JP2002180175A - Sintered alloy excellent in high temperature property and die for hot forming using the alloy - Google Patents

Sintered alloy excellent in high temperature property and die for hot forming using the alloy

Info

Publication number
JP2002180175A
JP2002180175A JP2000404295A JP2000404295A JP2002180175A JP 2002180175 A JP2002180175 A JP 2002180175A JP 2000404295 A JP2000404295 A JP 2000404295A JP 2000404295 A JP2000404295 A JP 2000404295A JP 2002180175 A JP2002180175 A JP 2002180175A
Authority
JP
Japan
Prior art keywords
phase
sintered alloy
alloy
double
mixed structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000404295A
Other languages
Japanese (ja)
Inventor
Takahiro Fukushima
崇洋 福島
Osamu Terada
修 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2000404295A priority Critical patent/JP2002180175A/en
Publication of JP2002180175A publication Critical patent/JP2002180175A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sintered alloy which is excellent in high temperature hardness, oxidation resistance and specular properties, also excellent in sinterability, and is particularly suitable to a die for hot forming. SOLUTION: The sintered alloy consists of an alloy with a three phase mixed structure in which a first phase consists of WC, a second phase is a double carbide (nitride) essentially consisting of Ti and W, and bonding phase metal is present as a double carbide (nitride) of a third phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結性に優れ、か
つ高温硬さ、耐酸化性および鏡面性に優れた焼結合金お
よびそれを用いた熱間成形用金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered alloy having excellent sinterability, high-temperature hardness, oxidation resistance and mirror finish, and a hot-forming die using the same.

【0002】[0002]

【従来の技術】レンズやハードデスク用基板などのガラ
スまたはプラスチック製品の多くは、近年、複雑な機械
加工を省くためにそれらの素材を熱間で成形することに
よって製造されるようになってきている。このような熱
間成形に使用される金型の素材には、高温での機械的性
質と耐酸化性に優れ、かつ鏡面性に優れることが要求さ
れ、従来、この種の用途の材料としては、セラミックス
や超硬合金が提案されている。例えば、特開昭52−4
5613には、シリコンカーバイドや窒化シリコンが、
また特公昭62−51211には3〜10重量%のコバ
ルトを含む炭化タングステン基超硬合金が開示されてい
る。
2. Description of the Related Art In recent years, many glass or plastic products such as lenses and substrates for hard desks have been manufactured by hot forming such materials in order to save complicated machining. I have. The material of the mold used for such hot forming is required to have excellent mechanical properties at high temperatures, excellent oxidation resistance, and excellent mirror surface properties. , Ceramics and cemented carbide have been proposed. For example, JP-A-52-4
5613, silicon carbide or silicon nitride,
Japanese Patent Publication No. 62-51211 discloses a tungsten carbide-based cemented carbide containing 3 to 10% by weight of cobalt.

【0003】[0003]

【発明が解決しようとする課題】しかし、セラミックス
は耐酸化性には優れるものの靭性に乏しく、かつ被研削
性に劣るため、その鏡面加工に長時間を要する問題点が
ある。超硬合金は、主にWCを硬質相とし、Coおよび
/またはNiを結合相として構成されているが、結合相
が金属であるため、高温での硬さ低下が著しいこと、ま
た常温でも結合相はWCに比べると軟質なために鏡面加
工時に凹みを生じやすいなどの問題点がある。この対策
として特開平2−120244に結合相金属を含まない
光学素子成形用金型が開示されているが、これは結合相
金属を含まないため焼結性に劣り、合金中にしばしば微
小な気孔を生じて、焼結後にHIP処理を施しても完全
には消滅し難く、鏡面性を損うという問題点があった。
However, although ceramics are excellent in oxidation resistance, they are poor in toughness and poor in grindability, so that there is a problem that a long time is required for mirror finishing. Cemented carbides are mainly composed of WC as a hard phase and Co and / or Ni as a binder phase. However, since the binder phase is a metal, the hardness is significantly reduced at a high temperature, and the binder is bonded at room temperature. Since the phase is softer than WC, there is a problem that dents are likely to occur during mirror finishing. As a countermeasure against this, Japanese Patent Application Laid-Open No. 2-120244 discloses a mold for molding an optical element which does not contain a binder phase metal. However, since it does not contain a binder phase metal, it has poor sinterability and often has minute pores in the alloy. And even if the HIP treatment is performed after sintering, it is difficult to completely eliminate the sintering, and there is a problem that the specularity is impaired.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の問題点
を解決するべくなされたものである。すなわち、WCを
第1相、TiとWを主成分とする複炭(窒)化物を第2
相とし、かつ結合相金属を、合金炭素量を低く調整する
ことにより第3相の複炭(窒)化物として存在させる。
このようにすることにより、結合相金属は焼結過程では
焼結性を向上させるが、焼結後の組織中では複炭(窒)
化物を形成して金属相として残留しないため、得られる
合金は高温での硬さ、強さ、耐酸化性に優れるとともに
鏡面性に著しく優れるという特徴を有する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. That is, WC is the first phase, and double carbon (nitride) mainly composed of Ti and W is the second phase.
The phase and binder phase metal are present as a third phase double carbon (nitride) by adjusting the carbon content of the alloy low.
By doing so, the binder phase metal improves sinterability during the sintering process, but in the structure after sintering, double carbon (nitride)
Since the oxides do not form and remain as a metal phase, the resulting alloy has characteristics of being excellent in hardness, strength, oxidation resistance at high temperatures and extremely excellent in mirror finish.

【0005】WCを第1相とするのは、WCが機械的性
質に優れるためであるが、その平均粒度が2.5μmを
超えると抗折力が低下し、0.4μm未満では高温で硬
さが低下しやすくなる。Tiを添加するのはそれを含む
複炭(窒)化物が高温硬さおよび耐酸化性を向上させる
ためであり、添加量が1%未満ではその効果が少なく、
25%を超えて添加すると焼結時の緻密化が困難とな
る。Niおよび/またはCoを添加するのは焼結性を向
上させるためであり、添加量が0.5%未満ではその効
果が少なく、2%を超えると第3相の複炭(窒)化物お
よびWCが粗大化して強度の低下が著しくなる。Tiお
よびWの一部をTiおよびW以外の周期律表IVa、V
aおよびVIa族に属する遷移金属の1種または2種以
上で置換すると、合金の耐酸化性がより向上したり、硬
さが上昇するなどの効果があるが、10%を超えて置換
すると焼結性が低下する。炭素の一部を窒素で置換する
と、合金の耐酸化性がより向上するので好ましいが20
%を超えて置換すると、焼結性が低下する。Niおよび
/またはCoの一部をFeで置換しても焼結性向上に効
果があるが、置換量が多くなると耐酸化性が劣化するた
め、それらの置換量はNiおよび/またはCoの合計量
の50%以下とすることが好ましい。
The reason why WC is used as the first phase is that WC has excellent mechanical properties. However, if the average particle size exceeds 2.5 μm, the transverse rupture strength decreases, and if the average particle size is less than 0.4 μm, the WC becomes hard at high temperatures. Tends to decrease. The addition of Ti is for the purpose of improving the high-temperature hardness and oxidation resistance of the double carbon (nitride) containing Ti, and the effect is small when the addition amount is less than 1%,
If it is added in excess of 25%, it becomes difficult to densify during sintering. The addition of Ni and / or Co is for improving the sinterability. When the addition amount is less than 0.5%, the effect is small, and when it exceeds 2%, the third phase double carbon (nitride) and The WC becomes coarse and the strength is significantly reduced. Periodic tables IVa, V other than Ti and W
Substitution with one or more transition metals belonging to groups a and VIa has effects such as further improving the oxidation resistance of the alloy and increasing the hardness. Bondability decreases. It is preferable to replace a part of carbon with nitrogen, because the oxidation resistance of the alloy is further improved.
%, The sinterability decreases. Although the replacement of a part of Ni and / or Co with Fe is effective in improving the sinterability, the oxidation resistance is deteriorated when the replacement amount is large. Therefore, the replacement amount is the total of Ni and / or Co. It is preferable to set the amount to 50% or less.

【0006】[0006]

【実施例】本発明品を製造するには、必須組成としてW
C、TiC、WとNiおよび/またはCo粉末を用い、
混合粉中炭素量を、WCとTiCの配合比率によって定
まる化学量論組成の炭素量より低めに配合し、ボールミ
ルあるいはアトライターにより湿式混合し、乾燥後、所
望の形状に約1〜5t/cmで加圧成形する。次に、
成形体を1350〜1500℃−60分真空焼結した
後、1350℃−60分、1000気圧のAr中でHI
P処理を施し、その後最終的な形状に加工する。ここで
W粉末を添加するのは、炭素量を低めに調整してNiお
よび/またはCoが複炭(窒)化物を形成するようにす
るためである。表1に本発明合金および比較合金の配合
組成を示した。本発明合金No.1〜4は、結合相金属
をNiとしてTi量を変化させたものであり、No.5
〜8は、結合相金属をNiとしてTiおよびWの一部を
TiおよびW以外の周期律表IVa,VaおよびVIa
族に属する遷移金属の1種または2種以上で置換したも
の、No.9〜13は、結合相金属をNiとして炭化物
の一部を窒化物で置換したもの、No.14は結合相金
属をCoとしたもの、No.15は結合相金属をNiお
よびCoとしたもの、No.16、17はそれぞれNi
と、NiおよびCoの一部をFeで置換したもの、比較
合金No.1は、結合相金属を含まない焼結合金、N
o.2〜4はW粉末の添加量を減じてNiを金属相のま
ま存在させたもの、同No.5、6はTiを含まない一
般的な耐摩耗工具用超硬合金である。同表には、焼結後
の合金中炭素量およびWC平均粒度も併示した。
EXAMPLES In order to manufacture the product of the present invention, W is required as an essential composition.
Using C, TiC, W and Ni and / or Co powder,
The carbon content in the mixed powder is blended so as to be lower than the carbon content of the stoichiometric composition determined by the blending ratio of WC and TiC, wet-mixed with a ball mill or an attritor, and dried to a desired shape of about 1 to 5 t / cm. Press molding at 2 . next,
After vacuum-sintering the molded body at 1350 to 1500 ° C. for 60 minutes, HI was performed at 1350 ° C. for 60 minutes in 1000 atm of Ar.
P processing is performed, and then processed into a final shape. The reason why the W powder is added here is to adjust the amount of carbon to be lower so that Ni and / or Co form double carbon (nitride). Table 1 shows the composition of the alloy of the present invention and the comparative alloy. The alloy No. of the present invention. Nos. 1 to 4 were obtained by changing the amount of Ti with the binder phase metal being Ni. 5
No. 8 to No. 8 represent a periodic table IVa, Va and VIa other than Ti and W with a part of Ti and W as the binder phase metal being Ni.
Substituted with one or more transition metals belonging to the Nos. 9 to 13 were obtained by substituting a part of carbides with nitrides using Ni as the binder phase metal. No. 14 was obtained by using Co as the binder phase metal. No. 15 was obtained by using Ni and Co as binder phase metals. 16 and 17 are Ni
, Ni and Co partially substituted with Fe, Comparative Alloy No. 1 is a sintered alloy containing no binder phase metal, N
o. Nos. 2 to 4 were samples in which the amount of W powder added was reduced and Ni was present in the metal phase, and Reference numerals 5 and 6 are ordinary cemented carbides for wear-resistant tools that do not contain Ti. The table also shows the carbon content in the alloy after sintering and the average WC particle size.

【0007】[0007]

【表1】 [Table 1]

【0008】表1の組成の本発明合金および比較合金の
組織構成相、抗折力、硬さ、耐酸化性(酸化増量)、お
よびそれらの組成で作製した金型用押しピン(外径30
mm)を用いてガラスレンズのプレス成形を行い、押し
ピン押圧面の表面粗さの変化を調べた結果を表2に示
す。硬さはマイクロビッカース硬さ(荷重1kgf)を
測定し、酸化増量試験は、10×10×5mmの試験片
を表面仕上げ後、大気中で800℃、30分間加熱し、
その重量変化から算出した。また、ガラスレンズ成形試
験については以下のように行った。まずフリント系光学
ガラスを球状にして、超硬合金製金型のキャビテイ内に
入れる。次に、真空または窒素雰囲気中で加熱成形す
る。条件は、10K/minで昇温して600℃まで加
熱し、成形圧力10kgf/cmで5分間保持後、4
00℃まで5K/minで冷却し、その後20K/mi
n以上の速度で冷却して、300℃で大気中に開放す
る。以上のような成形を100回迄繰り返し行い、10
回および100回成形後の押しピン押圧面の表面粗さを
測定した。
The structural constituent phases, transverse rupture strength, hardness, oxidation resistance (increase in oxidation) of the alloys of the present invention and comparative alloys having the compositions shown in Table 1, and the push pins for molds (outer diameter 30
mm), and the results of examining the change in surface roughness of the push pin pressing surface are shown in Table 2. The hardness was measured by micro Vickers hardness (load 1 kgf), and the oxidation weight increase test was performed by heating a test piece of 10 × 10 × 5 mm in the air at 800 ° C. for 30 minutes in the air after surface finishing.
It was calculated from the change in weight. The glass lens forming test was performed as follows. First, the flint-based optical glass is made into a spherical shape and placed in a cavity of a cemented carbide mold. Next, heat molding is performed in a vacuum or nitrogen atmosphere. The conditions were as follows: the temperature was raised at 10 K / min, heated to 600 ° C., and maintained at a molding pressure of 10 kgf / cm 2 for 5 minutes.
Cool down to 00 ° C at 5K / min, then 20K / mi
Cool at a rate of n or more and open to the atmosphere at 300 ° C. The above molding was repeated up to 100 times,
The surface roughness of the push pin pressing surface after molding 100 times and 100 times was measured.

【0009】本発明合金は比較合金1に比べて試験前の
表面粗さに優れ、また比較合金2〜6に比べると抗折力
は全体に低いが、高温(600℃)硬さが高い上に、酸
化増量が少なく耐酸化性に優れることが分かる。また、
ガラス成形試験における本発明合金の押しピン押圧面の
表面粗さは、比較合金のそれより著しく劣化し難く損耗
しにくいことから、熱間プレス成形用金型材料として極
めて優れていることが分かる。
The alloy of the present invention is superior in the surface roughness before the test as compared with the comparative alloy 1 and has a low transverse rupture strength as compared with the comparative alloys 2 to 6, but has a high hardness at high temperature (600 ° C.). In addition, it can be seen that the oxidation increase is small and the oxidation resistance is excellent. Also,
Since the surface roughness of the push pin pressing surface of the alloy of the present invention in the glass forming test is not significantly deteriorated and hard to be worn as compared with that of the comparative alloy, it is understood that it is extremely excellent as a die material for hot press forming.

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【発明の効果】以上説明したように、本発明に係わる焼
結合金は、高温硬さや耐酸化性に優れ、熱間成形用金型
としての実用試験においても損耗しにくく、産業上の利
用価値が高い。
As described above, the sintered alloy according to the present invention is excellent in high-temperature hardness and oxidation resistance, hardly worn out even in a practical test as a hot-forming die, and has an industrial value. Is high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22F 3/15 B22F 3/15 F ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B22F 3/15 B22F 3/15 F

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 (a)質量率(以下、同様)で、W:6
3〜93%、Ti:1〜25%、C:5〜10%、Ni
および/またはCo:0.5〜2%、および不可避不純
物からなる組成を有し、かつ(b)第1相は平均粒度が
0.4〜2.5μmの炭化タングステン、第2相がTi
とWとの複炭化物、第3相がNiおよび/またはCoを
含む複炭化物からなる3相混合組織であることを特徴と
する焼結合金。
1. (a) In mass ratio (hereinafter the same), W: 6
3 to 93%, Ti: 1 to 25%, C: 5 to 10%, Ni
And / or Co: 0.5-2% and a composition consisting of unavoidable impurities, and (b) the first phase is tungsten carbide having an average particle size of 0.4-2.5 μm, and the second phase is Ti
A sintered alloy, characterized by having a three-phase mixed structure of a double carbide of W and W, and the third phase is a double carbide containing Ni and / or Co.
【請求項2】 請求項1の(a)の組成のうち、Tiお
よびWがそれらの合計量の10%以下をTiおよびWを
除く周期律表IVa、VaおよびVIa族に属する遷移
金属の1種または2種以上で置換されており、かつ請求
項1の(b)の組織構成のうち、第2相がTi、Wおよ
び上記遷移金属の1種または2種以上の複炭化物である
3相混合組織を有する焼結合金。
2. In the composition of (a) of claim 1, one of transition metals belonging to groups IVa, Va and VIa of the periodic table excluding Ti and W accounts for 10% or less of the total amount of Ti and W. 3. A three-phase which is substituted by one or more kinds and wherein the second phase is one or two or more double carbides of Ti, W and the transition metal in the structure of claim 1 (b). A sintered alloy with a mixed structure.
【請求項3】 請求項1の(a)の組成のうち、炭素が
その20%以下を窒素で置換されており、かつ請求項1
の(b)の組織構成のうち、第2相がTiとWとの複炭
窒化物、第3相がNiおよび/またはCoを含む複炭窒
化物である3相混合組織を有する焼結合金。
3. The composition according to claim 1, wherein not more than 20% of carbon is substituted with nitrogen.
(B), a sintered alloy having a three-phase mixed structure in which the second phase is a double carbonitride of Ti and W, and the third phase is a double carbonitride containing Ni and / or Co. .
【請求項4】 請求項1の(a)の組成のうち、Tiお
よびWがそれらの合計量の10%以下をTiおよびWを
除く周期律表IVa、VaおよびVIa族に属する遷移
金属の1種または2種以上で置換されており、炭素がそ
の20%以下を窒素で置換されており、かつ請求項1の
(b)の組織構成のうち、第2相がTi、Wおよび上記
遷移金属の1種または2種以上の複炭窒化物、第3相が
Niおよび/またはCoを含む複炭窒化物である3相混
合組織を有する焼結合金。
4. A transition metal belonging to Group IVa, Va and VIa of the Periodic Table excluding Ti and W in which Ti and W account for 10% or less of the total amount of the composition of (a) of claim 1. Wherein at least 20% or less of the carbon is replaced by nitrogen, and wherein the second phase comprises Ti, W and the transition metal in the structure of claim 1 (b). And a sintered alloy having a three-phase mixed structure in which the third phase is a double carbonitride containing Ni and / or Co.
【請求項5】 請求項1〜4に記載の焼結合金組成のう
ち、Niおよび/またはCoがその合計量の50%以下
をFeで置換されており、かつ組織構成のうち第3相が
Niおよび/またはCoとFeを含む複炭化物または複
炭窒化物である3相混合組織を有する焼結合金。
5. The sintered alloy composition according to claim 1, wherein Ni and / or Co are substituted with Fe for 50% or less of the total amount thereof, and the third phase of the microstructure is A sintered alloy having a three-phase mixed structure that is a double carbide or double carbonitride containing Ni and / or Co and Fe.
【請求項6】 請求項1〜5のいずれかに記載された焼
結合金を用いた熱間成形用金型。
6. A hot forming mold using the sintered alloy according to claim 1.
JP2000404295A 2000-12-14 2000-12-14 Sintered alloy excellent in high temperature property and die for hot forming using the alloy Pending JP2002180175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404295A JP2002180175A (en) 2000-12-14 2000-12-14 Sintered alloy excellent in high temperature property and die for hot forming using the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404295A JP2002180175A (en) 2000-12-14 2000-12-14 Sintered alloy excellent in high temperature property and die for hot forming using the alloy

Publications (1)

Publication Number Publication Date
JP2002180175A true JP2002180175A (en) 2002-06-26

Family

ID=18868276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404295A Pending JP2002180175A (en) 2000-12-14 2000-12-14 Sintered alloy excellent in high temperature property and die for hot forming using the alloy

Country Status (1)

Country Link
JP (1) JP2002180175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513119A (en) * 2003-01-13 2006-04-20 ジーニアス メタル インコーポレーテッド Composition for cemented carbide and method for producing cemented carbide
US7645315B2 (en) 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
US7857188B2 (en) 2005-03-15 2010-12-28 Worldwide Strategy Holding Limited High-performance friction stir welding tools
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513119A (en) * 2003-01-13 2006-04-20 ジーニアス メタル インコーポレーテッド Composition for cemented carbide and method for producing cemented carbide
US7645315B2 (en) 2003-01-13 2010-01-12 Worldwide Strategy Holdings Limited High-performance hardmetal materials
JP2010156048A (en) * 2003-01-13 2010-07-15 Worldwide Strategy Holdings Ltd Hardmetal composition and fabrication method for hardmetal
US7857188B2 (en) 2005-03-15 2010-12-28 Worldwide Strategy Holding Limited High-performance friction stir welding tools
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same
JP2012229138A (en) * 2011-04-26 2012-11-22 Nippon Tungsten Co Ltd Tungsten carbide-based sintered body and abrasion resistant member using the same

Similar Documents

Publication Publication Date Title
CN111378885B (en) Hard alloy with surface layer rich in binder phase gradient structure and preparation method thereof
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
JP2660455B2 (en) Heat resistant hard sintered alloy
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP3721510B2 (en) Sintered alloy suitable for optical glass mold and its peripheral components
JP2002180175A (en) Sintered alloy excellent in high temperature property and die for hot forming using the alloy
JP4971564B2 (en) Sintered alloy with excellent high-temperature properties and hot forming mold using the same
WO2005037731A1 (en) Hard material excelling in resistance to high-temperature deterioration
JP5381616B2 (en) Cermet and coated cermet
JP2012087045A (en) Method for producing binderless alloy
JP7351582B1 (en) Sintered alloy and mold
JPS58213842A (en) Manufacture of high strength cermet
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS63199843A (en) Composite molded body of molybdenum or its alloy and zirconia and its production
CN115369300B (en) AlN and TiB-containing material 2 Ti (C, N) -based cermet tool material and preparation method thereof
KR100396009B1 (en) High hardness titanium carbonitride based cermets and manufacturing method thereof
JPS61201750A (en) Sintered hard alloy
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JP4280037B2 (en) Method for producing Ti-based cermet
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength
JPH06340941A (en) Nano-phase composite hard material and its production
JP2009179519A (en) Binderless alloy
JPH0617182A (en) High strength tungsten carbide-based cemented carbide
JPS58213843A (en) Manufacture of high strength cermet

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211