WO2005037731A1 - Hard material excelling in resistance to high-temperature deterioration - Google Patents

Hard material excelling in resistance to high-temperature deterioration Download PDF

Info

Publication number
WO2005037731A1
WO2005037731A1 PCT/JP2004/015736 JP2004015736W WO2005037731A1 WO 2005037731 A1 WO2005037731 A1 WO 2005037731A1 JP 2004015736 W JP2004015736 W JP 2004015736W WO 2005037731 A1 WO2005037731 A1 WO 2005037731A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
carbide
hard material
resistance
weight
Prior art date
Application number
PCT/JP2004/015736
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Nakahara
Hiroki Tanaka
Shuichi Imasato
Shigeya Sakaguchi
Yasuo Uchiyama
Original Assignee
Nippon Tungsten Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co., Ltd. filed Critical Nippon Tungsten Co., Ltd.
Priority to JP2005514880A priority Critical patent/JPWO2005037731A1/en
Publication of WO2005037731A1 publication Critical patent/WO2005037731A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the present invention relates to a hard material having excellent resistance to high-temperature deterioration suitable as a high-precision mold material for molding an optical element such as a lens and a prism.
  • the mold material used in the high-temperature press molding is required to have not only high-temperature degradation resistance but also excellent properties such as mirror workability, high-temperature hardness, thermal conductivity, and low coefficient of thermal expansion.
  • Hard materials such as cemented carbides and ceramics have been used as materials to meet those requirements.
  • Patent Document 1 discloses that cobalt is used as a cemented carbide for hot isostatic pressing suitable for an optical element molding die having a mirror surface with a Rmax of 0.05 ⁇ m or less after processing.
  • a WC-based cemented carbide containing 10% by weight is disclosed.
  • the binder phase is changed from Co to Ni, and further, Cr, Mo, or the like is added.
  • Patent Document 1 Japanese Patent Publication No. 62-51211
  • Patent Document 2 JP-A-2-120244
  • Patent Document 3 JP-A-10-7425
  • Patent document 4 JP-A-2003-81649
  • a binderless cemented carbide having no binder phase As a high-temperature molding material such as a high-precision molding material for optical element molding, it is necessary to provide higher strength and high-temperature deterioration resistance.
  • Sarako be excellent in high-temperature hardness, mirror workability, corrosion resistance and the like.
  • An object of the present invention is to provide a Noinderless WC-based cemented carbide that has a mirror surface with high surface accuracy and is free from structural defects such as pores and abnormal phases, and has excellent resistance to high-temperature deterioration. It is to do.
  • Another object is to provide a binderless WC-based cemented carbide having high hardness, high strength, a large Young's modulus, a small coefficient of thermal expansion, and excellent corrosion resistance.
  • Another object is to provide a binderless WC-based material having hardness and strength at high temperatures, excellent machined surface accuracy and surface roughness, and characteristics suitable for high-temperature precision molding of various optical elements.
  • cemented carbide In providing cemented carbide.
  • a binderless cemented carbide comprising a WC phase and a solid solution double carbide phase of two or more metals of Z or W, Ti and Ta according to the present invention, wherein the average particle diameter is 1 ⁇ m or less.
  • Fine grained raw material powder is used, after sintering and densification, the particle size of the raw material powder is adjusted to maintain the fine grain state and its fine crystal structure. It has properties suitable for high-temperature precision molding molds with a maintained texture.
  • the WC phase is excellent in hardness, strength, machined surface roughness, etc.
  • the average particle size By reducing the average particle size to 1 ⁇ m or less, the structure becomes finer, and it becomes possible to improve the strength, hardness and mirror workability.
  • the SiC phase formed by adding Si exhibits excellent properties such as hardness and resistance to high-temperature deterioration, but when the average particle diameter exceeds 1 ⁇ m, the strength is significantly reduced.
  • Si promotes the formation of a very stable glass phase containing Si when used at a high temperature, and significantly improves the resistance to high temperature deterioration.
  • the existence of the SiC phase suppresses the grain growth of a solid solution double carbide phase such as Ti or Ta and W, or a WC phase, thereby maintaining a fine structure. If the addition amount is less than 0.1%, the effect is small. If it exceeds 10%, sinterability is remarkably deteriorated, and material defects such as pores increase.
  • the content is preferably set to 1% by weight or less, since the crystal grain boundaries are unfavorably affected and the mirror workability and the high temperature deterioration resistance are significantly adversely affected.
  • the content is preferably 1% by weight or less.
  • the invention's effect The hard material of the present invention has a surface with very few systematic defects such as pores and abnormal phases, a highly accurate mirror surface, excellent resistance to high temperature deterioration, and high hardness. ⁇ High strength, high Young's modulus, low thermal expansion coefficient, excellent corrosion resistance, and longer product life than conventional materials.
  • Table 1 shows the C content in the composition of the raw material powder according to the examples of the present invention after sintering and the WC average particle size together with comparative examples.
  • the raw material powder was pulverized and mixed with a ball mill of a methanol solvent, and press-molded with O.lGPa.
  • HIP treatment was performed at 1,200 ° C in an atmosphere of 1 to 2 H for Ar, and finished to the final shape by grinding.
  • the average WC particle size and composition of the obtained hard material is hardness. * Mechanical properties such as bending strength and machined surface roughness, and high temperature properties such as high temperature hardness and high temperature degradation resistance, and corrosion resistance. The effects were investigated.
  • the hardness was measured by HRA (Rockwell Kale), and the bending strength was measured by a three-point bending test method using a 5 x 8 x 25 mm test piece.
  • HRA Rockwell Kale
  • a 5 x 8 x 10 mm test piece with its surface wrapped was kept in air at 800 ° C for 1H, and the weight increase before and after that was calculated from the weight change.
  • the WC average particle diameter is the force determined from the alloy structure observation force. Alloys for which no WC phase was observed are indicated by “1” in Table 1! /.
  • Ti content was changed by using a fine raw material powder and optimizing sintering conditions in an alloy in which WC or a solid solution complex carbide phase was refined. Although it is an alloy, its hardness, bending strength, surface roughness, and oxidation increase at room temperature and 600 ° C are improved over the comparative material.
  • Example Nos. 5 to 9 a part of W belongs to Groups 4, 5, and 6 of the periodic table other than W.
  • the transition metal is an alloy that is substituted with Cr and V. These metal carbides act as grain growth inhibitors, reducing the average WC particle size, further increasing the hardness (room temperature and 600 ° C) and the transverse rupture strength. It is apparent that the surface roughness and the amount of acid addition have been improved.
  • Example No. 14-14 is an alloy further added with SiC (the one marked with * is an example in which Si metal is used in combination.)
  • the average particle size has been reduced and the hardness (room temperature and 600 ° C), surface roughness and oxidation weight gain have been improved.
  • Example Nos. 15-19 are alloys in which a part of WC was replaced with TiCN, and the presence of carbonitrides and nitrides particularly improved the amount of oxidation.
  • the spherical optical lens raw material glass placed in the lens molding machine housing 2 is placed in the cavities of the upper mold 21 and the lower mold 22 of the press mold, and the upper holder of the mold is placed. 11 and the lower holder 12 fixed.
  • nitrogen with an oxygen concentration of 50 ppm is introduced through the gas inflow pipe 3, and the heater 14 Mold 13 was heated to 500 ° C.
  • the upper mold 21 is held by the upper shaft pressing cylinder 1 via the upper shaft 7 and the lower mold 22 is held by the shaft pressing cylinder 8 via the lower shaft 8 at a molding pressure of 2 MPa for 3 minutes, and then cooled.
  • the atmosphere was purged.
  • Table 3 shows the results of measuring the change in mold surface roughness after 500 cycles. From the table, it was confirmed that each of Examples No. 1 to 19 of the present invention had excellent high-temperature deterioration properties in which the change in surface roughness after the 500 cycle test was smaller than that of the comparative material.
  • This example shows an example of a hard material sintered and densified by using a pulse electric current sintering method.
  • the raw material powder was pulverized and mixed in a ball mill of a methanol solvent, and methanol was evaporated to obtain a granulated powder.
  • the granulated powder was filled in a high-strength graphite die (die and punch) and then sintered by a pulse current sintering apparatus. Sintering temperature is 1300 ° C-1900
  • the average WC particle size and composition of the obtained hard material are hardness * Mechanical properties such as bending strength and machined surface roughness, high temperature properties such as high temperature hardness and high temperature deterioration resistance, and corrosion resistance The effects were investigated.
  • Nos. 106, 110, 114, and 118 in Table 2 show the results of microstructure observation, hardness, bending strength, and resistance to high-temperature deterioration of the obtained hard material, that is, the results of investigations on the increase in oxidation.
  • the hardness was measured by HRA, and the bending strength was measured by a three-point bending test method using a 5 ⁇ 8 ⁇ 25 mm test piece.
  • a 5 ⁇ 8 ⁇ 10 mm test piece whose surface was wrapped was held at 800 ° C. in the air for 1 hour, and the weight change before and after the test was also calculated as an increase in iridescence.
  • the average WC particle size is indicated by “1” for alloys in which no WC phase is observed, as determined by the force of observation of the alloy structure.
  • the hard material sintered and densified using the pulsed electric current sintering method is harder than the comparative material at room temperature and 600 ° C. It can be seen that both have been improved.
  • the material had excellent corrosion resistance equal to or higher than that of the force comparison material omitting the evaluation result on the corrosion resistance.
  • the hard material of the present invention also has excellent wear resistance, heat resistance, mirror workability, corrosion resistance, and the like. Since it is equipped, in addition to ultra-precision molding dies and peripheral equipment, heat-sliding moving members such as mechanical seal rings, shaft sleeve slide bearings, and injection molding molds such as metal * plastic 'composite materials, It can also be applied as a constituent material of a vacuum chuck for an electronic component manufacturing apparatus.
  • FIG. 1 is a cross-sectional view showing a mold for molding an optical glass lens element to which a hard material according to the present invention is applied, and a molding apparatus therefor.

Abstract

It is intended to impart to a WC base cemented carbide without any binding phase such characteristics that the cemented carbide has none of structural defects such as pore and abnormal phase; a specular surface of high surface precision can be obtained; the cemented carbide excels in the resistance to high-temperature deterioration and has high hardness and high strength; the Young’s modulus thereof is high while the thermal expansion coefficient is low; the cemented carbide excels in corrosion resistance; and the cemented carbide exhibits especially high-temperature hardness and strength and further excellent worked surface precision and surface roughness so that it is suitable for use as a material of high-temperature precision forming mold for various optical devices. There is provided a binder-less cemented carbide comprising a WC phase and/or a solid solution composite carbide phase of at least two metals selected from among W, Ti and Ta, wherein a microcrystalline structure is maintained even after sintering compaction by the use of raw material powder of microparticles with an average particle diameter of 1 μm or less and wherein either is a with-Si solid solution composite carbide phase formed or SiC is caused to be present as a third phase by effecting not only such particle size regulation but also addition of Si or SiC to the raw material powder.

Description

明 細 書  Specification
耐高温劣化性に優れた硬質材料  Hard material with excellent resistance to high temperature deterioration
技術分野  Technical field
[0001] 本発明は、レンズ、プリズム等の光学素子成形用の高精度型材として好適な耐高 温劣化性に優れた硬質材料に関する。  The present invention relates to a hard material having excellent resistance to high-temperature deterioration suitable as a high-precision mold material for molding an optical element such as a lens and a prism.
背景技術  Background art
[0002] 近年、 CD、 DVD,デジタルカメラや携帯電話などで使用されて!ヽる光学ピックアツ プレンズやコンピューターのハードディスク用基板に用いられるガラス製、プラスチッ ク製等の光学素子の製造に際して、低価格の下で高信頼性の最終製品形状を得る 方法として、複雑な機械的な精密加工を必要としない高温中でのプレス成形手段が 採用されている。  [0002] In recent years, optical pickup lenses used in CDs, DVDs, digital cameras, mobile phones, and the like! Low-priced optical elements such as glass and plastic used for substrates for computer hard disk substrates As a method of obtaining a highly reliable final product shape under high temperature, press forming means at high temperatures that does not require complicated mechanical precision processing is adopted.
[0003] この高温プレス成形で使用される金型材料には、耐高温劣化性とともに、鏡面加工 性、高温硬さ、熱伝導性、低熱膨張率などに優れた特性が要求され、従来から、その 要求に合った材料として超硬合金やセラミックスのような硬質材料が使用されて来た  [0003] The mold material used in the high-temperature press molding is required to have not only high-temperature degradation resistance but also excellent properties such as mirror workability, high-temperature hardness, thermal conductivity, and low coefficient of thermal expansion. Hard materials such as cemented carbides and ceramics have been used as materials to meet those requirements.
[0004] 例えば、特許文献 1には、加工後の表面が Rmax 0.05 μ m以下の鏡面を形成す る光学素子成形用型に適した熱間静水圧プレス用の超硬合金として、コバルトを 3— 10重量%含む WC基超硬合金が開示されている。 また、この超硬合金の耐食性や 耐高温劣化性を改善するために、結合相を Coから Niに変更したり、さらに、 Cr、 Mo 等を添加することが行われて 、る。 [0004] For example, Patent Document 1 discloses that cobalt is used as a cemented carbide for hot isostatic pressing suitable for an optical element molding die having a mirror surface with a Rmax of 0.05 μm or less after processing. — A WC-based cemented carbide containing 10% by weight is disclosed. Further, in order to improve the corrosion resistance and high-temperature deterioration resistance of the cemented carbide, the binder phase is changed from Co to Ni, and further, Cr, Mo, or the like is added.
[0005] し力しながら、このように、超硬合金の結合相を強化しても、結合相自体は、炭化物 相と比較するとィ匕学的安定性において劣っており、高温成形作業中の作業雰囲気 による腐食や酸化、さらには、窒化などによる高温劣化が結合相より発生し、これが 金型の寿命を短くする原因となって!/ヽる。  [0005] Even when the binder phase of the cemented carbide is strengthened as described above, the binder phase itself is inferior to the carbide phase in ridge-like stability, and during the high-temperature forming operation, Corrosion and oxidation due to the working atmosphere, as well as high-temperature degradation due to nitridation, etc., occur from the binder phase, which shortens the life of the mold!
[0006] そこで、高温劣化が発生する結合相を含まな!/、炭化物相のみ力 なる超硬合金、 いわゆるバインダレス超硬合金が精密成型用の材料として使用されれば、これらの硬 質合金の特性の向上が期待できることになる。このようなバインダレス超硬合金自体 は、特許文献 2— 4に開示されている。 [0006] Therefore, if a cemented carbide that does not contain a binder phase that causes high-temperature deterioration is used, or a cemented carbide that is only a carbide phase, that is, a binderless cemented carbide is used as a material for precision molding, these hard alloys can be used. The characteristics can be expected to be improved. Such binderless cemented carbide itself Are disclosed in Patent Documents 2-4.
特許文献 1:特公昭 62-51211号公報  Patent Document 1: Japanese Patent Publication No. 62-51211
特許文献 2:特開平 2 - 120244号公報  Patent Document 2: JP-A-2-120244
特許文献 3:特開平 10— 7425号公報  Patent Document 3: JP-A-10-7425
特許文献 4:特開 2003-81649号公報  Patent document 4: JP-A-2003-81649
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、この結合相を有しないバインダレス超硬合金を光学素子成形用の高 精度型材のような高温成形型材として使用するには、より高い強度と、耐高温劣化性In order to use a binderless cemented carbide having no binder phase as a high-temperature molding material such as a high-precision molding material for optical element molding, it is necessary to provide higher strength and high-temperature deterioration resistance.
、さら〖こは、高温硬さ、鏡面加工性、耐食性などに優れていることが要求される。 It is required that Sarako be excellent in high-temperature hardness, mirror workability, corrosion resistance and the like.
[0008] 本発明の目的は、ポア (空孔)や異常相などの組織的欠陥がなぐ面精度の良い鏡 面が得られ、耐高温劣化性に優れたノインダレス WC基の超硬合金を提供すること にある。 [0008] An object of the present invention is to provide a Noinderless WC-based cemented carbide that has a mirror surface with high surface accuracy and is free from structural defects such as pores and abnormal phases, and has excellent resistance to high-temperature deterioration. It is to do.
[0009] 他の目的は、高硬度で且つ高強度であり、ヤング率が大きぐ熱膨張係数が小さく 、さら〖こは、耐食性に優れたバインダレス WC基の超硬合金の提供にある。  Another object is to provide a binderless WC-based cemented carbide having high hardness, high strength, a large Young's modulus, a small coefficient of thermal expansion, and excellent corrosion resistance.
[0010] さらに、他の目的は、高温における硬度と強度、優れた加工面精度および面粗度を 有し、各種の光学素子の高温精密成形用型材に適した特性を有するバインダレス W C基の超硬合金の提供にある。  [0010] Further, another object is to provide a binderless WC-based material having hardness and strength at high temperatures, excellent machined surface accuracy and surface roughness, and characteristics suitable for high-temperature precision molding of various optical elements. In providing cemented carbide.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の WC相および Zまたは、 Wと Tiと Taとの 2種以上の金属の固溶体複炭化 物相からなるバインダレス超硬合金であって、平均粒子径が 1 μ m以下の微粒の原 料粉末を用い、焼結緻密化した後にお 、ても原料粉末の微粒状態とその微細結晶 組織を維持する粒度調整をしたもので、焼結緻密化した後にお ヽても微細結晶組織 が維持された高温精密成形用型材に適した特性を有する。  [0011] A binderless cemented carbide comprising a WC phase and a solid solution double carbide phase of two or more metals of Z or W, Ti and Ta according to the present invention, wherein the average particle diameter is 1 μm or less. Fine grained raw material powder is used, after sintering and densification, the particle size of the raw material powder is adjusted to maintain the fine grain state and its fine crystal structure. It has properties suitable for high-temperature precision molding molds with a maintained texture.
[0012] また、前記粒度調整に際して、 Sほたは SiCを原料粉末として添加して Siとの固溶 体複炭化物相を形成するか、または、 SiCを第 3相として存在させたものとすることも できる。  [0012] In the particle size adjustment, it is assumed that S is added as raw material powder to form a solid solution complex carbide phase with Si, or that SiC is present as a third phase. You can also.
[0013] この超硬合金において、 WC相は、硬度、強度、加工面粗度などに優れているが、 その平均粒子径を 1 μ m以下にすることによって、組織が微細となり、強度'硬度およ び鏡面加工性などを改善することが可能となる。 [0013] In this cemented carbide, the WC phase is excellent in hardness, strength, machined surface roughness, etc. By reducing the average particle size to 1 μm or less, the structure becomes finer, and it becomes possible to improve the strength, hardness and mirror workability.
[0014] これに対して、その平均粒子径が 1 μ mを超えると強度および硬度が低下する。ま た、 Siを添加することによって形成される SiC相は硬度、耐高温劣化性などに優れた 特性を示すことになるが、その平均粒子径が 1 μ mを超えると強度が著しく低下する。  [0014] On the other hand, if the average particle size exceeds 1 µm, the strength and hardness decrease. In addition, the SiC phase formed by adding Si exhibits excellent properties such as hardness and resistance to high-temperature deterioration, but when the average particle diameter exceeds 1 μm, the strength is significantly reduced.
[0015] Siの添カ卩によって、高温使用時に Siを含む非常に安定したガラス相の形成が助長 され、耐高温劣化性は著しく改善される。また、 SiC相として存在させることによって T iあるいは Taと Wなどカゝらなる固溶体複炭化物相や WC相の粒成長を抑制し微細組 織を維持することが可能となる。その添加量は 0.1%未満ではその効果が少なぐ 10 %を超えると焼結性が著しく悪くなつて、ポアなどの材料的欠陥が増加する。  [0015] The addition of Si promotes the formation of a very stable glass phase containing Si when used at a high temperature, and significantly improves the resistance to high temperature deterioration. In addition, the existence of the SiC phase suppresses the grain growth of a solid solution double carbide phase such as Ti or Ta and W, or a WC phase, thereby maintaining a fine structure. If the addition amount is less than 0.1%, the effect is small. If it exceeds 10%, sinterability is remarkably deteriorated, and material defects such as pores increase.
[0016] Tiおよび Taの一部を周期律表 4、 5、および 6族に属する遷移金属の 1種または 2 種以上で置換すると、それら遷移金属やその炭化物の形で固溶もしくは析出すること によって粒成長が抑制されて、硬度と強度が向上し、耐高温劣化性を改善する。  [0016] When a part of Ti and Ta is substituted with one or more transition metals belonging to Groups 4, 5, and 6 of the periodic table, solid solution or precipitation occurs in the form of those transition metals or carbides thereof. Thereby, grain growth is suppressed, hardness and strength are improved, and resistance to high temperature deterioration is improved.
[0017] Cの一部を Nによって置換することにより、 Tiおよび Zまたは Taと Wからなる固溶体 複炭窒化物相や Si Nを存在せしめることによって、合金の耐高温劣化性は改善さ  [0017] By substituting a part of C with N, the presence of a solid solution double carbonitride phase composed of Ti and Z or Ta and W or SiN improves the high-temperature resistance of the alloy.
3 4  3 4
れるが、 Cの Nへの置換量が 25重量%を超えると、焼結性が悪くなり合金の強度-鏡 面加工性が著しく悪くなる。  However, if the substitution amount of C to N exceeds 25% by weight, the sinterability deteriorates and the strength-mirror workability of the alloy deteriorates remarkably.
[0018] また、 Fe、 Co、 Niなどの存在によって、焼結性が改善されるものの、 Tiおよび Zま たは Taと Wなどカゝらなる固溶体複炭化物相や WC相に固溶したり、結晶粒界などに 偏祈して、鏡面加工性ゃ耐高温劣化性などに著しい悪影響を与えるため、その含有 量は 1重量%以下にすることが好ましい。 [0018] Although sinterability is improved by the presence of Fe, Co, Ni, etc., it may form a solid solution double carbide phase such as Ti and Z or Ta and W, or form a solid solution with the WC phase. However, the content is preferably set to 1% by weight or less, since the crystal grain boundaries are unfavorably affected and the mirror workability and the high temperature deterioration resistance are significantly adversely affected.
[0019] その他、不可避不純物は異常粒成長や異常相の発生などを引き起こし、強度、硬 度、鏡面カ卩ェ性などに著しい悪影響を与えるため、 1重量%以下にすることが好まし い。 [0019] In addition, unavoidable impurities cause abnormal grain growth and generation of an abnormal phase, and have a remarkable adverse effect on strength, hardness, mirror surface properties, and the like. Therefore, the content is preferably 1% by weight or less.
[0020] 一方、パルス通電加圧焼結法などを用いれば、焼結緻密化が短時間で行えるため 、結晶粒成長そのものを抑制でき、異常粒成長や異常相の発生も低減できるため、 さらに硬度 ·強度 ·鏡面加工性が改善され、生産性も向上する。  [0020] On the other hand, if pulse current pressure sintering or the like is used, sinter densification can be performed in a short time, crystal grain growth itself can be suppressed, and abnormal grain growth and occurrence of an abnormal phase can be reduced. Hardness · Strength · Mirror workability is improved, and productivity is also improved.
発明の効果 [0021] 本発明の硬質材料は、ポア (空孔)や異常相などの組織的欠陥が非常に少なぐ面 精度の良い鏡面が得られること、耐高温劣化性に優れていること、高硬度'高強度で あること、ヤング率が大きいこと、熱膨張係数が小さいこと、耐食性に優れ、従来材と 比較して製品寿命が長くなる。 The invention's effect The hard material of the present invention has a surface with very few systematic defects such as pores and abnormal phases, a highly accurate mirror surface, excellent resistance to high temperature deterioration, and high hardness. 。High strength, high Young's modulus, low thermal expansion coefficient, excellent corrosion resistance, and longer product life than conventional materials.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に本発明を実施するための形態を実施例に基づき説明する。 Hereinafter, embodiments for carrying out the present invention will be described based on examples.
実施例 1  Example 1
[0023] 表 1に、本発明の実施例に係る原料粉末の配合組成の焼結 ·ΗΙΡ後の組成中の C 量と、 WC平均粒子径を、比較例とともに示す。  [0023] Table 1 shows the C content in the composition of the raw material powder according to the examples of the present invention after sintering and the WC average particle size together with comparative examples.
[0024] 本発明に係る実施例の原料粉末としては、平均粒子径が 0.1 mから 1 μ mまでの ものを使用し、それぞれの原料粉末組成として所要の組成が得られるよう調整した。 [0024] As the raw material powder of the examples according to the present invention, those having an average particle diameter of 0.1 m to 1 µm were used, and the respective raw material powder compositions were adjusted to obtain required compositions.
[0025] 原料粉末をメタノール溶媒のボールミルで粉砕混合し、 O.lGPaでプレス成形し、 5[0025] The raw material powder was pulverized and mixed with a ball mill of a methanol solvent, and press-molded with O.lGPa.
00°C— 750°C ' l— 5Hで真空予備焼結し、次いで、 1500°C— 1800°Cで、 0.5— 2Vacuum pre-sintering at 00 ° C-750 ° C 'l- 5H, then at 1500 ° C-1800 ° C, 0.5-2
Hで真空焼結した後、 1500°Cで、 1一 2H、 Ar雰囲気中で HIP処理を行い、研削加 ェで最終形状まで仕上げた。 After vacuum sintering with H, HIP treatment was performed at 1,200 ° C in an atmosphere of 1 to 2 H for Ar, and finished to the final shape by grinding.
[0026] 得られた硬質材の WC平均粒子径、組成が硬度 *抗折力 ·加工表面粗さ等の機械 的特性や、高温硬さ、耐高温劣化性等の高温特性、それに、耐食性に及ぼす影響 を調査した。 [0026] The average WC particle size and composition of the obtained hard material is hardness. * Mechanical properties such as bending strength and machined surface roughness, and high temperature properties such as high temperature hardness and high temperature degradation resistance, and corrosion resistance. The effects were investigated.
[0027] 表 1に示す原料組成から得られた硬質材の組織観察、硬度、抗折力、耐高温劣化 性、すなわち、酸ィ匕増量を調査した結果を比較例の場合と比較して表 2に示す。  [0027] The results of the microstructure observation, hardness, bending strength, and high temperature deterioration resistance of the hard material obtained from the raw material composition shown in Table 1, that is, the results of investigations on the increase in the amount of silicon oxide, were compared with those of the comparative example. See Figure 2.
[0028] なお、硬度は HRA (ロックウェル ケール)で、抗折カは 5 X 8 X 25mm試験片を 用いた 3点曲げ試験法で測定した。耐高温劣化性では表面をラップ加工した 5 X 8 X 10mm試験片を大気中 800°C ' 1H保持し、その前後の重量変化から酸化増量を算 出した。また、 WC平均粒子径は合金組織観察力ゝら求めた力 WC相が認められなか つた合金は表 1中に「一」によって示して!/、る。  [0028] The hardness was measured by HRA (Rockwell Kale), and the bending strength was measured by a three-point bending test method using a 5 x 8 x 25 mm test piece. For high temperature degradation resistance, a 5 x 8 x 10 mm test piece with its surface wrapped was kept in air at 800 ° C for 1H, and the weight increase before and after that was calculated from the weight change. In addition, the WC average particle diameter is the force determined from the alloy structure observation force. Alloys for which no WC phase was observed are indicated by “1” in Table 1! /.
[表 1] 原料粉末配合組成(重量%) 合金中の [table 1] Raw material powder composition (% by weight)
合金 C量  Alloy C content
No. WC平均粒径 No. WC average particle size
WC TiC TiCN TaC C Cr3C2 SiC Si3N4 (重量%) WC TiC TiCN TaC C Cr3C2 SiC Si3N4 (% by weight)
( m) (m)
1 98 1 1 6.3 1.01 98 1 1 6.3 1.0
2 90 8 2 7.2 0.92 90 8 2 7.2 0.9
3 72 26 2 9.7 0.93 72 26 2 9.7 0.9
4 53 45 2 12.4 4 53 45 2 12.4
5 89.6 8 2 0.2 0.2 7.2 0 7 5 89.6 8 2 0.2 0.2 7.2 0 7
6 88 8 2 1 1 7.4 0.56 88 8 2 1 1 7.4 0.5
7 81.6 16 2 0.2 0.2 8.3 0.67 81.6 16 2 0.2 0.2 8.3 0.6
8 71.6 26 2 0.2 0.2 9.7 0.88 71.6 26 2 0.2 0.2 9.7 0.8
9 43 45 2 5 5 13.2 ―9 43 45 2 5 5 13.2 ―
10 89.5 8 2 0.2 0.2 0.1 7.3 0.510 89.5 8 2 0.2 0.2 0.1 7.3 0.5
11 87.7 8 2 1 1 0.3* 7.5 0.4 実 11 87.7 8 2 1 1 0.3 * 7.5 0.4 Actual
施 12 81.3 16 2 0.2 0.2 0.3* 8.4 0.4 例 13 70.6 26 2 0.2 0.2 1 * 9.9 0.5 Alm 12 81.3 16 2 0.2 0.2 0.3 * 8.4 0.4 Example 13 70.6 26 2 0.2 0.2 1 * 9.9 0.5
14 38 45 2 5 5 5* 14.5 14 38 45 2 5 5 5 * 14.5
15 87.6 8 2 2 0.2 0.2 7.4 1 0 15 87.6 8 2 2 0.2 0.2 7.4 1 0
16 76 16 2 2 1 1 2 9.1 0.816 76 16 2 2 1 1 2 9.1 0.8
17 77 16 4 2 0.2 0.2 0.3 0.3 8.6 1.017 77 16 4 2 0.2 0.2 0.3 0.3 8.6 1.0
18 68.6 26 2 2 0.2 0.2 1 9.8 0.818 68.6 26 2 2 0.2 0.2 1 9.8 0.8
19 35 45 2 2 5 5 5 1 14.4 ―19 35 45 2 2 5 5 5 1 14.4 ―
106 88 8 2 1 1 7.4 0.4106 88 8 2 1 1 7.4 0.4
110 89.5 8 2 0.2 0.2 0.1 7.3 0.4110 89.5 8 2 0.2 0.2 0.1 7.3 0.4
114 38 45 2 5 5 5* 14.5 ―114 38 45 2 5 5 5 * 14.5 ―
118 68.6 26 2 2 0.2 0.2 1 9.8 0.7118 68.6 26 2 2 0.2 0.2 1 9.8 0.7
1 96 2 2 6.4 2.01 96 2 2 6.4 2.0
2 90 8 2 7.2 2.5 比 2 90 8 2 7.2 2.5 Ratio
較 3 82 16 2 8.3 2.3 材 4 72 26 2 9.6 3.2 Comparison 3 82 16 2 8.3 2.3 Material 4 72 26 2 9.6 3.2
5 53 45 2 12.2 ―5 53 45 2 12.2 ―
*) (S +Si)量 *) (S + Si) amount
[表 2] [Table 2]
硬さ(HRA) 抗折カ 表面粗さ Ra 酸化増量 Hardness (HRA) Flexural strength Surface roughness Ra Oxidation increase
No.  No.
主/皿 600°C (GPa) (nm) (g/m2) Main / dish 600 ° C (GPa) (nm) (g / m 2 )
1 96.5 89.5 1.0 1.9 299  1 96.5 89.5 1.0 1.9 299
2 96.3 89.1 1.4 1.8 256  2 96.3 89.1 1.4 1.8 256
3 96.1 89 1.3 1.6 245  3 96.1 89 1.3 1.6 245
4 94.9 88.8 1.1 2.5 222  4 94.9 88.8 1.1 2.5 222
5 96.6 89.5 1.8 1.5 232  5 96.6 89.5 1.8 1.5 232
6 96.9 89.3 2.2 1.5 219  6 96.9 89.3 2.2 1.5 219
7 96.4 89 1.9 1.3 226  7 96.4 89 1.9 1.3 226
8 96.2 88.8 1.4 1.2 230  8 96.2 88.8 1.4 1.2 230
9 96.2 88.7 1.2 2.2 198  9 96.2 88.7 1.2 2.2 198
10 97 89.5 1.9 1.2 175  10 97 89.5 1.9 1.2 175
11 97.2 89.8 1.5 1.0 155  11 97.2 89.8 1.5 1.0 155
 Real
施 12 96.8 89.4 1.2 1.1 143 例  Allocation 12 96.8 89.4 1.2 1.1 143 Examples
13 96.6 89.3 1.1 1.0 121  13 96.6 89.3 1.1 1.0 121
14 96.4 89.1 1.1 1.9 119  14 96.4 89.1 1.1 1.9 119
15 95.8 88.7 1.7 1.5 82  15 95.8 88.7 1.7 1.5 82
16 96 88.8 1.4 1.7 145  16 96 88.8 1.4 1.7 145
17 95.5 88.4 1.2 1.4 122  17 95.5 88.4 1.2 1.4 122
18 95.9 88.5 1.1 1.5 119  18 95.9 88.5 1.1 1.5 119
19 95.2 88.4 1.0 2.0 108  19 95.2 88.4 1.0 2.0 108
106 97 89.2 2.3 1,3 201  106 97 89.2 2.3 1,3 201
110 97 89.4 2.0 1.0 162  110 97 89.4 2.0 1.0 162
114 96,6 89.1 1.1 1.0 112  114 96,6 89.1 1.1 1.0 112
118 96.2 88.5 1.3 1.4 110  118 96.2 88.5 1.3 1.4 110
1 94.1 87 0.7 2.8 345  1 94.1 87 0.7 2.8 345
2 93.5 86.8 0.8 2.6 299  2 93.5 86.8 0.8 2.6 299
 Ratio
較 3 93.2 86.6 0.7 2.6 302 材  Comparison 3 93.2 86.6 0.7 2.6 302
4 92.5 86.2 0.6 2.7 285  4 92.5 86.2 0.6 2.7 285
5 92.2 86 0.6 3.5 270  5 92.2 86 0.6 3.5 270
[0029] 本発明の実施例に係る No.l— 4は、微細原料粉末を用い、焼結条件を最適化す ることによって WCまたは固溶体複炭化物相を微細化した合金で Ti量を変化させた 合金であるが、比較材よりも室温および 600°Cにおける硬度、抗折力、表面粗さ、酸 化増量ともに改善されている。 [0029] In No. 1-4 according to an example of the present invention, Ti content was changed by using a fine raw material powder and optimizing sintering conditions in an alloy in which WC or a solid solution complex carbide phase was refined. Although it is an alloy, its hardness, bending strength, surface roughness, and oxidation increase at room temperature and 600 ° C are improved over the comparative material.
[0030] 同じく実施例 No.5— 9はさらに Wの一部を W以外の周期律表 4、 5および 6族に属 する遷移金属の Crおよび Vで置換した合金である力 これらの金属炭化物が粒成長 抑制剤として作用することによって WC平均粒子径が小さくなり、さらに硬度(室温お よび 600°C)、抗折力、表面粗さ、酸ィ匕増量が改善されていることがわ力る。 [0030] Similarly, in Example Nos. 5 to 9, a part of W belongs to Groups 4, 5, and 6 of the periodic table other than W. The transition metal is an alloy that is substituted with Cr and V. These metal carbides act as grain growth inhibitors, reducing the average WC particle size, further increasing the hardness (room temperature and 600 ° C) and the transverse rupture strength. It is apparent that the surface roughness and the amount of acid addition have been improved.
[0031] また、実施例 No.lO— 14は、さらに SiC ( *を付したものは、 Si金属を併用した例を 示す。)を添加した合金で、抗折力が若干低下するものの、 WC平均粒子径が小さく なり、硬度(室温および 600°C)、表面粗さ、酸化増量とも改善されている。  [0031] Further, Example No. 14-14 is an alloy further added with SiC (the one marked with * is an example in which Si metal is used in combination.) The average particle size has been reduced and the hardness (room temperature and 600 ° C), surface roughness and oxidation weight gain have been improved.
[0032] さらに、実施例 No.15— 19は WCの一部を TiCNに置換した合金で、炭窒化物や 窒化物が存在することによって特に酸ィ匕増量が改善されている。  Further, Example Nos. 15-19 are alloys in which a part of WC was replaced with TiCN, and the presence of carbonitrides and nitrides particularly improved the amount of oxidation.
[0033] ここでは、耐食性についての評価結果を省略している力 本発明の実施例のいず れも、比較材と同等以上の優れた耐食性を有することが確認された。  Here, the force omitting the evaluation results for the corrosion resistance It was confirmed that all of the examples of the present invention had excellent corrosion resistance equal to or higher than that of the comparative material.
実施例 2  Example 2
[0034] 本発明に係る硬質材を図 1に示すガラスレンズ高温成形装置のレンズ成形上型 21 とレンズ成形下型 22に適用した例を示す。  An example in which the hard material according to the present invention is applied to the upper lens forming die 21 and the lower lens forming die 22 of the glass lens high-temperature forming apparatus shown in FIG.
[0035] 表 1に示す本発明の実施例と比較例に示す硬質材を用いて製作されたレンズ成形 用金型でガラスレンズをプレス成形し、金型表面粗さの変化を調査した。  [0035] Glass lenses were press-molded using lens-forming dies manufactured using the hard materials shown in the examples of the present invention shown in Table 1 and the comparative examples, and changes in the mold surface roughness were investigated.
[0036] ガラスレンズのプレス成形試験では、レンズ成形機筐体 2に配置された球状の光学 レンズ原料ガラスをプレス成形金型の上型 21と下型 22のキヤビティに入れ、モール ドの上側ホルダー 11と下側ホルダー 12によって固定した。油拡散ポンプ 5とガス排 出配管 4から装置内のガスを排出したのち、ガス流入配管 3によって、酸素濃度が 50 ppmの窒素を導入し、ヒーター 14によって、温度センサ 23を用いて、胴型モールド 1 3を 500°Cまで加熱した。さらに、上軸 7を介して上軸加圧シリンダー 1によって上型 2 1と、下軸 8を介して軸加圧シリンダー 8によって下型 22を、成形圧力 2Mpaで 3分間 保持後、冷却して、金型温度が 300°C以下になったところで大気パージを行った。  [0036] In the glass lens press molding test, the spherical optical lens raw material glass placed in the lens molding machine housing 2 is placed in the cavities of the upper mold 21 and the lower mold 22 of the press mold, and the upper holder of the mold is placed. 11 and the lower holder 12 fixed. After the gas inside the device is discharged from the oil diffusion pump 5 and the gas discharge pipe 4, nitrogen with an oxygen concentration of 50 ppm is introduced through the gas inflow pipe 3, and the heater 14 Mold 13 was heated to 500 ° C. Further, the upper mold 21 is held by the upper shaft pressing cylinder 1 via the upper shaft 7 and the lower mold 22 is held by the shaft pressing cylinder 8 via the lower shaft 8 at a molding pressure of 2 MPa for 3 minutes, and then cooled. When the mold temperature became 300 ° C. or lower, the atmosphere was purged.
[0037] これを 1サイクルとして、 500サイクル後の金型表面粗さの変化を測定した結果を表 3に示す。同表から、本発明の実施例 No.l— 19はいずれも 500サイクル試験後の 表面粗さの変化が比較材よりも小さぐ優れた高温劣化性を有することが確認された  With this as one cycle, Table 3 shows the results of measuring the change in mold surface roughness after 500 cycles. From the table, it was confirmed that each of Examples No. 1 to 19 of the present invention had excellent high-temperature deterioration properties in which the change in surface roughness after the 500 cycle test was smaller than that of the comparative material.
[表 3] 表面粗さ Ra(nm)[Table 3] Surface roughness Ra (nm)
No. No.
成形試験前 成形試験後 Before molding test After molding test
1 1.9 27.81 1.9 27.8
2 1.8 25.12 1.8 25.1
3 1.6 24.73 1.6 24.7
4 2.5 30.14 2.5 30.1
5 1.5 25.55 1.5 25.5
6 1.5 25.16 1.5 25.1
7 1.3 21.67 1.3 21.6
8 1.2 22.28 1.2 22.2
9 2.2 27.79 2.2 27.7
10 1.2 23.9 実 11 1.0 16.5 施 12 1.1 17.3 例 13 1.0 15.210 1.2 23.9 Actual 11 1.0 16.5 Application 12 1.1 17.3 Example 13 1.0 15.2
14 1.9 19.814 1.9 19.8
15 1.5 8.915 1.5 8.9
16 1.7 8.516 1.7 8.5
17 1.4 8.117 1.4 8.1
18 1.5 8.418 1.5 8.4
19 2.0 11.119 2.0 11.1
106 1.3 25106 1.3 25
110 1.0 22.5110 1.0 22.5
114 1.0 19.2114 1.0 19.2
118 1.4 8.2118 1.4 8.2
1 2.8 35.2 比 2 2.6 33.2 較 3 2.6 30.8 材 4 2.7 31.51 2.8 35.2 ratio 2 2.6 33.2 comparison 3 2.6 30.8 Wood 4 2.7 31.5
5 3.5 40.8 実施例 3 5 3.5 40.8 Example 3
[0038] この実施例は、パルス通電焼結法を用いて焼結緻密化した硬質材料の例を示す。  This example shows an example of a hard material sintered and densified by using a pulse electric current sintering method.
[0039] 表 1の実施例 106、 110、 114、 118に使用した原料粉末の配合組成中の C量と、[0039] The amount of C in the composition of the raw material powder used in Examples 106, 110, 114, and 118 of Table 1, and
WC平均粒子径を示す。 Shows the WC average particle size.
[0040] これらの実施例の原料粉末としては、平均粒子径が 0.1 μ mから 1 μ mまでのものを 使用し、それぞれの原料粉末組成として所要の組成が得られるよう調整した。 [0040] As the raw material powders in these examples, those having an average particle diameter of 0.1 µm to 1 µm were used, and the respective raw material powder compositions were adjusted to obtain required compositions.
[0041] 原料粉末をメタノール溶媒のボールミルで粉砕混合し、メタノールを蒸散させて造 粒粉末を行った。前記造粒粉末を高強度グラフアイト製焼結型 (ダイおよびパンチ) の中に充填した後、パルス通電焼結装置で焼結した。焼結温度は 1300°C— 1900The raw material powder was pulverized and mixed in a ball mill of a methanol solvent, and methanol was evaporated to obtain a granulated powder. The granulated powder was filled in a high-strength graphite die (die and punch) and then sintered by a pulse current sintering apparatus. Sintering temperature is 1300 ° C-1900
。C、加圧力 10— 80MPa、真空中で焼結し、昇温時間は 5— 30分、保持時間 1一 30 分であった。研削加工で最終形状まで仕上げた。 . C, sintering in vacuum at a pressure of 10-80MPa, heating time was 5-30 minutes, and holding time was 1-130 minutes. Finished to the final shape by grinding.
[0042] 得られた硬質材の WC平均粒子径、組成が硬度 *抗折力 ·加工表面粗さ等の機械 的特性や、高温硬さ、耐高温劣化性等の高温特性、それに、耐食性に及ぼす影響 を調査した。 [0042] The average WC particle size and composition of the obtained hard material are hardness * Mechanical properties such as bending strength and machined surface roughness, high temperature properties such as high temperature hardness and high temperature deterioration resistance, and corrosion resistance The effects were investigated.
[0043] 表 2の No. 106、 110、 114、 118に、得られた硬質材の組織観察、硬度、抗折力、 耐高温劣化性、すなわち、酸化増量を調査した結果を示す。  Nos. 106, 110, 114, and 118 in Table 2 show the results of microstructure observation, hardness, bending strength, and resistance to high-temperature deterioration of the obtained hard material, that is, the results of investigations on the increase in oxidation.
[0044] なお、硬度は HRAで、抗折カは 5 X 8 X 25mm試験片を用いた 3点曲げ試験法で 測定した。耐高温劣化性では表面をラップ加工した 5 X 8 X 10mm試験片を大気中 8 00°Cで、 1時間保持し、その前後の重量変化力も酸ィ匕増量を算出した。また、 WC平 均粒子径は合金組織観察力ゝら求めた力 WC相が認められなカゝつた合金は「一」によ つて示している。  Note that the hardness was measured by HRA, and the bending strength was measured by a three-point bending test method using a 5 × 8 × 25 mm test piece. For high-temperature deterioration resistance, a 5 × 8 × 10 mm test piece whose surface was wrapped was held at 800 ° C. in the air for 1 hour, and the weight change before and after the test was also calculated as an increase in iridescence. The average WC particle size is indicated by “1” for alloys in which no WC phase is observed, as determined by the force of observation of the alloy structure.
[0045] 同表から、パルス通電焼結法を用いて焼結緻密化した硬質材料であるが、比較材 よりも室温および 600°Cにおける硬度、抗折力、表面粗さ、酸ィ匕増量ともに改善され ていることが分かる。  [0045] From the table, the hard material sintered and densified using the pulsed electric current sintering method is harder than the comparative material at room temperature and 600 ° C. It can be seen that both have been improved.
[0046] ここでは、耐食性についての評価結果を省略している力 比較材と同等以上の優 れた耐食性を有することが確認された。  Here, it was confirmed that the material had excellent corrosion resistance equal to or higher than that of the force comparison material omitting the evaluation result on the corrosion resistance.
産業上の利用可能性  Industrial applicability
[0047] 本発明の硬質材料は、優れた耐摩耗性、耐熱性、鏡面加工性、耐食性などを兼ね 備えていることから、超精密成形金型とその周辺機器の他、メカ-カルシールリング、 軸スリーブすべり軸受け等の耐熱しゆう動部材、金属 *プラスチック'複合材などの射 出成形用モールド、電子部品製造装置用真空チャックの構成材としても適用できる。 図面の簡単な説明 [0047] The hard material of the present invention also has excellent wear resistance, heat resistance, mirror workability, corrosion resistance, and the like. Since it is equipped, in addition to ultra-precision molding dies and peripheral equipment, heat-sliding moving members such as mechanical seal rings, shaft sleeve slide bearings, and injection molding molds such as metal * plastic 'composite materials, It can also be applied as a constituent material of a vacuum chuck for an electronic component manufacturing apparatus. Brief Description of Drawings
[0048] [図 1]本発明に係る硬質材を適用する光学ガラスレンズ素子成形用型とその成形装 置を示す断面図である。  FIG. 1 is a cross-sectional view showing a mold for molding an optical glass lens element to which a hard material according to the present invention is applied, and a molding apparatus therefor.
符号の説明  Explanation of symbols
[0049] 1:上軸加圧シリンダー [0049] 1: Upper shaft pressurizing cylinder
2:レンズ成形機筐体  2: Lens molding machine housing
3:ガス流入配管  3: Gas inflow pipe
4:ガス排出配管  4: Gas exhaust piping
5:油拡散ポンプ  5: Oil diffusion pump
6:下軸加圧シリンダー  6: Lower shaft pressure cylinder
7:上軸  7: Upper shaft
8:下軸  8: Lower shaft
11:モールド上側ホルダー  11: Mold upper holder
12:モーノレド下側ホノレダー  12: MONOREDO lower HONOREDA
13:胴型モールド  13: Body mold
14:ヒーター  14: heater
21:レンズ成形上型 22:レンズ成形下型 23:温度センサ  21: Upper lens mold 22: Lower lens mold 23: Temperature sensor

Claims

請求の範囲 The scope of the claims
[1] WC相および Zまたは、 Wおよび Tiおよび Zまたは Taの 2種以上の金属の炭化物 との 2相混合組織または固溶体複炭化物相のみ力 なるバインダレス超硬合金から なり、平均粒子径が: m以下の微粒の原料粉末を用い、焼結緻密化した後におい ても原料粉末の微細結晶組織が維持されている耐高温劣化性に優れた硬質材料。  [1] It is made of a binderless cemented carbide that only has a two-phase mixed structure or a solid solution double carbide phase with WC phase and Z or carbides of two or more metals of W and Ti and Z or Ta, and has an average particle size of : A hard material with excellent high-temperature deterioration resistance in which the fine crystal structure of the raw material powder is maintained even after sintering and densification using fine raw material powder of m or less.
[2] バインダレス超硬合金力 Wを 37.5— 93.5重量%と、 Tiおよび Zまたは Taを合計 で 1一 47重量%と、 Cを 6. 18— 14. 2重量%と、 Feと Coと Niの合計が 1重量%以下 を含有し、残りが不可避不純物からなる組成を有する請求項 1に記載の耐高温劣化 性に優れた硬質材料。  [2] Binderless cemented carbide power W is 37.5-93.5% by weight, Ti and Z or Ta are 1-47% by weight in total, C is 6.18-14.2% by weight, and Fe and Co are 2. The hard material having excellent resistance to high-temperature deterioration according to claim 1, wherein the total amount of Ni is 1% by weight or less, and the balance has a composition of unavoidable impurities.
[3] Tiおよび Tiおよび Zまたは Taの一部が周期律表 4、 5、および 6族に属する遷移金 属の 1種または 2種以上によって置換されている請求項 1または請求項 2に記載の耐 高温劣化性に優れた硬質材料。  [3] The method according to claim 1 or claim 2, wherein Ti and part of Ti and Z or Ta are replaced by one or more transition metals belonging to Groups 4, 5, and 6 of the periodic table. Hard material with excellent resistance to high temperature deterioration.
[4] C含有量の中の 25重量%以下が Nと置換されており、その炭化物または固溶体複 炭化物の一部が WNまたは Wの固溶体複炭窒化物を形成している請求項 1から請求 項 3の何れかに記載の耐高温劣化性に優れた硬質材料。 [4] The claim according to claim 1, wherein 25% by weight or less of the C content is replaced with N, and a part of the carbide or solid solution complex carbide forms WN or W solid solution complex carbonitride. Item 4. A hard material having excellent resistance to high temperature deterioration according to any one of Items 3.
[5] WC相および Zまたは、 Wおよび Tiおよび Zまたは Taの 2種以上の金属の炭化物 相と Siの炭化物相との混合組織またはこれらの固溶体複炭化物相のみ力 なるバイ ンダレス超硬合金力 なり、 [5] Binderless cemented carbide force in which only the mixed structure of the carbide phase of the WC phase and Z or the carbide phase of two or more metals of W and Ti and Z or Ta and the carbide phase of Si or the solid solution double carbide phase thereof Become
平均粒子径が 1 μ m以下の微粒の原料粉末を用い、焼結緻密化した後においても 原料粉末の微細結晶組織が維持されている耐高温劣化性に優れた硬質材料。  A hard material that uses fine raw material powder with an average particle diameter of 1 μm or less and maintains the fine crystal structure of the raw material powder even after sintering and densification, and has excellent resistance to high-temperature deterioration.
[6] バインダレス超硬合金力 Wを 37.5— 93.5重量%と、 Tiおよび Zまたは Taを合計 で 1一 47重量%と、 Siを 0. 1— 10重量%と、 Cを 6. 18— 16. 1重量%と、 Feと Coと[6] Binderless cemented carbide power W is 37.5—93.5% by weight, Ti and Z or Ta are 1-147% by weight in total, Si is 0.1—10% by weight, and C is 6.18— 16. 1% by weight, Fe and Co
Niの合計が 1重量%以下を含有し、残りが不可避不純物力 なる組成を有する請求 項 5に記載の耐高温劣化性に優れた硬質材料。 The hard material having excellent resistance to high-temperature deterioration according to claim 5, wherein the total content of Ni is 1% by weight or less, and the remainder has a composition having an unavoidable impurity power.
[7] Tiおよび Tiおよび Zまたは Taの一部が周期律表 4、 5、および 6族に属する遷移金 属の 1種または 2種以上によって置換されている請求項 5または 6に記載の耐高温劣 化性に優れた硬質材料。 [7] The anti-resistance according to claim 5 or 6, wherein Ti and part of Ti and Z or Ta are replaced by one or more transition metals belonging to groups 4, 5, and 6 of the periodic table. A hard material with excellent high-temperature deterioration.
[8] C含有量の中の 25%以下が Nによって置換されており、 WC炭化物相と固溶体複 炭化物の一部がそれぞれ炭窒化物を形成し、 SiC相の一部もしくは全てが Si N相 [8] Not more than 25% of the C content is replaced by N, and WC carbide phase and solid solution complex Some of the carbides form carbonitrides, and some or all of the SiC phase is the SiN phase.
3 4 である請求項 5から 7の何れかに記載の耐高温劣化性に優れた硬質材料。  8. The hard material according to claim 5, wherein the hard material is excellent in high-temperature deterioration resistance.
ノ ルス通電加圧焼結法またはパルス通電加圧焼結法を含む加圧焼結法 (ホットプ レス法)により焼結緻密化して成形した請求項 1から 8の何れかに記載の耐高温劣化 性に優れた硬質材料。  9. High-temperature deterioration resistance according to any one of claims 1 to 8, wherein the compact is formed by sintering and densification by a pressure sintering method (a hot press method) including a pulse current pressure sintering method or a pulse current pressure sintering method. Hard material with excellent properties.
PCT/JP2004/015736 2003-10-22 2004-10-22 Hard material excelling in resistance to high-temperature deterioration WO2005037731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514880A JPWO2005037731A1 (en) 2003-10-22 2004-10-22 Hard material with high temperature resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-362479 2003-10-22
JP2003362479 2003-10-22

Publications (1)

Publication Number Publication Date
WO2005037731A1 true WO2005037731A1 (en) 2005-04-28

Family

ID=34463511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015736 WO2005037731A1 (en) 2003-10-22 2004-10-22 Hard material excelling in resistance to high-temperature deterioration

Country Status (2)

Country Link
JP (1) JPWO2005037731A1 (en)
WO (1) WO2005037731A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004656A1 (en) * 2006-07-07 2008-01-10 Nippon Tungsten Co., Ltd. Sintered hard material and mold comprising the same for molding high-precision optical element
JP2009179519A (en) * 2008-01-31 2009-08-13 Nippon Tokushu Gokin Kk Binderless alloy
CN102226746A (en) * 2011-03-31 2011-10-26 哈尔滨工业大学 Impact-type high-temperature hardness test method
JP2012077353A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Hardmetal Corp Cemented carbide
JP2012087045A (en) * 2011-11-14 2012-05-10 Nippon Tokushu Gokin Kk Method for producing binderless alloy
KR101165405B1 (en) * 2010-08-19 2012-07-12 오 걸 권 Manufacturing method of hard metal having improved abrasion resisrance
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH08208335A (en) * 1995-01-27 1996-08-13 Toyo Kohan Co Ltd Tungsten carbide sintered body
JP2003271175A (en) * 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd Device and program for evaluating acoustic processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH08208335A (en) * 1995-01-27 1996-08-13 Toyo Kohan Co Ltd Tungsten carbide sintered body
JP2003271175A (en) * 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd Device and program for evaluating acoustic processing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004656A1 (en) * 2006-07-07 2008-01-10 Nippon Tungsten Co., Ltd. Sintered hard material and mold comprising the same for molding high-precision optical element
JP2008013418A (en) * 2006-07-07 2008-01-24 Nippon Tungsten Co Ltd Sintered hard material and mold for forming optical element with high precision using the same
JP2009179519A (en) * 2008-01-31 2009-08-13 Nippon Tokushu Gokin Kk Binderless alloy
KR101165405B1 (en) * 2010-08-19 2012-07-12 오 걸 권 Manufacturing method of hard metal having improved abrasion resisrance
JP2012077353A (en) * 2010-10-01 2012-04-19 Sumitomo Electric Hardmetal Corp Cemented carbide
CN102226746A (en) * 2011-03-31 2011-10-26 哈尔滨工业大学 Impact-type high-temperature hardness test method
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same
JP2012229138A (en) * 2011-04-26 2012-11-22 Nippon Tungsten Co Ltd Tungsten carbide-based sintered body and abrasion resistant member using the same
JP2012087045A (en) * 2011-11-14 2012-05-10 Nippon Tokushu Gokin Kk Method for producing binderless alloy

Also Published As

Publication number Publication date
JPWO2005037731A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
CN108060322B (en) Preparation method of hard high-entropy alloy composite material
CN113234950B (en) Preparation method of Ti (C, N) -based metal ceramic
US8173561B2 (en) Inert high hardness material for tool lens production in imaging applications
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
WO2005037731A1 (en) Hard material excelling in resistance to high-temperature deterioration
JP2023546744A (en) WC cemented carbide and its uses
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP6049978B1 (en) Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JP3721510B2 (en) Sintered alloy suitable for optical glass mold and its peripheral components
JP5134217B2 (en) Sintered hard material and mold using the same
CN109536811A (en) A kind of Ti(CN) base TN18 cermet and its preparation process
JP2012087045A (en) Method for producing binderless alloy
JP4971564B2 (en) Sintered alloy with excellent high-temperature properties and hot forming mold using the same
JP2008075160A (en) Die member for forming glass optical element
JP2013249512A (en) Molybdenum heat-resistant alloy, friction stir welding tool, and manufacturing method
JP7351582B1 (en) Sintered alloy and mold
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP2002180175A (en) Sintered alloy excellent in high temperature property and die for hot forming using the alloy
CN116790953B (en) High-performance nano hard alloy product and preparation method thereof
JP2009179519A (en) Binderless alloy
KR970008043B1 (en) Method of guide roller
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
JP2574426B2 (en) Mold for optical element molding
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514880

Country of ref document: JP

122 Ep: pct application non-entry in european phase