JP2002180418A - Base isolation structure system in bridge - Google Patents

Base isolation structure system in bridge

Info

Publication number
JP2002180418A
JP2002180418A JP2000376099A JP2000376099A JP2002180418A JP 2002180418 A JP2002180418 A JP 2002180418A JP 2000376099 A JP2000376099 A JP 2000376099A JP 2000376099 A JP2000376099 A JP 2000376099A JP 2002180418 A JP2002180418 A JP 2002180418A
Authority
JP
Japan
Prior art keywords
bridge
girder
displacement
seismic isolation
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000376099A
Other languages
Japanese (ja)
Other versions
JP4545920B2 (en
Inventor
Yutaka Makiguchi
豊 牧口
Hiroe Uno
裕恵 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Chodai Co Ltd
Original Assignee
Oiles Industry Co Ltd
Chodai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd, Chodai Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2000376099A priority Critical patent/JP4545920B2/en
Publication of JP2002180418A publication Critical patent/JP2002180418A/en
Application granted granted Critical
Publication of JP4545920B2 publication Critical patent/JP4545920B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation system losing no merit of a base isolation support, causing no harmful action such as impact according to a linear characteristic of a bridge such as a straight line bridge and a curved bridge, and capable of effectively checking excessive displacement at earthquake time in a bridge structure supporting a bridge girder by the base isolation support displaceable in the whole horizontal directions. SOLUTION: In the bridge structure composed of a curved bridge girder having a displacement component in the bridge axis right-angled direction, a frictionally damping damper is interposed in the bridge axis right-angled direction between a lower structure and an upper structure for restricting the excessive displacement of the base isolation support at one or plural support points supported by the base isolation support.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、橋梁における免
震構造系に関し、更に詳しくは、水平の全方向に変位可
能な弾性支承により橋桁を連続的に支持してなる連続桁
橋梁の免震構造系に関する。また特には、曲線状・斜状
の橋桁を有する橋梁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure system for a bridge, and more particularly to a seismic isolation structure for a continuous girder bridge in which a bridge girder is continuously supported by an elastic bearing capable of being displaced horizontally in all directions. About the system. More particularly, the present invention relates to a bridge having a curved or inclined bridge girder.

【0002】[0002]

【従来の技術】曲線橋、斜橋あるいは下部構造すなわち
橋脚の頂部幅が狭い橋梁等においては、支点部において
橋軸直角方向に地震時の橋桁に生じる急激な水平変位を
制限する構造体(装置)すなわち変位制限構造が設けら
れるものであるが、従来の変位制限構造は移動体と非移
動体(拘束体)とが一定の遊間を存して衝接作用をもっ
て当該水平変位を制限し、かつ一方向のみの変位に対応
する構造となっており、このため変位途中において何ら
の抵抗作用もなく、作動時において大きな衝撃を惹起す
るものであり、その衝撃作用による悪影響は無視しえな
いものがある。なお、橋軸直角方向の変位制限構造の必
要とする橋梁は上記構造以外に、一支承線上の支承数の
少ない橋、地盤の流動化により橋軸直角方向に橋脚の移
動が生じる可能性のある橋もその対象となる。なお、上
記した橋梁構造において、曲線橋及び斜橋はその端支点
部に変位制限構造が配され、それ以外の橋梁には端支点
部に加えて中間支点部にも変位制限構造が配されるもの
である。更に、曲線橋においてその桁端部に上記構造の
いわゆる剛な変位制限構造を用いた場合、温度変化によ
る橋桁の伸縮を拘束したり、地震時の急激な変位に際し
惹起されやすいこと、更に、橋軸直角方向の上部構造慣
性力が桁端部に集中すること、等の懸念がある。これを
避けるために変位制限構造の遊間を広くすると地震時に
衝撃力が大きくなることになる。
2. Description of the Related Art In a curved bridge, a diagonal bridge, or a substructure, that is, a bridge having a narrow top portion of a pier, a structure (device) for limiting abrupt horizontal displacement generated in a bridge girder at the fulcrum in a direction perpendicular to the bridge axis at the time of an earthquake. That is, a displacement limiting structure is provided, but in the conventional displacement limiting structure, the moving body and the non-moving body (restricted body) limit the horizontal displacement by an abutting action with a certain play space, and It has a structure that responds to displacement in only one direction.Therefore, there is no resistance effect during displacement and a large impact is caused during operation, and the adverse effect of the impact cannot be ignored. is there. Bridges that require a displacement limiting structure in the direction perpendicular to the bridge axis may require a bridge with a small number of bearings on one support line, or the pier may move in the direction perpendicular to the bridge axis due to fluidization of the ground, in addition to the above structure. Bridges are also covered. In the above-mentioned bridge structure, the curvilinear bridge and the diagonal bridge have a displacement limiting structure at the end fulcrum, and the other bridges have a displacement limiting structure at the intermediate fulcrum in addition to the end fulcrum. Things. Furthermore, when a so-called rigid displacement limiting structure of the above structure is used at the end of a girder in a curved bridge, the expansion and contraction of the bridge girder due to a temperature change is restricted, and the bridge girder is likely to be caused by a sudden displacement during an earthquake. There is a concern that the inertia of the upper structure in the direction perpendicular to the axis is concentrated at the end of the girder. If the clearance of the displacement limiting structure is widened to avoid this, the impact force will increase during an earthquake.

【0003】一方、近時、橋梁の支承に弾性体を主体と
する免震支承を使用したいわゆる免震構造系の橋梁が採
用されつつある。すなわち、この免震構造系によれば、
下部構造から伝播される地震動をこの免震支承をもって
長周期化し、有害な振動(特には共振)を上部構造に伝
えないことにより、地震動による構造物の被害を防止す
るものである。この免震支承はゴム支承(積層ゴム)あ
るいは該ゴム支承に鉛体の封入された鉛プラグ入りゴム
支承(L.R.B.)が採用される。この免震支承を有
する曲線橋、斜橋等においても、上記の見地から過大な
変位に対応するべく変位制限構造が設置される必要があ
るが、従来の変位制限構造によっては上記欠点をそのま
ま残存させるばかりでなく、当該免震支承は水平の全方
向への機能が発揮できる特長を有するものであるが、こ
の変位制限構造によっては一方向の変位を強制的に制限
するものであり、該免震支承の特長が喪失してしまうこ
とになる。なお又、この免震構造は、その連続橋(曲線
橋)において、橋軸直角方向の慣性力の分散が各橋脚位
置で不均衡になる傾向が解析されており、その均衡化を
図ることも技術的課題の一つとなっている。そこで、当
該免震系において、全方向への機能を発揮する免震支承
の特長を喪失することなく、有害な変位を制限できる新
たな変位制限構造を開発・適用し、もって当該免震構造
系の特性の改善をなすことが望まれるところである。
On the other hand, recently, a so-called seismic isolation-type bridge using a seismic isolation bearing mainly composed of an elastic body for the support of the bridge is being adopted. That is, according to this seismic isolation system,
The seismic motion propagated from the substructure is prolonged with the seismic isolation bearing, and harmful vibration (particularly, resonance) is not transmitted to the superstructure, thereby preventing damage to the structure due to the seismic motion. As this seismic isolation bearing, a rubber bearing (laminated rubber) or a rubber bearing (LRB) with a lead plug in which a lead body is sealed in the rubber bearing is employed. Even for curved bridges and diagonal bridges with seismic isolation bearings, it is necessary to install a displacement limiting structure in order to cope with excessive displacement from the above point of view. In addition to this, the seismic isolation bearing has the feature of being able to perform functions in all horizontal directions. However, depending on this displacement limiting structure, the displacement in one direction is forcibly limited. The characteristics of the seismic bearing will be lost. In addition, this seismic isolation structure has been analyzed in a continuous bridge (curved bridge), where the variance of the inertial force in the direction perpendicular to the bridge axis tends to be unbalanced at each pier position. It is one of the technical issues. Therefore, in this seismic isolation system, a new displacement limiting structure that can limit harmful displacement without losing the characteristics of the seismic isolation bearing that functions in all directions has been developed and applied. It is desired to improve the characteristics of.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記実情に鑑
みなされたものであり、水平の全方向に変位可能な弾性
系の免震支承により橋桁を支持してなる橋梁構造におい
て、免震支承の特長を失わず、直線橋、曲線橋等の橋の
線型特性に応じて有効に地震時の過大な変位を阻止し得
る新規な免震構造系を提供することを目的とする。本発
明はこのため、橋の変位を強制的に制限することなく、
地震時変位を制限したい方向に減衰力を付与して変位を
低減する摩擦減衰型の変位制限構造を付加することによ
り目的を達成しうるとの知見に基づいてなされたもので
ある。本発明は更に、この知見に基づいて、ゴム支承に
よる地震時水平分散構造への適用を図ることも目的の一
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and relates to a seismic isolation support for a bridge structure in which a bridge girder is supported by an elastic seismic isolation bearing capable of being displaced in all directions in a horizontal direction. It is an object of the present invention to provide a new seismic isolation system capable of effectively preventing excessive displacement during an earthquake according to the linear characteristics of a bridge such as a straight bridge or a curved bridge without losing the features of the above. The present invention therefore does not forcibly limit the displacement of the bridge,
This is based on the knowledge that the purpose can be achieved by adding a friction damping type displacement limiting structure that reduces the displacement by applying a damping force in the direction in which the displacement is to be limited during an earthquake. Another object of the present invention is to apply the present invention to an earthquake horizontal dispersion structure using rubber bearings based on this finding.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、以下の構成を採る。本発明の第1番目の発明
(第1発明)の橋梁における免震構造系は、請求項1に
記載のとおり、水平の全方向に変位可能にして減衰性能
を有するか又は有しない弾性支承により曲線状・斜状の
橋桁を連続的に支持してなる連続桁曲線橋梁構造におい
て、前記弾性支承に支持される1又は複数の支持点にお
いて、前記橋桁の橋軸直角方向の過大な変位を制限する
べく、下部構造と前記橋桁との間に一軸方向に作動する
摩擦減衰型変位制限装置が実質的に橋軸直角方向に作動
するべく介装されてなることを特徴とする。本発明にお
いて、摩擦減衰型変位制限装置は後記する特性(図5
(b) に示されるもの)を有する変位制限装置を指し、具
体的には以下の実施の形態で示される。上記構成におい
て、 摩擦減衰型変位制限装置の配される支持点は少なくと
も橋桁の端部の支持点が選ばれること、 弾性支承は鉛プラグ入り弾性支承であること、 摩擦減衰型変位制限装置は橋軸方向への変位を許容す
るように配されてなること、は適宜選択される事項であ
る。上記第1発明において、その曲線状・斜状の橋桁に
替え、橋軸直角方向への変位を生じ易い橋桁を有する連
続桁橋梁構造である橋梁における免震構造系は別な発明
を構成する。本発明においても、 摩擦減衰型変位制限装置の配される支持点は少なくと
も橋桁の端部の支持点が選ばれること、 弾性支承は鉛プラグ入り弾性支承であること、 摩擦減衰型変位制限装置は橋軸方向への変位を許容す
るように配されてなること、は適宜選択される事項であ
る。
The present invention employs the following constitution in order to achieve the above object. The seismic isolation structural system of the bridge according to the first invention (first invention) of the present invention is provided by an elastic bearing capable of being displaced in all directions in the horizontal direction and having or not having damping performance, as described in claim 1. In a continuous girder curved bridge structure in which a curved / slanted bridge girder is continuously supported, excessive displacement of the bridge girder in a direction perpendicular to a bridge axis is limited at one or a plurality of support points supported by the elastic bearing. To this end, a friction-attenuating displacement limiting device that operates uniaxially is interposed between the substructure and the bridge girder so as to operate substantially in a direction perpendicular to the bridge axis. In the present invention, the friction damping type displacement limiting device has a characteristic described later (FIG. 5).
(b)), and is specifically shown in the following embodiments. In the above configuration, at least the support point at the end of the bridge girder is selected as a support point at which the friction damping type displacement limiting device is disposed, the elastic bearing is a lead plug-containing elastic bearing, and the friction damping type displacement limiting device is a bridge. Arrangement so as to allow displacement in the axial direction is a matter selected as appropriate. In the first invention, a seismic isolation structure system for a bridge which is a continuous girder bridge structure having a bridge girder which is likely to be displaced in the direction perpendicular to the bridge axis instead of the curved / slanted bridge girder constitutes another invention. Also in the present invention, the support point of the friction damping type displacement limiting device is selected at least at the end of the bridge girder, the elastic bearing is a lead plug-containing elastic bearing, and the friction damping type displacement limiting device is Arrangement so as to allow displacement in the bridge axis direction is a matter selected as appropriate.

【0006】(作用)常時において、温度変化による橋
桁の緩慢な伸縮変位は、橋軸方向の変位が橋幅方向(橋
軸直角方向)よりも卓越し、弾性支承の弾性変形により
回転変位と共に当該伸縮変位を吸収する。橋軸直角方向
に配された摩擦減衰型変位制限装置はこの変位に干渉せ
ず抵抗することなく追従する。地震の発生により橋脚が
振動するとき、この振動は上部構造に伝播するが、弾性
支承において、その弾性機能により短周期成分は除か
れ、長周期成分が残り、上部構造に有害な振動(共振振
動)を伝えない。そして、上部構造はその固有周期(長
周期)をもって振動する。弾性支承が減衰性能を有する
とき、この振動を速やかに減衰する。このとき同時に、
橋軸直角方向に配された変位制限機構部も作動し、その
減衰に寄与する。過大な地震力が入力され、橋桁の支持
点において橋軸直角方向の急激な変位が現れたとき、こ
の変位の開始より変位制限機構部が起動し、その変位と
ともに作動を続け、その設定極大値に達して規定距離以
上の変位を阻止する。この作動は連続的になされ、極大
値における衝撃作用はない。更にまた、本連続桁曲線橋
において、各支持点の変位制限装置の抵抗力を増大させ
ることにより各支持点上の橋桁の横変位を極小化するこ
とができる。すなわち、本免震系において、支持点部で
の慣性力の分散がなされ、均等化が図られる。
(Operation) In normal operation, the slow expansion and contraction displacement of the bridge girder due to the temperature change is such that the displacement in the bridge axis direction is more prominent than in the bridge width direction (direction perpendicular to the bridge axis) and the rotational displacement is caused by the elastic deformation of the elastic bearing. Absorbs telescopic displacement. A friction-attenuated displacement limiting device arranged in the direction perpendicular to the bridge axis follows this displacement without interference and without resistance. When the pier vibrates due to the occurrence of an earthquake, this vibration propagates to the upper structure. However, in the elastic bearing, the short-period component is removed due to its elastic function, and the long-period component remains. Do not tell). The upper structure vibrates with its natural period (long period). When the elastic bearing has a damping performance, the vibration is quickly damped. At the same time,
The displacement limiting mechanism arranged in the direction perpendicular to the bridge axis also operates and contributes to its damping. When an excessive seismic force is input and sudden displacement in the direction perpendicular to the bridge axis appears at the support point of the bridge girder, the displacement limiting mechanism starts from the start of this displacement, continues to operate with the displacement, and sets the maximum value To prevent displacement exceeding a specified distance. This operation is continuous and there is no impact at the maximum. Furthermore, in the continuous girder curved bridge, the lateral displacement of the bridge girder at each support point can be minimized by increasing the resistance of the displacement limiting device at each support point. That is, in the seismic isolation system, the inertial force at the support points is dispersed and equalization is achieved.

【0007】本発明の第2番目の発明は、請求項6のと
おり、水平の全方向に変位可能なゴム弾性支承により橋
桁を連続的に支持してなる連続桁橋梁構造において、前
記ゴム弾性支承に支持される1又は複数の支持点におい
て、該弾性支承の過大な変位を制限するべく、下部構造
と前記橋桁との間に摩擦減衰型ダンパーが橋軸方向に介
装されてなる、ことを特徴とする。この連続桁橋梁構造
は地震時水平分散構造を採るものである。 (作用)ダンパーの抵抗力の比較的小さな値において、
応答加速度が極小値を採り、抵抗力が増大するにつれ応
答加速度が大きくなる。ダンパーの抵抗力の大きさを調
整することによって応答加速度の低減に重点を置くか、
応答変位の低減に重点を置くかの調整が可能となり設計
の自由度が高まる。
According to a second aspect of the present invention, there is provided a continuous girder bridge structure in which a bridge girder is continuously supported by a rubber elastic bearing capable of being displaced in all directions in a horizontal direction. At one or a plurality of supporting points supported by a friction damping type damper interposed in the bridge axis direction between a lower structure and the bridge girder to limit excessive displacement of the elastic bearing. Features. This continuous girder bridge structure adopts a horizontal dispersion structure during an earthquake. (Operation) At a relatively small value of the resistance of the damper,
The response acceleration takes a minimum value, and the response acceleration increases as the resistance increases. Focus on reducing the response acceleration by adjusting the magnitude of the resistance of the damper,
It is possible to adjust whether emphasis is placed on reducing the response displacement, and the degree of freedom in design is increased.

【0008】[0008]

【発明の実施の形態】本発明の橋梁における免震構造系
の実施の形態を図面に基づいて説明する。 (第1実施形態)図1〜図5はその一実施形態(第1実
施形態)の橋梁の免震構造系を示し、連続桁曲線橋への
適用例を示す。すなわち、図1は当該免震構造系の支点
部の全体構成を示し、図2〜図5はその部分構成を示
す。図において、Bは橋脚・橋台等の下部構造であり、
Gは橋桁等の上部構造である。この橋梁は、多径間連続
桁曲線橋をなし、橋桁Gは線形(平面形状)が所定の曲
線半径の曲線形をなし、かつ所定の横断勾配をなし、支
承体Sを介して複数の橋脚Bに荷重をあずける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a base isolation system for a bridge according to the present invention will be described with reference to the drawings. (First Embodiment) FIGS. 1 to 5 show a seismic isolation system for a bridge according to one embodiment (first embodiment), and show an example of application to a continuous girder curved bridge. That is, FIG. 1 shows the entire configuration of the fulcrum of the seismic isolation system, and FIGS. 2 to 5 show the partial configuration thereof. In the figure, B is a substructure such as a pier / abutment,
G is an upper structure such as a bridge girder. This bridge forms a multi-span continuous girder curved bridge. The bridge girder G has a linear (planar shape) curve shape with a predetermined curve radius and a predetermined cross slope. Apply load to B.

【0009】図1にその全体が示されるように、本免震
構造系は、これらの下部構造Bと上部構造Gとの間に支
承体Sを主体とする免震支承部1とダンパーDを主体と
する変位制限機構部2とからなり、これらは所定の配置
関係をもって介装され、かつ所定の免震機能を発揮す
る。すなわち、免震支承部1は支持機能と免震機能とを
少なくとも有し、変位制限機構部2は変位の始まりとと
もに作動する摩擦減衰型を採り、かつ、該変位制限機構
部2は橋軸直角方向に配される。
As shown in FIG. 1 in its entirety, the present seismic isolation system includes a seismic isolation support 1 mainly composed of a support S and a damper D between the lower structure B and the upper structure G. It is mainly composed of a displacement limiting mechanism 2 which is interposed with a predetermined arrangement relationship and exhibits a predetermined seismic isolation function. That is, the seismic isolation bearing 1 has at least a support function and a seismic isolation function, the displacement limiting mechanism 2 adopts a friction damping type that operates at the start of displacement, and the displacement limiting mechanism 2 is at right angles to the bridge axis. Arranged in the direction.

【0010】以下、各部の細部構造を説明する。免震支承部1 (図1〜図4参照) 免震支承部1は、本実施形態では、鉛プラグ入り積層ゴ
ム支承体Sを主体として構成される。本鉛プラグ入り積
層ゴム支承体(以下単に支承体という。)Sは、全体と
して矩形状をなし、所定厚さの積層ゴム体10と、積層
ゴム体10の中心部に封入される鉛プラグ11とからな
り、これらは上下の取付け鋼板12,13に挟着される
とともに該取付け鋼板12,13を介して上部構造G、
下部構造Bに固定される。なお、下部構造Bに対しては
該下部構造Bの上面の傾斜を均す均し台14を介して支
承体Sが設置される。均し台14は橋脚Bと一体であっ
ても、別体であってもよい。更に、支承体Sの積層ゴム
体10に付いては、鋼板15とゴム板もしくはゴム層1
6が相互に積層され、加硫接着をもって一体化されてな
るものであり、水平変形が容易で、大きな鉛直剛性を有
する特性を持つ。12a,13aは取付け鋼板12,1
3に穿設された取付け孔であって、上部構造G及び下部
構造B(均し台14)に埋設固定されたアンカーボルト
(図示せず)を挿通し、ナット(図示せず)をもって緊
定される。なお、上部構造G、下部構造Bが鋼製であれ
ば支承体Sは溶接により固定されうることは勿論であ
る。本免震支承部1の支承体Sは、各橋脚Bにおいて、
2個併置される。しかし、その設置個数は2個に限定さ
れるものではなく、上部構造Gを安定的に設置するため
更に個数を付加される。しかして、この免震支承部1
は、上部構造(橋桁)Gの支持機能と下部構造(橋脚)
Bを介して伝播される地震動の免震機能を担う。
Hereinafter, the detailed structure of each part will be described. Seismic Isolation Bearing 1 (See FIGS. 1 to 4) In the present embodiment, the seismic isolation bearing 1 is mainly composed of a laminated rubber bearing S containing a lead plug. The laminated rubber bearing body (hereinafter, simply referred to as a bearing body) S including the lead plug has a rectangular shape as a whole, and has a laminated rubber body 10 having a predetermined thickness and a lead plug 11 sealed in the center of the laminated rubber body 10. These are sandwiched between the upper and lower mounting steel plates 12 and 13 and the upper structures G and
It is fixed to the lower structure B. In addition, the support body S is installed on the lower structure B via a leveling platform 14 that leveles the upper surface of the lower structure B. The leveling platform 14 may be integral with the pier B or may be separate. Further, the laminated rubber body 10 of the support body S includes a steel plate 15 and a rubber plate or rubber layer 1.
6 are laminated with each other and integrated by vulcanization bonding, and have characteristics of being easy to be horizontally deformed and having large vertical rigidity. 12a and 13a are mounting steel plates 12 and 1
3 through which an anchor bolt (not shown) embedded and fixed in the upper structure G and the lower structure B (leveling platform 14) is inserted and tightened with a nut (not shown). Is done. If the upper structure G and the lower structure B are made of steel, the support body S can be fixed by welding. The bearing body S of the seismic isolation bearing part 1 is
Two are juxtaposed. However, the number of installations is not limited to two, and an additional number is added to stably install the upper structure G. And this seismic isolation bearing 1
Is the support function of the superstructure (bridge girder) G and the substructure (pier)
It plays the seismic isolation function of the ground motion propagated through B.

【0011】変位制限機構部2(図1、図2、図5参
照) 変位制限機構部2は、本実施形態では、減衰力を付加す
る機能を有する摩擦減衰型の鉛押出しダンパー(以下単
に「鉛ダンパー」という)Dを主体として構成される。
該鉛ダンパーDは、図5(a) に示すように、円筒状をな
すシリンダ部20と、該シリンダ20内に進退動される
ピストンロッド部21と、該シリンダ部20に封入され
る鉛体22とからなる。ピストンロッド部21は鉛体2
2中に位置する隆起部21a及びその先端のストッパー
部21bを有し、ストッパー部21bの前後にa,bの
空隙距離を保つ。隆起部21aは鉛体22中を強制力を
もって移動することにより鉛体22を塑性流動化し、そ
の変形エネルギーをもって強制力を吸収する。シリンダ
部20の先端並びにピストンロッド部21の先端にはそ
れぞれ取付け部23A,23Bを有する。本鉛ダンパー
Dはその鉛体22の塑性流動化をなすことにより、その
特性は図5(b) の履歴曲線で示されるように、極めて明
確な履歴特性を有し、摩擦減衰特性を有する。すなわ
ち、変位に対して定まった水平抵抗力が現れる。エネル
ギー吸収効率が高い。本鉛ダンパーDのストロークはス
トッパー部21bの規制によるよりも、隆起部21aの
受ける塑性流動抵抗に規制される。
Displacement limiting mechanism 2 (see FIGS. 1, 2 and 5) In this embodiment, the displacement limiting mechanism 2 is a friction damping type lead extrusion damper (hereinafter simply referred to as "a") having a function of adding damping force. D) (referred to as “lead damper”).
As shown in FIG. 5 (a), the lead damper D has a cylindrical cylinder portion 20, a piston rod portion 21 which is moved into and out of the cylinder 20, and a lead body sealed in the cylinder portion 20. 22. The piston rod 21 is a lead 2
2 has a raised portion 21a and a stopper portion 21b at the tip thereof, and keeps a gap distance between a and b before and after the stopper portion 21b. The protrusion 21a plastically fluidizes the lead body 22 by moving through the lead body 22 with a forcing force, and absorbs the forcing force with its deformation energy. At the tip of the cylinder part 20 and the tip of the piston rod part 21, there are provided attachment parts 23A and 23B, respectively. The lead damper D has a very clear hysteresis characteristic as shown by a hysteresis curve in FIG. 5 (b) by plasticizing the lead body 22, and has a friction damping characteristic. That is, a fixed horizontal resistance to the displacement appears. High energy absorption efficiency. The stroke of the lead damper D is more restricted by the plastic flow resistance of the raised portion 21a than by the restriction of the stopper portion 21b.

【0012】本実施形態の変位制限機構部2では、2つ
の鉛ダンパーDが配される。このため、相並ぶ2つの免
震支承Sの中間部位に柱状の反力受け部材25が下部構
造Bに強固に固定され、反力受け部材25にはリブ26
Aが突設され、該リブ26Aに対向して上部構造にはリ
ブ26Bが突設される。そして、各鉛ダンパーDは各免
震支承Sの対応する上部構造Gの部位とこの反力受け部
材25との間に、取付け部23Aとリブ26A、及び取
付け部23Bとリブ26Bとを各ピン27を介して揺動
自在に取り付けられる。なお、リブ26A、リブ26B
は水平方向に揺動自在とされ得る。この場合、リブ26
A、26Bはピン27とともにいずれの方向の回転変位
を許容するいわゆる自在継手を構成する。本変位制限機
構部2においては、鉛ダンパーDの配置は、2つの免震
支承Sの中心を含む線上に、すなわち橋軸直角方向に配
され、当該橋軸直角方向への変位に対応するものである
が、当該橋軸直角方向とは異なる変位並びに多少の傾き
(ずれ)は許容される。すなわち、設置におけるずれ、
橋桁の橋軸方向の変位を許容する。しかして、この変位
制限機構部2は、上部構造Gの過度な移動を抑制する機
能を果たす。
In the displacement limiting mechanism 2 of this embodiment, two lead dampers D are provided. For this reason, the columnar reaction force receiving member 25 is firmly fixed to the lower structure B at an intermediate portion between the two seismic isolation bearings S arranged side by side.
A is protruded, and a rib 26B is protruded from the upper structure so as to face the rib 26A. Each of the lead dampers D has a mounting portion 23A and a rib 26A, and a mounting portion 23B and a rib 26B between each corresponding seismic isolation bearing S of the corresponding upper structure G and the reaction force receiving member 25. It is swingably attached via 27. The ribs 26A and 26B
May be swingable in the horizontal direction. In this case, the rib 26
A and 26B together with the pin 27 constitute a so-called universal joint that allows rotational displacement in any direction. In the displacement limiting mechanism 2, the lead damper D is arranged on a line including the centers of the two seismic isolation bearings S, that is, in the direction perpendicular to the bridge axis, and corresponds to the displacement in the direction perpendicular to the bridge axis. However, a displacement different from the direction perpendicular to the bridge axis and a slight inclination (shift) are allowed. That is, displacement in installation,
The bridge girder is allowed to displace in the bridge axis direction. Thus, the displacement limiting mechanism 2 has a function of suppressing excessive movement of the upper structure G.

【0013】(曲線橋の変位特性)橋軸方向の長さが卓
越する橋桁においては、橋軸方向の伸縮が橋軸直角方向
よりも大きくなるが、曲線橋においては各支点部におい
て橋軸直角方向への変位分も加わる。また、橋桁に載荷
される移動荷重により各支点に回転変位が加わる。本曲
線橋においては、各支承の弾性変形をもって上記の支点
変位を吸収する。
(Displacement Characteristics of Curved Bridge) In a bridge girder having a predominant length in the bridge axis direction, the expansion and contraction in the bridge axis direction is larger than in the direction perpendicular to the bridge axis. The displacement in the direction is also added. Further, a rotational displacement is applied to each fulcrum by a moving load loaded on the bridge girder. In this curved bridge, the above-mentioned fulcrum displacement is absorbed by the elastic deformation of each bearing.

【0014】(本実施形態の作用・効果)この免震構造
系は、多径間連続桁曲線橋に適用されて以下に述べるよ
うな作用を発揮し、効果を有する。図6はこの多径間連
続桁曲線橋を示す。ここに、B1,B2,B3,B4は
橋脚であって、曲線をなす橋桁Gはこれらの橋脚B1,
B2,B3,B4上に各2つの本免震支承Sをもって支
持され、かつ各橋脚において鉛ダンパーDよりなる変位
制限機構部2が橋軸直角方向に配される。図1は各橋脚
におけるこの配置態様を示す。
(Operation / Effect of this Embodiment) This seismic isolation structure system is applied to a multi-span continuous girder curved bridge, exhibits the following operation, and has an effect. FIG. 6 shows this multi-span continuous girder curved bridge. Here, B1, B2, B3, and B4 are piers, and the bridge girder G that forms a curve is the pier B1,
Each of the two seismic isolation bearings S is supported on B2, B3, and B4, and a displacement limiting mechanism 2 including a lead damper D is arranged in each pier in a direction perpendicular to the bridge axis. FIG. 1 shows this arrangement in each pier.

【0015】常時において、温度変化による橋桁Gの緩
慢な伸縮変位は、橋軸方向の変位が橋幅方向よりも卓越
し、免震支承Sの弾性変形により回転変位と共に当該伸
縮変位を吸収する。また、該緩慢な変位に対しては各免
震支承Sの鉛プラグ11及び鉛ダンパーDの鉛体22が
格別大きな抵抗となることはなく、許容する。連続桁曲
線橋においては、端橋脚B1(又はB4)で橋軸直角方
向への変位が現れるが、この変位も全方向型の免震支承
S並びに鉛ダンパーDは許容する。
Normally, in the slow expansion and contraction displacement of the bridge girder G due to the temperature change, the displacement in the bridge axis direction is more prominent than in the bridge width direction, and the elastic deformation of the seismic isolation bearing S absorbs the expansion and contraction displacement together with the rotational displacement. In addition, the lead plug 11 of each seismic isolation bearing S and the lead body 22 of the lead damper D do not have a particularly large resistance to the gradual displacement, and are allowed. In a continuous girder curved bridge, displacement in the direction perpendicular to the bridge axis appears at the end pier B1 (or B4), and this displacement is permitted by the omnidirectional seismic isolation bearing S and the lead damper D.

【0016】地震の発生により、橋脚B1,B2,B
3,B4が振動するとき、この振動は上部構造Gに伝播
するが、本免震支持部1の免震支承Sにおいて、その積
層ゴム体10の柔構造機能により短周期成分は除かれ、
長周期成分が残り、上部構造Gに有害な振動(共振振
動)を伝えない。そして、上部構造Gはその固有周期
(長周期)をもって振動する。本免震支承Sはその鉛プ
ラグ11の変形により大きなエネルギー吸収特性を発揮
し、この上部構造Gの振動を速やかに減衰する。このと
き同時に、変位制限機構部2の鉛ダンパーDも作動し、
その履歴特性をもって上部構造Gの減衰に寄与する。連
続桁曲線橋においては、各橋脚B1〜B4において橋軸
直角方向の振動も大きく現れるが、全方向型の免震支承
Sはこの横振動を減衰させ、かつ、各橋脚に設置された
鉛ダンパーDにより横振動は更に速やかに減衰する。な
お、鉛ダンパーDの抵抗力と横変位との関係は図7(a)
に示されるとおりであり、該鉛ダンパーDの抵抗力を適
当値(例えば20トン程度)に採ることにより各橋脚上
の横変位は殆ど現れない。
Due to the occurrence of the earthquake, the piers B1, B2, B
When B3 and B4 vibrate, the vibration propagates to the upper structure G. However, in the seismic isolation bearing S of the seismic isolation support 1, short-period components are removed by the flexible structure function of the laminated rubber body 10,
Long-period components remain and do not transmit harmful vibrations (resonant vibrations) to the upper structure G. Then, the upper structure G vibrates with its natural period (long period). The seismic isolation bearing S exhibits a large energy absorption characteristic due to the deformation of the lead plug 11, and quickly attenuates the vibration of the upper structure G. At the same time, the lead damper D of the displacement limiting mechanism 2 also operates,
The hysteresis characteristic contributes to the attenuation of the upper structure G. In a continuous girder bridge, large vibrations in the direction perpendicular to the bridge axis also appear at each of the piers B1 to B4. However, the omnidirectional seismic isolation bearing S attenuates this lateral vibration, and a lead damper installed on each pier. The transverse vibration is attenuated more quickly by D. The relationship between the resistance and the lateral displacement of the lead damper D is shown in FIG.
The lateral displacement on each pier hardly appears when the resistance of the lead damper D is set to an appropriate value (for example, about 20 tons).

【0017】しかして、過大な地震力が入力されたと
き、橋桁Gは橋脚Bに対して更に大きく横方向へ変位す
ることになるが、この変位とともに変位制限機構部2の
鉛ダンパーDがその設定極大値に達し、規定距離以上に
は変位しない。これにより上部構造Gの過大な変位が阻
止され、かつ免震支承Sの横変位を抑え、有害な座屈を
阻止する。図7(b) は鉛ダンパーDの設定抵抗値を変化
させたときの各橋脚B1〜B4上の橋桁の横方向すなわ
ち橋軸直角方向変位の変位を示す。イは鉛ダンパーDが
ないときの各橋脚の変位を示し、ロ、ハ、ニは鉛ダンパ
ーDの設定抵抗値を順次大きくしたときの変位を示す。
ニにおいて各橋脚上の橋桁の変位は均一化される。すな
わち、慣性力の均等化がほぼ達成されたものとなってい
る。
However, when an excessive seismic force is input, the bridge girder G is further displaced in the lateral direction with respect to the pier B, and together with this displacement, the lead damper D of the displacement limiting mechanism 2 is moved. It reaches the set maximum value and does not move beyond the specified distance. This prevents excessive displacement of the upper structure G, suppresses lateral displacement of the seismic isolation bearing S, and prevents harmful buckling. FIG. 7B shows the displacement of the bridge girders on the piers B1 to B4 in the lateral direction, that is, in the direction perpendicular to the bridge axis, when the set resistance value of the lead damper D is changed. A shows the displacement of each pier when there is no lead damper D, and B, C, and D show the displacement when the set resistance value of the lead damper D is sequentially increased.
In (d), the displacement of the bridge girder on each pier is equalized. That is, the equalization of the inertial force is almost achieved.

【0018】以上のように本免震構造系によれば、免震
支承Sの全方向変位機能を何ら妨げることがなく免震機
能を発揮させ、かつ、過大な地震動による橋桁Gの横変
位を阻止し、更にはこの阻止過程において連続して作動
することから衝撃を発することがなく、免震支承Sに
も、上部構造Gにも損壊を与えない。また、各橋脚上の
鉛ダンパーDの設定値を適宜に選ぶことにより、各橋脚
上の変位を自由に決定することができ、設計の自由度が
大きい。更には、鉛ダンパーDは全ての橋脚に配するこ
ともなく、適宜の橋脚(通常は端橋脚)を選ぶことによ
っても相応の効果を得ることができる。
As described above, according to the present seismic isolation system, the seismic isolation function of the seismic isolation bearing S is exhibited without any hindrance, and the lateral displacement of the bridge girder G due to excessive earthquake motion is reduced. It does not impact and does not damage the seismic isolation bearing S or the superstructure G because it operates continuously in this blocking process. In addition, by appropriately selecting the set value of the lead damper D on each pier, the displacement on each pier can be freely determined, and the degree of freedom in design is large. Further, the lead damper D is not disposed on all piers, and a suitable effect can be obtained by selecting an appropriate pier (usually an end pier).

【0019】(第2実施形態)図8に本発明の橋梁にお
ける免震構造系の更に他の実施形態(第2実施形態)を
示し、震時水平分散ゴム支承を使用する直線連続桁橋へ
の適用例を示す。図において、Gは直線をなす連続桁、
B1〜B8は直列状に並べられた橋脚であって、橋脚に
はゴム支承Rが配され、該ゴム支承Rを介して連続桁G
が設置される。該ゴム支承Rの配置の態様は図1に準
じ、2個相隔てて配される。本実施形態においては更
に、各橋脚Bにおいて摩擦減衰型の鉛ダンパーDが橋脚
Bと橋桁Gとに橋軸方向に作動するように介装される。
該鉛ダンパーDの構造は図5に示すものに準じる。
(Second Embodiment) FIG. 8 shows still another embodiment (second embodiment) of a base isolation system for a bridge according to the present invention. Here is an application example of. In the figure, G is a continuous digit forming a straight line,
B1 to B8 are piers arranged in series, and a rubber bearing R is disposed on the pier, and a continuous girder G is provided via the rubber bearing R.
Is installed. According to the arrangement of the rubber bearings R, two rubber bearings R are arranged at intervals. In this embodiment, a friction damping type lead damper D is further interposed between the pier B and the bridge girder in each pier B so as to operate in the bridge axis direction.
The structure of the lead damper D conforms to that shown in FIG.

【0020】本実施形態の免震構造系においては、ゴム
支承Rはアイソレータすなわち地震時水平力分散ゴム支
承として機能し、鉛ダンパーDはエネルギー吸収装置と
して機能し、かつそれぞれの機能は相互に干渉しないい
わゆる機能分離構造を採ることを特徴とする。
In the seismic isolation system of this embodiment, the rubber bearing R functions as an isolator, that is, a rubber bearing for horizontal force distribution during an earthquake, the lead damper D functions as an energy absorbing device, and the respective functions interfere with each other. It is characterized by adopting a so-called function separation structure.

【0021】しかして、本免震構造系は次の作用を発揮
し、特性を持つ。鉛ダンパーDの抵抗力の大きさと地震
時の応答加速度との関係は、図9に示すとおり、鉛ダン
パーDの抵抗力の比較的小さな値において、応答加速度
が極小値を採り、抵抗力が増大するにつれ応答加速度が
大きくなる。また、鉛ダンパーDの抵抗力の大きさと応
答変位との関係は先に図7(a) にみたとおりである。従
って、鉛ダンパーDの抵抗力の大きさを調整することに
よって応答加速度の低減に重点を置くか、応答変位の低
減に重点を置くかの調整が可能となり、機能一体型の従
来の免震支承よりも設計の自由度が高い。
The seismic isolation system has the following functions and characteristics. As shown in FIG. 9, the relation between the magnitude of the resistance of the lead damper D and the response acceleration at the time of the earthquake shows that the response acceleration takes a minimum value and the resistance increases when the resistance of the lead damper D is relatively small. As the response increases, the response acceleration increases. The relationship between the magnitude of the resistance of the lead damper D and the response displacement is as shown in FIG. Therefore, by adjusting the magnitude of the resistance of the lead damper D, it becomes possible to adjust whether to focus on reducing the response acceleration or the response displacement. The degree of freedom of design is higher than that.

【0022】この免震構造系によれば、摩擦減衰型の鉛
ダンパーDの優れたエネルギー吸収性能により機能一体
型の従来の免震支承よりも地震時の変位の小さい免震構
造が可能であり、そのためゴム支承を小さく設計でき、
本鉛ダンパーDのコストを加算しても機能一体型の従来
の免震支承よりも低コスト化が図られるものである。
According to this seismic isolation structure system, the seismic isolation structure having a smaller displacement during an earthquake is possible than the conventional seismic isolation bearing of integrated function due to the excellent energy absorption performance of the friction damping type lead damper D. , So the rubber bearing can be designed smaller,
Even if the cost of the lead damper D is added, the cost can be reduced as compared with the conventional seismic isolation bearing of integrated function.

【0023】本発明は上記実施形態に限定されるもので
はなく、本発明の基本的技術思想の範囲内で種々設計変
更が可能である。
The present invention is not limited to the above embodiment, and various design changes can be made within the scope of the basic technical concept of the present invention.

【0024】[0024]

【発明の効果】本発明の橋梁における免震構造系によれ
ば、免震支承の全方向変位機能を何ら妨げることがなく
免震機能を発揮させ、かつ、過大な地震動による上部構
造の横変位を阻止し、更にはこの阻止に至る変位におい
て連続して作動することから衝撃を発することがなく、
免震支承にも上部構造にも損壊を与えない。また、各下
部構造上の変位制限装置の設定抵抗値を適宜に選ぶこと
により、各下部構造上の橋桁の変位を自由に決定するこ
とができ、設計の自由度が大きい。更には、変位制限装
置は全ての橋脚に配することもなく、適宜の橋脚を選ぶ
ことによっても相応の効果を得ることができる。本発明
の水平分散構造を採る橋梁における免震構造系によれ
ば、鉛ダンパーのエネルギー吸収性能により地震時の変
位の小さい免震構造が可能であり、そのためゴム支承を
小さく設計でき、低コスト化が図られる。
According to the seismic isolation structure system of the bridge of the present invention, the seismic isolation function is exerted without hindering the omnidirectional displacement function of the seismic isolation bearing, and the lateral displacement of the superstructure due to excessive earthquake motion. , And since it operates continuously at the displacement leading to this inhibition, it does not generate an impact,
Neither the seismic isolation bearing nor the superstructure is damaged. In addition, by appropriately selecting the set resistance value of the displacement limiting device on each substructure, the displacement of the bridge girder on each substructure can be freely determined, and the degree of freedom in design is large. Further, the displacement limiting device is not disposed on all the piers, and a suitable effect can be obtained by selecting an appropriate pier. According to the seismic isolation structure system of the bridge employing the horizontally distributed structure of the present invention, the seismic isolation structure with small displacement during an earthquake is possible due to the energy absorption performance of the lead damper, so that the rubber bearing can be designed to be small and the cost can be reduced. Is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の橋梁における免震構造系の一実施形態
の横断面図。
FIG. 1 is a cross-sectional view of one embodiment of a base isolation system for a bridge according to the present invention.

【図2】その要部の拡大図。FIG. 2 is an enlarged view of a main part thereof.

【図3】本免震構造系の一構成要素の支承体の構造図
(図4の3−3線断面図)。
FIG. 3 is a structural view (a cross-sectional view taken along line 3-3 in FIG. 4) of a bearing of one component of the seismic isolation system.

【図4】図3の4−4線断面図。FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

【図5】(a) 図は本免震構造系の一構成要素の鉛ダンパ
ーの構成図。(b) 図はその特性を示す図(履歴曲線)。
FIG. 5 (a) is a configuration diagram of a lead damper as one component of the seismic isolation system. (b) The figure shows the characteristic (history curve).

【図6】多径間連続桁曲線橋における免震構造系の概略
図。
FIG. 6 is a schematic diagram of a seismic isolation system for a multi-span continuous girder curved bridge.

【図7】(a) ダンパー抵抗力−変位図。 (b) 橋脚上の水平変位を示す図。FIG. 7 (a) is a damper resistance-displacement diagram. (b) Diagram showing horizontal displacement on the pier.

【図8】本発明の橋梁における免震構造系の他の実施形
態の側面図。
FIG. 8 is a side view of another embodiment of the base isolation system for a bridge according to the present invention.

【図9】ダンパー抵抗力−応答加速度図。FIG. 9 is a damper resistance-response acceleration diagram.

【符号の説明】[Explanation of symbols]

G…上部構造(橋桁)、B…下部構造(橋脚)、S…免
震支承、D…摩擦減衰型ダンパー、R…ゴム弾性支承、
1…免震支承部、2…変位制限機構部
G: Upper structure (bridge girder), B: Lower structure (pier), S: Seismic isolation bearing, D: Friction damping type damper, R: Rubber elastic bearing,
1 ... seismic isolation bearing section 2 ... displacement limit mechanism section

フロントページの続き (72)発明者 宇野 裕恵 東京都港区芝大門1丁目3番2号 オイレ ス工業株式会社内 Fターム(参考) 2D059 AA05 AA37 GG05 GG59 3J048 AA02 AC02 AC05 BA08 BD08 BE12 CB06 DA01 EA39 Continuation of the front page (72) Inventor Hiroe Uno 1-3-2 Shiba-Daimon, Minato-ku, Tokyo Oil industry F-term (reference) 2D059 AA05 AA37 GG05 GG59 3J048 AA02 AC02 AC05 BA08 BD08 BE12 CB06 DA01 EA39

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】水平の全方向に変位可能にして減衰性能を
有するか又は有しない弾性支承により曲線状・斜状の橋
桁を連続的に支持してなる連続桁曲線橋梁構造におい
て、 前記弾性支承に支持される1又は複数の支持点におい
て、前記橋桁の橋軸直角方向の過大な変位を制限するべ
く、下部構造と前記橋桁との間に一軸方向に作動する摩
擦減衰型変位制限装置が実質的に橋軸直角方向に作動す
るべく介装されてなる、ことを特徴とする橋梁における
免震構造系。
1. A continuous girder curved bridge structure comprising a curved girder and a bridge girder continuously supported by an elastic bearing capable of being displaced in all directions in a horizontal direction and having or not having damping performance, wherein the elastic bearing is provided. At one or a plurality of support points supported by the bridge girder, a friction damping type displacement limiting device that operates uniaxially between a substructure and the bridge girder to limit excessive displacement of the bridge girder in a direction perpendicular to the bridge axis is substantially provided. A seismic isolation system for a bridge, which is interposed so as to operate in a direction perpendicular to the bridge axis.
【請求項2】摩擦減衰型変位制限装置の配される支持点
は少なくとも橋桁の端部の支持点が選ばれる請求項1に
記載の橋梁における免震構造系。
2. The seismic isolation system for a bridge according to claim 1, wherein the support point at which the friction damping type displacement limiting device is disposed is at least a support point at an end of a bridge girder.
【請求項3】弾性支承は鉛プラグ入り弾性支承である請
求項1に記載の橋梁における免震構造系。
3. The seismic isolation system for a bridge according to claim 1, wherein the elastic bearing is a lead plug-containing elastic bearing.
【請求項4】摩擦減衰型変位制限装置は橋軸方向への変
位を許容するように配されてなる請求項1に記載の橋梁
における免震構造系。
4. The seismic isolation system for a bridge according to claim 1, wherein the friction damping type displacement limiting device is arranged to allow displacement in the bridge axis direction.
【請求項5】請求項1の曲線状・斜状の橋桁に替え、橋
軸直角方向への変位を生じ易い橋桁を有する連続桁橋梁
構造である橋梁における免震構造系。
5. A seismic isolation structure system for a bridge which is a continuous girder bridge structure having a bridge girder which is likely to be displaced in a direction perpendicular to the bridge axis instead of the curved / slanted bridge girder of claim 1.
【請求項6】水平の全方向に変位可能なゴム弾性支承に
より橋桁を連続的に支持してなる連続桁橋梁構造におい
て、 前記ゴム弾性支承に支持される1又は複数の支持点にお
いて、該弾性支承の過大な変位を制限するべく、下部構
造と前記橋桁との間に摩擦減衰型ダンパーが橋軸方向に
介装されてなる、ことを特徴とする橋梁における免震構
造系。
6. A continuous girder bridge structure in which a bridge girder is continuously supported by a rubber elastic bearing capable of being displaced in all directions in a horizontal direction, wherein at one or a plurality of support points supported by the rubber elastic bearing, A seismic isolation system for a bridge, wherein a friction damping damper is interposed between a lower structure and the bridge girder in a bridge axis direction to limit excessive displacement of a bearing.
【請求項7】摩擦減衰型ダンパーは塑性流動型鉛ダンパ
ーを採る請求項6に記載の橋梁における免震構造系。
7. The seismic isolation system for a bridge according to claim 6, wherein the friction damping type damper employs a plastic flow type lead damper.
JP2000376099A 2000-12-11 2000-12-11 Seismic isolation system for bridges Expired - Fee Related JP4545920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376099A JP4545920B2 (en) 2000-12-11 2000-12-11 Seismic isolation system for bridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376099A JP4545920B2 (en) 2000-12-11 2000-12-11 Seismic isolation system for bridges

Publications (2)

Publication Number Publication Date
JP2002180418A true JP2002180418A (en) 2002-06-26
JP4545920B2 JP4545920B2 (en) 2010-09-15

Family

ID=18845010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376099A Expired - Fee Related JP4545920B2 (en) 2000-12-11 2000-12-11 Seismic isolation system for bridges

Country Status (1)

Country Link
JP (1) JP4545920B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724596B1 (en) * 2005-05-03 2007-06-04 주식회사 기주건설 Earthquake-proof reinforcement shock relaxation system of bridge structure
CN103306192A (en) * 2013-06-15 2013-09-18 中南大学 Bridge space energy consumption limit device
CN104313995A (en) * 2014-09-30 2015-01-28 上海市政工程设计研究总院(集团)有限公司 Three-direction composite position limiting device
JP2015031046A (en) * 2013-08-02 2015-02-16 株式会社横河住金ブリッジ Function separation type vibration control structure of bridge
JP2015045212A (en) * 2013-07-29 2015-03-12 Jfeシビル株式会社 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
JP2015161116A (en) * 2014-02-27 2015-09-07 住友理工株式会社 Displacement recording meter for rubber bearing device, and rubber bearing device
JP2015222006A (en) * 2014-04-30 2015-12-10 首都高速道路株式会社 Antiseismic structure for bridge
JP2015222005A (en) * 2014-04-30 2015-12-10 首都高速道路株式会社 Antiseismic structure for bridge
KR20160077824A (en) * 2014-12-24 2016-07-04 현대건설주식회사 Appartus for decreasing girder deformation of long-span bridge and its construction method
JP2017014749A (en) * 2015-06-29 2017-01-19 首都高速道路株式会社 Sliding mechanism of bridge seismic resistance device
JP2017082556A (en) * 2015-10-30 2017-05-18 オムロン株式会社 Abnormality detection device
JP2017122365A (en) * 2016-01-08 2017-07-13 株式会社横河住金ブリッジ Function separation type vibration damping structure for bridge
CN109680603A (en) * 2019-02-26 2019-04-26 浙江省交通规划设计研究院有限公司 It is anti-to climb the Curved Beam Bridge support arrangement and its seat structure for moving and toppling
CN110258317A (en) * 2019-06-28 2019-09-20 中铁大桥科学研究院有限公司 A kind of dual-gripper damper amplifying device of bridge
CN110717246A (en) * 2019-09-05 2020-01-21 郑州大学 Method for calculating accumulated displacement damage of main beam of curve bridge under action of automobile load
JP2020109246A (en) * 2018-11-22 2020-07-16 首都高速道路株式会社 Bridge aseismatic device
CN113152249A (en) * 2021-03-04 2021-07-23 浙江理工大学 Bridge anti-dumping device
CN113187116A (en) * 2021-04-27 2021-07-30 重庆永昂实业有限公司 Automatic energy dissipation and shock absorption structure of overhead single-column station
CN114108449A (en) * 2021-11-24 2022-03-01 重庆交通大学 Friction sliding energy consumption type bridge damping device for high-speed rail
CN114108454A (en) * 2021-11-22 2022-03-01 重庆交通大学 Rotary friction limiting type shock absorption and isolation support for high-speed rail bridge
CN114250695A (en) * 2021-12-30 2022-03-29 中铁大桥科学研究院有限公司 Limiting device for bridge plate type rubber support
CN114990994A (en) * 2022-07-22 2022-09-02 中南大学 Bridge assembled seismic isolation and reduction device capable of dissipating energy by stages through lock catch limiting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119631U (en) * 1990-03-23 1991-12-10
JP2000008327A (en) * 1998-06-24 2000-01-11 Kawada Industries Inc Erection constructing method for curved steel floor plate bridge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207620A (en) * 1994-01-11 1995-08-08 Kumagai Gumi Co Ltd Attenuator of bridge girder against vibration in width direction
JP3463115B2 (en) * 1995-08-30 2003-11-05 株式会社竹中工務店 3D seismic isolation method and seismic isolation device
JP3128506B2 (en) * 1996-02-20 2001-01-29 建設省土木研究所長 Bridge support structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119631U (en) * 1990-03-23 1991-12-10
JP2000008327A (en) * 1998-06-24 2000-01-11 Kawada Industries Inc Erection constructing method for curved steel floor plate bridge

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100724596B1 (en) * 2005-05-03 2007-06-04 주식회사 기주건설 Earthquake-proof reinforcement shock relaxation system of bridge structure
CN103306192A (en) * 2013-06-15 2013-09-18 中南大学 Bridge space energy consumption limit device
JP2015045212A (en) * 2013-07-29 2015-03-12 Jfeシビル株式会社 Seismic strengthening structure of existing bridge pier, and newly-constructed bridge pier structure
JP2015031046A (en) * 2013-08-02 2015-02-16 株式会社横河住金ブリッジ Function separation type vibration control structure of bridge
JP2015161116A (en) * 2014-02-27 2015-09-07 住友理工株式会社 Displacement recording meter for rubber bearing device, and rubber bearing device
JP2015222006A (en) * 2014-04-30 2015-12-10 首都高速道路株式会社 Antiseismic structure for bridge
JP2015222005A (en) * 2014-04-30 2015-12-10 首都高速道路株式会社 Antiseismic structure for bridge
CN104313995A (en) * 2014-09-30 2015-01-28 上海市政工程设计研究总院(集团)有限公司 Three-direction composite position limiting device
CN104313995B (en) * 2014-09-30 2023-07-25 上海市政工程设计研究总院(集团)有限公司 Three-way composite limiting device
KR20160077824A (en) * 2014-12-24 2016-07-04 현대건설주식회사 Appartus for decreasing girder deformation of long-span bridge and its construction method
KR101697830B1 (en) * 2014-12-24 2017-01-18 현대건설주식회사 Appartus for decreasing girder deformation of long-span bridge and its construction method
JP2017014749A (en) * 2015-06-29 2017-01-19 首都高速道路株式会社 Sliding mechanism of bridge seismic resistance device
JP2017082556A (en) * 2015-10-30 2017-05-18 オムロン株式会社 Abnormality detection device
JP2017122365A (en) * 2016-01-08 2017-07-13 株式会社横河住金ブリッジ Function separation type vibration damping structure for bridge
JP7324126B2 (en) 2018-11-22 2023-08-09 首都高速道路株式会社 Bridge seismic device
JP2020109246A (en) * 2018-11-22 2020-07-16 首都高速道路株式会社 Bridge aseismatic device
CN109680603A (en) * 2019-02-26 2019-04-26 浙江省交通规划设计研究院有限公司 It is anti-to climb the Curved Beam Bridge support arrangement and its seat structure for moving and toppling
CN110258317A (en) * 2019-06-28 2019-09-20 中铁大桥科学研究院有限公司 A kind of dual-gripper damper amplifying device of bridge
CN110258317B (en) * 2019-06-28 2024-05-28 中铁大桥科学研究院有限公司 Double-support damper amplifying device for bridge
CN110717246B (en) * 2019-09-05 2023-03-28 郑州大学 Method for calculating accumulated displacement damage of main beam of curve bridge under action of automobile load
CN110717246A (en) * 2019-09-05 2020-01-21 郑州大学 Method for calculating accumulated displacement damage of main beam of curve bridge under action of automobile load
CN113152249A (en) * 2021-03-04 2021-07-23 浙江理工大学 Bridge anti-dumping device
CN113187116A (en) * 2021-04-27 2021-07-30 重庆永昂实业有限公司 Automatic energy dissipation and shock absorption structure of overhead single-column station
CN113187116B (en) * 2021-04-27 2023-02-14 重庆永昂实业有限公司 Automatic energy dissipation and shock absorption structure of overhead single-column station
CN114108454A (en) * 2021-11-22 2022-03-01 重庆交通大学 Rotary friction limiting type shock absorption and isolation support for high-speed rail bridge
CN114108449A (en) * 2021-11-24 2022-03-01 重庆交通大学 Friction sliding energy consumption type bridge damping device for high-speed rail
CN114250695A (en) * 2021-12-30 2022-03-29 中铁大桥科学研究院有限公司 Limiting device for bridge plate type rubber support
CN114250695B (en) * 2021-12-30 2023-06-13 中铁大桥科学研究院有限公司 Limiting device of bridge plate type rubber support
CN114990994A (en) * 2022-07-22 2022-09-02 中南大学 Bridge assembled seismic isolation and reduction device capable of dissipating energy by stages through lock catch limiting

Also Published As

Publication number Publication date
JP4545920B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP2002180418A (en) Base isolation structure system in bridge
KR100731210B1 (en) Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy
JP4245258B2 (en) Damping member design method
JPH0643856B2 (en) Seismic isolation device for structures
JP3046929B2 (en) Bridge seismic isolation structure
JP2003049408A (en) Steel support and bridge supporting device
JPH10280660A (en) Base isolation device and friction damper for base isolation device
JP4292127B2 (en) Bridge bearing device
JPH08284114A (en) Response control device for bridge
JP2001241502A (en) Sliding brace for isolating seismic vibrations
JPH10159022A (en) Device for positioning at least one fixed point in civil engineering structure and its use
JP2006291670A (en) Base isolating device
JP2002048192A (en) Vibration damper article and installation method of vibration damper article
JP2988882B2 (en) Structure damping device
JPH11293685A (en) Base isolation structure of construction
JPH0610533A (en) Damping restoring device for structure member
JP3300305B2 (en) Articulated bridge fall prevention device
KR100769818B1 (en) Seismic Isolation System
JPS61130640A (en) Seismic relief device for structure
JP3610004B2 (en) Building damping device
JP4013097B2 (en) Vibration suppression viaduct
JP4102211B2 (en) Seismic isolation device
JP3333480B2 (en) Shock buffering member for articulated bridge prevention device and articulated bridge prevention device
JP2662774B2 (en) Seismic isolation bearing structure for structures
JP2002115418A (en) Friction damper for aseismatic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees