JP3610004B2 - Building damping device - Google Patents

Building damping device Download PDF

Info

Publication number
JP3610004B2
JP3610004B2 JP2000359454A JP2000359454A JP3610004B2 JP 3610004 B2 JP3610004 B2 JP 3610004B2 JP 2000359454 A JP2000359454 A JP 2000359454A JP 2000359454 A JP2000359454 A JP 2000359454A JP 3610004 B2 JP3610004 B2 JP 3610004B2
Authority
JP
Japan
Prior art keywords
deformation
damping device
friction
damper
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000359454A
Other languages
Japanese (ja)
Other versions
JP2002161650A (en
Inventor
重信 井上
喜則 飛田
Original Assignee
株式会社淺沼組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社淺沼組 filed Critical 株式会社淺沼組
Priority to JP2000359454A priority Critical patent/JP3610004B2/en
Publication of JP2002161650A publication Critical patent/JP2002161650A/en
Application granted granted Critical
Publication of JP3610004B2 publication Critical patent/JP3610004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ビルなどの建築物に適用する制振装置に関し、摩擦型ダンパーに分類されるものである。
【0002】
【従来の技術】
近年、建築物の耐震安全性、経済性や居住性の向上などを目的として、建物の揺れを積極的に低減する制振構造の開発が多く行われている。
【0003】
制振構造には、コンピュータなどを用いることなく構造体に減衰機能を有するダンパーを設置して制御するパッシブ型制振構造がある。このパッシブ型制振構造には、従来、鋼棒などのダンパー材を構造物よりも早期に降伏させることにより、その履歴ループによって振動のエネルギーを吸収する履歴型ダンパー、粘弾性体などをブレースや壁に組み込んで減衰させる粘弾性ダンパーがある。履歴型ダンパーは、ダンパー材を降伏させるため、地震後には取り替えが必要となり、また粘弾性体等は、振動数および温度の影響を大きく受けるため、その性能に差が生じる欠点がある。その点、摩擦型ダンパーは、振動数や温度の影響が小さく、ダンパー材を降伏させないため取り替えの必要がないことが大きな特徴である。
【0004】
【発明が解決しようとする課題】
しかし、摩擦型ダンパーは、その摩擦面での摩擦力の調整が困難であること、設定された抵抗力(変形)が作用するまで効果が発揮できないこと、摩擦が静摩擦から動摩擦へ移行するときに振動および騒音が発生することなどの問題があった。
【0005】
本発明では上述した課題を解決するためになされたもので、その目的とするところは従来の摩擦型ダンパーの特徴である振動数や温度などの影響が少ないことに加え、比較的小さな変形から大変形時まで安定した履歴吸収を有する制振装置を提供するものである。
【0006】
また、摩擦面が静摩擦から動摩擦へ移行するときの振動や騒音などの発生を低減することも創作課題とした。
【0007】
さらに、バネの枚数、厚みを調整することで履歴吸収エネルギー量を比較的調整しやすくすることも本発明の目的の一つである。
【0008】
さらにまた、従来の摩擦型ダンパーでは自己復元力を有しないため、残留変形が大きいが、本発明ではこれにも着目し、自己復元力を有する板バネを使用して、地震後の残留変形を可及的小さくすることも目的の一つである。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、本発明では、地震発生時の水平加振方向に曲げ変形する板バネを摩擦的に複数枚重ね合わせ、その上下端それぞれを建築物の上部構造および下部構造に取り付けるという手段を用いた。この手段によれば、板バネの変形能力および復元能力と、板バネ間の摩擦力によって減衰機能を得ることができる。また、減衰性能は板バネの枚数、厚み、長さ、材質を変更することによって調整することができる。板バネは自己復元能力を有するため、地震後の残留変形が小さい。
【0010】
また、板バネの周囲を上下に複数積層される締め付け枠により囲繞した。この手段によれば、板バネ間の摩擦力が一定に保持されるため、地震発生時にも板バネ間に不用意な隙間ができず、安定した減衰機能を得ることができる。
【0011】
また、締め付け枠は上下に複数分割・積層されているため、締め付け枠は板バネの変形に追従する。よって、板バネの変形を阻害することなく、締め付け枠による摩擦力の一定保持を実現できるから、減衰機能をより安定させることができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を添付した図面に従って説明する。図1、図2は本発明の一実施形態に係る制振装置を示したもので、図中、1は建築物の上部構造、2は建築物の下部構造、3は上部構造1と下部構造2の間に適用した本発明の制振装置である。上部構造1および下部構造2は例えば梁が該当する。
【0013】
制振装置3は、板バネ4を複数枚(本実施形態では6枚)密着して重ね合わせてなる曲げ摩擦型ダンパー部5と、この曲げ摩擦型ダンパー部5を下部構造2に固定する下部固定治具6と、曲げ摩擦型ダンパー部5の頭部を自由端の状態で挟み込む上部取り付け治具7と、曲げ摩擦型ダンパー部5の周囲を囲繞する締め付け枠8と、曲げ摩擦型ダンパー部5と締め付け枠8との間に介装されたゴムなどの弾性体枠9とからなる。
【0014】
曲げ摩擦型ダンパー部5は平鋼板などの板バネ4を、摩擦面を弱軸方向に曲げが発生するように重ねてなり、下部を下部固定治具6によって固定端とし、上部を上部取り付け治具7によって自由端とすることで、層間変形量を板バネ4の曲げ変形に変換する機構としている。なお、本発明においては、曲げ摩擦型ダンパー部の上下部とも自由端とすることがある。この場合も、曲げ摩擦型ダンパーの後述する作用効果が得られるからである。また、下部のみを自由端、あるいは上下部とも固定端とした場合であっても、後述する作用効果が得られる場合は、本発明の技術的範囲に属することはもちろんである。
【0015】
また、締め付け枠8および弾性体枠9は、板バネ4の密着度を調整し、常に一定の摩擦力を得ようとするものである。つまり、地震発生時の曲げ摩擦型ダンパー部5の変形に伴い、板バネ間に隙間が空くなど、板バネ同士の密着度が大小することがあるが、これでは摩擦力による振動吸収作用および減衰機能を効果的に得ることができない。そこで本発明では、締め付け枠8および弾性体枠9によって曲げ摩擦型ダンパー部5を外周から締め付け、地震による変形時でも板バネ同士を密着させ、常に板バネ間に摩擦面を形成するようにしたものである。
【0016】
ここで締め付け枠8および弾性体枠9は、上下に複数分割した構造として、曲げ摩擦型ダンパー部5の変形に追従するように構成している。この構造によれば曲げ摩擦型ダンパー部5の変形に追従できるばかりでなく、上下に積層された締め付け枠8および弾性体枠9の各ユニット間にも摩擦面が形成され、この摩擦面によっても振動吸収作用を得ることができる。
【0017】
なお、締め付け枠8は曲げ摩擦型ダンパー部5を一定の力で締め付けるための剛性を有する材料から形成する一方、弾性体枠9はゴムなどの弾性体から形成することで、弾性体枠9を常に曲げ摩擦型ダンパー部5と締め付け枠8に密着させることができ、締め付け枠8の機能を最大限に発揮するものである。ただし、弾性体枠9は不用意に大きく変形しない適度な剛性および硬度を有することが必要である。また、弾性体枠9は省略することが可能である。少なくとも締め付け枠8を具備すれば、曲げ摩擦型ダンパー5の摩擦力を一定とすることができるからである。
【0018】
図3は地震発生時の本発明制振装置の動きを示したもので、同図に示すように、地震発生時には曲げ摩擦型ダンパー部5が頭部を自由端として片持ち梁状に湾曲変形する。そして、このとき地震によって建築物に作用した振動は、曲げ摩擦型ダンパー部5の変形能力および復元能力と、当該変形時に発生する板バネ4同士の摩擦力によって効果的に減衰される。
【0019】
図4は本発明に係る制振装置の動的水平加振実験の結果を示したもので、このグラフから明らかなように、本制振装置によれば小さな変形から大きな変形時まで安定したバイリニア型の履歴曲線(荷重−変形曲線)を有することが判る。または等価粘性減衰定数は30%程度と大きな減衰性を示している。さらに履歴曲線は比較的滑らかであり不要な振動が発生してないことも大きな利点である。
【0020】
【発明の効果】
以上説明したように、本発明の制振装置によれば、重ね合わせた板バネの摩擦面の摩擦力によって減衰を得るものであるから、上述した目的を全て達成すると同時に、構造が極めて簡単であり、その摩擦面に用いる材料も比較的安価に入手できるという構造的・経済的利益が大きい。また、履歴ダンパーなどのように地震後に性能が劣化することが少なく、残留変形が小さいなど、耐久性にも優れる。さらに、粘弾性ダンパーと比較すれば温度に依存する部分が極めて小さいので、あらゆる環境での適用が可能となる。
【図面の簡単な説明】
【図1】一実施形態に係る制振装置の正面視断面を示した模式図
【図2】同、側面視断面を示した模式図
【図3】同、地震発生時の変形態様を示した正面視断面の模式図
【図4】本発明の動的水平加振実験の結果を示したグラフ
【符号の説明】
1 建築物の上部構造
2 同、下部構造
3 本発明の制振装置
4 板バネ
5 曲げ摩擦型ダンパー
6 下部固定治具
7 上部取り付け治具
8 締め付け枠
9 弾性体枠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damping device applied to a building such as a building, and is classified as a friction damper.
[0002]
[Prior art]
In recent years, for the purpose of improving the seismic safety of buildings, the economic efficiency, and the habitability, many vibration control structures that actively reduce the shaking of buildings have been developed.
[0003]
As a vibration damping structure, there is a passive vibration damping structure in which a damper having a damping function is installed and controlled without using a computer or the like. Conventionally, this passive type vibration damping structure has a damper material such as a steel rod that yields earlier than the structure, so that the hysteresis loop that absorbs the energy of vibration by its hysteresis loop, viscoelastic body, etc. There is a viscoelastic damper that is built into the wall to damp. The hysteretic damper yields the damper material, and therefore needs to be replaced after an earthquake. The viscoelastic body and the like are greatly affected by the frequency and temperature, so that there is a drawback that the performance is different. On the other hand, the friction type damper is characterized in that the influence of the frequency and temperature is small, and the damper material does not yield, so that it is not necessary to replace it.
[0004]
[Problems to be solved by the invention]
However, the friction type damper is difficult to adjust the friction force on the friction surface, cannot be effective until the set resistance force (deformation) is applied, and when the friction shifts from static friction to dynamic friction. There were problems such as generation of vibration and noise.
[0005]
The present invention has been made in order to solve the above-described problems. The object of the present invention is to reduce the influence of frequency, temperature, etc., which are the characteristics of the conventional friction damper, as well as from a relatively small deformation. It is an object of the present invention to provide a vibration damping device that has stable history absorption until deformation.
[0006]
Another creative task was to reduce the generation of vibration and noise when the friction surface transitions from static friction to dynamic friction.
[0007]
Furthermore, it is one of the objects of the present invention to make it easier to adjust the amount of hysteresis absorption energy by adjusting the number and thickness of the springs.
[0008]
Furthermore, since the conventional friction type damper does not have a self-restoring force, the residual deformation is large.In the present invention, attention is paid to this, and a leaf spring having a self-restoring force is used to reduce the residual deformation after the earthquake. One of the purposes is to make it as small as possible.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a plurality of leaf springs that are bent and deformed in the horizontal excitation direction at the time of an earthquake are frictionally overlapped, and the upper and lower ends thereof are respectively used as an upper structure and a lower structure of a building. The means of attaching was used. According to this means, the damping function can be obtained by the deformation ability and restoration ability of the leaf spring and the frictional force between the leaf springs. The damping performance can be adjusted by changing the number, thickness, length, and material of the leaf springs. Since the leaf spring has a self-restoring ability, the residual deformation after the earthquake is small.
[0010]
In addition, the periphery of the leaf spring was surrounded by a plurality of fastening frames stacked one above the other. According to this means, since the frictional force between the leaf springs is kept constant, an inadvertent gap is not formed between the leaf springs even when an earthquake occurs, and a stable damping function can be obtained.
[0011]
Further, since the fastening frame is divided into a plurality of layers and stacked one above the other, the fastening frame follows the deformation of the leaf spring. Therefore, since the constant holding of the frictional force by the tightening frame can be realized without hindering the deformation of the leaf spring, the damping function can be further stabilized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. 1 and 2 show a vibration damping device according to an embodiment of the present invention. In the figure, 1 is an upper structure of a building, 2 is a lower structure of the building, and 3 is an upper structure 1 and a lower structure. 2 is a vibration damping device of the present invention applied between the two. The upper structure 1 and the lower structure 2 correspond to beams, for example.
[0013]
The vibration damping device 3 includes a bending friction damper portion 5 in which a plurality of leaf springs 4 (six in this embodiment) are closely stacked and a lower portion that fixes the bending friction damper portion 5 to the lower structure 2. A fixing jig 6, an upper mounting jig 7 that sandwiches the head of the bending friction type damper part 5 in a free end state, a clamping frame 8 that surrounds the periphery of the bending friction type damper part 5, and a bending friction type damper part 5 and an elastic body frame 9 such as rubber interposed between the fastening frame 8 and the fastening frame 8.
[0014]
The bending friction type damper portion 5 is made of a plate spring 4 such as a flat steel plate, which is overlapped so that the friction surface is bent in the weak axis direction, the lower portion is fixed by a lower fixing jig 6, and the upper portion is attached to the upper portion. By using the tool 7 as a free end, the interlayer deformation amount is converted into a bending deformation of the leaf spring 4. In the present invention, the upper and lower portions of the bending friction type damper portion may be free ends. This is also in this case because the following effects of the bending friction type damper can be obtained. In addition, even when only the lower part is a free end or both the upper and lower parts are fixed ends, it is of course within the technical scope of the present invention if the effects described below can be obtained.
[0015]
Further, the fastening frame 8 and the elastic body frame 9 are intended to adjust the degree of adhesion of the leaf spring 4 and always obtain a constant frictional force. That is, with the deformation of the bending friction type damper portion 5 at the time of the earthquake occurrence, the degree of adhesion between the leaf springs may increase or decrease, such as a gap between the leaf springs. The function cannot be obtained effectively. Therefore, in the present invention, the bending friction type damper portion 5 is tightened from the outer periphery by the tightening frame 8 and the elastic body frame 9, and the leaf springs are brought into close contact with each other even when deformed by an earthquake, and a friction surface is always formed between the leaf springs. Is.
[0016]
Here, the tightening frame 8 and the elastic body frame 9 are configured so as to follow the deformation of the bending friction type damper portion 5 as a plurality of vertically divided structures. According to this structure, not only can the deformation of the bending friction type damper portion 5 be followed, but also a friction surface is formed between the units of the fastening frame 8 and the elastic body frame 9 that are stacked one above the other. A vibration absorbing action can be obtained.
[0017]
The fastening frame 8 is formed of a material having rigidity for fastening the bending friction type damper portion 5 with a constant force, while the elastic body frame 9 is formed of an elastic body such as rubber, so that the elastic body frame 9 is formed. The bending friction type damper portion 5 and the fastening frame 8 can always be brought into close contact with each other, and the function of the fastening frame 8 can be maximized. However, the elastic body frame 9 needs to have an appropriate rigidity and hardness that does not inadvertently greatly deform. The elastic body frame 9 can be omitted. This is because the frictional force of the bending friction type damper 5 can be made constant if at least the fastening frame 8 is provided.
[0018]
FIG. 3 shows the movement of the vibration damping device of the present invention when an earthquake occurs. As shown in the figure, the bending friction type damper portion 5 is bent and deformed into a cantilever shape with the head as a free end when an earthquake occurs. To do. And the vibration which acted on the building by the earthquake at this time is attenuate | damped effectively by the deformation | transformation capability and restoring capability of the bending friction type | mold damper part 5, and the frictional force of the leaf | plate springs 4 which generate | occur | produces at the time of the said deformation | transformation.
[0019]
FIG. 4 shows the result of a dynamic horizontal vibration test of the vibration damping device according to the present invention. As is apparent from this graph, according to the vibration damping device, a stable bilinear operation from a small deformation to a large deformation is achieved. It can be seen that the mold has a hysteresis curve (load-deformation curve). Or the equivalent viscous damping constant shows a large damping property of about 30%. Furthermore, it is a great advantage that the hysteresis curve is relatively smooth and no unnecessary vibration is generated.
[0020]
【The invention's effect】
As described above, according to the vibration damping device of the present invention, the damping is obtained by the frictional force of the friction surfaces of the overlapped leaf springs, so that all the above-mentioned objects are achieved and the structure is extremely simple. There is a great structural and economic advantage that the materials used for the friction surface can also be obtained at a relatively low cost. In addition, the performance is less likely to deteriorate after an earthquake, such as a hysteresis damper, and the durability is excellent because the residual deformation is small. Furthermore, compared with viscoelastic dampers, the portion depending on temperature is extremely small, so that it can be applied in any environment.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross-sectional front view of a vibration damping device according to an embodiment. FIG. 2 is a schematic diagram showing a cross-sectional side view. FIG. 3 shows a deformation mode when an earthquake occurs. Fig. 4 is a schematic diagram of a cross-sectional view in front view. Fig. 4 is a graph showing the results of a dynamic horizontal excitation experiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Upper structure 2 of a building Same and lower structure 3 Vibration damping device 4 Leaf spring 5 Bending friction type damper 6 Lower fixing jig 7 Upper mounting jig 8 Tightening frame 9 Elastic body frame

Claims (1)

地震発生時の水平加振方向に曲げ変形する板バネを摩擦的に複数枚重ね合わせ、その上下端それぞれを建築物の上部構造および下部構造に取り付け、さらに重ね合わせた板バネの周囲を上下に複数積層される締め付け枠により囲繞したことを特徴とする建築物の制振装置。Superposing a plurality of leaf springs frictionally to bending deformation in the direction vibration horizontal pressure during earthquake, the upper mounting each lower end to the upper structure and lower structure of the building, around the leaf spring was further stacked together vertically A vibration control device for a building characterized by being surrounded by a plurality of laminated fastening frames .
JP2000359454A 2000-11-27 2000-11-27 Building damping device Expired - Fee Related JP3610004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000359454A JP3610004B2 (en) 2000-11-27 2000-11-27 Building damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000359454A JP3610004B2 (en) 2000-11-27 2000-11-27 Building damping device

Publications (2)

Publication Number Publication Date
JP2002161650A JP2002161650A (en) 2002-06-04
JP3610004B2 true JP3610004B2 (en) 2005-01-12

Family

ID=18831215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000359454A Expired - Fee Related JP3610004B2 (en) 2000-11-27 2000-11-27 Building damping device

Country Status (1)

Country Link
JP (1) JP3610004B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074324B2 (en) 1999-11-09 2011-12-13 Foster-Miller, Inc. Flexible, deployment rate damped hinge
JP6777302B2 (en) * 2016-04-11 2020-10-28 株式会社カワタテック Vibration damping device
JP7366317B2 (en) 2021-04-26 2023-10-20 三菱電機株式会社 Spring elements, actuators and spring element manufacturing methods

Also Published As

Publication number Publication date
JP2002161650A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JPH10504088A (en) Tuning mass damper
JP4245258B2 (en) Damping member design method
JP4545920B2 (en) Seismic isolation system for bridges
JPH11269984A (en) Damping structure for building frame
JP3610004B2 (en) Building damping device
JP5199687B2 (en) Damping device, damping structure, and damping panel
JPH06300081A (en) Vibration damping support structure
JP4023915B2 (en) Vibration control device
JPH1136655A (en) Damping structure using coned disc spring type friction damper
JPH0882341A (en) Vibration isolating mount
JPH03272343A (en) Dual type mass damper
JPS62220734A (en) Vibrational energy absorbing device
JPH11190148A (en) Vibration control structure for building frame
JP4956340B2 (en) Building or building reinforcement
JP2988882B2 (en) Structure damping device
JP2014222095A (en) Friction damper
JPH02194233A (en) Anti-seismic device
JPH0743003B2 (en) Dynamic vibration absorber
JPH0259262B2 (en)
JP2669112B2 (en) Damper for vibration isolation
JP2000234454A (en) Elasto-plastic damper and earthquake-resistant construction
JPH10259840A (en) Friction damper
Yamaguchi et al. Design and Amplitude Dependence of Resonance Frequency of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristic
JPH1072951A (en) Base isolation device
JPH09158359A (en) Damping structural post

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees