓋層1404的去除具有選擇性。In an embodiment, where the
在步驟1304中,如第14C圖所示,單步電漿氫化及氮化製程在覆蓋層1404的表面1401上執行。單步電漿氫化及氮化製程包含將工件(如金屬閘結構1000)暴露於處理電漿,其中處理電漿包括含氮氣體及含氫氣體。在一些實施例中,含氫氣體基本上包含含氮及含氫氣體二者,如氨(NH3
)、肼(N2
H4
)或疊氮化氫(HN3
)。在一個實例中,含氫氣體包含氨(NH3
),並且含氮氣體包括(N2
)。根據一個實施例,處理電漿可包括含有氫及氮的單一氣體,如肼(N2
H4
)或氨(NH3
)。根據一個實施例,處理電漿可包括額外的中性載體氣體,如氬(Ar)、或氦(He)。在一個實例中,在處理電漿中含有的處理氣體實質上包含氨(NH3
)、氮(N2
)及中性載體氣體,如氬(Ar)或氦(He)。此外,在步驟1304的單步電漿氫化及氮化製程期間可藉由偏置電源426將偏壓施加到基板。類似於RF電源414,偏置電源426通常能夠產生具有從約2 MHz至約160 MHz變化的可調諧頻率及在約0 kW與約10 kW之間的功率的的RF訊號。偏壓功率藉由重新佈置沉積原子來改良生長膜的保形性。In
在一些實施例中,在約10 mTorr與約100 mTorr之間的腔室壓力下、在約350℃與約500℃之間的處理溫度(如基板底座溫度)下,其中RF功率在約300 W與約2000 W之間、NH3
的流率在約5 sccm與約100 sccm之間、N2
的流率在約50 sccm與約1000 sccm之間、氦(He)流率在約1至約1000 sccm之間,執行步驟1304的單步電漿氫化及氮化製程達約30秒與約150秒之間的持續時間,並且施加具有從約2 MHz至約160 MHz的頻率、及在約0 kW與約10 kW之間的偏壓功率的基板偏壓。In some embodiments, at a chamber pressure between about 10 mTorr and about 100 mTorr, at a processing temperature (such as substrate base temperature) between about 350° C. and about 500° C., where the RF power is about 300 W And about 2000 W, the flow rate of NH 3 is between about 5 sccm and about 100 sccm, the flow rate of N 2 is between about 50 sccm and about 1000 sccm, and the flow rate of helium (He) is between about 1 to about Between 1000 sccm, the single-step plasma hydrogenation and nitridation process of
在一些實施例中,在約15 mTorr與約25 mTorr之間的腔室壓力下、在約425℃與約475℃之間的處理溫度下,其中RF功率在約900 W與約1100 W之間、NH3
的流率在約15 sccm至約35 sccm之間、N2
的流率在約450 sccm至約550 sccm之間、Ar的流率從約450 sccm至約500 sccm,執行步驟1304的單步電漿氫化及氮化製程達約85秒與約95秒之間的持續時間,並且不施加基板偏壓功率。In some embodiments, at a chamber pressure between about 15 mTorr and about 25 mTorr, at a processing temperature between about 425° C. and about 475° C., where the RF power is between about 900 W and about 1100 W , The flow rate of NH 3 is between about 15 sccm and about 35 sccm, the flow rate of N 2 is between about 450 sccm and about 550 sccm, and the flow rate of Ar is between about 450 sccm and about 500 sccm. Perform
總而言之,在步驟1304中,將表面1401暴露於電漿製程中產生的電漿激發的氫及氮物種,並且將表面1401上存在的一些或所有氧化物轉化為氮化物。因此,如第14D圖所示,在一些實施例中,界面層1409變厚消除或變厚實質上減少。界面層1409仍保留,但不發生層變厚。界面層1409的減少或氮化減小EOT,並且改變金屬閘結構1000的工作函數。In summary, in
在一些實施例中,在執行步驟1304的單步電漿氫化及氮化製程之前,無氧調節製程在處理腔室中執行,例如,用於減少在處理腔室中的痕量氧污染。在此種實施例中,在其中不放置基板的情況下並且在經由上文描述的單步電漿氫化及氮化製程處理基板之前,處理腔室用無氧電漿處理。In some embodiments, before performing the single-step plasma hydrogenation and nitridation process of
在可選步驟1305中,將已暴露表面1401暴露於空氣。例如,在一些實施例中,上文步驟1304的單步電漿氫化及氮化製程在一個處理系統中執行,而待在半導體基板1001上執行的下一處理步驟在不同處理系統中執行。因此,在此種實施例中,在沉積層1404之後,將半導體基板1001暴露於空氣。在實施例中,其中步驟1304的單步電漿氫化及氮化製程在多腔室處理系統的一個腔室中執行,並且步驟1306在同一多腔室處理系統的另一處理腔室中執行,不執行可選步驟1305。In an
在實施例中,其中犧牲含矽層隨後經沉積並且去除作為形成金屬閘結構1000的部分,方法1300從步驟1305繼續進行到步驟1321。在實施例中,其中在形成金屬閘結構1000時不沉積犧牲矽層,方法1300繼續進行到步驟1306。犧牲含矽層可藉由使用CVD或ALD製程形成,該製程使用一或更多種含矽前驅物氣體來形成沉積層。In an embodiment, where the sacrificial silicon-containing layer is subsequently deposited and removed as part of forming the
在步驟1306中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、及覆蓋層1404上執行。例如,在一些實施例中,尖端退火製程在步驟1306中執行,其中達到約600℃至約900℃的峰值溫度。覆蓋後退火在部分形成的金屬閘結構1000上執行以平滑界面、修復不飽和鍵、並且將熱能注入覆蓋層1404中。In
在步驟1307中,如第14E圖所示,金屬閘電極層1005在處理的覆蓋層1404上沉積,由此完成金屬閘結構1000的形成。金屬閘電極1005可經由上文結合第10圖描述的任何適宜沉積方法來形成。In
在步驟1321中,如第14F圖所示,犧牲矽層1202在覆蓋層1404上沉積。在覆蓋層1404的表面1401由步驟1304的單步電漿氫化及氮化製程及步驟1305的可選空氣暴露處理之後執行步驟1321。In
在步驟1322中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、覆蓋層1404、及犧牲矽層1202上執行。步驟1322的熱退火製程可實質上類似於上文描述的步驟1306的熱退火製程。In
在步驟1323中,從金屬閘結構1000去除犧牲矽層1202。任何技術上可行的去除製程可在步驟1323中採用,包括選擇性濕式蝕刻製程、基於電漿的乾式蝕刻製程、化學機械拋光製程、或其任何組合。方法1300隨後繼續進行到步驟1307,其中沉積金屬閘結構1000的最終層。In
在步驟1331中,如第14G圖所示,犧牲矽層1203在覆蓋層1404上沉積。犧牲矽層1203可實質上類似於在步驟1331中沉積的犧牲矽層1202。然而,注意到在步驟1331中,覆蓋層1404尚未用單步電漿氫化及氮化製程處理。隨後,覆蓋層1404仍可包括如圖所示的界面層1409。In
在步驟1332中,熱退火製程(如覆蓋後退火)在半導體基板1001、界面層1002、高介電常數介電層1003、覆蓋層1404、界面層1409、及犧牲矽層1203上執行。步驟1332的熱退火製程可實質上類似於上文描述的步驟1306的熱退火製程。In
在步驟1333中,如第14H圖所示,從金屬閘結構1000去除犧牲矽層1203、覆蓋層1404、及界面層1409。任何技術上可行的去除製程或製程組合可在步驟1333中採用,包括選擇性濕式蝕刻製程、基於電漿的乾式蝕刻製程、化學機械拋光製程、或其任何組合。方法1300隨後繼續進行到步驟1334。In
在步驟1334中,如第14I圖所示,最終覆蓋層1404f在高介電常數介電層1003上沉積。最終覆蓋層1404f可由覆蓋層1404的相同材料組成,並且最終覆蓋層亦可包括界面層1409。In
在可選步驟1335中,將第14I圖所示的已暴露表面1405暴露於空氣。例如,在一些實施例中,最終覆蓋層1404f在一個處理系統中沉積,而待在半導體基板1001上執行的下一處理步驟(亦即,步驟1336)在不同的處理系統中執行。因此,在此種實施例中,在沉積最終覆蓋層1404f之後,將半導體基板1001暴露於空氣。在實施例中,其中最終覆蓋層1404f在多腔室處理系統的一個腔室中沉積,並且步驟1336在同一多腔室處理系統的一個或兩個其他處理腔室中執行,不執行可選步驟1335。In
在步驟1336中,如第14J圖所示,單步電漿氫化及氮化製程在最終覆蓋層1404的表面1405上執行。在步驟1336中執行的單步電漿氫化及氮化製程可實質上類似於步驟1304中採用的製程。隨後,界面層1409變厚可在步驟1336期間消除或減少,由此去除在最終覆蓋層1404f、界面層1009、及在一些實施例中高介電常數介電層1003中存在的O原子。因此,在不按比例縮小高介電常數介電層1003的厚度1003A的情況下,金屬閘結構1000的EOT減小。In
在步驟1336中執行單步電漿氫化及氮化製程之後,方法1300繼續進行到步驟1307,其中沉積金屬閘結構1000的最終層。在實施例中,其中在不同處理系統中執行步驟1336及1307,必須將半導體基板1001暴露於空氣。然而,因為步驟1336的電漿氮化製程可完全或幾乎完全氮化最終覆蓋層1404f的已暴露表面1405,在此空氣暴露期間通常極少發生其氧化或不發生其氧化。
After performing the single-step plasma hydrogenation and nitridation process in
在本文揭示的實施例中,採用連續氫化及氮化製程、或單步氫化及氮化製程以賦能形成具有與經由習知方法形成的類似結構相比減小的EOT的金屬閘結構。電漿氫化製程及隨後的電漿氮化製程在膜堆疊中的金屬氮化物層中執行,由此在一些實施例中,去除在膜堆疊層內設置的O原子,並且在一些實施例中減小或防止膜堆疊內設置的含氧界面層變厚,並且在一些實施例中,將N原子添加到膜堆疊層。因此,金屬閘結構的EOT減小,而有極少或沒有伴隨的平帶電壓偏移。另外,金屬閘結構以增加的洩漏電流操作,該洩漏電流低至與經由習知技術形成的類似金屬閘結構相關聯的洩漏電流增加的四分之一。 In the embodiments disclosed herein, a continuous hydrogenation and nitridation process or a single-step hydrogenation and nitridation process is used to enable the formation of a metal gate structure having a reduced EOT compared to similar structures formed by conventional methods. The plasma hydrogenation process and the subsequent plasma nitridation process are performed in the metal nitride layer in the film stack, thereby in some embodiments, the O atoms disposed in the film stack are removed, and in some embodiments, the O atoms are reduced. Small or prevent the oxygen-containing interfacial layer provided in the film stack from thickening, and in some embodiments, N atoms are added to the film stack layer. Therefore, the EOT of the metal gate structure is reduced with little or no accompanying flat-band voltage shift. In addition, the metal gate structure operates with an increased leakage current that is as low as a quarter of the increase in leakage current associated with similar metal gate structures formed via conventional techniques.
儘管上述內容涉及本揭示案的實施例,本揭示案的其他及進一步實施例可在不脫離其基本範疇的情況下設計,並且其範疇由以下申請專利範圍決定。 Although the above content relates to the embodiments of the present disclosure, other and further embodiments of the present disclosure can be designed without departing from its basic scope, and its scope is determined by the scope of the following patent applications.
100:導電結構/接觸結構 100: conductive structure/contact structure
101:源極或汲極結構 101: source or drain structure
102:第一金屬層 102: The first metal layer
103:金屬氮化物層 103: Metal nitride layer
104:覆蓋層 104: Overlay
105:矽化物 105: Silicide
106:導電層 109:接觸阱 110:半導體基板 120:絕緣材料 200:部分 201:表面 211:主體O原子 212:表面O原子 213:空位 310:XPS光譜 320:XPS光譜 400:電漿處理腔室 404:基板支撐底座 406:腔室壁 408:腔室蓋 410:感應線圈元件 412:第一阻抗匹配網路 414:RF電源 416:電氣接地 417:電氣接地 418:屏蔽電極 419:電氣接地 420:開關 422:偵測器 424:第二阻抗匹配網路 426:偏置電源 428:基板 430:氣體面板 432:入口埠 434:氣體混合物 436:電漿 438:節流閥 440:真空泵 442:氣體來源 444:氣體管道 446:控制器 448:中央處理單元(central processing unit; CPU) 450:記憶體 452:支援電路 500:多腔室處理系統 506:傳遞腔室 508:緩衝腔室 510:單晶圓裝載閘 512:單晶圓裝載閘 513:加熱元件 514:處理腔室 516:處理腔室 518:處理腔室 520:處理腔室 522:處理腔室 523:預熱腔室 524:處理腔室 525:預熱腔室 526:機器人 528:機器人 530:電腦系統 600:方法 601:步驟 603:步驟 604:步驟 605:步驟 701:表面 703:電漿激發的氮物種 800:方法 801:步驟 802:步驟 803:步驟 804:步驟 805:步驟 900:方法 901:步驟 902:步驟 903:步驟 905:步驟 1000:金屬閘結構 1001:半導體基板 1002:界面層 1003:高介電常數介電層 1003A:厚度 1004A:厚度 1004:金屬氮化物覆蓋層 1005:金屬閘電極層 1009:界面層 1100:方法 1101:步驟 1102:步驟 1103:步驟 1104:步驟 1105:步驟 1106:步驟 1107:步驟 1121:步驟 1122:步驟 1123:步驟 1131:步驟 1132:步驟 1133:步驟 1134:步驟 1135:步驟 1136:步驟 1201:已暴露表面 1202:犧牲矽層 1203:犧牲矽層 1205:已暴露表面 1300:方法 1301:步驟 1302:步驟 1303:步驟 1304:步驟 1305:步驟 1306:步驟 1307:步驟 1321:步驟 1322:步驟 1323:步驟 1331:步驟 1332:步驟 1333:步驟 1334:步驟 1335:步驟 1336:步驟 1401:表面 1404:覆蓋層 1404f:最終覆蓋層 1409:界面層 106: conductive layer 109: contact trap 110: Semiconductor substrate 120: insulating material 200: part 201: Surface 211: Subject O atom 212: surface O atom 213: Vacancy 310: XPS spectrum 320: XPS spectrum 400: Plasma processing chamber 404: substrate support base 406: Chamber Wall 408: chamber cover 410: induction coil element 412: The first impedance matching network 414: RF power supply 416: Electrical grounding 417: electrical grounding 418: Shield electrode 419: Electrical grounding 420: switch 422: Detector 424: second impedance matching network 426: Bias power supply 428: Substrate 430: Gas Panel 432: Entrance Port 434: Gas mixture 436: Plasma 438: Throttle Valve 440: Vacuum pump 442: Gas Source 444: Gas Pipeline 446: Controller 448: central processing unit (CPU) 450: memory 452: Support Circuit 500: Multi-chamber processing system 506: Passing Chamber 508: Buffer Chamber 510: Single wafer loading gate 512: Single wafer load gate 513: heating element 514: processing chamber 516: Processing Chamber 518: Processing Chamber 520: processing chamber 522: Processing Chamber 523: preheating chamber 524: Processing Chamber 525: preheating chamber 526: Robot 528: Robot 530: computer system 600: method 601: Step 603: step 604: step 605: step 701: Surface 703: Nitrogen Species Excited by Plasma 800: method 801: Step 802: step 803: step 804: step 805: step 900: method 901: step 902: step 903: step 905: step 1000: Metal gate structure 1001: Semiconductor substrate 1002: Interface layer 1003: High dielectric constant dielectric layer 1003A: Thickness 1004A: Thickness 1004: Metal nitride coating 1005: Metal gate electrode layer 1009: Interface layer 1100: Method 1101: Step 1102: step 1103: Step 1104: step 1105: Step 1106: step 1107: step 1121: step 1122: step 1123: Step 1131: step 1132: step 1133: step 1134: step 1135: step 1136: step 1201: exposed surface 1202: Sacrificial silicon layer 1203: Sacrificial silicon layer 1205: exposed surface 1300: method 1301: Step 1302: Step 1303: step 1304: step 1305: step 1306: step 1307: step 1321: step 1322: step 1323: step 1331: step 1332: step 1333: step 1334: step 1335: step 1336: step 1401: Surface 1404: Overlay 1404f: final overlay 1409: Interface layer
為了能夠詳細理解本揭示案的上述特徵所用方式,可參考實施例進行對上文簡要概述的本揭示案的更特定描述,一些實施例在附圖中示出。然而,將注意,附圖僅示出本揭示案的常見實施例,並且由此不被認為限制其範疇,因為本揭示可允許其他等同有效的實施例。In order to be able to understand in detail the manner in which the above-mentioned features of the present disclosure are used, a more specific description of the present disclosure briefly outlined above can be made with reference to the embodiments, some of which are shown in the accompanying drawings. However, it will be noted that the drawings only show common embodiments of the present disclosure, and thus are not considered to limit its scope, because the present disclosure may allow other equally effective embodiments.
第1圖示出了根據本揭示案的一實施例的在基板上形成作為半導體元件的部分的接觸結構的橫截面圖。FIG. 1 shows a cross-sectional view of a contact structure formed on a substrate as a part of a semiconductor element according to an embodiment of the present disclosure.
第2A圖至第2E圖係根據本揭示案的一實施例的在製造接觸結構的各個階段處的第1圖的接觸結構內的金屬氮化物層的示意圖。2A to 2E are schematic diagrams of the metal nitride layer in the contact structure of FIG. 1 at various stages of manufacturing the contact structure according to an embodiment of the present disclosure.
第3圖係根據本揭示案的一實施例的用於在處理之前沉積及熱退火的TiN膜的X射線光電子光譜學(X-ray Photoelectron Spectroscopy; XPS)光譜310及用於在處理之後的同一沉積及熱退火的TiN膜的XPS光譜320。FIG. 3 is an X-ray Photoelectron Spectroscopy (X-ray Photoelectron Spectroscopy; XPS)
第4圖係經配置為實施本揭示案的一或更多個態樣的處理腔室的橫截面側視圖。Figure 4 is a cross-sectional side view of a processing chamber configured to implement one or more aspects of the present disclosure.
第5圖係經配置為實施本揭示案的一或更多個態樣的多腔室處理系統的俯視平面圖。Figure 5 is a top plan view of a multi-chamber processing system configured to implement one or more aspects of the present disclosure.
第6圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。FIG. 6 illustrates a flowchart of processing steps for reducing the main body and interface oxygen in the contact structure according to some embodiments of the present disclosure.
第7A圖至第7E圖係根據本揭示案的各個實施例的對應於第6圖的製程的不同階段的半導體元件的示意性橫截面圖。FIGS. 7A to 7E are schematic cross-sectional views of semiconductor devices at different stages of the manufacturing process corresponding to FIG. 6 according to various embodiments of the present disclosure.
第8圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。Figure 8 illustrates a flow chart of processing steps for reducing body and interface oxygen in the contact structure according to some embodiments of the present disclosure.
第9圖闡明了根據本揭示案的一些實施例的用於減少接觸結構中的主體及界面氧的處理步驟的流程圖。Figure 9 illustrates a flow chart of processing steps for reducing the body and interface oxygen in the contact structure according to some embodiments of the present disclosure.
第10圖示出了根據本揭示案的一實施例形成的金屬閘結構的橫截面圖。FIG. 10 shows a cross-sectional view of a metal gate structure formed according to an embodiment of the present disclosure.
第11圖闡明了根據本揭示案的各個實施例的用於減小金屬閘結構中的有效氧化物厚度(effective oxide thickness; EOT)的處理步驟的流程圖。FIG. 11 illustrates a flowchart of processing steps for reducing the effective oxide thickness (EOT) in the metal gate structure according to various embodiments of the present disclosure.
第12A圖至第12J圖係根據本揭示案的各個實施例的對應於第11圖的製程的不同階段的半導體元件的示意性橫截面圖。FIGS. 12A to 12J are schematic cross-sectional views of semiconductor devices at different stages of the manufacturing process corresponding to FIG. 11 according to various embodiments of the present disclosure.
第13圖闡明了根據本揭示案的各個實施例的用單步氫化及氮化製程處理金屬閘結構的處理步驟的流程圖。FIG. 13 illustrates a flow chart of the processing steps for treating the metal gate structure with a single-step hydrogenation and nitridation process according to various embodiments of the present disclosure.
第14A圖至第14J圖係根據本揭示案的各個實施例的對應於第13圖的製程的不同階段的半導體元件的示意性橫截面圖。FIGS. 14A to 14J are schematic cross-sectional views of semiconductor devices at different stages of the manufacturing process corresponding to FIG. 13 according to various embodiments of the present disclosure.
為了便於理解,相同元件符號在可能的情況下已經用於標識圖中共有的相同元件。可預期,一個實施例的元件及特徵可有利地併入其他實施例中,而無需進一步敘述。For ease of understanding, the same component symbols have been used to identify the same components in the drawings where possible. It is anticipated that the elements and features of one embodiment can be advantageously incorporated into other embodiments without further description.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic hosting information (please note in the order of hosting organization, date and number) without
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign hosting information (please note in the order of hosting country, institution, date, and number) without
1000:金屬閘結構 1000: Metal gate structure
1001:半導體基板 1001: Semiconductor substrate
1002:界面層 1002: Interface layer
1003:高介電常數介電層 1003: High dielectric constant dielectric layer
1401:表面 1401: Surface
1404:覆蓋層 1404: Overlay
1409:界面層 1409: Interface layer
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/244,051 US10510545B2 (en) | 2016-06-20 | 2019-01-09 | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film |
US16/244,051 | 2019-01-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202027171A TW202027171A (en) | 2020-07-16 |
TWI739176B true TWI739176B (en) | 2021-09-11 |
Family
ID=71521286
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108137856A TWI739176B (en) | 2019-01-09 | 2019-10-21 | Forming method of structure in semiconductor device for modifying effective oxide thickness |
TW110129378A TWI777717B (en) | 2019-01-09 | 2019-10-21 | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110129378A TWI777717B (en) | 2019-01-09 | 2019-10-21 | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP7439101B2 (en) |
KR (2) | KR102553773B1 (en) |
CN (1) | CN113396470A (en) |
TW (2) | TWI739176B (en) |
WO (1) | WO2020146030A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1717847A2 (en) * | 2005-04-28 | 2006-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US8716118B2 (en) * | 2012-01-06 | 2014-05-06 | International Business Machines Corporation | Replacement gate structure for transistor with a high-K gate stack |
TWI466191B (en) * | 2006-06-20 | 2014-12-21 | Applied Materials Inc | Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ uv cure |
US20160196980A1 (en) * | 2015-01-06 | 2016-07-07 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device |
US20170033109A1 (en) * | 2015-07-30 | 2017-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
US20170125536A1 (en) * | 2015-10-28 | 2017-05-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of modifying capping layer in semiconductor structure |
TWI588898B (en) * | 2012-04-06 | 2017-06-21 | 半導體能源研究所股份有限公司 | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
TWI608622B (en) * | 2009-12-25 | 2017-12-11 | 半導體能源研究所股份有限公司 | Semiconductor device and method for manufacturing the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW541659B (en) * | 2002-04-16 | 2003-07-11 | Macronix Int Co Ltd | Method of fabricating contact plug |
SG124265A1 (en) * | 2002-12-02 | 2006-08-30 | Tadahiro Ohmi | Semiconductor device and method of manufacturing the same |
JP5380827B2 (en) | 2006-12-11 | 2014-01-08 | ソニー株式会社 | Manufacturing method of semiconductor device |
US8178445B2 (en) | 2009-06-10 | 2012-05-15 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus and manufacturing method of semiconductor device using plasma generation |
US8048810B2 (en) * | 2010-01-29 | 2011-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for metal gate N/P patterning |
US9006860B2 (en) * | 2011-12-06 | 2015-04-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Metal gate features of semiconductor die |
US9576788B2 (en) * | 2015-04-24 | 2017-02-21 | Applied Materials, Inc. | Cleaning high aspect ratio vias |
TWI726951B (en) * | 2015-12-17 | 2021-05-11 | 美商應用材料股份有限公司 | Methods of treating nitride films |
US10103027B2 (en) * | 2016-06-20 | 2018-10-16 | Applied Materials, Inc. | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film |
-
2019
- 2019-10-18 JP JP2021540083A patent/JP7439101B2/en active Active
- 2019-10-18 CN CN201980088031.8A patent/CN113396470A/en active Pending
- 2019-10-18 KR KR1020217024647A patent/KR102553773B1/en active IP Right Grant
- 2019-10-18 KR KR1020237022826A patent/KR20230120647A/en active IP Right Grant
- 2019-10-18 WO PCT/US2019/056894 patent/WO2020146030A1/en active Application Filing
- 2019-10-21 TW TW108137856A patent/TWI739176B/en active
- 2019-10-21 TW TW110129378A patent/TWI777717B/en active
-
2024
- 2024-02-14 JP JP2024020046A patent/JP2024073427A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1717847A2 (en) * | 2005-04-28 | 2006-11-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
TWI466191B (en) * | 2006-06-20 | 2014-12-21 | Applied Materials Inc | Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ uv cure |
TWI608622B (en) * | 2009-12-25 | 2017-12-11 | 半導體能源研究所股份有限公司 | Semiconductor device and method for manufacturing the same |
US8716118B2 (en) * | 2012-01-06 | 2014-05-06 | International Business Machines Corporation | Replacement gate structure for transistor with a high-K gate stack |
TWI588898B (en) * | 2012-04-06 | 2017-06-21 | 半導體能源研究所股份有限公司 | Insulating film, method for manufacturing semiconductor device, and semiconductor device |
US20160196980A1 (en) * | 2015-01-06 | 2016-07-07 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device |
US20170033109A1 (en) * | 2015-07-30 | 2017-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
US20170125536A1 (en) * | 2015-10-28 | 2017-05-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of modifying capping layer in semiconductor structure |
Also Published As
Publication number | Publication date |
---|---|
KR20230120647A (en) | 2023-08-17 |
JP7439101B2 (en) | 2024-02-27 |
CN113396470A (en) | 2021-09-14 |
TW202027171A (en) | 2020-07-16 |
JP2024073427A (en) | 2024-05-29 |
JP2022518386A (en) | 2022-03-15 |
WO2020146030A1 (en) | 2020-07-16 |
TW202145372A (en) | 2021-12-01 |
KR102553773B1 (en) | 2023-07-11 |
KR20210102465A (en) | 2021-08-19 |
TWI777717B (en) | 2022-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10431466B2 (en) | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film | |
US10510545B2 (en) | Hydrogenation and nitridization processes for modifying effective oxide thickness of a film | |
US7385265B2 (en) | High dielectric constant MOSFET device | |
US9012336B2 (en) | Method for conformal treatment of dielectric films using inductively coupled plasma | |
US7446052B2 (en) | Method for forming insulation film | |
KR100645306B1 (en) | Method of treating substrate | |
JP4408653B2 (en) | Substrate processing method and semiconductor device manufacturing method | |
US20150093891A1 (en) | Method of enabling seamless cobalt gap-fill | |
SG176700A1 (en) | Methods of forming oxide layers on substrates | |
US10504779B2 (en) | Hydrogenation and nitridization processes for reducing oxygen content in a film | |
US9224594B2 (en) | Surface preparation with remote plasma | |
US10347492B2 (en) | Modifying work function of a metal film with a plasma process | |
JP4083000B2 (en) | Insulating film formation method | |
US20240038859A1 (en) | Metal cap for contact resistance reduction | |
WO2004107451A1 (en) | Semiconductor device fitted with mis type field-effect transistor, process for producing the same and method of forming metal oxide film | |
TWI739176B (en) | Forming method of structure in semiconductor device for modifying effective oxide thickness | |
JP2007251204A (en) | Insulating film forming method |