WO2008004656A1 - Sintered hard material and mold comprising the same for molding high-precision optical element - Google Patents

Sintered hard material and mold comprising the same for molding high-precision optical element Download PDF

Info

Publication number
WO2008004656A1
WO2008004656A1 PCT/JP2007/063553 JP2007063553W WO2008004656A1 WO 2008004656 A1 WO2008004656 A1 WO 2008004656A1 JP 2007063553 W JP2007063553 W JP 2007063553W WO 2008004656 A1 WO2008004656 A1 WO 2008004656A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
hard material
sintered hard
peak intensity
integrated peak
Prior art date
Application number
PCT/JP2007/063553
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Tanaka
Toru Okui
Shigeki Mori
Osamu Nakano
Kei Tokumoto
Original Assignee
Nippon Tungsten Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co., Ltd. filed Critical Nippon Tungsten Co., Ltd.
Priority to CN2007800205921A priority Critical patent/CN101460427B/en
Publication of WO2008004656A1 publication Critical patent/WO2008004656A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/66Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a mold material for molding high-precision optical elements such as lenses, prisms, and gratings used in optical equipment, or a mold material for injection molding such as metals, plastics, and composite materials. It relates to a hard material.
  • Optical pickup lenses used in CDs, DVDs, digital cameras, mobile phones, etc. A method for obtaining the final product shape when manufacturing optical elements such as glass and plastic used for hard disk substrates of computers In order to achieve high reliability and low price, press molding at high temperatures that does not require complicated and precise mechanical processing has been adopted in recent years.
  • Mold materials used in this high-temperature press molding are required to have characteristics such as high-temperature hardness, high thermal conductivity, and low coefficient of thermal expansion in addition to excellent mirror surface processability.
  • Sintered hard materials such as cemented carbide and ceramics are used as the materials.
  • Patent Document 1 discloses cobalt as a cemented carbide for hot isostatic pressing suitable for an optical element molding die whose surface after processing forms a mirror surface with an Rmax of 0.05 ⁇ m or less.
  • a base cemented carbide containing 3 to 10% by mass is disclosed.
  • the surface of the molding part of the optical element molding die is also required to have a higher accuracy. It is indispensable that the surface of the lens molding part should have a mirror surface of Rmax 0.01 zm or less.
  • a WC-based cemented carbide containing 1% by mass or more of an iron group metal such as Fe, Co, and Ni as a binder phase has a large hardness difference between the WC phase and the iron group metal phase, so that a desired surface can be obtained by machining. Getting accuracy is difficult. Therefore, even in the past, a cemented carbide material consisting only of a carbide phase that does not include an iron group metal phase that has a large hardness difference from the carbide phase, that is, a so-called binderless cemented carbide material is used as a material for precision molds. 2 and 3 are disclosed.
  • the processed post-processing is relatively easy. Force that can finish the surface of the molded part to a mirror surface with an Rmax of 0.01 ⁇ m or less As the second phase, there are comparatively more complex carbides that have a harder and more brittle NaCl-type crystal structure than the WC phase. Therefore, local processing performance differences such as sub-micron order or nano order are caused, which has been an obstacle to further pursuing higher precision of the surface of the molded part.
  • the second phase of the sintered hard material shown in Patent Documents 2 and 3 can have a non-stoichiometric composition, so that the amount of carbon in the material is controlled, so that iron group metals and W Of these composite carbides, the ⁇ phase (hereinafter referred to as anomalous phase) could be prevented relatively easily, so it was an indispensable phase.
  • the hardness is improved by using the range of 15.
  • the amount of iron group metal on the 2 X 2 X 2 X plane is much less than or not present, so it is considered that the bond strength between these interfaces does not weaken.
  • Patent Document 1 Japanese Patent Publication No. 62-51211
  • Patent Document 2 JP-A-2-120244
  • Patent Document 3 Japanese Patent Laid-Open No. 10-7425
  • Patent Document 4 JP-A-9 25535
  • the problem to be solved in the present invention is high hardness in which a sintered hard material mainly composed of a tungsten carbide phase is free from structural defects such as pores (voids) and abnormal phases, and has a large Young's modulus. In addition to the characteristics such as excellent surface accuracy and surface roughness with a small coefficient of thermal expansion, it provides excellent fracture toughness.
  • the sintered hard material of the present invention crystallizes (W, Ml) C (0.8 ⁇ X ⁇ 1.0) as the second phase in addition to the WC phase as the first phase in the tungsten carbide phase. Carbonized tandaste by letting out
  • WC (0, 8 ⁇ X ⁇ 1.0) is fixed to transition metal elements other than W in Group 4a, 5a and 6a of the periodic table and Ml which is one or more of Fe, Co and Ni. It is melted.
  • the WC phase is excellent in hardness, strength, machined surface roughness, etc. 1S
  • the average particle size is made 0.5 / im or less, the structure becomes finer. As a result, the hardness and mirror finish can be further improved.
  • hardness and specular workability tend to decrease due to an increase in average particle diameter. In particular, when the average particle diameter exceeds 0.5 / im, the hardness and specular workability rapidly decrease. Therefore, in the present invention, the average particle size of the tungsten carbide phase is preferably 0.5 zm or less.
  • the range is from 0.5% to 10.0%.
  • the main diffraction peak of WC is the force s that is the (101) plane and the (100) plane, of which the diffraction peak of the (100) plane of WC is (W , M1) C (1
  • the diffraction peak of the (101) plane of WC was selected as the main diffraction peak of WC.
  • the (111) plane and (1-11-1) plane are the same ⁇ 111 ⁇ crystal system and are equivalent.
  • the range of X is 1.0 ⁇ X ⁇ 2.0.
  • the genus is in solid solution, that is, the presence of Ml atom in (W, M1) C (0. 8 ⁇ X ⁇ 1.0)
  • the 0) phase is thought to be more stable in tungsten carbide because of less lattice strain. Therefore, those who existed as (W, Ml) C rather than W C
  • the effect of improving fracture toughness is considered to be more stably exhibited, and the effect as dispersed particles as dispersion strengthening is also expected to be exhibited.
  • the sintered hard material of the present invention has a WC phase as the first phase and a second phase (W, Ml) C (
  • phase of the M2 compound that is a transition metal element of Groups 4a, 5a, and 6a of the Periodic Table, that is, 1 of M2, carbides, nitrides, and carbonitrides. Species, two or more, or a composite carbide or composite carbonitride phase thereof may be included.
  • This M2 compound phase has an effective force for suppressing grain growth in the WC phase.
  • the integrated peak intensity of the maximum peak of X-ray diffraction in this M2 compound is expressed as ⁇ ⁇ (compound 2) d ⁇ and
  • ⁇ I (WC) d ⁇ the integrated peak intensity of X-ray diffraction of the (101) plane of WC
  • the ratio of these integrated peak intensities ⁇ I (compound of ⁇ 2) d ⁇ / ⁇ I ( WC) d ⁇ exceeds 1.0%
  • the sinterability of the WC phase is reduced and a dense material cannot be obtained. Therefore, when the M2 compound phase is included, the integrated peak intensity ratio should be 1.0% or less.
  • the diffraction plane of the compound of M2 is not specified, this is because the M2 compound itself has various forms, and thus produces diffraction at various peak positions. Since the addition amount is extremely small, it is sufficient to compare each peak with the (101) plane, which is the maximum peak of WC.
  • the amount of solid solution in the ⁇ 1.0) phase has not been elucidated so far, but the number of M2 atoms in the sintered hard material and the number of Ml atoms are the W atoms in this sintered hard material. If the amount is less than 0.5%, the effect of adding it as a grain growth inhibitor is small.If it exceeds 5.0%, the remaining amount of M2 as a compound is too large. Getting worse.
  • the sinterability is improved by the presence of iron group metals such as Fe, Co, and Ni as impurity components, and the bonding strength at the interface between WC / WC, WC / W C or W C / W C is strong.
  • the presence of these iron group metals causes crystallization of a composite carbide of W and iron group metals called phases. Mechanical strength deteriorates.
  • the content in the sintered hard material is extremely small, such as less than 0.05% by mass, the iron group metal and W can be easily controlled by controlling the carbon content in the material as shown in the following reference, for example. It can be considered that the composite carbide with the crystal structure can be crystallized as a hexagonal crystal structure such as the / c phase, which can prevent deterioration of mechanical properties. Therefore, the content of one or more of the impurity components Fe, Co, and Ni is preferably suppressed to less than 0.05% by mass.
  • the sintered hard material of the present invention the surface accuracy is high hardness with very few structural defects such as pores (pores) and abnormal phases, large Young's modulus, and small thermal expansion coefficient.
  • excellent fracture toughness is obtained. Therefore, it is possible to perform machining similar to that of conventional materials and reduce the possibility of chipping and chipping in machining and handling, which can increase the service life. .
  • WC powder having an average particle size of 0.5 ⁇ m is used, and Cr C having an average particle size of 1.4 xm and VC of 1. And 1.1 ⁇
  • m NbC was blended.
  • the raw material powder blended with these materials is mixed with a carbide ball mill or resin ball mill in methanol solvent, pre-press molded with lOMPa, and then 1700 in a vacuum atmosphere.
  • the (W, M1) C phase amount was adjusted by adjusting the carbon content in the material.
  • Figure 1 shows the system.
  • the surface roughness (Rmax) was measured using a contact-type tally step manufactured by Taylor Hobson. Fracture toughness value (K) is measured with diamond by Vickers hardness tester.
  • sample No. 24 is a comparative example using WC powder with an average particle size of 1.0 / im as the raw material powder, and has the same composition and the product of (W, Ml) C and WC.
  • the fracture toughness value is larger than 25, the surface roughness is deteriorated. This is because the average particle size of WC after sintering was 1.1 ⁇ m, which was larger than other samples.
  • the sintered hard material of the present invention has (W, Ml) C (0 8 ⁇ X ⁇ 1. 0)
  • PCS pulse current sintering
  • a glass lens was press-molded with a lens-molding die manufactured using the sintered hard materials shown in the examples of the present invention and comparative examples shown in Table 1, and changes in the surface roughness of the glass lens were observed. investigated.
  • spherical optical lens material glass is placed in the upper mold and lower mold cavities of the lens mold, and nitrogen with an oxygen concentration of 50 ppm is introduced through the gas inflow pipe.
  • the body mold was heated to 500 ° C. Furthermore, after holding at a forming pressure of 2 MPa for 3 minutes, it was cooled to room temperature.
  • Table 2 shows the surface roughness of the obtained glass lens. From the table, the surface roughness of the glass lens molded using the example of the present invention is almost the same value as the surface roughness of the sintered hard material of the present invention shown in Table 1, respectively. It was confirmed that chipping is unlikely to occur during machining to molding dies and handling during lens molding.
  • the sintered hard material of the present invention has excellent mirror surface workability, wear resistance, erosion wear resistance, etc., lenses, prisms, and gratings used in optical equipment are used.
  • ultra-precise molding dies for molding high-precision optical elements such as rugs and their peripheral equipment, heat-resistant sliding members such as mechanical seal rings and shaft sleeve slide bearings, and injection molding of metal 'plastic' composites It can also be used as a component material for molds and vacuum chucks for electronic component manufacturing equipment.
  • FIG. 1 shows the fracture toughness value (K) of the sintered hard material of the present invention.

Abstract

A sintered hard material consisting mainly of a tungsten carbide phase. It is free from structural defects such as pores (voids) and abnormal phases, has a high hardness, high Young's modulus, and low coefficient of thermal expansion, and has excellent fracture toughness besides excellent processed-surface precision and surface roughness. (W,M1)2CX (0.8≤X<1.0) is crystallized as a second phase in a tungsten carbide phase, the WC phase being a first phase. Thus, the fracture toughness of the tungsten carbide phase is improved. The (W,M1)2CX (0.8≤X<1.0) is a solid solution of M1, which is one or more of the transition metal elements other than tungsten in Groups 4a, 5a, and 6a of the Periodic Table, in W2CX (0.8≤X<1.0)

Description

明 細 書  Specification
焼結硬質材料およびそれを用いた高精度光学素子成形用の金型 技術分野  Sintered hard materials and molds for molding high-precision optical elements using the same
[0001] 本発明は、光学機器に使用されるレンズ、プリズム、グレーティングなどの高精度光 学素子成形用の金型材、あるいは金属、プラスチック、複合材などの射出成形用の 金型材に好適な焼結硬質材料に関する。  [0001] The present invention relates to a mold material for molding high-precision optical elements such as lenses, prisms, and gratings used in optical equipment, or a mold material for injection molding such as metals, plastics, and composite materials. It relates to a hard material.
背景技術  Background art
[0002] CD、 DVD,デジタルカメラや携帯電話などで使用されている光学ピックアップレン ズゃコンピューターのハードディスク用基板に用いられるガラス製、プラスチック製等 の光学素子の製造に際しての最終製品形状を得る方法として、高信頼性と低価格を 実現させるために、近年、複雑かつ精密な機械的加工を必要としない高温中でのプ レス成形が採用されている。  [0002] Optical pickup lenses used in CDs, DVDs, digital cameras, mobile phones, etc. A method for obtaining the final product shape when manufacturing optical elements such as glass and plastic used for hard disk substrates of computers In order to achieve high reliability and low price, press molding at high temperatures that does not require complicated and precise mechanical processing has been adopted in recent years.
[0003] この高温プレス成形で使用される金型材料には、優れた鏡面加工性とともに、高温 硬さ、高熱伝導性、低熱膨張率などの特性が要求され、従来から、その要求に合つ た材料として超硬合金やセラミックスのような焼結硬質材料が使用されている。  [0003] Mold materials used in this high-temperature press molding are required to have characteristics such as high-temperature hardness, high thermal conductivity, and low coefficient of thermal expansion in addition to excellent mirror surface processability. Sintered hard materials such as cemented carbide and ceramics are used as the materials.
[0004] 例えば、特許文献 1には、加工後の表面が Rmax 0. 05 μ m以下の鏡面を形成す る光学素子成形用型に適した熱間静水圧プレス用の超硬合金として、コバルトを 3〜 10質量%含む 〇基超硬合金が開示されてぃる。  [0004] For example, Patent Document 1 discloses cobalt as a cemented carbide for hot isostatic pressing suitable for an optical element molding die whose surface after processing forms a mirror surface with an Rmax of 0.05 μm or less. A base cemented carbide containing 3 to 10% by mass is disclosed.
[0005] し力、しながら、光学レンズの高精度化が進むに従レ、、光学素子成形用型の成形部 表面もさらなる高精度化が要求されるようになり、現状においては、加工後のレンズ 成形部表面は Rmax 0. 01 z m以下の鏡面が得られることが必須となっている。  [0005] However, as the accuracy of the optical lens increases, the surface of the molding part of the optical element molding die is also required to have a higher accuracy. It is indispensable that the surface of the lens molding part should have a mirror surface of Rmax 0.01 zm or less.
[0006] 一方、 Fe、 Co、 Niといった鉄族金属を結合相として 1質量%以上含む WC基超硬 合金は WC相と鉄族金属相との硬度差が大きいため、機械加工により所望の表面精 度を得ることは困難となっている。このため、従来においても、炭化物相との硬度差が 大きな鉄族金属相を含まない、炭化物相のみからなる超硬材料、いわゆるバインダレ ス超硬材料が精密成形用金型の材料として、特許文献 2、 3に開示されている。  [0006] On the other hand, a WC-based cemented carbide containing 1% by mass or more of an iron group metal such as Fe, Co, and Ni as a binder phase has a large hardness difference between the WC phase and the iron group metal phase, so that a desired surface can be obtained by machining. Getting accuracy is difficult. Therefore, even in the past, a cemented carbide material consisting only of a carbide phase that does not include an iron group metal phase that has a large hardness difference from the carbide phase, that is, a so-called binderless cemented carbide material is used as a material for precision molds. 2 and 3 are disclosed.
[0007] この特許文献 2、 3に示される焼結硬質材料においては、比較的容易に加工後のレ ンズ成形部表面を Rmax 0. 01 μ m以下の鏡面に仕上げることができる力 第 2相と して WC相と比較して高硬度でかつ脆い NaCl型結晶構造を有する複合炭化物を比 較的多く含んでおり、したがってサブミクロンオーダーあるいはナノオーダーといった 局所的な加工性能の違いを生じることから、成形部表面の高精度化をさらに追求す る際の障害となっていた。 [0007] In the sintered hard materials shown in Patent Documents 2 and 3, the processed post-processing is relatively easy. Force that can finish the surface of the molded part to a mirror surface with an Rmax of 0.01 μm or less As the second phase, there are comparatively more complex carbides that have a harder and more brittle NaCl-type crystal structure than the WC phase. Therefore, local processing performance differences such as sub-micron order or nano order are caused, which has been an obstacle to further pursuing higher precision of the surface of the molded part.
[0008] また、特許文献 2、 3に示される焼結硬質材料の第 2相は非化学量論組成を持ち得 ることにより、材料中のカーボン量を制御することによって、鉄族金属と Wとの複合炭 化物のうち η相(以後異常相と称する)の晶出を比較的容易に防ぐことができることか ら、必要不可欠な相でもあった。  [0008] In addition, the second phase of the sintered hard material shown in Patent Documents 2 and 3 can have a non-stoichiometric composition, so that the amount of carbon in the material is controlled, so that iron group metals and W Of these composite carbides, the η phase (hereinafter referred to as anomalous phase) could be prevented relatively easily, so it was an indispensable phase.
[0009] 一方、特許文献 4に示される焼結硬質材料においては、異常相の構成元素となる F e、 Co、 Niといった不可避不純物成分を極微量の 0. 02〜0. 10重量%に抑えること により、異常相の晶出を防ぐことができると考えられるため、前述の第 2相を材料に含 有する必要性がなくなった。そして、この特許文献 4に示される焼結硬質材料におい ては、炭化タングステン中の WCと W Cの割合 W C / (WC +W C )を 0· 01〜0  [0009] On the other hand, in the sintered hard material shown in Patent Document 4, inevitable impurity components such as Fe, Co, and Ni that are constituent elements of the abnormal phase are suppressed to a very small amount of 0.02 to 0.10% by weight. As a result, it is considered that the crystallization of the abnormal phase can be prevented, so that it is no longer necessary to include the second phase in the material. In the sintered hard material shown in Patent Document 4, the ratio of WC to W C in tungsten carbide W C / (WC + W C) is set to 0 · 01 to 0
2 X 2 X 2 X  2 X 2 X 2 X
. 15の範囲とすることにより、硬度の向上を図っている。  The hardness is improved by using the range of 15.
[0010] 確かに、特許文献 4に示される焼結硬質材料によればその硬度は向上する。しかし ながら、特許文献 4に示される焼結硬質材料の破壊靭性は、特許文献 2、 3に示され る焼結硬質材料と比較して低くなる。したがって、特許文献 2、 3に示される焼結硬質 材料よりも機械加工およびその取り回しにおいて、チッビングやエッジ部のカケなどを 生じる可能性が高いと考えられる。  [0010] Certainly, according to the sintered hard material disclosed in Patent Document 4, the hardness is improved. However, the fracture toughness of the sintered hard material shown in Patent Document 4 is lower than that of the sintered hard material shown in Patent Documents 2 and 3. Therefore, it is considered that there is a higher possibility of chipping and chipping of the edge portion in machining and handling than the sintered hard material disclosed in Patent Documents 2 and 3.
[0011] 特許文献 4に示される焼結硬質材料の破壊靭性が、特許文献 2、 3に示される焼結 硬質材料と比較して低い原因は、不純物成分である鉄族金属を低減させたためと考 えられる。すなわち、特許文献 4に示される焼結硬質材料の WCZWC界面、 WC/ W C界面あるいは W C /W C界面における鉄族金属量は、特許文献 2、 3に示 [0011] The reason why the fracture toughness of the sintered hard material shown in Patent Document 4 is lower than that of the sintered hard material shown in Patent Documents 2 and 3 is that the iron group metal that is an impurity component is reduced. Conceivable. That is, the amount of iron group metal at the WCZWC interface, WC / WC interface or WC / WC interface of the sintered hard material shown in Patent Document 4 is shown in Patent Documents 2 and 3.
2 X 2 X 2 X 2 X 2 X 2 X
される焼結硬質材料の WC/WC界面、 WC/W C界面あるいは W C /W C界  WC / WC interface, WC / W C interface or W C / W C interface of sintered hard materials
2 X 2 X 2 X 面における鉄族金属量よりも非常に少なレ、か、あるいはないために、これらの界面間 の結合力が弱くなつたのではない力、と考えられる。  The amount of iron group metal on the 2 X 2 X 2 X plane is much less than or not present, so it is considered that the bond strength between these interfaces does not weaken.
特許文献 1 :特公昭 62— 51211号公報 特許文献 2:特開平 2— 120244号公報 Patent Document 1: Japanese Patent Publication No. 62-51211 Patent Document 2: JP-A-2-120244
特許文献 3:特開平 10— 7425号公報  Patent Document 3: Japanese Patent Laid-Open No. 10-7425
特許文献 4:特開平 9 25535号公報  Patent Document 4: JP-A-9 25535
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明において解決すべき課題は、主に炭化タングステン相からなる焼結硬質材 料に、ポア(空孔)や異常相などの組織的欠陥がなぐ高硬度であり、ヤング率が大き ぐ熱膨張係数が小さぐ優れた加工面精度および面粗度を有するといった特性に 加え、優れた破壊靭性を付与することにある。 [0012] The problem to be solved in the present invention is high hardness in which a sintered hard material mainly composed of a tungsten carbide phase is free from structural defects such as pores (voids) and abnormal phases, and has a large Young's modulus. In addition to the characteristics such as excellent surface accuracy and surface roughness with a small coefficient of thermal expansion, it provides excellent fracture toughness.
課題を解決するための手段  Means for solving the problem
[0013] 本発明の焼結硬質材料は、炭化タングステン相中に第 1相としての WC相以外に、 第 2相として (W、 Ml ) C (0. 8≤X< 1. 0)を晶出させることによって炭化タンダステ [0013] The sintered hard material of the present invention crystallizes (W, Ml) C (0.8 ≤ X <1.0) as the second phase in addition to the WC phase as the first phase in the tungsten carbide phase. Carbonized tandaste by letting out
2 X  2 X
ン相の破壊靭性の改善を図るものである。ここで、(W、M1 ) C (0. 8≤X< 1. 0)は  This is intended to improve the fracture toughness of the N phase. Where (W, M1) C (0. 8 ≤ X <1. 0) is
2 X  2 X
、周期律表第 4a、 5a、 6a族の W以外の遷移金属元素および Fe、 Co、 Niのうち 1種 または 2種以上である Mlを W C (0, 8≤X< 1. 0)が固溶したものである。  WC (0, 8≤X <1.0) is fixed to transition metal elements other than W in Group 4a, 5a and 6a of the periodic table and Ml which is one or more of Fe, Co and Ni. It is melted.
2 X  2 X
[0014] この焼結硬質材料において、 WC相は、硬度、強度、加工面粗度などに優れている 1S その平均粒子径を 0. 5 /i m以下にすることによってさらに組織が微細となり、これ により硬度および鏡面加工性をより一層改善することが可能となる。他方、平均粒子 径の増大により硬度および鏡面加工性は低下する傾向にあり、とくに、平均粒子径が 0. 5 /i mを超えるとその硬度および鏡面加工性は急激に低下してしまう。したがって 、本発明においては、炭化タングステン相の平均粒子径を 0. 5 z m以下とすることが 好ましい。  [0014] In this sintered hard material, the WC phase is excellent in hardness, strength, machined surface roughness, etc. 1S When the average particle size is made 0.5 / im or less, the structure becomes finer. As a result, the hardness and mirror finish can be further improved. On the other hand, hardness and specular workability tend to decrease due to an increase in average particle diameter. In particular, when the average particle diameter exceeds 0.5 / im, the hardness and specular workability rapidly decrease. Therefore, in the present invention, the average particle size of the tungsten carbide phase is preferably 0.5 zm or less.
[0015] ただし、一般には組織の微細化に伴い破壊靭性は低下する傾向にあるため、とくに 平均粒子径が 1 μ m以下となる場合には、加工や取り回しにおけるカケゃチッビング を生じる危険性が高くなる。  [0015] However, since fracture toughness generally tends to decrease as the structure becomes finer, there is a risk of cracking in processing and handling, especially when the average particle size is 1 μm or less. Get higher.
[0016] これに対して、 Xの範囲が 0. 8≤X< 1. 0の(W、 Ml ) C は、 WCなどと同様に六  [0016] On the other hand, (W, Ml) C with X in the range of 0.8≤X <1.0 is similar to WC etc.
2 X  2 X
方晶型結晶構造を保持しており、したがって NaCl型結晶構造である他の多くの炭化 物と比較すれば、大きな塑性変形能をもつ。したがって、この (W、 Ml ) Cを炭化タ ングステン中に晶出させることで破壊靭性を改善できる。また、この (W、 Ml) C粒 It retains a tetragonal crystal structure and therefore has a large plastic deformability compared to many other carbides that have a NaCl-type crystal structure. Therefore, this (W, Ml) C Fracture toughness can be improved by crystallizing it in ngsten. This (W, Ml) C grain
2 X 子を WC相中に分散させることにより、分散強化としての役割も併せて果たすことが考 えられる。  2 It is considered that the role of strengthening dispersion can also be achieved by dispersing the X element in the WC phase.
[0017] この(W、M1) Cの晶出量については、 (W、 M1) Cの(_ 1 _ 11)面の X線回折  [0017] Regarding the crystallization amount of (W, M1) C, (W, M1) X-ray diffraction of (_ 1 _ 11) plane of C
2 X 2 X  2 X 2 X
の積分ピーク強度を ί I ( (W、 Ml) ) d Θと表し、 WCの(101)面の X線回折の積分  Integral peak intensity of ί I ((W, Ml)) d Θ, and the integral of X-ray diffraction of (101) plane of WC
2  2
ピーク強度を ί I (WC) d Θと表した場合、これらの積分ピーク強度比 ί I ( (W、 Ml)  When the peak intensity is expressed as ί I (WC) d Θ, the ratio of these integrated peak intensities ί I ((W, Ml)
2 2
C ) ά θ / ί I (WC) d Θが 0. 5%未満では (W、 Ml) C相量が少なく破壊靭性改C) ά θ / ί I (WC) d Θ less than 0.5% (W, Ml) C phase is small and fracture toughness is improved.
X 2 X X 2 X
善への寄与が小さい。また、 10. 0%を超えると、破壊靭性改善への寄与については 定かではないが、焼結性が低下し緻密な材料を得ることができず、したがって本発明 の技術分野に適用することができない。以上より、炭化タングステンのうち Xの範囲が 0. 8≤X< 1. 0である(W、 Ml) C の存在割合は、上記積分ピーク強度比において  Small contribution to good. On the other hand, if it exceeds 10.0%, the contribution to fracture toughness improvement is uncertain, but the sinterability decreases and a dense material cannot be obtained, and therefore it can be applied to the technical field of the present invention. Can not. From the above, the existence ratio of (W, Ml) C in the range of X in tungsten carbide where X is 0.8≤X <1.0 is
2 X  2 X
0. 5%〜10. 0%の範囲となるようにする。  The range is from 0.5% to 10.0%.
[0018] なお、 X線回折の積分ピーク強度について、 WCのメイン回折ピークは(101)面お よび(100)面である力 s、このうち WCの(100)面の回折ピークは、(W、 M1) Cの(1 [0018] Regarding the integrated peak intensity of X-ray diffraction, the main diffraction peak of WC is the force s that is the (101) plane and the (100) plane, of which the diffraction peak of the (100) plane of WC is (W , M1) C (1
2 X 2 X
10)面の回折ピークとの回折角度が近接しており、互いのピークに重なるため、 WC のメイン回折ピークとしては、 WCの(101)面の回折ピークを選択した。また、(W、 M 1) Cの回折ピークとしてメイン回折ピークの(一 1— 11)面を表記している力 (w、Since the diffraction angle with the diffraction peak of the 10) plane is close and overlaps with each other, the diffraction peak of the (101) plane of WC was selected as the main diffraction peak of WC. In addition, the force (w, M 1) representing the (1-1 1) plane of the main diffraction peak as the C diffraction peak (w, M 1)
2 X 2 X
Ml) C (0, 8≤Xく 1 · 0)のうち、例えば W C については、そのメイン回折ピー Ml) C (0, 8 ≤ X 1 0), for example, for W C, its main diffraction peak
2 X 5. 08 12 2 X 5. 08 12
クは(111)面となる力 この(111)面と(一1— 11)面とは同じ { 111 }の結晶系であり 等価である。  The (111) plane and (1-11-1) plane are the same {111} crystal system and are equivalent.
[0019] さらに、これまで述べてきた(W、 Ml) C (0. 8≤X< 1. 0)の回折ピークは、基本  [0019] Furthermore, the diffraction peak of (W, Ml) C (0. 8 ≤ X <1. 0) described so far is fundamental.
2 X  2 X
的には W C (0. 8≤X< 1. 0)の回折ピークを示すものである力 S、回折ピークにやや  In particular, the force S, which shows the diffraction peak of W C (0.8 ≤ X <1.0), is somewhat in the diffraction peak.
2 X  2 X
幅を持ち、かつ W C (0. 8≤X< 1. 0)の回折ピーク位置よりもやや高角度側にシフ  It has a width and is shifted slightly higher than the diffraction peak position of W C (0.8 ≤ X <1.0).
2 X  2 X
トしている。これは、 Xの値が非化学量論値をもつこと、および、周期律表第 4a、 5a、 6a族の W以外の遷移金属元素を 1種または 2種以上その格子中に固溶していること によると考えられる。ただし、そのシフト量は非常に小さぐ 0. ldegree (2 Θ /degre e)程度もしくはそれ以下である。  Have This is because the value of X has a non-stoichiometric value, and one or more transition metal elements other than W in groups 4a, 5a, and 6a of the periodic table are dissolved in the lattice. It is thought that However, the shift amount is very small, about 0.1 degree (2Θ / degree) or less.
[0020] また、本発明の焼結硬質材料において、(W、 M1) C (0. 8≤X< 1. 0)の Xの値 については、(W、 M1) Cの(一 1— 11)面と、 WCの(101)面の X線回折の積分ピ [0020] In the sintered hard material of the present invention, the value of X in (W, M1) C (0.8 ≤ X <1.0) For (W, M1) C (1-11-1) plane and WC (101) plane X-ray diffraction integral
2  2
ーク強度比 (( 、 ) Strength ratio ((,)
Figure imgf000007_0001
Figure imgf000007_0001
においては、その強度比の増加とともに、 Χ=0· 84の値をもつ(W、 Ml) Cの回折  In (W, Ml) C diffraction with a value of Χ = 0 · 84 as its intensity ratio increases
2 X ピークに近づき、かつ回折ピークの理論値からのシフト量も小となる。これは、おそら く X = 0. 84の値で (W、 Ml) Cが安定して存在するためと考えられ、材料中の炭素  The 2 X peak is approached and the shift from the theoretical value of the diffraction peak is small. This is probably because (W, Ml) C exists stably at a value of X = 0.84.
2 X  2 X
量の低下にしたがって X = 0. 84の値をもつ(W、 Ml) Cの相量が増加するためと  As the amount decreases, X = 0.84 (W, Ml) because the amount of C phase increases.
2 X  2 X
考えられる。  Conceivable.
[0021] 他方、特許文献 4の焼結硬質材料に示されるように、 Xの範囲が 1. 0≤X<2. 0の [0021] On the other hand, as shown in the sintered hard material of Patent Document 4, the range of X is 1.0≤X <2.0.
W Cは、もともと W Cを晶出する合金炭素範囲中の高炭素域にてその存在が確認The existence of WC was confirmed in the high carbon region in the alloy carbon range where WC was originally crystallized.
2 X 2 X 2 X 2 X
される力 S、この Xの範囲が 1. 0≤X<2. 0の W Cが焼結硬質材料中に存在したとし  Force S, and the range of X is 1.0≤X <2.0 W C is present in the sintered hard material.
2 X  2 X
ても、その存在量は非常に少なぐしたがって破壊靭性の改善効果は確認できず、 確認できたとしても非常に小さい。  However, its abundance is very small, so the effect of improving fracture toughness cannot be confirmed, and even if it can be confirmed, it is very small.
[0022] ここで、 W C (0. 8≤X<1. 0)中に周期律表第 4a、 5a、 6a族の W以外の遷移金 [0022] where W C (0.8 ≤ X <1.0), transition gold other than W in groups 4a, 5a, 6a of the periodic table
2 X  2 X
属が固溶すること、すなわち、(W、M1) C (0. 8≤X<1. 0)中の Ml原子の存在  The genus is in solid solution, that is, the presence of Ml atom in (W, M1) C (0. 8≤X <1.0)
2 X  2 X
が各元素の拡散に影響を与え、(W、 Ml) C粒子の粗大化を抑制する。また、 W C  Affects the diffusion of each element and suppresses the coarsening of (W, Ml) C particles. W C
2 X 2 として存在するよりも(W、 Ml) Cとして存在した方が(W、 Ml) C (0. 8≤X<1. It is better to exist as (W, Ml) C than (W, Ml) C (0. 8≤X <1.
X 2 X 2 X X 2 X 2 X
0)相としては、格子ひずみが少なくなるため、より安定して炭化タングステン中に存 在できると考えられる。したがって、 W Cとしてよりも(W、 Ml) C として存在した方  The 0) phase is thought to be more stable in tungsten carbide because of less lattice strain. Therefore, those who existed as (W, Ml) C rather than W C
2 X 2 X  2 X 2 X
が破壊靭性改善の効果はより安定して発揮されると考えられ、また、分散強化として の分散粒子としての効果もより発揮されると考えられる。  However, the effect of improving fracture toughness is considered to be more stably exhibited, and the effect as dispersed particles as dispersion strengthening is also expected to be exhibited.
[0023] また、本発明の焼結硬質材料は、第 1相である WC相と第 2相である (W、 Ml) C ( [0023] Further, the sintered hard material of the present invention has a WC phase as the first phase and a second phase (W, Ml) C (
2 X 2 X
0. 8≤X<1. 0)以外の相として、周期律表第 4a、 5a、 6a族の遷移金属元素である M2の化合物の相、すなわち M2の炭化物、窒化物および炭窒化物の 1種または 2種 以上あるいはそれらの複合炭化物あるいは複合炭窒化物の相を含むことができる。こ の M2の化合物の相は、 WC相の粒成長抑制のために有効である力 この M2の化 合物における X線回折の最大ピークの積分ピーク強度を ί Ι(Μ2の化合物) d Θと表 し、 WCの(101)面の X線回折の積分ピーク強度を ί I(WC)d Θと表した場合、これ らの積分ピーク強度比 ί I (Μ2の化合物) d θ / ί I (WC) d Θが 1. 0%を超えると、 WC相の焼結性が低下し、緻密な材料を得ることができなレ、。したがって、 M2の化合 物の相を含む場合、前記の積分ピーク強度比が 1. 0%以下になるようにする。 As phases other than (0. 8 ≤ X <1.0), the phase of the M2 compound that is a transition metal element of Groups 4a, 5a, and 6a of the Periodic Table, that is, 1 of M2, carbides, nitrides, and carbonitrides. Species, two or more, or a composite carbide or composite carbonitride phase thereof may be included. This M2 compound phase has an effective force for suppressing grain growth in the WC phase. The integrated peak intensity of the maximum peak of X-ray diffraction in this M2 compound is expressed as ί Ι (compound 2) d Θ and When the integrated peak intensity of X-ray diffraction of the (101) plane of WC is expressed as ί I (WC) d Θ, the ratio of these integrated peak intensities ί I (compound of Μ2) d θ / ί I ( WC) d Θ exceeds 1.0%, The sinterability of the WC phase is reduced and a dense material cannot be obtained. Therefore, when the M2 compound phase is included, the integrated peak intensity ratio should be 1.0% or less.
[0024] なお、 M2の化合物については、その回折面を特定していないが、これは、 M2の 化合物自体には様々な形態があり、したがって様々なピーク位置での回折を生じるも のの、添加量としては極微量であるため、各々の最大ピークと WCの最大ピークであ る(101)面との比較を行えば十分であるため、 M2の化合物の最大ピークと表記した [0024] Although the diffraction plane of the compound of M2 is not specified, this is because the M2 compound itself has various forms, and thus produces diffraction at various peak positions. Since the addition amount is extremely small, it is sufficient to compare each peak with the (101) plane, which is the maximum peak of WC.
[0025] また、 M2の化合物の一部は、焼結時に(W、 M2) C (0. 8≤X< 1. 0)として W [0025] In addition, some of the compounds of M2 are (W, M2) C (0. 8≤X <1.0) as W during sintering.
2 X 2 2 X 2
C (0. 8≤X< 1. 0)中に固溶し、この固溶した M2原子が W C (0. 8≤X< 1. 0)Solid solution in C (0. 8≤X <1. 0) and this dissolved M2 atom becomes W C (0. 8≤X <1. 0)
X 2 X X 2 X
相の粒成長抑制の効果を発揮すると考えられる。 M2原子としての W C (0. 8≤X  It is considered that the effect of suppressing phase grain growth is exhibited. W C as M2 atom (0. 8≤X
2 X  2 X
< 1. 0)相中への固溶量は今のところ解明されていないが、焼結硬質材料中の M2 原子および前記 Ml原子の原子数としては、この焼結硬質材料中の Wの原子数に対 して、 0. 5%未満ではその粒成長抑制としての添加効果が少なぐ 5. 0%を超えると M2の化合物としての残存量が多過ぎることから、 WC相の焼結性が悪化する。  The amount of solid solution in the <1.0) phase has not been elucidated so far, but the number of M2 atoms in the sintered hard material and the number of Ml atoms are the W atoms in this sintered hard material. If the amount is less than 0.5%, the effect of adding it as a grain growth inhibitor is small.If it exceeds 5.0%, the remaining amount of M2 as a compound is too large. Getting worse.
[0026] 一方、不純物成分の Fe、 Co、 Niといった鉄族金属の存在によって焼結性は改善さ れ、また、 WC/WC、 WC/W Cあるいは W C /W C 間の界面の結合力は強く [0026] On the other hand, the sinterability is improved by the presence of iron group metals such as Fe, Co, and Ni as impurity components, and the bonding strength at the interface between WC / WC, WC / W C or W C / W C is strong.
2 X 2 X 2 X  2 X 2 X 2 X
なるものの、本発明のような主に炭化タングステン相で構成される焼結硬質材料にお いては、これら鉄族金属の存在により、 相と呼ばれる Wと鉄族金属との複合炭化物 の晶出により機械的強度は劣化する。ただし、焼結硬質材料中の含有量が 0. 05質 量%未満といった極微量であれば、例えば下記の参考文献に示されるように、材料 中炭素量の制御により容易に鉄族金属と Wとの複合炭化物を /c相といった六方晶型 結晶構造として晶出させることができ、これにより機械的特性の劣化を防止できると考 えられる。したがって、不純物成分の Fe、 Co、 Niのうち 1種または 2種以上の含有量 は 0. 05質量%未満に抑えることが好ましい。  However, in the sintered hard material mainly composed of the tungsten carbide phase as in the present invention, the presence of these iron group metals causes crystallization of a composite carbide of W and iron group metals called phases. Mechanical strength deteriorates. However, if the content in the sintered hard material is extremely small, such as less than 0.05% by mass, the iron group metal and W can be easily controlled by controlling the carbon content in the material as shown in the following reference, for example. It can be considered that the composite carbide with the crystal structure can be crystallized as a hexagonal crystal structure such as the / c phase, which can prevent deterioration of mechanical properties. Therefore, the content of one or more of the impurity components Fe, Co, and Ni is preferably suppressed to less than 0.05% by mass.
[0027] (参考文献) P. Schwarzkopf and R. Kieffer, CEMENTED CARBIDES, [0027] (Reference) P. Schwarzkopf and R. Kieffer, CEMENTED CARBIDES,
The Macmillan Company, New York, U. S. A. , p. p. 74—101 , (196 0) .  The Macmillan Company, New York, U.S.A., p.p.74-101, (196 0).
発明の効果 [0028] 本発明の焼結硬質材料によれば、ポア (空孔)や異常相などの組織的欠陥が非常 に少なぐ高硬度であり、ヤング率が大きぐ熱膨張係数が小さぐ面精度の良い鏡面 が得られる、といった特性が得られることに加え、優れた破壊靭性が得られる。したが つて、従来材と同様の機械加工を行うことができるとともに、機械加工およびその取り 回しにおいて、チッピングゃエッジ部のカケなどを生じる可能性が低くなり、その寿命 を長くすること力 Sできる。 The invention's effect [0028] According to the sintered hard material of the present invention, the surface accuracy is high hardness with very few structural defects such as pores (pores) and abnormal phases, large Young's modulus, and small thermal expansion coefficient. In addition to the characteristics that a good mirror surface can be obtained, excellent fracture toughness is obtained. Therefore, it is possible to perform machining similar to that of conventional materials and reduce the possibility of chipping and chipping in machining and handling, which can increase the service life. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下に本発明を実施するための最良の形態を実施例に基づき説明する。  Hereinafter, the best mode for carrying out the present invention will be described based on examples.
実施例 1  Example 1
[0030] 本発明の焼結硬質材料の原料粉末として、平均粒子径が 0. 5 μ mの WC粉末を使 用し、さらに平均粒子径がそれぞれ 1. 4 x mの Cr C、 1. の VCおよび 1. 1 μ  [0030] As a raw material powder of the sintered hard material of the present invention, WC powder having an average particle size of 0.5 μm is used, and Cr C having an average particle size of 1.4 xm and VC of 1. And 1.1 μ
2 3  twenty three
mの NbCを配合した。これらを配合した原料粉末を、メタノール溶媒の超硬ボールミ ルあるいは樹脂ボールミルで混合し、 lOMPaで仮プレス成形後、真空雰囲気中にて 1700。C〜2100°C、 0. 5〜2hourのホットプレス焼結(HP)を行った後、 Ar雰囲気 中 1500°Cで、:!〜 2hourの HIP処理を行レ、、研削加工で最終形状まで仕上げた。こ こで、 (W、M1) C相量の調整については、材料中炭素量の調整にて行った。すな  m NbC was blended. The raw material powder blended with these materials is mixed with a carbide ball mill or resin ball mill in methanol solvent, pre-press molded with lOMPa, and then 1700 in a vacuum atmosphere. C ~ 2100 ° C, 0.5 ~ 2hours after hot press sintering (HP), Ar atmosphere at 1500 ° C:! ~ 2hour HIP treatment, grinding to final shape Finished. The (W, M1) C phase amount was adjusted by adjusting the carbon content in the material. sand
2 X  2 X
わち、グラフアイトカーボンあるいはタングステン粉末の添加にて調整した。そして、得 られた焼結硬質材料の加工後の表面粗さ(Rmax)、破壊靭性値 (K )、および前述  That is, it was adjusted by adding graphite carbon or tungsten powder. Then, the surface roughness (Rmax), fracture toughness value (K) after processing of the obtained sintered hard material,
C  C
した (W、MI) cと wcの積分ピーク強度比(  (W, MI) c and wc integrated peak intensity ratio (
2 X n( (w、 Ml) C ) d 0 / J l (WC) d  2 X n ((w, Ml) C) d 0 / J l (WC) d
2 X  2 X
Θ )を求め、その結果を表 1中(製法欄に HP + HIPと記載)に示した。ここで、表 1中 の試料 No.に *記号を付けたものが本発明の実施例であり、その他が比較例である 。また、本発明の実施例について、破壊靭性値 (K )と前記積分ピーク強度比との関  Θ) was determined, and the results are shown in Table 1 (described as HP + HIP in the production column). Here, the sample numbers in Table 1 marked with * are examples of the present invention, and the others are comparative examples. Further, for the examples of the present invention, the relationship between the fracture toughness value (K) and the integrated peak intensity ratio.
C  C
ィ系を図 1に示した。  Figure 1 shows the system.
[0031] なお、表面粗さ(Rmax)については、テーラーホブソン社製の接触式タリステップを 用いて測定した。破壊靭性値 (K )については、ビッカース硬度計にてダイヤモンド  [0031] The surface roughness (Rmax) was measured using a contact-type tally step manufactured by Taylor Hobson. Fracture toughness value (K) is measured with diamond by Vickers hardness tester.
C  C
圧子を荷重 30kgにて 5秒間印加し、得られた圧痕の対角線長さおよび亀裂長さから 、以下の Evansの式を用いて算出した。また、炭化タングステンの平均粒子径は走査 型電子顕微鏡(SEM)を用いた破面の組織観察から、少なくとも実施例については 0 . 5 / m以下であることを確認した。鉄族不純物量については、 ICP発光分析により その量を求め、 Fe、 Co、 Ni総量が 0. 05質量%未満であることを確認した。さらに、 前述した Μ2の化合物と WCの積分ピーク強度比 Ι(Μ2の化合物) d Θ / J I(WC )ά θ )についても、 1. 0%以下であることを確認した。 An indenter was applied at a load of 30 kg for 5 seconds, and was calculated from the diagonal length and crack length of the resulting indentation using the following Evans equation. In addition, the average particle diameter of tungsten carbide was determined based on the observation of the fracture surface using a scanning electron microscope (SEM). It was confirmed that it was less than 5 / m. The amount of iron group impurities was determined by ICP emission analysis, and the total amount of Fe, Co, and Ni was confirmed to be less than 0.05% by mass. Furthermore, it was confirmed that the integrated peak intensity ratio 化合物 (compound of Μ2) d Θ / JI (WC) ά θ) of 化合物 2 and WC mentioned above was 1.0% or less.
[0032] (Κ φΖΗ&)=0. 15k(cZa)— 3/2 (Evansの式) [0032] (Κ φΖΗ &) = 0. 15k (cZa) — 3/2 (Evans equation)
c  c
ただし、 Ha:ピッカース硬度、 E:ヤング率、 a:圧痕半径、 c:クラック半径、 φ =3、 k =3とする。  However, Ha: Pickers hardness, E: Young's modulus, a: Indentation radius, c: Crack radius, φ = 3, k = 3.
[0033] 表 1に示されるように (W、 Ml) C と WCの積分ピーク強度比(i I((W、Ml) C )  [0033] As shown in Table 1, the integrated peak intensity ratio of (W, Ml) C and WC (i I ((W, Ml) C)
2 X 2 X άθ / ί I(WC)d θ )が本発明の範囲から外れる 0. 5%以下の比較例、すなわち試 料 No. 1、 2、 13、 25、 26については、破壊靭性値が 4. 0以下と低い。一方、前記 積分ピーク強度比が本発明の範囲内である実施例については、若干の測定誤差を 含むものの、破壊靭性値の測定値はほぼ 4. 0以上に改善されていることがわかる。 また、加工後の表面粗さについても、本発明の実施例は全て Rmaxが 7nm以下であ ること力 S確認される。なお、試料 No. 24については、原料粉末として平均粒子径 1. 0/imの WC粉末を使用した比較例であり、同一組成および (W、 Ml) C と WCの積  2 X 2 X άθ / ί I (WC) d θ) deviates from the scope of the present invention 0.5% or less of the comparative examples, that is, sample Nos. 1, 2, 13, 25 and 26, fracture toughness values Is as low as 4.0 or less. On the other hand, for the examples in which the integrated peak intensity ratio is within the range of the present invention, the measurement value of the fracture toughness value is improved to about 4.0 or more, although there is some measurement error. In addition, regarding the surface roughness after processing, it is confirmed that all the examples of the present invention have Rmax of 7 nm or less. Sample No. 24 is a comparative example using WC powder with an average particle size of 1.0 / im as the raw material powder, and has the same composition and the product of (W, Ml) C and WC.
2 X 分ピーク強度比(ί I((W、M1) C Μθ/ί I(WC  2 X minute peak intensity ratio (ί I ((W, M1) C Μθ / ί I (WC
2 X )de)が同程度である試料 No. Sample No. with the same 2 X) de)
25よりも、破壊靭性値は大きくなるものの、表面粗さが悪化している。これは焼結後の WCの平均粒子径が 1. 1 μ mと他の試料より大きかったためである。 Although the fracture toughness value is larger than 25, the surface roughness is deteriorated. This is because the average particle size of WC after sintering was 1.1 μm, which was larger than other samples.
[0034] また、図 1に示されるように、添加される Ml、 M2元素よりその効果の程度に多少の 差がみられるものの、本発明の焼結硬質材料は (W、 Ml) C (0. 8≤X<1. 0)が [0034] Further, as shown in Fig. 1, the sintered hard material of the present invention has (W, Ml) C (0 8≤X <1. 0)
2 X  2 X
増加するに伴い破壊靭性値 (κ )が高くなることが確認される。  It is confirmed that the fracture toughness value (κ) increases as the value increases.
C  C
実施例 2  Example 2
[0035] パルス通電焼結(PCS)製法を本発明に適用した例を説明する。なお、この適用例 の結果にっレ、ては、表 1中に併せて記した (製法欄に PCS + HIPと記載)。  An example in which the pulse current sintering (PCS) manufacturing method is applied to the present invention will be described. The results of this application example are also shown in Table 1 (described as PCS + HIP in the manufacturing method column).
[0036] 本例では、焼結過程およびその条件のみ前記 HP製法と異なる。すなわち、原料粉 末をメタノール溶媒のボールミルで混合し、 lOMPaで仮プレス成形し、真空雰囲気 中にて 20〜40MPaでカロ圧し、 1400oC〜1600oC、 lOmir!〜 60minの PCS焼結を 行った後、 Ar雰囲気中 1500°Cで、 l〜2hourの HIP処理を行い、研削加工で最終 形状まで仕上げた。そして、得られた焼結硬質材料の加工表面粗さ(Rmax)、破壊 靭性値 (K )、および前述した (W、 Ml) Cと WCの積分ピーク強度比( J" I ( (W、M [0036] In this example, only the sintering process and its conditions are different from the HP manufacturing method. That is, the raw material powder powder were mixed in a ball mill methanol solvent, temporarily pressed at LOMPa, pressed Caro in 20~40MPa in a vacuum atmosphere, 1400 o C~1600 o C, lOmir ! After PCS sintering for ~ 60min, HIP treatment for l ~ 2hour at 1500 ° C in Ar atmosphere Finished to shape. Then, the processed hard surface roughness (Rmax), fracture toughness value (K), and (W, Ml) C and WC integrated peak intensity ratio (J "I ((W, M
C 2 X  C 2 X
1) c ) d e / i(wc)d e )を求めた。  1) c) d e / i (wc) d e) was obtained.
2 X  2 X
[0037] 表 1に示されるように、 PCS製法を用いた場合においても、(W、M1) Cと WCの  [0037] As shown in Table 1, (W, M1) C and WC
2 X 積分ピーク強度比(i I ( (W、 MI)  2 X integral peak intensity ratio (i I ((W, MI)
2 c X Μ θ Ζ ί i(wc)d e )が本発明の範囲におい ては、破壊靭性値が 4. 0以上であることが確認される。さらに、加工表面粗さについ ては Rmaxが 6nm以下となり、 HP製法よりもさらに優れることがわかる。  2 c X Μθ Ζ ί i (wc) d e) is within the scope of the present invention, it is confirmed that the fracture toughness value is 4.0 or more. Furthermore, with regard to the processed surface roughness, Rmax is 6nm or less, which is superior to the HP manufacturing method.
実施例 3  Example 3
[0038] 本発明の焼結硬質材料をガラスレンズ高温成形装置のレンズ成形用金型に適用し た例を示す。  [0038] An example in which the sintered hard material of the present invention is applied to a lens molding die of a glass lens high-temperature molding apparatus will be described.
[0039] 表 1に示す本発明の実施例と比較例に示す焼結硬質材料を用いて製作されたレン ズ成形用金型でガラスレンズをプレス成形し、ガラスレンズの表面粗さの変化を調査 した。  [0039] A glass lens was press-molded with a lens-molding die manufactured using the sintered hard materials shown in the examples of the present invention and comparative examples shown in Table 1, and changes in the surface roughness of the glass lens were observed. investigated.
[0040] ガラスレンズのプレス成形試験では、球状の光学レンズ原料ガラスをレンズ成形用 金型の上型と下型のキヤビティに入れ、ガス流入配管によって、酸素濃度が 50ppm の窒素を導入し、ヒーターによって、胴型モールドを 500°Cまで加熱した。さらに、成 形圧力 2MPaで 3分間保持後室温まで冷却した。  [0040] In the glass lens press molding test, spherical optical lens material glass is placed in the upper mold and lower mold cavities of the lens mold, and nitrogen with an oxygen concentration of 50 ppm is introduced through the gas inflow pipe. The body mold was heated to 500 ° C. Furthermore, after holding at a forming pressure of 2 MPa for 3 minutes, it was cooled to room temperature.
[0041] 得られたガラスレンズの表面粗さを表 2に示す。同表から、本発明の実施例を用い て成形されたガラスレンズの表面粗さは、それぞれ表 1に示した本発明の焼結硬質 材料の表面粗さとほぼ同様の値であり、また、レンズ成形用金型への機械加工およ びレンズ成形時の取り回しにおいて、カケゃチッビングが生じにくいことを確認した。  [0041] Table 2 shows the surface roughness of the obtained glass lens. From the table, the surface roughness of the glass lens molded using the example of the present invention is almost the same value as the surface roughness of the sintered hard material of the present invention shown in Table 1, respectively. It was confirmed that chipping is unlikely to occur during machining to molding dies and handling during lens molding.
[表 1] [table 1]
Figure imgf000012_0001
Figure imgf000012_0001
ただし、 試料 No. に *記号のあるものは本発明範囲の焼結硬質材料である。 2]
Figure imgf000013_0001
However, those with * symbol in the sample No. are sintered hard materials within the scope of the present invention. 2]
Figure imgf000013_0001
ただし、 試料 N o . に *記号のあるものは本発明範囲の焼結硬質材料である。 産業上の利用可能性  However, a sample No. with a * symbol is a sintered hard material within the scope of the present invention. Industrial applicability
本発明の焼結硬質材料は、優れた鏡面加工性、耐摩耗性、耐エロージョン摩耗性 などを兼ね備えていることから、光学機器に使用されるレンズ、プリズム、グレーティン グなどの高精度光学素子成形用の超精密成形金型とその周辺機器の他、メカ二力 ルシールリング、軸スリーブすべり軸受け等の耐熱しゆう動部材、金属 'プラスチック' 複合材などの射出成形用モールド、電子部品製造装置用真空チャックの構成材とし ても適用できる。 Since the sintered hard material of the present invention has excellent mirror surface workability, wear resistance, erosion wear resistance, etc., lenses, prisms, and gratings used in optical equipment are used. In addition to ultra-precise molding dies for molding high-precision optical elements such as rugs and their peripheral equipment, heat-resistant sliding members such as mechanical seal rings and shaft sleeve slide bearings, and injection molding of metal 'plastic' composites It can also be used as a component material for molds and vacuum chucks for electronic component manufacturing equipment.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の焼結硬質材料の破壊靱性値 (K )を示す。 FIG. 1 shows the fracture toughness value (K) of the sintered hard material of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 主に WCと第 2相である(W、 Ml) C (0. 8≤X< 1. 0)とを含む炭化タングステン  [1] Tungsten carbide mainly containing WC and second phase (W, Ml) C (0. 8≤X <1.0)
2 X  2 X
相で構成され、  Composed of phases
この(W、M1) C (0. 8≤X< 1. 0)は、周期律表第 4a、 5a、 6a族の W以外の遷  This (W, M1) C (0.8 ≤ X <1. 0) is a transition other than W in groups 4a, 5a and 6a of the periodic table.
2 X  2 X
移金属元素のうち 1種または 2種以上である Mlを W C (0. 8≤X< 1. 0)が固溶し  W C (0.8 ≤ X <1. 0) is a solid solution of Ml, one or more of the transition metal elements.
2 X  2 X
たものであり、  And
この(W、M1) C (0· 8≤Χ< 1 · 0)の(一 1 1 1)面の X線回折の積分ピーク強度  Integrated peak intensity of X-ray diffraction of (1 1 1 1) plane of (W, M1) C (0 · 8≤Χ <1 · 0)
2 X  2 X
を i I ( (W、 Ml) C 01)面の X線回折の積分ピーク強度を  The integrated peak intensity of X-ray diffraction of i I ((W, Ml) C 01) plane
2 X Μ θと表し、 WCの(1 Π 2 X Μ θ, WC (1 Π
(WC) d Θと表した場合、これらの積分ピーク強度比 J" I ( (W、 Ml) C ) d Θ / J" I ( When expressed as (WC) d Θ, these integrated peak intensity ratios J "I ((W, Ml) C) d Θ / J" I (
2 X  2 X
wc) d e力 o. 5%〜: ιο· 0%の範囲である焼結硬質材料。  wc) d e force o. 5% ~: Sintered hard material in the range of ιο · 0%.
[2] 前記炭化タングステン相の平均粒子径が 0. 5 μ m以下である請求項 1に記載の焼 結硬質材料。  [2] The sintered hard material according to [1], wherein the tungsten carbide phase has an average particle size of 0.5 μm or less.
[3] WCと第 2相である(W、 Ml) C (0. 8≤X< 1. 0)以外の相として、周期律表第 4a  [3] As a phase other than WC and the second phase (W, Ml) C (0.8 ≤ X <1.0), Periodic Table 4a
2 X  2 X
、 5a、 6a族の遷移金属元素である M2の炭化物、窒化物および炭窒化物の 1種また は 2種以上あるいはそれらの複合炭化物あるいは複合炭窒化物からなる M2の化合 物の相を含み、  Including a phase of one or more of M2 carbides, nitrides and carbonitrides which are transition metal elements of Group 5a and 6a, or a compound of M2 composed of a composite carbide or composite carbonitride thereof,
この M2の化合物の X線回折の最大ピークの積分ピーク強度を ί I (M2の化合物) と表し、 wcの(101)面の X線回折の積分ピーク強度を ί i(wc) d Θと表した場 合、これらの積分ピーク強度比 ί I (Μ2の化合物) d θ / ί I (WC) d Θが 1. 0%以下 である請求項 1または請求項 2に記載の焼結硬質材料。  The integrated peak intensity of the maximum peak of X-ray diffraction of this M2 compound is expressed as ί I (M2 compound), and the integrated peak intensity of the X-ray diffraction of the (101) plane of wc is expressed as ί i (wc) d Θ. 3. The sintered hard material according to claim 1, wherein the integrated peak intensity ratio ί I (compound 2) d θ / ί I (WC) d Θ is 1.0% or less.
[4] Mlと Μ2の総原子数が、焼結硬質材料中の Wの原子数に対して 0. 5%〜5. 0% の範囲であり、 [4] The total number of atoms of Ml and Μ2 is in the range of 0.5% to 5.0% with respect to the number of W atoms in the sintered hard material,
かつ、 Fe、 Co、 Niのうち 1種または 2種以上の含有量が 0. 05質量%未満である請 求項 1から請求項 3のいずれかに記載の焼結硬質材料。  The sintered hard material according to any one of claims 1 to 3, wherein the content of one or more of Fe, Co, and Ni is less than 0.05% by mass.
[5] 請求項 1から請求項 4のいずれかに記載の焼結硬質材料によって形成された、光 学機器に使用されるレンズ、プリズム、グレーティングなどの高精度光学素子成形用 の金型。 [5] A mold for molding high-precision optical elements such as lenses, prisms, and gratings used in optical equipment, which is formed of the sintered hard material according to any one of claims 1 to 4.
PCT/JP2007/063553 2006-07-07 2007-07-06 Sintered hard material and mold comprising the same for molding high-precision optical element WO2008004656A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2007800205921A CN101460427B (en) 2006-07-07 2007-07-06 Sintered hard material and mold comprising the same for molding high-precision optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006188664A JP5134217B2 (en) 2006-07-07 2006-07-07 Sintered hard material and mold using the same
JP2006-188664 2006-07-07

Publications (1)

Publication Number Publication Date
WO2008004656A1 true WO2008004656A1 (en) 2008-01-10

Family

ID=38894622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063553 WO2008004656A1 (en) 2006-07-07 2007-07-06 Sintered hard material and mold comprising the same for molding high-precision optical element

Country Status (3)

Country Link
JP (1) JP5134217B2 (en)
CN (1) CN101460427B (en)
WO (1) WO2008004656A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201113391D0 (en) * 2011-08-03 2011-09-21 Element Six Abrasives Sa Super-hard construction and method for making same
JP6182848B2 (en) * 2012-10-30 2017-08-23 ぺんてる株式会社 Ball for ballpoint pen
CN110981488A (en) * 2019-12-24 2020-04-10 有研工程技术研究院有限公司 Ultrahigh-hardness aspheric glass lens mold material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH0925535A (en) * 1995-07-11 1997-01-28 Dijet Ind Co Ltd Sintered hard material
WO2005037731A1 (en) * 2003-10-22 2005-04-28 Nippon Tungsten Co., Ltd. Hard material excelling in resistance to high-temperature deterioration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1082551C (en) * 1998-07-09 2002-04-10 浙江大学 Smelting method and equipment for nanometer hard tungsten-cobalt carbide alloy
JP2002226221A (en) * 2000-11-30 2002-08-14 Ngk Insulators Ltd Glass press mold and its manufacturing method
JP2004238660A (en) * 2003-02-04 2004-08-26 Tungaloy Corp Chromium-containing cemented carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH0925535A (en) * 1995-07-11 1997-01-28 Dijet Ind Co Ltd Sintered hard material
WO2005037731A1 (en) * 2003-10-22 2005-04-28 Nippon Tungsten Co., Ltd. Hard material excelling in resistance to high-temperature deterioration

Also Published As

Publication number Publication date
JP2008013418A (en) 2008-01-24
JP5134217B2 (en) 2013-01-30
CN101460427A (en) 2009-06-17
CN101460427B (en) 2012-08-22

Similar Documents

Publication Publication Date Title
KR101253853B1 (en) Cermet
EP3031788B1 (en) Ceramic composition and cutting tool
KR102452868B1 (en) Cemented carbide and cutting tools
JP6193207B2 (en) Ceramic parts and cutting tools
KR101963072B1 (en) Hard alloy and cutting tool
WO2013089177A1 (en) Heat-resistant alloy and manufacturing method therefor
CN110168121B (en) Cemented carbide and cutting tool
KR20120069626A (en) Cutting tool
WO2010104094A1 (en) Cermet and coated cermet
KR102331061B1 (en) Hard materials and cutting tools
US8173561B2 (en) Inert high hardness material for tool lens production in imaging applications
JP5872590B2 (en) Heat-resistant alloy and manufacturing method thereof
WO2008004656A1 (en) Sintered hard material and mold comprising the same for molding high-precision optical element
JP2004076049A (en) Hard metal of ultra-fine particles
CN116096931A (en) Cemented carbide and cutting tool comprising the same as substrate
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
US8685874B2 (en) High-toughness zeta-phase carbides
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
WO2021106276A1 (en) Cemented carbide and cutting tool comprising same as base material
WO2005037731A1 (en) Hard material excelling in resistance to high-temperature deterioration
TW201410874A (en) Inert high hardness material for tool lens production
JP2008202074A (en) Fine-grained cemented carbide
KR101640644B1 (en) Titanium sintered alloy with improved thermal impact resistance and cutting tools using the same
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020592.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07768285

Country of ref document: EP

Kind code of ref document: A1