JPWO2005037731A1 - Hard material with high temperature resistance - Google Patents

Hard material with high temperature resistance Download PDF

Info

Publication number
JPWO2005037731A1
JPWO2005037731A1 JP2005514880A JP2005514880A JPWO2005037731A1 JP WO2005037731 A1 JPWO2005037731 A1 JP WO2005037731A1 JP 2005514880 A JP2005514880 A JP 2005514880A JP 2005514880 A JP2005514880 A JP 2005514880A JP WO2005037731 A1 JPWO2005037731 A1 JP WO2005037731A1
Authority
JP
Japan
Prior art keywords
phase
carbide
high temperature
hard material
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005514880A
Other languages
Japanese (ja)
Inventor
賢治 中原
賢治 中原
宏季 田中
宏季 田中
今里 州一
州一 今里
坂口 茂也
茂也 坂口
休男 内山
休男 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Publication of JPWO2005037731A1 publication Critical patent/JPWO2005037731A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Abstract

結合相を有しないWC基超硬合金に、ポア(空孔)や異常相などの組織的欠陥がなく、面精度の良い鏡面が得られ、耐高温劣化性に優れており、さらには、高硬度・高強度であり、ヤング率が大きいこと、熱膨張係数が小さいこと、耐食性に優れていること、特に高温における硬度と強度、優れた加工面精度および面粗度を有し、各種の光学素子の高温精密成形用型材に適した特性を付与することを目的とする。WC相および/または、WとTiとTaとの2種以上の金属の固溶体複炭化物相からなるバインダレス超硬合金において、平均粒子径を1μm以下の微粒の原料粉末を用いることによって、焼結緻密化した後においても微細結晶組織を維持し、また、かかる粒度調整とともにSiまたはSiCを原料粉末を添加して、Siとの固溶体複炭化物相を形成するか、SiCを第3相として存在させた。WC-based cemented carbide that does not have a binder phase has no structural defects such as pores or abnormal phases, provides a mirror surface with good surface accuracy, is excellent in high-temperature degradation resistance, Hardness and high strength, high Young's modulus, low thermal expansion coefficient, excellent corrosion resistance, especially high temperature hardness and strength, excellent machined surface accuracy and surface roughness, various optical The object is to provide characteristics suitable for a high-temperature precision molding die of the element. In a binderless cemented carbide composed of a solid solution double carbide phase of two or more metals of W, Ti and Ta, sintering is performed by using fine raw material powder having an average particle diameter of 1 μm or less. Even after densification, the fine crystal structure is maintained, and raw material powder of Si or SiC is added together with such particle size adjustment to form a solid solution double carbide phase with Si, or SiC is present as the third phase. It was.

Description

本発明は、レンズ、プリズム等の光学素子成形用の高精度型材として好適な耐高温劣化性に優れた硬質材料に関する。  The present invention relates to a hard material excellent in high temperature deterioration resistance suitable as a high-precision mold material for molding optical elements such as lenses and prisms.

近年、CD、DVD、デジタルカメラや携帯電話などで使用されている光学ピックアップレンズやコンピューターのハードディスク用基板に用いられるガラス製、プラスチック製等の光学素子の製造に際して、低価格の下で高信頼性の最終製品形状を得る方法として、複雑な機械的な精密加工を必要としない高温中でのプレス成形手段が採用されている。  In recent years, when manufacturing optical elements such as optical pickup lenses used in CDs, DVDs, digital cameras, mobile phones, etc. and hard disk substrates for computers, glass, plastic, etc., high reliability at a low price As a method for obtaining the final product shape, press molding means in a high temperature that does not require complicated mechanical precision processing is employed.

この高温プレス成形で使用される金型材料には、耐高温劣化性とともに、鏡面加工性、高温硬さ、熱伝導性、低熱膨張率などに優れた特性が要求され、従来から、その要求に合った材料として超硬合金やセラミックスのような硬質材料が使用されて来た。  The mold material used in this high-temperature press molding is required to have excellent properties such as high-temperature deterioration resistance, mirror surface workability, high-temperature hardness, thermal conductivity, and low coefficient of thermal expansion. Hard materials such as cemented carbide and ceramics have been used as combined materials.

例えば、特許文献1には、加工後の表面がRmax 0.05μm以下の鏡面を形成する光学素子成形用型に適した熱間静水圧プレス用の超硬合金として、コバルトを3〜10重量%含むWC基超硬合金が開示されている。また、この超硬合金の耐食性や耐高温劣化性を改善するために、結合相をCoからNiに変更したり、さらに、Cr、Mo等を添加することが行われている。  For example, Patent Document 1 discloses that 3 to 10% by weight of cobalt is used as a cemented carbide for hot isostatic pressing suitable for an optical element molding die whose surface after processing forms a mirror surface having an Rmax of 0.05 μm or less. Including a WC-based cemented carbide is disclosed. In order to improve the corrosion resistance and high temperature deterioration resistance of the cemented carbide, the binder phase is changed from Co to Ni, and Cr, Mo and the like are further added.

しかしながら、このように、超硬合金の結合相を強化しても、結合相自体は、炭化物相と比較すると化学的安定性において劣っており、高温成形作業中の作業雰囲気による腐食や酸化、さらには、窒化などによる高温劣化が結合相より発生し、これが金型の寿命を短くする原因となっている。  However, even if the cemented carbide binder phase is strengthened in this way, the binder phase itself is inferior in chemical stability as compared to the carbide phase. In this case, high-temperature deterioration due to nitriding or the like occurs in the binder phase, which causes the life of the mold to be shortened.

そこで、高温劣化が発生する結合相を含まない炭化物相のみからなる超硬合金、いわゆるバインダレス超硬合金が精密成型用の材料として使用されれば、これらの硬質合金の特性の向上が期待できることになる。このようなバインダレス超硬合金自体は、特許文献2〜4に開示されている。
特公昭62−51211号公報 特開平2−120244号公報 特開平10−7425号公報 特開2003−81649号公報
Therefore, if a cemented carbide consisting only of a carbide phase that does not contain a binder phase that causes high-temperature degradation, that is, a so-called binderless cemented carbide, is used as a material for precision molding, the improvement of the properties of these hard alloys can be expected. become. Such binderless cemented carbide itself is disclosed in Patent Documents 2 to 4.
Japanese Examined Patent Publication No. 62-51211 Japanese Patent Laid-Open No. 2-120244 Japanese Patent Laid-Open No. 10-7425 JP 2003-81649 A

しかしながら、この結合相を有しないバインダレス超硬合金を光学素子成形用の高精度型材のような高温成形型材として使用するには、より高い強度と、耐高温劣化性、さらには、高温硬さ、鏡面加工性、耐食性などに優れていることが要求される。  However, in order to use this binderless cemented carbide having no binder phase as a high-temperature mold material such as a high-precision mold material for optical element molding, higher strength, high temperature deterioration resistance, and high temperature hardness It is required to have excellent mirror surface workability, corrosion resistance, and the like.

本発明の目的は、ポア(空孔)や異常相などの組織的欠陥がなく、面精度の良い鏡面が得られ、耐高温劣化性に優れたバインダレスWC基の超硬合金を提供することにある。  An object of the present invention is to provide a binderless WC-based cemented carbide that is free from systematic defects such as pores and abnormal phases, has a mirror surface with good surface accuracy, and has excellent resistance to high-temperature degradation. It is in.

他の目的は、高硬度で且つ高強度であり、ヤング率が大きく、熱膨張係数が小さく、さらには、耐食性に優れたバインダレスWC基の超硬合金の提供にある。  Another object is to provide a binderless WC-based cemented carbide having high hardness and high strength, a high Young's modulus, a low coefficient of thermal expansion, and excellent corrosion resistance.

さらに、他の目的は、高温における硬度と強度、優れた加工面精度および面粗度を有し、各種の光学素子の高温精密成形用型材に適した特性を有するバインダレスWC基の超硬合金の提供にある。  In addition, another object is to provide a binderless WC-based cemented carbide having hardness and strength at high temperatures, excellent machined surface accuracy and surface roughness, and properties suitable for high-temperature precision molding molds of various optical elements. Is in the provision of.

本発明のWC相および/または、WとTiとTaとの2種以上の金属の固溶体複炭化物相からなるバインダレス超硬合金であって、平均粒子径が1μm以下の微粒の原料粉末を用い、焼結緻密化した後においても原料粉末の微粒状態とその微細結晶組織を維持する粒度調整をしたもので、焼結緻密化した後においても微細結晶組織が維持された高温精密成形用型材に適した特性を有する。  Binderless cemented carbide comprising a WC phase and / or a solid solution double carbide phase of two or more metals of W, Ti, and Ta according to the present invention, and using a fine raw material powder having an average particle size of 1 μm or less , Which has been adjusted to maintain the fine grain state of the raw material powder and its fine crystal structure even after sintering densification, to a mold for high-temperature precision molding that maintains the fine crystal structure even after sintering densification Has suitable characteristics.

また、前記粒度調整に際して、SiまたはSiCを原料粉末として添加してSiとの固溶体複炭化物相を形成するか、または、SiCを第3相として存在させたものとすることもできる。  In addition, when adjusting the particle size, Si or SiC may be added as a raw material powder to form a solid solution double carbide phase with Si, or SiC may be present as a third phase.

この超硬合金において、WC相は、硬度、強度、加工面粗度などに優れているが、その平均粒子径を1μm以下にすることによって、組織が微細となり、強度・硬度および鏡面加工性などを改善することが可能となる。  In this cemented carbide, the WC phase is excellent in hardness, strength, surface roughness, etc., but by making the average particle diameter 1 μm or less, the structure becomes finer and the strength / hardness, mirror surface workability, etc. Can be improved.

これに対して、その平均粒子径が1μmを超えると強度および硬度が低下する。また、Siを添加することによって形成されるSiC相は硬度、耐高温劣化性などに優れた特性を示すことになるが、その平均粒子径が1μmを超えると強度が著しく低下する。  On the other hand, when the average particle diameter exceeds 1 μm, the strength and hardness decrease. Further, the SiC phase formed by adding Si exhibits excellent properties such as hardness and resistance to high-temperature deterioration, but when the average particle diameter exceeds 1 μm, the strength is significantly reduced.

Siの添加によって、高温使用時にSiを含む非常に安定したガラス相の形成が助長され、耐高温劣化性は著しく改善される。また、SiC相として存在させることによってTiあるいはTaとWなどからなる固溶体複炭化物相やWC相の粒成長を抑制し微細組織を維持することが可能となる。その添加量は0.1%未満ではその効果が少なく、10%を超えると焼結性が著しく悪くなって、ポアなどの材料的欠陥が増加する。  The addition of Si facilitates the formation of a very stable glass phase containing Si when used at high temperatures, and the resistance to high temperature degradation is significantly improved. Further, the presence of the SiC phase makes it possible to suppress the grain growth of the solid solution double carbide phase composed of Ti or Ta and W or the WC phase and maintain the fine structure. If the addition amount is less than 0.1%, the effect is small, and if it exceeds 10%, the sinterability is remarkably deteriorated and material defects such as pores increase.

TiおよびTaの一部を周期律表4、5、および6族に属する遷移金属の1種または2種以上で置換すると、それら遷移金属やその炭化物の形で固溶もしくは析出することによって粒成長が抑制されて、硬度と強度が向上し、耐高温劣化性を改善する。  When a part of Ti and Ta is replaced with one or more transition metals belonging to groups 4, 5, and 6 of the periodic table, grain growth is caused by solid solution or precipitation in the form of transition metals or carbides thereof. Is suppressed, hardness and strength are improved, and high temperature deterioration resistance is improved.

Cの一部をNによって置換することにより、Tiおよび/またはTaとWからなる固溶体複炭窒化物相やSiを存在せしめることによって、合金の耐高温劣化性は改善されるが、CのNへの置換量が25重量%を超えると、焼結性が悪くなり合金の強度・鏡面加工性が著しく悪くなる。By substituting a part of C with N, the presence of a solid solution double carbonitride phase composed of Ti and / or Ta and W or Si 3 N 4 improves the high temperature deterioration resistance of the alloy. If the substitution amount of C by N exceeds 25% by weight, the sinterability is deteriorated and the strength and mirror finish of the alloy are remarkably deteriorated.

また、Fe、Co、Niなどの存在によって、焼結性が改善されるものの、Tiおよび/またはTaとWなどからなる固溶体複炭化物相やWC相に固溶したり、結晶粒界などに偏析して、鏡面加工性や耐高温劣化性などに著しい悪影響を与えるため、その含有量は1重量%以下にすることが好ましい。  In addition, although the sinterability is improved by the presence of Fe, Co, Ni, etc., it dissolves in a solid solution double carbide phase composed of Ti and / or Ta and W or WC phase, or segregates at grain boundaries. Thus, the content is preferably 1% by weight or less in order to have a significant adverse effect on mirror surface workability and high temperature resistance.

その他、不可避不純物は異常粒成長や異常相の発生などを引き起こし、強度、硬度、鏡面加工性などに著しい悪影響を与えるため、1重量%以下にすることが好ましい。  In addition, unavoidable impurities cause abnormal grain growth and generation of abnormal phases, and have a significant adverse effect on strength, hardness, mirror surface workability, and the like.

一方、パルス通電加圧焼結法などを用いれば、焼結緻密化が短時間で行えるため、結晶粒成長そのものを抑制でき、異常粒成長や異常相の発生も低減できるため、さらに硬度・強度・鏡面加工性が改善され、生産性も向上する。  On the other hand, if pulsed current pressure sintering method is used, sintering densification can be done in a short time, so it is possible to suppress crystal grain growth itself and to reduce the occurrence of abnormal grain growth and abnormal phase. -Mirror finish processability is improved and productivity is improved.

本発明の硬質材料は、ポア(空孔)や異常相などの組織的欠陥が非常に少なく、面精度の良い鏡面が得られること、耐高温劣化性に優れていること、高硬度・高強度であること、ヤング率が大きいこと、熱膨張係数が小さいこと、耐食性に優れ、従来材と比較して製品寿命が長くなる。  The hard material of the present invention has very few systematic defects such as pores and abnormal phases, provides a mirror surface with good surface accuracy, has excellent resistance to high-temperature deterioration, and has high hardness and high strength. In addition, the Young's modulus is large, the thermal expansion coefficient is small, the corrosion resistance is excellent, and the product life is longer than that of the conventional material.

以下に本発明を実施するための形態を実施例に基づき説明する。  EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated based on an Example below.

表1に、本発明の実施例に係る原料粉末の配合組成の焼結・HIP後の組成中のC量と、WC平均粒子径を、比較例とともに示す。  Table 1 shows the amount of C in the composition after sintering and HIP of the composition of the raw material powder according to the example of the present invention, and the WC average particle diameter together with the comparative example.

本発明に係る実施例の原料粉末としては、平均粒子径が0.1μmから1μmまでのものを使用し、それぞれの原料粉末組成として所要の組成が得られるよう調整した。  As the raw material powders of the examples according to the present invention, those having an average particle diameter of 0.1 μm to 1 μm were used and adjusted so as to obtain a required composition as each raw material powder composition.

原料粉末をメタノール溶媒のボールミルで粉砕混合し、0.1GPaでプレス成形し、500℃〜750℃・1〜5Hで真空予備焼結し、次いで、1500℃〜1800℃で、0.5〜2Hで真空焼結した後、1500℃で、1〜2H、Ar雰囲気中でHIP処理を行い、研削加工で最終形状まで仕上げた。  The raw material powder is pulverized and mixed with a ball mill of methanol solvent, press-molded at 0.1 GPa, vacuum presintered at 500 ° C. to 750 ° C. and 1 to 5 H, and then at 1500 ° C. to 1800 ° C. and 0.5 to 2 H After vacuum sintering at 1500 ° C., HIP treatment was performed in an atmosphere of 1-2H and Ar at 1500 ° C. and finished to the final shape by grinding.

得られた硬質材のWC平均粒子径、組成が硬度・抗折力・加工表面粗さ等の機械的特性や、高温硬さ、耐高温劣化性等の高温特性、それに、耐食性に及ぼす影響を調査した。  The effect of WC average particle size and composition of the obtained hard material on mechanical properties such as hardness, bending strength and processed surface roughness, high temperature properties such as high temperature hardness and high temperature resistance, and corrosion resistance. investigated.

表1に示す原料組成から得られた硬質材の組織観察、硬度、抗折力、耐高温劣化性、すなわち、酸化増量を調査した結果を比較例の場合と比較して表2に示す。  Table 2 shows the results of investigating the structure observation, hardness, bending strength, high temperature deterioration resistance, that is, oxidation increase, of the hard material obtained from the raw material composition shown in Table 1 in comparison with the comparative example.

なお、硬度はHRA(ロックウェルAスケール)で、抗折力は5×8×25mm試験片を用いた3点曲げ試験法で測定した。耐高温劣化性では表面をラップ加工した5×8×10mm試験片を大気中800℃・1H保持し、その前後の重量変化から酸化増量を算出した。また、WC平均粒子径は合金組織観察から求めたが、WC相が認められなかった合金は表1中に「−」によって示している。

Figure 2005037731
Figure 2005037731
The hardness was measured by HRA (Rockwell A scale), and the bending strength was measured by a three-point bending test method using a 5 × 8 × 25 mm test piece. For high temperature deterioration resistance, a 5 × 8 × 10 mm test piece having a lapped surface was held in the atmosphere at 800 ° C. for 1 H, and the oxidation increase was calculated from the weight change before and after that. Moreover, although the WC average particle diameter was calculated | required from alloy structure observation, the alloy in which the WC phase was not recognized is shown by "-" in Table 1.
Figure 2005037731
Figure 2005037731

本発明の実施例に係るNo.1〜4は、微細原料粉末を用い、焼結条件を最適化することによってWCまたは固溶体複炭化物相を微細化した合金でTi量を変化させた合金であるが、比較材よりも室温および600℃における硬度、抗折力、表面粗さ、酸化増量ともに改善されている。  According to the embodiment of the present invention, 1-4 are alloys in which the amount of Ti is changed by using a fine raw material powder and the WC or solid solution double carbide phase is refined by optimizing the sintering conditions. The hardness, bending strength, surface roughness and oxidation increase at ℃ are improved.

同じく実施例No.5〜9はさらにWの一部をW以外の周期律表4、5および6族に属する遷移金属のCrおよびVで置換した合金であるが、これらの金属炭化物が粒成長抑制剤として作用することによってWC平均粒子径が小さくなり、さらに硬度(室温および600℃)、抗折力、表面粗さ、酸化増量が改善されていることがわかる。  Similarly in Example No. 5 to 9 are alloys in which a part of W is further substituted with transition metals Cr and V belonging to groups 4, 5 and 6 of the periodic table other than W. These metal carbides act as grain growth inhibitors. This shows that the WC average particle size is reduced, and the hardness (room temperature and 600 ° C.), bending strength, surface roughness, and oxidation increase are improved.

また、実施例No.10〜14は、さらにSiC(*を付したものは、Si金属を併用した例を示す。)を添加した合金で、抗折力が若干低下するものの、WC平均粒子径が小さくなり、硬度(室温および600℃)、表面粗さ、酸化増量とも改善されている。  In addition, Example No. Nos. 10 to 14 are alloys to which SiC (indicated by * indicates an example in which Si metal is used in combination). Although the bending strength is slightly reduced, the WC average particle diameter is reduced and the hardness ( Room temperature and 600 ° C.), surface roughness, and oxidation increase.

さらに、実施例No.15〜19はWCの一部をTiCNに置換した合金で、炭窒化物や窒化物が存在することによって特に酸化増量が改善されている。  Furthermore, Example No. 15 to 19 are alloys in which a part of WC is substituted with TiCN, and the increase in oxidation is particularly improved by the presence of carbonitrides and nitrides.

ここでは、耐食性についての評価結果を省略しているが、本発明の実施例のいずれも、比較材と同等以上の優れた耐食性を有することが確認された。  Here, although the evaluation result about corrosion resistance is omitted, it was confirmed that all of the examples of the present invention have excellent corrosion resistance equivalent to or higher than that of the comparative material.

本発明に係る硬質材を図1に示すガラスレンズ高温成形装置のレンズ成形上型21とレンズ成形下型22に適用した例を示す。  The example which applied the hard material which concerns on this invention to the lens shaping | molding upper mold | type 21 and the lens shaping | molding lower mold | type 22 of the glass lens high temperature molding apparatus shown in FIG. 1 is shown.

表1に示す本発明の実施例と比較例に示す硬質材を用いて製作されたレンズ成形用金型でガラスレンズをプレス成形し、金型表面粗さの変化を調査した。  Glass lenses were press-molded with lens molding dies manufactured using the hard materials shown in Examples and Comparative Examples of the present invention shown in Table 1, and changes in the mold surface roughness were investigated.

ガラスレンズのプレス成形試験では、レンズ成形機筐体2に配置された球状の光学レンズ原料ガラスをプレス成形金型の上型21と下型22のキャビティに入れ、モールドの上側ホルダー11と下側ホルダー12によって固定した。油拡散ポンプ5とガス排出配管4から装置内のガスを排出したのち、ガス流入配管3によって、酸素濃度が50ppmの窒素を導入し、ヒーター14によって、温度センサ23を用いて、胴型モールド13を500℃まで加熱した。さらに、上軸7を介して上軸加圧シリンダー1によって上型21と、下軸8を介して軸加圧シリンダー8によって下型22を、成形圧力2Mpaで3分間保持後、冷却して、金型温度が300℃以下になったところで大気パージを行った。  In the glass lens press molding test, spherical optical lens raw glass placed in the lens molding machine housing 2 is placed in the cavities of the upper mold 21 and the lower mold 22 of the press molding mold, and the upper holder 11 and the lower side of the mold. It was fixed by the holder 12. After the gas in the apparatus is discharged from the oil diffusion pump 5 and the gas discharge pipe 4, nitrogen having an oxygen concentration of 50 ppm is introduced through the gas inflow pipe 3, and the heater 14 is used to form the body mold 13 using the temperature sensor 23. Was heated to 500 ° C. Further, the upper die 21 is held by the upper shaft pressurizing cylinder 1 through the upper shaft 7 and the lower die 22 is held by the shaft pressurizing cylinder 8 through the lower shaft 8 at a molding pressure of 2 Mpa for 3 minutes, and then cooled. An air purge was performed when the mold temperature reached 300 ° C. or lower.

これを1サイクルとして、500サイクル後の金型表面粗さの変化を測定した結果を表3に示す。同表から、本発明の実施例No.1〜19はいずれも500サイクル試験後の表面粗さの変化が比較材よりも小さく、優れた高温劣化性を有することが確認された。

Figure 2005037731
Table 3 shows the results of measuring the change in mold surface roughness after 500 cycles, assuming this as one cycle. From the same table, Example No. It was confirmed that all of Nos. 1 to 19 have an excellent high temperature deterioration property because the change in surface roughness after the 500 cycle test is smaller than that of the comparative material.
Figure 2005037731

この実施例は、パルス通電焼結法を用いて焼結緻密化した硬質材料の例を示す。  This example shows an example of a hard material sintered and densified using a pulse current sintering method.

表1の実施例106、110、114、118に使用した原料粉末の配合組成中のC量と、WC平均粒子径を示す。  The amount of C in the compounding composition of the raw material powder used in Examples 106, 110, 114, and 118 in Table 1 and the WC average particle diameter are shown.

これらの実施例の原料粉末としては、平均粒子径が0.1μmから1μmまでのものを使用し、それぞれの原料粉末組成として所要の組成が得られるよう調整した。  As the raw material powders of these examples, those having an average particle diameter of 0.1 μm to 1 μm were used and adjusted so as to obtain a required composition as each raw material powder composition.

原料粉末をメタノール溶媒のボールミルで粉砕混合し、メタノールを蒸散させて造粒粉末を行った。前記造粒粉末を高強度グラファイト製焼結型(ダイおよびパンチ)の中に充填した後、パルス通電焼結装置で焼結した。焼結温度は1300℃〜1900℃、加圧力10〜80MPa、真空中で焼結し、昇温時間は5〜30分、保持時間1〜30分であった。研削加工で最終形状まで仕上げた。  The raw material powder was pulverized and mixed with a ball mill of a methanol solvent, and methanol was evaporated to obtain a granulated powder. The granulated powder was filled into a high-strength graphite sintering die (die and punch) and then sintered with a pulse current sintering apparatus. The sintering temperature was 1300 ° C. to 1900 ° C., the applied pressure was 10 to 80 MPa, the sintering was performed in vacuum, the temperature rising time was 5 to 30 minutes, and the holding time was 1 to 30 minutes. Finished to the final shape by grinding.

得られた硬質材のWC平均粒子径、組成が硬度・抗折力・加工表面粗さ等の機械的特性や、高温硬さ、耐高温劣化性等の高温特性、それに、耐食性に及ぼす影響を調査した。  The effect of WC average particle size and composition of the obtained hard material on mechanical properties such as hardness, bending strength and processed surface roughness, high temperature properties such as high temperature hardness and high temperature resistance, and corrosion resistance. investigated.

表2のNo.106、110、114、118に、得られた硬質材の組織観察、硬度、抗折力、耐高温劣化性、すなわち、酸化増量を調査した結果を示す。  No. in Table 2 106, 110, 114, and 118 show the results of investigating the structure observation, hardness, bending strength, high temperature deterioration resistance, that is, oxidation increase, of the obtained hard material.

なお、硬度はHRAで、抗折力は5×8×25mm試験片を用いた3点曲げ試験法で測定した。耐高温劣化性では表面をラップ加工した5×8×10mm試験片を大気中800℃で、1時間保持し、その前後の重量変化から酸化増量を算出した。また、WC平均粒子径は合金組織観察から求めたが、WC相が認められなかった合金は「−」によって示している。  The hardness was HRA, and the bending strength was measured by a three-point bending test method using a 5 × 8 × 25 mm test piece. For high temperature deterioration resistance, a 5 × 8 × 10 mm test piece having a lapped surface was held in the atmosphere at 800 ° C. for 1 hour, and the increase in oxidation was calculated from the weight change before and after that. Moreover, although the WC average particle diameter was calculated | required from alloy structure observation, the alloy in which the WC phase was not recognized is shown by "-".

同表から、パルス通電焼結法を用いて焼結緻密化した硬質材料であるが、比較材よりも室温および600℃における硬度、抗折力、表面粗さ、酸化増量ともに改善されていることが分かる。  From the same table, it is a hard material that has been sintered and densified using the pulse current sintering method, but the hardness, bending strength, surface roughness, and oxidation increase at room temperature and 600 ° C are improved compared to the comparative material. I understand.

ここでは、耐食性についての評価結果を省略しているが、比較材と同等以上の優れた耐食性を有することが確認された。  Here, although the evaluation result about corrosion resistance is abbreviate | omitted, it was confirmed that it has the outstanding corrosion resistance equivalent to or more than a comparative material.

本発明の硬質材料は、優れた耐摩耗性、耐熱性、鏡面加工性、耐食性などを兼ね備えていることから、超精密成形金型とその周辺機器の他、メカニカルシールリング、軸スリーブすべり軸受け等の耐熱しゅう動部材、金属・プラスチック・複合材などの射出成形用モールド、電子部品製造装置用真空チャックの構成材としても適用できる。  Since the hard material of the present invention has excellent wear resistance, heat resistance, mirror surface workability, corrosion resistance, etc., in addition to ultra-precision molding dies and peripheral devices, mechanical seal rings, shaft sleeve sliding bearings, etc. It can also be used as a component of heat-resistant sliding members, injection molding molds for metals, plastics, composites, etc., and vacuum chucks for electronic component manufacturing equipment.

本発明に係る硬質材を適用する光学ガラスレンズ素子成形用型とその成形装置を示す断面図である。It is sectional drawing which shows the optical glass lens element shaping | molding die to which the hard material based on this invention is applied, and its shaping | molding apparatus.

符号の説明Explanation of symbols

1:上軸加圧シリンダー
2:レンズ成形機筐体
3:ガス流入配管
4:ガス排出配管
5:油拡散ポンプ
6:下軸加圧シリンダー
7:上軸
8:下軸
11:モールド上側ホルダー
12:モールド下側ホルダー
13:胴型モールド
14:ヒーター
21:レンズ成形上型22:レンズ成形下型23:温度センサ
1: Upper shaft pressurizing cylinder 2: Lens molding machine housing 3: Gas inflow pipe 4: Gas exhaust pipe 5: Oil diffusion pump 6: Lower shaft pressurizing cylinder 7: Upper shaft 8: Lower shaft 11: Mold upper holder 12 : Mold lower holder 13: Body mold 14: Heater 21: Lens molding upper mold 22: Lens molding lower mold 23: Temperature sensor

Claims (9)

WC相および/または、WおよびTiおよび/またはTaの2種以上の金属の炭化物との2相混合組織または固溶体複炭化物相のみからなるバインダレス超硬合金からなり、平均粒子径が1μm以下の微粒の原料粉末を用い、焼結緻密化した後においても原料粉末の微細結晶組織が維持されている耐高温劣化性に優れた硬質材料。It consists of a binderless cemented carbide consisting of a WC phase and / or a two-phase mixed structure with two or more metal carbides of W and Ti and / or Ta or a solid solution double carbide phase, and has an average particle size of 1 μm or less A hard material with excellent resistance to high-temperature deterioration that maintains the fine crystal structure of the raw material powder even after sintering and densification using fine raw material powder. バインダレス超硬合金が、Wを37.5〜93.5重量%と、Tiおよび/またはTaを合計で1〜47重量%と、Cを6.18〜14.2重量%と、FeとCoとNiの合計が1重量%以下を含有し、残りが不可避不純物からなる組成を有する請求項1に記載の耐高温劣化性に優れた硬質材料。The binderless cemented carbide comprises 37.5 to 93.5 wt% of W, 1 to 47 wt% in total of Ti and / or Ta, 6.18 to 14.2 wt% of C, Fe, The hard material excellent in high temperature deterioration resistance according to claim 1, wherein the total content of Co and Ni is 1% by weight or less, and the remainder is composed of inevitable impurities. TiおよびTiおよび/またはTaの一部が周期律表4、5、および6族に属する遷移金属の1種または2種以上によって置換されている請求項1または請求項2に記載の耐高温劣化性に優れた硬質材料。The high temperature resistance deterioration according to claim 1 or 2, wherein a part of Ti and Ti and / or Ta is substituted by one or more transition metals belonging to groups 4, 5, and 6 of the periodic table. Hard material with excellent properties. C含有量の中の25重量%以下がNと置換されており、その炭化物または固溶体複炭化物の一部がWNまたはWの固溶体複炭窒化物を形成している請求項1から請求項3の何れかに記載の耐高温劣化性に優れた硬質材料。The C content of 25 wt% or less is substituted with N, and a part of the carbide or solid solution double carbide forms a solid solution double carbonitride of WN or W. A hard material having excellent resistance to high temperature degradation as described in any one of the above. WC相および/または、WおよびTiおよび/またはTaの2種以上の金属の炭化物相とSiの炭化物相との混合組織またはこれらの固溶体複炭化物相のみからなるバインダレス超硬合金からなり、
平均粒子径が1μm以下の微粒の原料粉末を用い、焼結緻密化した後においても原料粉末の微細結晶組織が維持されている耐高温劣化性に優れた硬質材料。
A WC phase and / or a mixed structure of a carbide phase of two or more metals of W and Ti and / or Ta and a carbide phase of Si or a binderless cemented carbide consisting only of these solid solution double carbide phases,
A hard material excellent in high-temperature deterioration resistance in which a fine crystal structure of a raw material powder is maintained even after sintering and densification using a fine raw material powder having an average particle diameter of 1 μm or less.
バインダレス超硬合金が、Wを37.5〜93.5重量%と、Tiおよび/またはTaを合計で1〜47重量%と、Siを0.1〜10重量%と、Cを6.18〜16.1重量%と、FeとCoとNiの合計が1重量%以下を含有し、残りが不可避不純物からなる組成を有する請求項5に記載の耐高温劣化性に優れた硬質材料。In the binderless cemented carbide, W is 37.5 to 93.5% by weight, Ti and / or Ta is 1 to 47% by weight, Si is 0.1 to 10% by weight, and C is 6. The hard material excellent in high temperature deterioration resistance according to claim 5 having a composition comprising 18 to 16.1 wt%, Fe, Co and Ni in a total content of 1 wt% or less, and the remainder consisting of inevitable impurities. TiおよびTiおよび/またはTaの一部が周期律表4、5、および6族に属する遷移金属の1種または2種以上によって置換されている請求項5または6に記載の耐高温劣化性に優れた硬質材料。The high temperature deterioration resistance according to claim 5 or 6, wherein a part of Ti and Ti and / or Ta is substituted by one or more transition metals belonging to groups 4, 5, and 6 of the periodic table. Excellent hard material. C含有量の中の25%以下がNによって置換されており、WC炭化物相と固溶体複炭化物の一部がそれぞれ炭窒化物を形成し、SiC相の一部もしくは全てがSi相である請求項5から7の何れかに記載の耐高温劣化性に優れた硬質材料。25% or less of the C content is replaced by N, WC carbide phase and part of solid solution double carbide form carbonitride, respectively, and part or all of SiC phase is Si 3 N 4 phase The hard material excellent in high temperature degradation resistance in any one of Claim 5 to 7. パルス通電加圧焼結法またはパルス通電加圧焼結法を含む加圧焼結法(ホットプレス法)により焼結緻密化して成形した請求項1から8の何れかに記載の耐高温劣化性に優れた硬質材料。9. High temperature degradation resistance according to any one of claims 1 to 8, which is formed by sintering densification by a pulsed current pressure sintering method or a pressure sintering method (hot press method) including a pulsed current pressure sintering method. Excellent hard material.
JP2005514880A 2003-10-22 2004-10-22 Hard material with high temperature resistance Withdrawn JPWO2005037731A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003362479 2003-10-22
JP2003362479 2003-10-22
PCT/JP2004/015736 WO2005037731A1 (en) 2003-10-22 2004-10-22 Hard material excelling in resistance to high-temperature deterioration

Publications (1)

Publication Number Publication Date
JPWO2005037731A1 true JPWO2005037731A1 (en) 2007-11-29

Family

ID=34463511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514880A Withdrawn JPWO2005037731A1 (en) 2003-10-22 2004-10-22 Hard material with high temperature resistance

Country Status (2)

Country Link
JP (1) JPWO2005037731A1 (en)
WO (1) WO2005037731A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134217B2 (en) * 2006-07-07 2013-01-30 日本タングステン株式会社 Sintered hard material and mold using the same
JP2009179519A (en) * 2008-01-31 2009-08-13 Nippon Tokushu Gokin Kk Binderless alloy
KR101165405B1 (en) * 2010-08-19 2012-07-12 오 걸 권 Manufacturing method of hard metal having improved abrasion resisrance
JP5740763B2 (en) * 2010-10-01 2015-07-01 住友電工ハードメタル株式会社 Cemented carbide
CN102226746B (en) * 2011-03-31 2012-11-28 哈尔滨工业大学 Impact-type high-temperature hardness test method
JP5856752B2 (en) * 2011-04-26 2016-02-10 日本タングステン株式会社 Tungsten carbide-based sintered body and wear-resistant member using the same
JP2012087045A (en) * 2011-11-14 2012-05-10 Nippon Tokushu Gokin Kk Method for producing binderless alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813005B2 (en) * 1989-09-28 1998-10-22 日本タングステン株式会社 WC based hard alloy
JP3149330B2 (en) * 1995-01-27 2001-03-26 東洋鋼鈑株式会社 Tungsten carbide sintered body
JP2003271175A (en) * 2002-03-14 2003-09-25 Matsushita Electric Ind Co Ltd Device and program for evaluating acoustic processing method

Also Published As

Publication number Publication date
WO2005037731A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US8173561B2 (en) Inert high hardness material for tool lens production in imaging applications
JPWO2005037731A1 (en) Hard material with high temperature resistance
JP2008069420A (en) Cemented carbide and coated cemented carbide, and manufacturing methods therefor
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JP2016068224A (en) Cutting insert made of titanium carbonitride-based cermet excellent in finished surface processing
JP6049978B1 (en) Oxidation-resistant low-binder hard alloy with a large thermal expansion coefficient or lens mold made of this material
JP2007270339A (en) Metal mold for die casting and its peripheral member
JP2005281084A (en) Sintered compact and manufacturing method therefor
JP3721510B2 (en) Sintered alloy suitable for optical glass mold and its peripheral components
KR101634132B1 (en) A method for preparing molding material for dental prosthesis
JP5134217B2 (en) Sintered hard material and mold using the same
US6551954B1 (en) WC-base composite ceramic sintered compact
JP2002307222A (en) Method of manufacturing material for oil hole drill with low porosity near oil hole, and method of manufacturing oil hole drill
JP2008075160A (en) Die member for forming glass optical element
JP2012087045A (en) Method for producing binderless alloy
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JP4971564B2 (en) Sintered alloy with excellent high-temperature properties and hot forming mold using the same
JP7351582B1 (en) Sintered alloy and mold
JP2009209022A (en) WC-SiC-Mo2C-BASED SINTERED BODY AND ITS MANUFACTURING METHOD
KR970008043B1 (en) Method of guide roller
JP2002180175A (en) Sintered alloy excellent in high temperature property and die for hot forming using the alloy
JP2009215091A (en) Dense boron carbide sintered body and method for producing the same
JP2009179519A (en) Binderless alloy
JP2574426B2 (en) Mold for optical element molding
CN116693303A (en) TiN-Si 3 N 4 Near net shape forming method for composite material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108