JP2017122365A - Function separation type vibration damping structure for bridge - Google Patents

Function separation type vibration damping structure for bridge Download PDF

Info

Publication number
JP2017122365A
JP2017122365A JP2016002621A JP2016002621A JP2017122365A JP 2017122365 A JP2017122365 A JP 2017122365A JP 2016002621 A JP2016002621 A JP 2016002621A JP 2016002621 A JP2016002621 A JP 2016002621A JP 2017122365 A JP2017122365 A JP 2017122365A
Authority
JP
Japan
Prior art keywords
bridge
fixed column
sides
damping
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016002621A
Other languages
Japanese (ja)
Other versions
JP6706071B2 (en
Inventor
稔 前島
Minoru Maejima
稔 前島
好弓 田中
Yoshimi Tanaka
好弓 田中
Original Assignee
株式会社横河住金ブリッジ
Yokogawa Sumikin Bridge Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横河住金ブリッジ, Yokogawa Sumikin Bridge Corp filed Critical 株式会社横河住金ブリッジ
Priority to JP2016002621A priority Critical patent/JP6706071B2/en
Publication of JP2017122365A publication Critical patent/JP2017122365A/en
Application granted granted Critical
Publication of JP6706071B2 publication Critical patent/JP6706071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a function separation type motion damping structure for a bridge that can follow up a movement of an upper structure in a bridge axial direction even in a case of large earthquake motion of level 2 or higher, and also comprises an efficient lift force suppressing mechanism.SOLUTION: A vertical load bearing mechanism and a horizontal load bearing mechanism are separated by providing a lower structure 5 of a bridge 1 with a fixed column 7 located between main girders 6 of the upper structure 4 in addition to a support 12 supporting a vertical load from the girders 6, and also interposing a rod-like motion damping member 8 which suppresses motion in a member axial direction between the fixed column 7 and girders 6 on both sides thereof against a horizontal load. The fixed column 7 and the rod-like motion damping members 8 on both the sides thereof are so coupled as to allow relative motion in a bridge axial direction through coupling plates 14 respectively. Further, the coupling plates 14 on both the sides of the fixed column 7 are united together through a fixing board 41 so as to maintain linear position relation between the rod-like motion damping members 8 on both the sides of the fixed column 7 against relative motion of the upper structure 4 in the bridge axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、棒状制振部材を用いて橋桁などの上部構造からの水平荷重を低減させ、確実に橋台や橋脚などの下部構造に伝達する橋梁の機能分離型制振構造に関するものである。   The present invention relates to a function-separated type damping structure for a bridge that uses a rod-shaped damping member to reduce a horizontal load from an upper structure such as a bridge girder and reliably transmits it to a lower structure such as an abutment or a pier.
従来から、橋台や橋脚に対する橋梁の支持構造には鋼製支承が多く使われてきたが、阪神大震災後、橋梁の支持構造に対する耐震構造の見直しが全国規模で行われ、一つとして、ゴム支承や鉛プラグ入りゴム支承等の弾性体を主体とする免震支承を使用した、いわゆる免震構造系の橋梁が採用されてきている。   Conventionally, steel bearings have been used for bridge support structures for abutments and piers. However, after the Great Hanshin Earthquake, the earthquake resistance structure for bridge support structures has been reviewed nationwide. Bridges of so-called seismic isolation structures using seismic isolation bearings mainly composed of elastic bodies such as rubber bearings with lead plugs have been adopted.
特に、ゴム支承は平成8年の道路橋示方書改訂以降に本格採用されてきたが、一つの支承の中に鉛直荷重支持、水平荷重支持、水平方向移動量の確保、桁のたわみによる回転量の確保等、全ての機能を持たせるために支承寸法が大型化し、桁構造も含め不経済となる場合が多発してきている。   In particular, rubber bearings have been adopted in earnest since the revision of the specifications for road bridges in 1996, but vertical load support, horizontal load support, securing of horizontal movement, and the amount of rotation due to deflection of the girder in one support. In order to provide all functions such as securing, the bearing dimensions have become large, and it has become uneconomical, including the girder structure.
そのような背景から、ゴム支承の小型化とコストダウンを実現するために機能分離型支承が開発され、平成16年の道路橋支承便覧の改訂で記述されて以降、採用数が増加している。機能分離型支承とは、鉛直力を支持する機能と地震時の水平力を支持する機能を分離した支承システムの総称である。   Against this background, a function-separated type bearing has been developed to reduce the size and cost of rubber bearings, and the number of adoption has been increasing since it was described in the revision of the road bridge bearing manual in 2004. . The function separation type bearing is a general term for a bearing system in which a function for supporting a vertical force and a function for supporting a horizontal force in an earthquake are separated.
機能分離型支承に関しては、例えば、特許文献1に、上部構造物が水平方向に移動自在なように、その鉛直荷重を支持する滑り支承と、上部構造物の鉛直荷重を支持することなく、水平方向全方向にせん断変形して、上部構造の水平荷重を支持する水平荷重支持機構とを備え、水平荷重支持機構は下部構造物の上面に固定され、上部に上部構造物との間に隙間を形成する方形のフランジプレートを有する弾性体と、上部構造物の下面に固定され、フランジプレートの橋軸方向及び橋軸直角方向に沿う周面に係合可能で、かつ該フランジプレートの下面に隙間を介して係合可能で上揚力も支持する係合部材とを備えてなる機能分離型橋梁支承装置が開示されている。   With regard to the function-separated type bearing, for example, in Patent Document 1, a sliding bearing that supports the vertical load so that the upper structure can move in the horizontal direction, and a horizontal bearing without supporting the vertical load of the upper structure. A horizontal load support mechanism that supports the horizontal load of the superstructure by shear deformation in all directions.The horizontal load support mechanism is fixed to the upper surface of the lower structure, and a gap is formed between the upper structure and the upper structure. An elastic body having a square flange plate to be formed, and fixed to the lower surface of the superstructure, engageable with the circumferential surface along the bridge axis direction and the bridge axis perpendicular direction of the flange plate, and a gap in the lower surface of the flange plate A function-separated bridge support device is disclosed that includes an engagement member that can be engaged via the engagement member and that also supports a lifting force.
また、非特許文献1には機能分離型支承の特徴、メリット、種類、採用にあたっての留意事項等を記載したものが開示されている。   Non-Patent Document 1 discloses the features, merits, types, and points to be noted when adopting the function-separated type support.
非特許文献1に示されるように、機能分離型支承には(a)鉛直支承として鋼製支承を用いた場合、鉛直剛性が高く活荷重による沈み込みがないので、振動の発生を抑制できる、(b)水平支承は鉛直荷重を支持しないため、前記ゴム支承のように鉛直荷重により形状が決定されることがなく、小型化による設計の自由度が高くなり、水平剛性を自由に設定することができ、橋の固有周期を任意に調整することが可能となる、といったメリットがあるものの、鉛直支承の高さが低くなるため桁下空間が狭隘となるとともに、鉛直支承、水平支承のそれぞれ複数の支承が設置されるために作業空間が狭くなるなどの問題が表面化してきている。   As shown in Non-Patent Document 1, (a) When a steel bearing is used as a vertical bearing, since the vertical rigidity is high and there is no sinking due to a live load, the occurrence of vibration can be suppressed. (b) Since the horizontal bearings do not support vertical loads, the shape is not determined by the vertical loads like the rubber bearings described above, the degree of freedom in design is increased by downsizing, and the horizontal rigidity is set freely. Although there is an advantage that the natural period of the bridge can be adjusted arbitrarily, the height of the vertical bearing is reduced, so that the space under the girder becomes narrower, and there are multiple vertical and horizontal bearings. The problem that the working space is narrowed due to the installation of the bearings has surfaced.
特に、縦置き型コンクリート反力壁タイプについては、(1)水平支承にストッパーがないので、コンクリート反力壁の完成まで移動を拘束することができない、(2)コンクリート反力壁への水平支承の定着方法としてアンカーボルト形式が多く採用されているが、桁の温度伸縮により水平支承が移動するためコンクリート反力壁にひび割れが発生する場合がある、(3)コンクリート反力壁を構築するのに手間やコストがかかる、といった問題点が明らかになってきている。   In particular, for the vertical type concrete reaction wall type, (1) Since there is no stopper in the horizontal bearing, movement cannot be restricted until the completion of the concrete reaction wall, (2) Horizontal bearing to the concrete reaction wall Anchor bolt type is often used as the fixing method of the wall, but cracks may occur in the concrete reaction wall because the horizontal bearing moves due to the temperature expansion and contraction of the girder. (3) To construct the concrete reaction wall The problem that it takes time and money is becoming clear.
一方、平成23年3月に発生した東日本大震災では多くの橋梁が損傷し、支承サイドブロックの損傷、変位制限構造用の鋼製ブラケットの損傷等の被害報告がなされている。特に、耐震対策済の橋梁についても損傷していたことが問題視されており、今後予想される南海トラフ地震等の巨大地震に備え再度の見直しが迫られている。   On the other hand, in the Great East Japan Earthquake that occurred in March 2011, many bridges were damaged, and damages such as damage to support side blocks and damage to steel brackets for displacement limiting structures have been reported. In particular, bridges that have undergone earthquake-resistant measures are considered to have been damaged, and there is an urgent need to revisit them in preparation for a huge earthquake such as the Nankai Trough earthquake that is expected in the future.
また、上述のような従来の機能分離型支承の問題に関しては、これに加え、橋梁では上部構造の水平力相当の反力(水平荷重)が下部構造に伝わるため、今後予想される南海トラフ地震等のレベル2以上の巨大地震に対応するには上記反力壁や下部構造をより大型化したり、あるいは補強をすることで、それ相応の耐力を保有させる必要がある。しかしながら、これらの方策は、これまで以上に施工に多大な手間やコストが発生するといった問題が生じる。   In addition, regarding the problem of the conventional function-separated type bearing as described above, in addition to this, a reaction force (horizontal load) equivalent to the horizontal force of the superstructure is transmitted to the substructure in the bridge. In order to cope with such a large earthquake of level 2 or higher, it is necessary to increase the size of the reaction wall or the lower structure or to reinforce it so as to have a corresponding strength. However, these measures cause a problem that much labor and cost are required for construction more than ever.
これに対し、本願の出願人は、特許文献2に示されるように、橋梁の下部構造上に、上部構造の主桁からの鉛直荷重を支持する支承に加え、主桁間に位置する固定柱を設け、水平荷重に対し固定柱とその両側の主桁間に部材軸方向の振動を抑制する棒状制振部材を介在させることで、鉛直荷重支持機構と水平荷重支持機構とを分離した機能分離型制振構造であって、主桁には棒状制振部材を支持固定する接合部が設けられ、固定柱を中心に線対称に一対の棒状制振部材からなる水平荷重支持部材が橋軸直角方向に水平に配置され、棒状制振部材の一端は固定柱に取付けられ他端は主桁に設けた接合部に固定され、水平荷重支持部材により上部構造からの水平荷重を低減して下部構造に伝達するようにした橋梁の機能分離型制振構造を開発している。   On the other hand, the applicant of the present application, as shown in Patent Document 2, in addition to the support for supporting the vertical load from the main girder of the upper structure on the lower structure of the bridge, the fixed column located between the main girder The vertical load support mechanism and the horizontal load support mechanism are separated by interposing a rod-shaped damping member that suppresses vibration in the member axial direction between the fixed column and the main girders on both sides of the fixed column with respect to the horizontal load. The main girder is provided with a joint for supporting and fixing the rod-shaped damping member on the main girder, and the horizontal load supporting member consisting of a pair of rod-shaped damping members symmetrically about the fixed column is perpendicular to the bridge axis Horizontally arranged in the direction, one end of the rod-shaped damping member is attached to the fixed column, the other end is fixed to the joint provided on the main girder, and the horizontal load from the upper structure is reduced by the horizontal load support member to lower structure Developed a segregated function damping structure for bridges That.
特許文献2に開示した構造においては、水平荷重を低減させることが可能になるため、これに伴い下部工反力も低減されることから下部構造を大型化する必要がない、あるいは鋼板巻き立て等による下部工補強が不要になるといったメリットが得られ、大規模地震動に対する補強工事を効率良く行うことができる。   In the structure disclosed in Patent Document 2, it is possible to reduce the horizontal load, and accordingly, the lower work reaction force is also reduced, so there is no need to increase the size of the lower structure, or due to steel sheet winding or the like The advantage that substructure reinforcement is unnecessary is obtained, and reinforcement work against large-scale earthquake motion can be performed efficiently.
特許第3634288号公報Japanese Patent No. 3634288 特開2015−031046号公報Japanese Patent Laying-Open No. 2015-031046
橋梁では、地震動や交通振動あるいは、熱伸びなどにより、上部構造と下部構造との間で橋軸方向に相対移動が生ずる場合がある。   In a bridge, there may be a relative movement in the direction of the bridge axis between the upper structure and the lower structure due to seismic motion, traffic vibration or thermal elongation.
これに対し、上述した特許文献2には、固定柱と棒状制振部材との接合部が下部構造と上部構造の橋軸方向の相対移動に追従できるように、棒状制振部材の端部を緊結する連結ボルトが固定柱側に取り付けるための連結板に設けたスライド用長孔に沿って橋軸方向に摺動する機構が示されている。   On the other hand, in Patent Document 2 described above, the end of the rod-shaped damping member is provided so that the joint between the fixed column and the rod-shaped damping member can follow the relative movement of the lower structure and the upper structure in the bridge axis direction. A mechanism is shown in which a connecting bolt to be tightened slides in the direction of the bridge axis along a long slot for sliding provided in a connecting plate for attaching to the fixed column side.
しかしながら、その摺動機構を設けることで、棒状制振部材どうしの一体化が損なわれ、連結ボルトのみで緊結した状態だけでは、その摺動方向に連結板が摺動する際、連結板どうしが当初の幅を保持できず、固定柱を挟む両側の棒状制振部材が直線状の位置関係がくずれ(図10参照)、水平荷重支持機構としての本来的な機能が一部損なわれる恐れがある。   However, the provision of the sliding mechanism impairs the integration of the rod-shaped damping members, and when the connecting plates are slid in the sliding direction only with the connecting bolts, the connecting plates are not connected. The original width cannot be maintained, the rod-like damping members on both sides sandwiching the fixed column are broken in the linear positional relationship (see FIG. 10), and the original function as a horizontal load support mechanism may be partially impaired. .
また、上揚力および水平方向への移動制限に対しては、主桁支承部に設けられるサイドブロック等で対処できるように設計されているが、レベル2地震時に水平荷重に対して棒状制振部材が機能するためには水平荷重方向への移動が可能となっている必要があり、水平方向の移動に関する設計条件としては、常時およびレベル1地震時には水平方向に対しては、変位拘束機能としての固定状態、そしてレベル2地震時には、棒状制振部材が制振機能を発揮できるように、水平移動が可能な状態となる必要がある。   In addition, it is designed so that the lifting force and horizontal movement restrictions can be dealt with by side blocks provided in the main girder support, but it is a rod-shaped damping member against horizontal load in the event of a level 2 earthquake. In order to function, it is necessary to be able to move in the horizontal load direction. As a design condition for horizontal movement, as a displacement restraint function at all times and in the horizontal direction during a level 1 earthquake In the fixed state and level 2 earthquake, it is necessary to be able to move horizontally so that the rod-shaped damping member can exhibit the damping function.
すなわち、上陽力および水平方向の移動制限に対して、サイドブロック等は常時およびレベル1地震時にはその機能を発揮するが、レベル2地震時にはその機能を発揮しない設計とする必要があり、同時に上揚力に対する抑制機能も失われている状態となるため、別途、その機能の補完の必要性が生じ、これは、支承の大型化に繋がり機能分離型支承とする意義を損ねる。   In other words, the side blocks, etc. should always function in response to upper positive forces and horizontal movement restrictions, but they must be designed so that they do not function during level 2 earthquakes. As a result, the function to suppress the function is lost, so that it becomes necessary to supplement the function separately. This leads to an increase in the size of the bearing and impairs the significance of the function separation type bearing.
一方で、下部構造と上部構造との間に、別途、レベル2以上の地震動に対し上揚力を抑制する機構を組み込むことも考えられるが、その場合、上揚力抑制機構が大型化したり、機能分離型支承との取り合い、水平方向の相対移動に対する追従の問題などがある。   On the other hand, it is conceivable that a mechanism for suppressing the lifting force against level 2 or higher earthquake motion is separately incorporated between the lower structure and the upper structure. There is a problem of following with respect to the relative movement in the horizontal direction, such as engagement with the mold support.
本発明は、水平荷重に対し固定柱とその両側の主桁間に棒状制振部材を介在させた機能分離型制振構造において、レベル2以上の大きな地震動に対しても、固定柱と棒状制振部材が上部構造の橋軸方向の移動に追従でき、さらに固定柱を利用した効率的な上揚力抑制機構を備えた橋梁の機能分離型制振構造を提供することを目的とするものである。   The present invention is a function-separated type damping structure in which a rod-shaped damping member is interposed between a fixed column and main girders on both sides of the fixed column with respect to a horizontal load. The purpose of the present invention is to provide a bridge-function-separated vibration control structure in which the vibration member can follow the movement of the superstructure in the direction of the bridge axis, and further has an efficient lifting force suppression mechanism using a fixed column. .
本発明は、橋梁の下部構造に、上部構造の主桁からの鉛直荷重を支持する支承に加え、主桁間に位置する固定柱を設け、水平荷重に対し前記固定柱とその両側の主桁間に部材軸方向の振動を抑制する棒状制振部材を介在させることで、鉛直荷重支持機構と水平荷重支持機構とを分離した橋梁の機能分離型制振構造において、前記固定柱とその両側の前記棒状制振部材はそれぞれ連結板を介して橋軸方向の相対移動を許容する状態で連結されており、前記固定柱の両側に位置する前記連結板どうしを固定部材を介して一体化することで、橋梁の下部構造と上部構造の橋軸方向の相対移動に対し、前記固定柱の両側の棒状制振部材どうしの直線状の位置関係が保持されるようにしたことを特徴とするものである。   The present invention provides the lower structure of the bridge in addition to the support for supporting the vertical load from the main girder of the upper structure, in addition to the fixed columns located between the main girders. In the function-separated vibration control structure for a bridge in which the vertical load support mechanism and the horizontal load support mechanism are separated by interposing a rod-shaped vibration suppression member that suppresses vibration in the member axial direction between the fixed column and the both sides thereof The rod-shaped damping members are connected via a connecting plate in a state allowing relative movement in the bridge axis direction, and the connecting plates located on both sides of the fixed column are integrated via a fixing member. The linear positional relationship between the rod-shaped damping members on both sides of the fixed column is maintained with respect to the relative movement of the bridge lower structure and the upper structure in the bridge axis direction. is there.
鉛直荷重支持機構と分離した水平荷重支持機構を備えた機能分離型制振構造においては、水平荷重を低減させることが可能になるため、これに伴い下部工反力も低減されることから下部構造を大型化する必要がない、あるいは鋼板巻き立て等による下部工補強が不要になるといったメリットが得られ、大規模地震動に対する補強工事を効率良く行うことができる。   In the function-separated vibration control structure with a horizontal load support mechanism separated from the vertical load support mechanism, it is possible to reduce the horizontal load. There is a merit that it is not necessary to increase the size or that there is no need to reinforce the substructure by winding a steel plate, and the reinforcement work for large-scale earthquake motion can be performed efficiently.
本発明の機能分離型制振構造では、上部構造からの水平荷重を低減して下部構造に伝達させるために、一対の棒状制振部材からなる水平荷重支持部材が用いられる。棒状制振部材としては、例えば、座屈拘束ブレース、摩擦ダンパー、オイルダンパーなどが挙げられる。これらの棒状制振部材を用いることによって、下部構造を大型化したり、補強をしなくても、上部構造からの水平荷重を低減して下部構造に伝達することにより、簡便に橋梁を制振して耐震性をも付与できる。   In the function-separated vibration damping structure of the present invention, a horizontal load support member including a pair of rod-shaped vibration damping members is used to reduce the horizontal load from the upper structure and transmit it to the lower structure. Examples of the rod-shaped damping member include a buckling restrained brace, a friction damper, and an oil damper. By using these rod-shaped damping members, the bridge structure can be easily damped by reducing the horizontal load from the upper structure and transmitting it to the lower structure without enlarging or reinforcing the lower structure. Can also provide earthquake resistance.
このうち、座屈拘束ブレースは構造物の犠牲部材として開発され、構造物に大規模地震動が作用した際、ブレース芯材のある領域を塑性変形させることで、地震エネルギーを吸収し、構造物の制振制御を可能とすることができる棒状制振デバイスであり、例えば、特開2012−013157号公報、特開2003−193699号公報、特開2001−214541号公報、特開2000−027293号公報等に記載されるものが挙げられる。これを本発明の棒状制振部材として用いることによってレベル2以上の大規模地震が発生した場合にも、この座屈拘束ブレースに部材損傷を集中させることにより地震エネルギーを吸収するといった効果が得られる。   Among these, buckling-restrained braces were developed as sacrificial members for structures, and when large-scale earthquake motions act on the structures, the areas where the brace core material is plastically deformed to absorb seismic energy, A rod-like vibration damping device capable of damping control, for example, Japanese Patent Application Laid-Open No. 2012-013157, Japanese Patent Application Laid-Open No. 2003-193699, Japanese Patent Application Laid-Open No. 2001-214541, and Japanese Patent Application Laid-Open No. 2000-027293. Etc. are mentioned. By using this as a rod-shaped damping member of the present invention, even when a large-scale earthquake of level 2 or higher occurs, the effect of absorbing seismic energy by concentrating member damage on this buckling restrained brace can be obtained. .
棒状制振部材の部材長は、橋台あるいは橋脚の設置可能空間によって決められ、例えば2主桁橋であれば、各主桁の接合部に必要な長さと固定柱の幅を控除した長さの半分となる。また、本願発明の機能分離型制振構造では、橋軸方向に互いに平行に相対向して並立する主桁間における橋軸直角方向の中間の下部構造上部に、上記棒状制振部材(水平荷重支持部材)を支持するための固定柱が設けられる。   The member length of the rod-shaped damping member is determined by the space where the abutment or pier can be installed. For example, in the case of a two-main girder bridge, the length required for the joint of each main girder and the width of the fixed column are deducted. It becomes half. In the function-separated type damping structure of the present invention, the rod-like damping member (horizontal load) is placed on the upper part of the intermediate lower structure in the direction perpendicular to the bridge axis between the main girders that face each other in parallel with each other in the bridge axis direction. A fixed column for supporting the support member is provided.
固定柱は鋼材を主体としたものであり、一対の上記棒状制振部材(水平荷重支持部材)が該固定柱を中心に水平かつ線対称に設置できる構造で強固なものであれば特に限定されない。例えば、H形鋼を主体としたH形状のもの、角型鋼管を用いた角管形状のものなどである。固定柱の断面寸法は、上部工からの曲げ耐力によって決められ、例えば、降伏軸力が500kNで設置高さが500mm程度の位置に棒状制振部材を設置した場合、断面高さは500mm程度である。   The fixed column is mainly made of steel, and is not particularly limited as long as the pair of rod-shaped damping members (horizontal load support members) are strong and have a structure that can be installed horizontally and symmetrically about the fixed column. . For example, there are an H shape mainly composed of an H-shaped steel, and a rectangular tube shape using a square steel pipe. The cross-sectional dimension of the fixed column is determined by the bending strength from the superstructure. For example, when the rod-shaped damping member is installed at a position where the yield axial force is 500 kN and the installation height is about 500 mm, the cross-sectional height is about 500 mm. is there.
本発明の機能分離型制振構造では、橋梁の主桁には上記棒状制振部材を支持固定する接合部が設けられ、上記固定柱を中心に線対称に一対の上記棒状制振部材からなる水平荷重支持部材が橋軸直角方向に水平に配置され、上記棒状制振部材の一端は前記固定柱に連結板を介して取り付けられ他端は前記接合部に固定される。   In the function-separated vibration damping structure of the present invention, the main girder of the bridge is provided with a joint for supporting and fixing the rod-shaped damping member, and is composed of a pair of rod-shaped damping members symmetrically about the fixed column. A horizontal load support member is disposed horizontally in a direction perpendicular to the bridge axis, one end of the rod-shaped damping member is attached to the fixed column via a connecting plate, and the other end is fixed to the joint.
水平荷重支持部材が橋軸直角方向に水平に配置されることにより、同方向に対する耐震設計において上部構造からの水平荷重を直接的に減衰させ下部構造に伝えられるといった効果が得られる。また、固定柱を中心に線対称に一対の上記棒状制振部材を配置することにより、上部構造からの水平荷重の伝達が一方の棒状制振部材による引張と他方の棒状制振部材による圧縮とが同時に行われるので、下部構造への水平荷重の伝達は低減される。   By arranging the horizontal load support member horizontally in the direction perpendicular to the bridge axis, it is possible to obtain an effect that the horizontal load from the upper structure is directly attenuated and transmitted to the lower structure in the seismic design in the same direction. Further, by arranging the pair of rod-shaped damping members symmetrically about the fixed column, the transmission of the horizontal load from the upper structure is caused by the tension by one rod-shaped damping member and the compression by the other rod-shaped damping member. Are carried out simultaneously, the transmission of the horizontal load to the substructure is reduced.
このように、上部構造から下部構造への伝達部に一対の棒状制振部材を線対称に設け、引張荷重と圧縮荷重を同時に受けるようにしたことで水平荷重支持部材(水平荷重支持機構)の耐力が高まり、下部構造を大型化したり、著しく補強しなくても効率良く橋梁に耐震性を付与できる。   In this way, a pair of rod-shaped damping members are provided symmetrically in the transmission portion from the upper structure to the lower structure, and the tensile load and the compressive load are received at the same time, so that the horizontal load support member (horizontal load support mechanism) Strength is increased, and it is possible to efficiently give earthquake resistance to bridges without increasing the size of the substructure or remarkably reinforcing it.
なお、上記接合部は上記棒状制振部材を支持固定するために橋梁の主桁に設けられる部分であり、例えば、接合部が摩擦接合部の場合は、添接板が取り付けられるように高力ボルト孔が設けられたガセットプレートが設置されているといった構造の鋼製部材からなる部分である。   The joint is a portion provided on the main girder of the bridge for supporting and fixing the rod-shaped damping member. For example, when the joint is a friction joint, a high strength is attached so that the attachment plate can be attached. It is a portion made of a steel member having a structure in which a gusset plate provided with bolt holes is installed.
このような構成において、本発明では上記固定柱とその両側の棒状制振部材はそれぞれ連結板を介して橋軸方向の相対移動を許容する形で連結されており、固定柱の両側に位置する連結板どうしを固定部材を介して一体化することで、橋梁の下部構造と上部構造の橋軸方向の相対移動に対し、前記固定柱の両側の棒状制振部材どうしの直線状の位置関係が維持されるようにしている。   In such a configuration, in the present invention, the fixed column and the rod-shaped damping members on both sides thereof are connected to each other via a connecting plate so as to allow relative movement in the bridge axis direction, and are positioned on both sides of the fixed column. By integrating the connecting plates through a fixing member, the linear positional relationship between the rod-shaped damping members on both sides of the fixed column is relative to the relative movement of the bridge lower and upper structures in the bridge axis direction. To be maintained.
固定柱とその両側の棒状制振部材を連結板を介して連結しつつ、橋軸方向の相対移動を許容する構造としては、例えば、上述した特許文献2に記載されるように、固定柱または連結板に形成された橋軸方向に延びる長孔を形成し、この長孔を貫通して両側の連結板どうしを緊結する棒状の緊張材で固定柱と棒状制振部材の端部に設けた連結板を連結し、下部構造と上部構造の橋軸方向の相対移動に対し、緊張材が長孔に沿って摺動するようにする構造がある。   As a structure that allows the relative movement in the bridge axis direction while connecting the fixed pillar and the rod-shaped damping members on both sides thereof via the connecting plate, for example, as described in Patent Document 2 described above, the fixed pillar or A long hole formed in the connecting plate extending in the direction of the bridge axis is formed, and provided at the end of the fixed column and the rod-shaped damping member with a rod-shaped tension material that penetrates the long hole and fastens the connecting plates on both sides. There is a structure in which the connecting plate is connected so that the tension material slides along the long hole with respect to the relative movement of the lower structure and the upper structure in the bridge axis direction.
しかしながら、特許文献2に記載される構造においては、その摺動方向に連結板が摺動する際、連結板どうしが当初の幅を保持できなくなるため、固定柱位置で十分にスムーズに摺動させることができず、後に詳述する図9に示されるように固定柱を挟む両側の棒状制振部材が直線状の位置関係を保持することができず、水平荷重支持機構としての本来的な機能が一部損なわれる恐れがある。   However, in the structure described in Patent Document 2, when the connecting plates slide in the sliding direction, the connecting plates cannot hold the original width, so that they slide sufficiently smoothly at the fixed column position. As shown in FIG. 9, which will be described in detail later, the rod-like damping members on both sides sandwiching the fixed column cannot maintain a linear positional relationship, and the original function as a horizontal load support mechanism May be partly damaged.
これに対し、本発明では、固定柱の両側に位置する連結板どうしを固定部材を介して一体化することで、連結板どうしが当初の幅を保持することが可能となり、橋梁の下部構造と上部構造の橋軸方向の相対移動に対し、固定柱の両側の棒状制振部材同士の直線状の位置関係が保持されるようにし、水平荷重支持機構としての本来的な機能が損なわれないようにしたものである。   On the other hand, in the present invention, the connecting plates positioned on both sides of the fixed column are integrated with each other through the fixing member, so that the connecting plates can maintain the original width, and the bridge lower structure The relative position in the bridge axis direction of the superstructure is maintained so that the linear positional relationship between the rod-shaped damping members on both sides of the fixed column is maintained, so that the original function as a horizontal load support mechanism is not impaired. It is a thing.
固定柱の両側に位置する連結板どうしを一体化するための固定部材の形態の一つとしては、固定柱の上端部を跨ぎ、両側の連結板どうしを連結固定する版状部材を用いることができる。例えば連結板と版状の固定部材に重ね合せ部分を設けてボルト接合したり、あるいは連結板と版状の固定部材を溶接するなどして剛接合とすることで、固定柱の両側の棒状制振部材どうしの直線状の位置関係を保つようにする。   One form of the fixing member for integrating the connecting plates located on both sides of the fixed column is to use a plate-like member that straddles the upper end of the fixed column and connects and fixes the connecting plates on both sides. it can. For example, by providing overlapping parts on the connecting plate and plate-like fixing member and bolting them together, or by welding the connecting plate and plate-like fixing member to make a rigid connection, the rod-like restraints on both sides of the fixed column are fixed. The linear positional relationship between the vibrating members is maintained.
固定柱の上側のみでは剛性が確保できない場合には、さらに連結板の下側にも固定部材を配置するなどして、固定柱を取り囲む形で複数の固定部材を配置してもよい。   If the rigidity cannot be ensured only on the upper side of the fixed column, a plurality of fixing members may be arranged so as to surround the fixed column by arranging a fixing member also on the lower side of the connecting plate.
なお、上部構造の橋軸方向の移動にスムーズに追従させるためには、固定柱と両側の連結板との間が密着せずにむしろ若干の隙間が生じることが望ましく、固定部材の他の形態のとして、固定柱を跨いで両側の前記連結板どうしの間隔を保持する幅保持パイプと前記幅保持パイプを貫通して両側の前記連結板どうし緊結する棒状の緊張材とからなるものを用いることができる。   In order to smoothly follow the movement of the superstructure in the direction of the bridge axis, it is desirable that the fixed columns and the connecting plates on both sides do not adhere to each other, but rather a slight gap is generated. As such, use a width holding pipe that holds the interval between the connecting plates on both sides across the fixed column and a bar-shaped tension member that penetrates the width holding pipe and is tightly connected to the connecting plates on both sides. Can do.
幅保持パイプに鋼パイプなどを用いることで、両側の連結板どうしを幅保持パイプに通した緊張材で締め付けたときに、両側の連結板間に幅保持パイプの長さに相当する間隔が保持されるため、幅保持パイプの長さを固定柱の橋軸直角方向の幅以上とすることで、固定柱と連結板との間での締付けを緩和し、上部構造の橋軸方向の移動にスムーズに追従させることができる。   By using a steel pipe or the like for the width holding pipe, when the connecting plates on both sides are tightened with a tension material passed through the width holding pipe, an interval corresponding to the length of the width holding pipe is maintained between the connecting plates on both sides. Therefore, by setting the length of the width holding pipe to be equal to or greater than the width of the fixed column in the direction perpendicular to the bridge axis, the tightening between the fixed column and the connecting plate is eased, and the superstructure moves in the bridge axis direction. It can be made to follow smoothly.
以上述べた各形態の固定部材は条件に応じて単独で用いたり、これらを複数組み合わせて用いることができる。   The fixing member of each form described above can be used alone or in combination of two or more according to conditions.
さらに、本発明の橋梁の機能分離型制振構造において、主桁間には主桁間をつなぐ横桁が設けられている場合に、固定柱と横桁との間に上下方向の相対移動を拘束する上揚力抵抗機構を設けることができる。   Furthermore, in the function-separated vibration control structure for a bridge according to the present invention, when a horizontal girder connecting the main girders is provided between the main girders, relative movement in the vertical direction is performed between the fixed column and the cross girder. An upper lift resistance mechanism for restraining can be provided.
この上揚力抵抗機構についても、上部構造の橋軸方向の移動に追従できる構造であることが望ましく、例えば上述した固定部材として固定柱の上端部を跨ぎ、両側の連結板どうしを連結固定する版状部材を用いる場合、この版状部材と横桁を所定の剛性を有する鋼材等を介して接合し、必要に応じて横桁等に補剛部材を取り付けることで、鋼材の剛性に応じた上揚力抵抗機構が簡単に形成でき、例えばレベル2以上の地震動に対して支承部のサイドブロックを効かせない構造とした場合等に、有効な上揚力抵抗機構として機能させることができる。   The upper lift resistance mechanism is also preferably a structure that can follow the movement of the upper structure in the direction of the bridge axis. For example, a plate that straddles the upper end of the fixing column as the fixing member described above and connects and fixes the connecting plates on both sides. When a plate-like member is used, the plate-like member and the cross beam are joined via a steel material having a predetermined rigidity, and a stiffening member is attached to the cross beam as necessary. The lift resistance mechanism can be easily formed. For example, when the structure is such that the side block of the support portion does not work against level 2 or higher earthquake motion, it can function as an effective upper lift resistance mechanism.
本発明の橋梁の機能分離型制振構造は、簡便に施工でき、上部構造からの水平荷重を効率良く低減して下部構造に伝達することができるので、下部構造の大型化や補強の負担を軽減でき、レベル2以上の巨大地震に対しても効果的に橋梁に耐震性を付与することができるという効果に加え、固定柱の両側の連結板どうしが固定部材によって一体化されていることで、固定柱の両側の棒状制振部材の直線状の位置関係を保持した状態で、上部構造の橋軸方向の移動に追従させることができ、棒状制振部材の機能を十分に発揮させることができる。   The function separation type vibration control structure of the bridge according to the present invention can be easily constructed and can effectively reduce the horizontal load from the upper structure and transmit it to the lower structure. In addition to the effect of being able to reduce and effectively giving earthquake resistance to the bridge even for a large earthquake of level 2 or higher, the connecting plates on both sides of the fixed column are integrated by the fixing members. In a state where the linear positional relationship of the rod-shaped damping members on both sides of the fixed column is maintained, it is possible to follow the movement of the superstructure in the bridge axis direction, and to fully exhibit the function of the rod-shaped damping member it can.
また、さらに固定柱と横桁との間に上下方向の相対移動を拘束する上揚力抵抗機構を設けることで、機能分離型制振構造を構成するための固定柱をレベル2以上の地震動に対する上揚力抵抗機構としても機能させることができる。   Furthermore, by providing an upper lift resistance mechanism that restrains the relative movement in the vertical direction between the fixed column and the cross beam, the fixed column for constructing the function-separated vibration control structure can It can also function as a lift resistance mechanism.
本発明の機能分離型制振構造の一例を概略的に示した斜視図である。It is the perspective view which showed roughly an example of the function separation type | mold damping structure of this invention. 座屈拘束ブレースによる棒状制振部材の一例を示す斜視図である。It is a perspective view which shows an example of the rod-shaped damping member by a buckling restraint brace. 橋脚などの下部構造上に固定した固定柱部分の詳細を示す斜視図である。It is a perspective view which shows the detail of the fixed pillar part fixed on lower structures, such as a bridge pier. 固定柱を下部構造の上部側面に固定した場合の詳細を示す斜視図である。It is a perspective view which shows the detail at the time of fixing a fixed pillar to the upper side surface of a lower structure. 固定柱部分に上揚力抵抗機構を設けた場合の詳細を示す斜視図である。It is a perspective view which shows the detail at the time of providing an upper lift resistance mechanism in a fixed pillar part. 固定柱部分に上揚力抵抗機構を設けた場合の他の例を示す斜視図である。It is a perspective view which shows the other example at the time of providing an upper lift resistance mechanism in the fixed pillar part. 本発明の機能分離型制振構造に常時またはレベル1地震動が作用した場合の挙動を概念的に示した説明図である。It is explanatory drawing which showed notionally the behavior when a level 1 earthquake motion acts on the function-separated type damping structure of this invention normally or. 本発明の機能分離型制振構造にレベル2地震動が作用した場合の挙動を概念的に示した説明図である。It is explanatory drawing which showed notionally the behavior at the time of a level 2 seismic motion acting on the function isolation | separation type damping structure of this invention. 従来の機能分離型制振構造に急激な地震動が作用した場合の挙動を概念的に示した説明図である。It is explanatory drawing which showed notionally the behavior at the time of a sudden earthquake motion acting on the conventional function-separated type damping structure. 図9と対比して本発明の機能分離型制振構造の場合を概念的に示した説明図である。FIG. 10 is an explanatory diagram conceptually showing the case of the function-separated vibration damping structure of the present invention in contrast to FIG. 9.
以下、本発明の実施形態について、図面に基づいて詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments described below.
図1は本発明の機能分離型制振構造の一例を概略的に示したものである。この例での橋梁1は、橋台・橋脚等の下部構造5の上に、橋軸方向の主桁6,6、橋軸直角方向の横桁3、これらの上に設置される床版2等からなる上部構造4が設けられている。   FIG. 1 schematically shows an example of a function-separated vibration damping structure of the present invention. The bridge 1 in this example has a main girder 6 and 6 in the direction of the bridge axis, a horizontal girder 3 in the direction perpendicular to the bridge axis, a floor slab 2 installed on these, etc. An upper structure 4 is provided.
この橋梁1は機能分離型制振構造となっており、固定柱7、座屈拘束ブレースからなる一対の棒状制振部材8,8(水平荷重支持部材)、接合部9等からなる水平荷重支持機構が橋軸直角方向に備わっている。鉛直荷重支持機構は支承12による。橋梁1としては、鋼橋、RC橋、PC橋梁などが挙げられる。   The bridge 1 has a function-separated vibration control structure, and a horizontal load support including a fixed column 7, a pair of rod-shaped vibration control members 8 and 8 (horizontal load support members) made of buckling restrained braces, a joint 9 and the like. The mechanism is provided in the direction perpendicular to the bridge axis. The vertical load support mechanism depends on the support 12. Examples of the bridge 1 include a steel bridge, an RC bridge, and a PC bridge.
橋軸方向に互いに平行に相対向して並立する主桁6,6間における橋軸直角方向の中間の下部構造5の上部に棒状制振部材8,8を支持するための固定柱7が設けられ、各主桁6には棒状制振部材8を支持固定する接合部9が設けられ、固定柱7を中心に線対称に一対の棒状制振部材8,8からなる水平荷重支持部材が橋軸直角方向に水平に配置され、各棒状制振部材8の一端は連結板14を介して固定柱7に取付けられ、他端は接合部9に固定されている。   A fixed column 7 for supporting the rod-shaped damping members 8 and 8 is provided on the upper portion of the intermediate lower structure 5 in the direction perpendicular to the bridge axis between the main girders 6 and 6 arranged parallel to each other in parallel with each other in the bridge axis direction. Each main girder 6 is provided with a joint portion 9 for supporting and fixing the rod-like damping member 8, and a horizontal load supporting member comprising a pair of rod-like damping members 8 and 8 is symmetrical with respect to the fixed column 7 as a bridge. The rod-shaped damping members 8 are disposed horizontally in the direction perpendicular to the axis, and one end of each rod-like damping member 8 is attached to the fixed column 7 via the connecting plate 14, and the other end is fixed to the joint 9.
固定柱7は、この例ではH形鋼を主体としたH形状のものであり、下部構造5(橋台・橋脚)の上面に載置されている。また、接合部9は上部構造4との一体化を図るもので鋼板や高力ボルトなどからなり、この例では各主桁6の側面に設けられている。   In this example, the fixed column 7 has an H shape mainly composed of H-section steel, and is placed on the upper surface of the lower structure 5 (abutment / pier). Further, the joint portion 9 is intended to be integrated with the upper structure 4 and is made of a steel plate, a high-strength bolt, or the like, and is provided on the side surface of each main beam 6 in this example.
そして、水平荷重支持部材により上部構造4からの水平荷重を低減して下部構造5に伝達する。具体的には、例えば、大規模地震等により橋梁1が揺れ、棒状制振部材8の軸力が設定荷重に達した時、ダンパー機能が発揮されることで上部構造4からの水平荷重をそのまま下部構造5へ伝えることなく、これらの荷重を低減させることが可能となる。   Then, the horizontal load from the upper structure 4 is reduced by the horizontal load support member and transmitted to the lower structure 5. Specifically, for example, when the bridge 1 is shaken due to a large-scale earthquake or the like and the axial force of the rod-shaped damping member 8 reaches the set load, the damper function is exerted so that the horizontal load from the upper structure 4 is maintained as it is. These loads can be reduced without transmitting to the lower structure 5.
このような構造において、後に詳述する図5に示されるように、固定柱7の両側に位置する連結板14どうしを固定部材としての固定版41を介して一体化することで、固定柱7と連結板14との間での締付けを緩和し、橋梁の下部構造5と上部構造の橋軸方向の相対移動に対し、固定柱7の両側の棒状制振部材8,8どうしの直線状の位置関係が保持されるようにし、さらに、固定版41を利用して固定柱7と横桁3との間に上下方向の相対移動を拘束する上揚力抵抗機構61を設け、例えばレベル2以上の地震動に対して支承12位置で上揚力に抵抗しているサイドブロック13が効かない状況において、上揚力抵抗機能を発揮させるようにしている。   In such a structure, as shown in FIG. 5, which will be described in detail later, the connecting plates 14 located on both sides of the fixed column 7 are integrated with each other through a fixed plate 41 as a fixed member, thereby fixing the fixed column 7. Tightening between the connecting plate 14 and the connecting plate 14 is reduced, and the linear vibrations between the rod-like damping members 8 and 8 on both sides of the fixed column 7 with respect to the relative movement of the bridge lower structure 5 and the upper structure in the bridge axis direction. The positional relationship is maintained, and an upper lift resistance mechanism 61 for restraining the relative movement in the vertical direction between the fixed column 7 and the cross beam 3 using the fixed plate 41 is provided. In a situation where the side block 13 resisting the upper lifting force at the position of the bearing 12 against the earthquake motion does not work, the upper lifting resistance function is exhibited.
図2は座屈拘束ブレースによる棒状制振部材8の一例を示したものである。図に示した座屈拘束ブレースは、断面十字フィン状を有する低降伏点鋼材からなる荷重受部と、一般鋼材によって荷重受部よりも各フィンの幅寸法及び厚みを大きく形成して荷重受部の一端に溶接固定した端部部材と、荷重受部の他端に溶接固定した端部部材とからなる芯材21を有している。   FIG. 2 shows an example of a rod-shaped damping member 8 using a buckling restrained brace. The buckling-restrained brace shown in the figure includes a load receiving portion made of a low yield point steel material having a cross-fin cross section, and a load receiving portion formed by forming a width dimension and a thickness of each fin larger than that of the load receiving portion by using a general steel material. The core member 21 includes an end member welded and fixed to one end of the load member and an end member welded and fixed to the other end of the load receiving portion.
芯材21の各四隅部には、芯材21の端部部材の各フィンの幅と同等の幅を有する山形鋼からなる座屈防止材22が配置してあり、該座屈防止材22は、端部部材と端部部材の一部に跨る長さを有している。   At each of the four corners of the core material 21, buckling prevention materials 22 made of angle steel having a width equivalent to the width of each fin of the end member of the core material 21 are disposed. The end member has a length straddling a part of the end member.
芯材21の荷重受部の各フィンの外側には端部部材のフィンの厚さと同等の厚さを有するスペーサが配置されており、座屈防止材22により端部部材の一部とスペーサを挟んで組立ボルト23(高力ボルト)と組立ナットで締め付けることにより一体的に組み立てられる。   A spacer having a thickness equivalent to the thickness of the fin of the end member is disposed outside each fin of the load receiving portion of the core member 21, and a part of the end member and the spacer are placed by the buckling prevention member 22. The assembly bolts 23 (high-strength bolts) and the assembly nuts are clamped and clamped together to assemble them integrally.
座屈防止材22の一端が端部部材の一部に組立ボルト23によって取付けられる位置には、長孔25が形成されている。したがって、上記組立ボルト23による締め付けを行うと、芯材21の荷重受部と座屈防止材22との間に隙間が形成され、よって、芯材21の端部部材間に引張または圧縮の荷重が作用した場合には、荷重受部は引張変形または圧縮変形する。この時、座屈防止材22は長孔25によって荷重受部の長さ変化を許容し、荷重受部が座屈しようとする荷重に対しては座屈防止材22が抵抗するように作用する。   A long hole 25 is formed at a position where one end of the buckling prevention member 22 is attached to a part of the end member by the assembly bolt 23. Therefore, when the assembly bolt 23 is tightened, a gap is formed between the load receiving portion of the core material 21 and the buckling prevention material 22, and thus a tensile or compressive load is applied between the end members of the core material 21. When is applied, the load receiving portion undergoes tensile deformation or compression deformation. At this time, the buckling prevention member 22 allows the load receiving portion to change its length by the long hole 25 and acts so that the buckling prevention member 22 resists a load that the load receiving portion is to buckle. .
芯材21の一方の端部には、上端に天端掛り板15を有する連結板14が設けられている。この連結板14を介して座屈拘束ブレース(棒状制振部材8)が固定柱に取り付けられる。据え付けた状態において、連結板14は圧縮時は固定柱本体(フランジ部分)に面接触して荷重を伝え、引張時は固定柱を貫通して両側の連結板14間を緊結する連結ボルトを介して他方の連結板14からの軸力を伝える役割をし、連結板14の上端の天端掛り板15は棒状制振部材8の自重を固定柱に支持する役割、また棒状制振部材8の軸に対して直角方向の可動をスムーズにする役割をする。   A connecting plate 14 having a top end hanging plate 15 at the upper end is provided at one end of the core member 21. A buckling restrained brace (bar-shaped damping member 8) is attached to the fixed column via the connecting plate 14. In the installed state, the connecting plate 14 is brought into surface contact with the fixed column main body (flange portion) during compression to transmit the load, and during tension, via a connecting bolt that penetrates the fixed column and tightly connects the connecting plates 14 on both sides. The top end hanging plate 15 at the upper end of the connecting plate 14 supports the weight of the rod-like damping member 8 on the fixed column, and the rod-like damping member 8 It plays a role of smooth movement in the direction perpendicular to the axis.
本発明では、一形態としてこの天端掛り板15の上面に、固定柱の両側の連結板14を一体化する固定版を取り付けることができ、図示した例では天端掛り板15部分に固定版取付け孔16を設け、固定版41(図1、図3〜図6参照)をボルト接合できるようにしている。   In the present invention, as one form, a fixed plate for integrating the connecting plates 14 on both sides of the fixed column can be attached to the upper surface of the top end hanging plate 15, and in the illustrated example, the fixed plate is attached to the top end hanging plate 15 portion. A mounting hole 16 is provided so that the fixed plate 41 (see FIGS. 1 and 3 to 6) can be bolted.
また、連結板14には、図に示すように、スライド用長孔17が設けられている。このスライド用長孔17は、上部構造の橋軸方向への移動に追従するための橋軸方向への可動機能を担う役割を果たす。   Further, as shown in the figure, the connecting plate 14 is provided with a long slot 17 for sliding. The long slot 17 for sliding serves a role of moving in the bridge axis direction for following the movement of the superstructure in the bridge axis direction.
さらに、図示した例では、連結板14の下部に橋軸方向前後に張出し部を形成し、張出し部に後述する幅保持パイプ51に通した緊張ボルト52(図3、図4、図6参照)を固定するためのボルト孔18が設けられている。   Further, in the illustrated example, an extension portion is formed in the lower portion of the connecting plate 14 in the longitudinal direction of the bridge axis, and a tension bolt 52 that is passed through a width holding pipe 51 described later in the extension portion (see FIGS. 3, 4, and 6). Bolt holes 18 are provided for fixing the bolts.
図3は橋脚などの下部構造5上に固定した固定柱7部分の詳細を示したものである。   FIG. 3 shows the details of the fixed column 7 fixed on the lower structure 5 such as a bridge pier.
固定柱7は、ベースプレート29とその上に載置、固定されるH形鋼からなる固定柱本体とからなり、橋台や橋脚等の下部構造5の上面に高さ調整モルタル28を介してアンカーボルト30で下部構造5に固定されることにより設置されている。また、H形鋼のフランジには、連結板14に設けられたスライド用長孔17に併せて連結ボルト27を通すための孔が設けられている。   The fixed column 7 includes a base plate 29 and a fixed column main body made of H-shaped steel, which is placed and fixed on the base plate 29, and anchor bolts are attached to the upper surface of the lower structure 5 such as an abutment or a pier via a height adjusting mortar 28. It is installed by being fixed to the lower structure 5 at 30. In addition, the H-shaped steel flange is provided with holes for passing the connecting bolts 27 in addition to the slide long holes 17 provided in the connecting plate 14.
固定柱7への一対の棒状制振部材8,8(この例では座屈拘束ブレース)の取付け構造は図に示すようになっている。すなわち、スライド用長孔17を有する棒状制振部材8は、その端部の連結板14が固定柱7の本体であるH形鋼のフランジに重ねられ連結ボルト27で固定されることにより固定柱7に取付けられている。   The attachment structure of the pair of rod-shaped damping members 8 and 8 (in this example, buckling restrained braces) to the fixed column 7 is as shown in the figure. That is, the rod-shaped damping member 8 having the sliding long hole 17 is fixed to the fixed column by overlapping the connecting plate 14 at the end of the rod-shaped damping member 8 on the flange of the H-shaped steel, which is the main body of the fixed column 7 7 is attached.
上記スライド用長孔17は、前述の通り、上部構造の橋軸方向への移動に追従するための橋軸方向への可動機能を担う役割を果たす。具体的には、例えば、連結板14に設けられたスライド用長孔17に突起付きの角ナット31を設置することで該長孔17がガイドレールとなり追従方向に可動な構造になる。   As described above, the long slot 17 for sliding serves a function of moving in the bridge axis direction to follow the movement of the superstructure in the bridge axis direction. Specifically, for example, by installing a square nut 31 with a projection in a long slot 17 for sliding provided in the connecting plate 14, the long hole 17 becomes a guide rail, and the structure is movable in the following direction.
本発明では、このような構成において、固定柱7の両側に位置する連結板14どうしを固定部材を介して一体化することで、固定柱7と連結板14との間での締付けを緩和し、橋梁の下部構造5と上部構造の橋軸方向の相対移動に対し、固定柱7の両側の棒状制振部材8,8どうしの直線状の位置関係が保持されるようにして、水平荷重支持機構としての本来的な機能が損なわれないようにしている。   In the present invention, in such a configuration, the coupling plates 14 located on both sides of the fixed column 7 are integrated with each other through a fixing member, thereby reducing the tightening between the fixed column 7 and the coupling plate 14. The horizontal load support is achieved by maintaining the linear positional relationship between the rod-like damping members 8 on both sides of the fixed column 7 with respect to the relative movement of the bridge lower structure 5 and the upper structure in the bridge axis direction. The original function as a mechanism is not impaired.
図3の例では、具体的には固定部材として、固定柱7の上端部を跨ぎ、両側の連結板14,14どうしを連結固定する固定版41を用い、さらに連結板14の下部に張出し部を形成し、この張出し部位置に鋼製の幅保持パイプ51を介在させて、両側の連結板14,14どうしを幅保持パイプ51に通した緊張ボルト52で緊結し、固定柱7を取り囲む形で配置した上部の固定版41と下部の幅保持パイプ51に通した緊張ボルト52で、両側の連結板14,14どうしを一体化している。   In the example of FIG. 3, specifically, as a fixing member, a fixed plate 41 is used that straddles the upper end portion of the fixing column 7 and connects and fixes the connecting plates 14 and 14 on both sides. A steel width holding pipe 51 is interposed at the position of the overhanging portion, and the connecting plates 14 and 14 on both sides are fastened with tension bolts 52 passed through the width holding pipe 51 so as to surround the fixed column 7. The connecting plates 14 and 14 on both sides are integrated with each other by the tension bolts 52 that pass through the upper fixed plate 41 and the lower width holding pipe 51 arranged in the above.
このような構成において、固定部材としての固定版41と幅保持パイプ51により、両側の連結板14,14間に幅保持パイプ51の長さに相当する間隔が保持されるため、幅保持パイプ51の長さを固定柱の橋軸直角方向の幅以上とすることで、固定柱7と連結板14との間での締付けを緩和し、上部構造の橋軸方向の移動にスムーズに追従させることができる。   In such a configuration, since the fixed plate 41 as the fixing member and the width holding pipe 51 hold an interval corresponding to the length of the width holding pipe 51 between the connecting plates 14 and 14 on both sides, the width holding pipe 51 By making the length of the column not less than the width of the fixed column in the direction perpendicular to the bridge axis, the tightening between the fixed column 7 and the connecting plate 14 can be eased and the superstructure can smoothly follow the movement in the bridge axis direction. Can do.
図4は固定柱を下部構造の上部側面に固定した場合の詳細を示したものである。この例では、固定柱7は、H形鋼からなる固定柱本体とアンカーボルト30を通すための孔を有する2枚の固定プレート32,32とからなる。そして、H形鋼のフランジには連結板14に設けられたスライド用長孔17に併せて連結ボルト27を通すための孔が、H形鋼のウェブにはアンカーボルト30を通すための孔が各々設けられている。   FIG. 4 shows the details when the fixed column is fixed to the upper side surface of the lower structure. In this example, the fixed column 7 includes a fixed column main body made of H-shaped steel and two fixed plates 32 and 32 having holes for passing anchor bolts 30. The H-shaped steel flange has a hole for allowing the connecting bolt 27 to pass along with the slide long hole 17 provided in the connecting plate 14, and the H-shaped steel web has a hole for allowing the anchor bolt 30 to pass. Each is provided.
固定柱7は、図に示すように、2枚の固定プレート32,32でH形鋼を挟みアンカーボルト30で下部構造5の上部側面に固定されることにより設置されている。   As shown in the figure, the fixed column 7 is installed by sandwiching an H-shaped steel between two fixed plates 32 and 32 and fixing it to the upper side surface of the lower structure 5 with an anchor bolt 30.
固定柱7への一対の棒状制振部材8,8(この例では座屈拘束ブレース)の取付け構造は、図3の場合と同様なので説明は省略する。   The mounting structure of the pair of rod-like damping members 8 and 8 (in this example, buckling-restrained braces) to the fixed column 7 is the same as in the case of FIG.
図5は前述した図1の実施形態における固定柱7部分の詳細を示したものである。図1に関して説明したように、固定柱7の両側に位置する連結板14どうしを固定版41を介して一体化し、さらに、固定版41を利用して固定柱7と横桁3との間に上下方向の相対移動を拘束する上揚力抵抗機構61を設けている。   FIG. 5 shows details of the fixed column 7 portion in the embodiment of FIG. 1 described above. As described with reference to FIG. 1, the connecting plates 14 located on both sides of the fixed column 7 are integrated through the fixed plate 41, and further, between the fixed column 7 and the cross beam 3 using the fixed plate 41. An upper lift resistance mechanism 61 that restrains the relative movement in the vertical direction is provided.
この例では、図3および図4の実施形態で用いた幅保持パイプ51および緊張ボルト52を設けていないが、図6のように幅保持パイプ51および緊張ボルト52を設けることでより安定した構造となる。   In this example, the width holding pipe 51 and the tension bolt 52 used in the embodiment of FIGS. 3 and 4 are not provided, but a more stable structure is provided by providing the width holding pipe 51 and the tension bolt 52 as shown in FIG. It becomes.
連結板14,14どうしを固定版41を介して一体化することで、固定柱7と連結板14との間での締付けを緩和し、橋梁の下部構造5と上部構造の橋軸方向の相対移動に対し、固定柱7の両側の棒状制振部材8,8どうしの直線状の位置関係を維持した状態で橋軸方向の相対移動にスムーズに追従させることができる。   By integrating the connecting plates 14 and 14 via the fixed plate 41, the tightening between the fixed column 7 and the connecting plate 14 is eased, and the bridge lower structure 5 and the upper structure in the direction of the bridge axis are relaxed. With respect to the movement, it is possible to smoothly follow the relative movement in the direction of the bridge axis while maintaining the linear positional relationship between the rod-like damping members 8 and 8 on both sides of the fixed column 7.
図示した例では、上揚力抵抗機構61として、鋼板を組み合わせ、上下に接合用プレートを設けた連結ブロック62の下側の接合用プレートを固定版41にボルト接合し、連結ブロック62の上側の接合用プレートを横桁3の下フランジにボルト接合し、連結ブロック62の応力が伝わる横桁3のウェブ部分にリブ状の補剛部材63、64を取り付けている。   In the illustrated example, as the upper lift resistance mechanism 61, steel plates are combined, and the lower connection plate 62 having the upper and lower connection plates is bolted to the fixed plate 41, and the upper connection portion 62 is connected. The plate is bolted to the lower flange of the cross beam 3, and rib-shaped stiffening members 63 and 64 are attached to the web portion of the cross beam 3 where the stress of the connecting block 62 is transmitted.
前述したように、例えばレベル2以上の地震動に対して支承12位置で上揚力に抵抗しているサイドブロック13が効かない状況において、上揚力抵抗機構61を介して固定柱7と横桁3が間接的に接合されているため、上揚力抵抗機能を発揮させることができる。   As described above, for example, in a situation where the side block 13 that resists the upper lift force at the position of the bearing 12 does not work against earthquake motion of level 2 or higher, the fixed column 7 and the cross beam 3 are connected via the upper lift resistance mechanism 61. Since it is indirectly joined, the uplift resistance function can be exhibited.
また、固定版41は固定柱7に対し、橋軸方向の相対移動が可能であるため、上揚力抵抗機構61には実質的に上下方向の力のみが作用することになる。   Further, since the fixed plate 41 can be moved relative to the fixed column 7 in the bridge axis direction, only the force in the vertical direction acts on the upper lift resistance mechanism 61.
図7は本発明の機能分離型制振構造に常時またはレベル1地震動が作用した場合の挙動を、図8は本発明の機能分離型制振構造にレベル2地震動が作用した場合の挙動を概念的に示したものである。   FIG. 7 shows the behavior when a level 1 earthquake motion is applied to the function-separated damping structure of the present invention at all times or FIG. 8 conceptually shows the behavior when a level 2 earthquake motion acts on the function-separated damping structure of the present invention. It is shown as an example.
常時またはレベル1の地震動に対しては、図7に示されるように実質的に主桁を受けている支承が鉛直方向の振動を負担し、上揚力に対しても実質的に固定状態の支承位置のサイドブロックのストッパー機能により抵抗することができる。   For normal or level 1 ground motion, the bearing receiving the main girder bears the vertical vibration as shown in Fig. 7, and the bearing is also fixed in the uplift force. Can be resisted by the stopper function of the position side block.
常時の熱伸びなどによる橋軸方向の相対移動に対しては、前述のように固定柱位置についても変位に追従できる構造となっている。   With respect to relative movement in the direction of the bridge axis due to normal thermal elongation, the fixed column position can follow the displacement as described above.
図8(a)はレベル2以上の地震動により上部構造が図中水平右方向に大きく変位し、固定中の右側の棒状制振部材に引張軸力が作用し、左側の棒状制振部材に圧縮軸力が作用する様子を示している。   In Fig. 8 (a), the superstructure is greatly displaced in the horizontal right direction in the figure due to the earthquake motion of level 2 or higher, the tensile axial force acts on the right-hand bar-shaped damping member being fixed, and the left-hand bar-like damping member is compressed. It shows how the axial force acts.
この状態で支承部分はサイドブロックのストッパー機能が解除されすべり可動となる。このときの上揚力は横桁と連結された固定柱が負担することになる(図1、図5、図6の実施形態の場合)。   In this state, the support portion is released from the stopper function of the side block and is slidable. The lifting force at this time is borne by the fixed column connected to the cross beam (in the case of the embodiment of FIGS. 1, 5, and 6).
図8(b)は同様にレベル2以上の地震動により上部構造が図中水平左方向に大きく変位し、固定中の右側の棒状制振部材に引張軸力が作用し、左側の棒状制振部材に圧縮軸力が作用する様子を示しており、図8(a)と図8(b)の状態が繰り返されながら、棒状制振部材による振動エネルギーの吸収により水平方向の振動が減衰して行く。   Similarly, in Fig. 8 (b), the superstructure is greatly displaced in the horizontal left direction in the figure due to the earthquake motion of level 2 or higher, and the tensile axial force acts on the fixed rod-like damping member on the right side, and the rod-like damping member on the left side. Fig. 8 shows how the compression axial force acts. While the states of Fig. 8 (a) and Fig. 8 (b) are repeated, the vibration in the horizontal direction is attenuated by the absorption of the vibration energy by the rod-shaped damping member. .
図9は従来の機能分離型制振構造に急激な地震動が作用した場合の挙動を概念的に示したものであり、図10は図9と対比して本発明の機能分離型制振構造の場合を概念的に示したものである。   FIG. 9 conceptually shows the behavior when a sudden seismic motion is applied to the conventional function-separated vibration control structure, and FIG. 10 is a diagram of the function-separated vibration control structure of the present invention in contrast to FIG. The case is shown conceptually.
前述したように、固定柱7の両側の連結板14,14どうしを連結ボルト27で緊結し、連結板14が、直接、固定柱7に押し付けられる図9(a)の構造では、連結ボルト27をスライド用長孔に沿って摺動させる構成としても上部構造の橋軸方向への移動に十分追従させることが困難であり、図9(b)に示すように固定柱7位置で両側の棒状制振部材8,8が一直線とならず折れ曲がった角度となり、棒状制振部材8の機能を十分に発揮させることができなくなる恐れがある。   As described above, in the structure of FIG. 9A in which the connecting plates 14 and 14 on both sides of the fixed column 7 are fastened together with the connecting bolt 27 and the connecting plate 14 is directly pressed against the fixed column 7, the connecting bolt 27 Even if it is configured to slide along the long slot for sliding, it is difficult to follow the movement of the superstructure in the direction of the bridge axis sufficiently, as shown in FIG. The damping members 8, 8 are not in a straight line but have a bent angle, and the function of the rod-like damping member 8 may not be sufficiently exhibited.
これに対し、本発明の構造では、固定柱7の両側の連結板14,どうしが固定版41や幅保持パイプ51など固定部材によって剛に一体化させることで、固定柱7の両側の棒状制振部材8,8の直線状の位置関係を保持した状態で、上部構造の相対移動に追従させることができるため、棒状制振部材8の機能を十分に発揮させることができる。   On the other hand, in the structure of the present invention, the connecting plates 14 on both sides of the fixed column 7 are rigidly integrated by a fixing member such as the fixed plate 41 and the width holding pipe 51 so that the rod-shaped control on both sides of the fixed column 7 is obtained. Since it is possible to follow the relative movement of the superstructure while maintaining the linear positional relationship between the vibration members 8 and 8, the function of the rod-shaped vibration damping member 8 can be sufficiently exhibited.
1…橋梁、2…床版、3…横桁、4…上部構造、5…下部構造、6…主桁、7…固定柱、8…棒状制振部材、9…主桁側接合部、
12…支承、13…サイドブロック(ストッパー)、14…連結板、15…天端掛り板、16…固定版取付け孔、17…スライド用長孔、18…ボルト孔、
21…芯材、22…座屈拘束材、23…組立ボルト、25…長孔、
27…連結ボルト、28…高さ調整モルタル、29…ベースプレート、30…アンカーボルト、31…溝付角ナット、32…固定プレート
41…固定版、
51…幅保持パイプ、52…緊張ボルト、
61…上揚力抵抗機構、62…連結ブロック、63…補剛部材、64…補剛部材
DESCRIPTION OF SYMBOLS 1 ... Bridge, 2 ... Floor slab, 3 ... Cross girder, 4 ... Superstructure, 5 ... Bottom structure, 6 ... Main girder, 7 ... Fixed column, 8 ... Bar-shaped damping member, 9 ... Main girder side junction,
DESCRIPTION OF SYMBOLS 12 ... Support, 13 ... Side block (stopper), 14 ... Connecting plate, 15 ... Top end hanging plate, 16 ... Fixed plate mounting hole, 17 ... Sliding long hole, 18 ... Bolt hole,
21 ... Core material, 22 ... Buckling restraint material, 23 ... Assembly bolt, 25 ... Long hole,
27 ... Connecting bolt, 28 ... Height-adjusting mortar, 29 ... Base plate, 30 ... Anchor bolt, 31 ... Slotted square nut, 32 ... Fixed plate 41 ... Fixed plate,
51 ... Width retaining pipe, 52 ... Tension bolt,
61 ... Uplift resistance mechanism, 62 ... Connection block, 63 ... Stiffening member, 64 ... Stiffening member

Claims (5)

  1. 橋梁の下部構造に、上部構造の主桁からの鉛直荷重を支持する支承に加え、主桁間に位置する固定柱を設け、水平荷重に対し前記固定柱とその両側の主桁間に部材軸方向の振動を抑制する棒状制振部材を介在させることで、鉛直荷重支持機構と水平荷重支持機構とを分離した橋梁の機能分離型制振構造において、前記固定柱とその両側の前記棒状制振部材はそれぞれ連結板を介して橋軸方向の相対移動を許容する状態で連結されており、前記固定柱の両側に位置する前記連結板どうしを固定部材を介して一体化することで、橋梁の下部構造と上部構造の橋軸方向の相対移動に対し、前記固定柱の両側の棒状制振部材どうしの直線状の位置関係が保持されるようにしたことを特徴とする橋梁の機能分離型制振構造。   In the lower structure of the bridge, in addition to the support that supports the vertical load from the main girder of the upper structure, a fixed column located between the main girders is provided, and the member axis between the fixed column and the main girder on both sides thereof is provided for horizontal load In the function separation type vibration control structure of a bridge in which a vertical load support mechanism and a horizontal load support mechanism are separated by interposing a rod-shaped damping member that suppresses vibrations in the direction, the fixed column and the rod-shaped damping on both sides thereof The members are connected via a connecting plate in a state allowing relative movement in the direction of the bridge axis, and the connecting plates located on both sides of the fixed column are integrated with each other through the fixing member, thereby The functional separation type control of the bridge is characterized in that the linear positional relationship between the rod-shaped damping members on both sides of the fixed column is maintained with respect to the relative movement of the lower structure and the upper structure in the bridge axis direction. Shaking structure.
  2. 請求項1記載の橋梁の機能分離型制振構造において、前記固定柱と両側の連結板は、前記固定柱または前記連結板に形成された橋軸方向に延びる長孔を貫通して両側の前記連結板どうしを緊結する棒状の緊張材で連結されており、橋梁の下部構造と上部構造の橋軸方向の相対移動に対し、前記緊張材が前記長孔に沿って摺動可能となっていることを特徴とする橋梁の機能分離型制振構造。   2. The function separation type vibration damping structure for a bridge according to claim 1, wherein the fixed columns and the connection plates on both sides penetrate the long holes formed in the fixed columns or the connection plates and extend in the bridge axis direction. It is connected with a bar-like tension material that binds the connecting plates together, and the tension material can slide along the long hole with respect to the relative movement of the bridge lower structure and the upper structure in the bridge axis direction. A segregated function-damping structure for bridges.
  3. 請求項1または2記載の橋梁の機能分離型制振構造において、前記固定部材の少なくとも一つは、前記固定柱の上端部を跨ぎ、両側の前記連結板どうしを連結固定する版状部材であることを特徴とする橋梁の機能分離型制振構造。   3. The function separation type vibration damping structure for a bridge according to claim 1, wherein at least one of the fixing members is a plate-like member that straddles the upper end of the fixing column and connects and fixes the connecting plates on both sides. A segregated function-damping structure for bridges.
  4. 請求項1、2または3記載の橋梁の機能分離型制振構造において、前記固定部材の少なくとも一つは、前記固定柱を跨いで両側の前記連結板どうしの間隔を保持する幅保持パイプと前記幅保持パイプを貫通して両側の前記連結板どうし緊結する棒状の緊張材とからなるものであることを特徴とする橋梁の機能分離型制振構造。   The function separation type vibration damping structure for a bridge according to claim 1, 2, or 3, wherein at least one of the fixing members spans the fixing column and holds a gap between the connecting plates on both sides, A function-separated type vibration damping structure for a bridge, comprising a bar-like tension member penetrating a width maintaining pipe and tightly connecting the connecting plates on both sides.
  5. 請求項1〜4のいずれか一項に記載の橋梁の機能分離型制振構造において、前記主桁間には主桁間をつなぐ横桁が設けられており、前記固定柱と前記横桁との間に上下方向の相対移動を拘束する上揚力抵抗機構が設けられていることを特徴とする橋梁の機能分離型制振構造。   In the function-separated type vibration damping structure for a bridge according to any one of claims 1 to 4, a cross beam connecting between the main beams is provided between the main beams, and the fixed column, the cross beam, A function separation type vibration damping structure for a bridge, characterized in that an uplift resistance mechanism for restraining relative movement in the vertical direction is provided in between.
JP2016002621A 2016-01-08 2016-01-08 Function-separated damping structure for bridges Active JP6706071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016002621A JP6706071B2 (en) 2016-01-08 2016-01-08 Function-separated damping structure for bridges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016002621A JP6706071B2 (en) 2016-01-08 2016-01-08 Function-separated damping structure for bridges

Publications (2)

Publication Number Publication Date
JP2017122365A true JP2017122365A (en) 2017-07-13
JP6706071B2 JP6706071B2 (en) 2020-06-03

Family

ID=59305430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016002621A Active JP6706071B2 (en) 2016-01-08 2016-01-08 Function-separated damping structure for bridges

Country Status (1)

Country Link
JP (1) JP6706071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275314B1 (en) * 2017-08-01 2018-02-07 新日鉄住金エンジニアリング株式会社 Seismic reinforcement structure for bridges
KR102159160B1 (en) 2020-03-30 2020-09-23 정덕구 Apparatus for reinforcing insulation of structure used ETFE film

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027792Y1 (en) * 1970-03-19 1975-08-18
JPH0477616U (en) * 1990-11-19 1992-07-07
JPH05113099A (en) * 1991-10-24 1993-05-07 Kajima Corp Support assembling method of tunnel boring machine
JPH05322104A (en) * 1992-05-26 1993-12-07 Babcock Hitachi Kk Supporting structure for boiler
JP2000234308A (en) * 1998-12-15 2000-08-29 Kaimon:Kk Supporting device for bridge with slide type elastic supporting device for structure and horizontal force and lift force elastic resistance device, and installing method therefor
JP2001311387A (en) * 2000-05-01 2001-11-09 Ashimori Ind Co Ltd Repairing method for existing conduit, repairing material used for it and repaired conduit
JP2002180418A (en) * 2000-12-11 2002-06-26 Oiles Ind Co Ltd Base isolation structure system in bridge
US20070000078A1 (en) * 2005-07-01 2007-01-04 Sang-Hyo Kim Girder bridge protection device usin sacrifice means
JP2012013157A (en) * 2010-07-01 2012-01-19 Ihi Corp Vibration-proof construction method and vibration-proof structure using elastoplastic brace
JP2014080997A (en) * 2012-10-15 2014-05-08 Seiko Seisakusho:Kk Vibration damper
JP2015031046A (en) * 2013-08-02 2015-02-16 株式会社横河住金ブリッジ Function separation type vibration control structure of bridge
JP2015214393A (en) * 2014-05-09 2015-12-03 株式会社東伸 Frame of film winding device, and method for production thereof
JP2017014749A (en) * 2015-06-29 2017-01-19 首都高速道路株式会社 Sliding mechanism of bridge seismic resistance device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027792Y1 (en) * 1970-03-19 1975-08-18
JPH0477616U (en) * 1990-11-19 1992-07-07
JPH05113099A (en) * 1991-10-24 1993-05-07 Kajima Corp Support assembling method of tunnel boring machine
JPH05322104A (en) * 1992-05-26 1993-12-07 Babcock Hitachi Kk Supporting structure for boiler
JP2000234308A (en) * 1998-12-15 2000-08-29 Kaimon:Kk Supporting device for bridge with slide type elastic supporting device for structure and horizontal force and lift force elastic resistance device, and installing method therefor
JP2001311387A (en) * 2000-05-01 2001-11-09 Ashimori Ind Co Ltd Repairing method for existing conduit, repairing material used for it and repaired conduit
JP2002180418A (en) * 2000-12-11 2002-06-26 Oiles Ind Co Ltd Base isolation structure system in bridge
US20070000078A1 (en) * 2005-07-01 2007-01-04 Sang-Hyo Kim Girder bridge protection device usin sacrifice means
JP2012013157A (en) * 2010-07-01 2012-01-19 Ihi Corp Vibration-proof construction method and vibration-proof structure using elastoplastic brace
JP2014080997A (en) * 2012-10-15 2014-05-08 Seiko Seisakusho:Kk Vibration damper
JP2015031046A (en) * 2013-08-02 2015-02-16 株式会社横河住金ブリッジ Function separation type vibration control structure of bridge
JP2015214393A (en) * 2014-05-09 2015-12-03 株式会社東伸 Frame of film winding device, and method for production thereof
JP2017014749A (en) * 2015-06-29 2017-01-19 首都高速道路株式会社 Sliding mechanism of bridge seismic resistance device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275314B1 (en) * 2017-08-01 2018-02-07 新日鉄住金エンジニアリング株式会社 Seismic reinforcement structure for bridges
KR102159160B1 (en) 2020-03-30 2020-09-23 정덕구 Apparatus for reinforcing insulation of structure used ETFE film

Also Published As

Publication number Publication date
JP6706071B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
JP5007380B2 (en) Seismic isolation / damping mechanism
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP2007023626A (en) Vibration-controlled base-isolated structure
JP2005207111A (en) Seismic response controlled bridge pier
JP4070117B2 (en) Vibration control device
JP2017122365A (en) Function separation type vibration damping structure for bridge
JP4838554B2 (en) Boiler damping support structure
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP5124146B2 (en) Seismic control building
JP4282003B2 (en) Vibration control structure
JP4664997B2 (en) Buildings with joint hardware
JP5590994B2 (en) Seismic construction method and structure using elastoplastic brace
JP5132503B2 (en) Seismic structure and building
JP4472726B2 (en) Base-isolated building structure
JP2012207389A (en) Seismic strengthening construction method for existing building
JP4870483B2 (en) Member holding device and member holding method
JP2018199958A (en) Damping structure
JP2009281074A (en) Connecting vibration control structure of building
JP2007211474A (en) Vibration control stud of building, and method of constructing the same
JP5251933B2 (en) Buildings with joint hardware
JP2019094630A (en) Column capital displacement restraining structure of building
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP2012097816A (en) Elasto-plastic brace vibration isolation structure

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200515

R150 Certificate of patent or registration of utility model

Ref document number: 6706071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150