JP4280037B2 - Method for producing Ti-based cermet - Google Patents

Method for producing Ti-based cermet Download PDF

Info

Publication number
JP4280037B2
JP4280037B2 JP2002222428A JP2002222428A JP4280037B2 JP 4280037 B2 JP4280037 B2 JP 4280037B2 JP 2002222428 A JP2002222428 A JP 2002222428A JP 2002222428 A JP2002222428 A JP 2002222428A JP 4280037 B2 JP4280037 B2 JP 4280037B2
Authority
JP
Japan
Prior art keywords
temperature
mass
cutting
cermet
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002222428A
Other languages
Japanese (ja)
Other versions
JP2004060021A (en
Inventor
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002222428A priority Critical patent/JP4280037B2/en
Publication of JP2004060021A publication Critical patent/JP2004060021A/en
Application granted granted Critical
Publication of JP4280037B2 publication Critical patent/JP4280037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具部材、耐摩耗性工具部材等に適する靱性と硬度をともに備えたTi基サーメットに関するものである。
【0002】
【従来の技術】
耐摩耗性工具や切削工具用合金として超硬合金(WC基焼結合金)が知られているが、鉄鋼の切削におけるクレータ摩耗を改善した、超硬合金よりも耐磨耗性に優れたTi基サーメット合金が開発されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来のTi基サーメットでは超硬合金と比較して熱伝導性が悪く、熱膨張係数が大きいために、特に湿式で長時間切削するような場合には、熱衝撃による欠損が発生しやすくなってしまうことから、表面に硬質コーティング膜を備えたWC基焼結合金に匹敵する耐熱衝撃性が望まれていた。また、乾式切削では熱伝導率が低いことに起因して切削途中の刃先部分が高温になることで塑性変形を引き起こし、その結果切削抵抗が増大し欠損してしまうため、耐塑性変形性の向上が望まれていた。
【0004】
本発明は上記従来技術の課題を解決するためのもので、その目的はTi基サーメット耐熱衝撃性に優れ、かつ耐塑性変形性にも優れたTi基サーメットを提供することにある。
【0005】
【課題を解決するための手段】
本発明者は上記課題に対し、Ti基サーメットの耐熱衝撃性および耐塑性変形性を高める構成について検討した結果、主としてCoおよび/またはNiを主体とする結合相が溶け込んだ溶出溶液中にTi、Zr、VおよびWの特定金属を特定の比率で含有せしめることによって結合相の耐塑性変形性および耐熱衝撃性が向上することを知見した。
【0009】
また、本発明のTi基サーメットの製造方法によれば、TiまたはTi以外の周期律表4a、5a、6a金属の1種または2種以上で表される炭化物、窒化物、炭窒化物および複合炭窒化物のうちの1種または2種以上から成る硬質分散相を、Coおよび/またはNiを主体としてTi、Zr、V、W、Co、Niの金属元素を含有する結合相5〜30質量%で結合してなるTi基サーメットの製造方法において、TiCNを19−45質量%、TiNを13−40質量%、WCを2−20質量%、ZrCを2−5質量%、VCを0−5質量%とCo及びNiからなる結合相5−30質量%からなる成分組成からなる前記Ti基サーメットの生成形体を(a)室温から800〜1100℃の第1の焼成温度まで昇温し、(b)前記第1の焼成温度から1300℃までを0.1〜3℃/min昇温し、(c)ついで窒素分圧0〜1350Paの雰囲気下1300℃から1400〜1600℃の第2の焼成温度まで5〜15℃/minで昇温して(d)保持し、(e)前記第2の焼成温度から1300℃までを1〜3Paの窒素減圧中で10〜20℃/minで降温し、(f)1300℃から1200℃までを1〜5℃/minで降温し(g)1000℃から室温まで降温して焼成することを特徴とする。
【0010】
【発明の実施の形態】
本発明のTi基サーメット(以下、単にサーメットと略す。)とその製造方法について、Ti基サーメットの任意箇所についての透過型電子顕微鏡写真(TEM像)のプロット図である図1を基に説明する。
【0011】
図1に示すように、本発明のサーメット1は、Ti、またはTiおよびTi以外の周期律表4a、5a、6a属金属の1種または2種以上で表される炭化物、窒化物、炭窒化物および複合炭窒化物のうちの1種または2種以上から硬質分散相3を5〜30重量%のCoおよび/またはNiを主体とする結合相2で結合してなるサーメットである。このとき、サーメット1の主結晶相はTiCNからなることが望ましく、(Ti、M)CNの一部にTiC、TiN、TiCNの群より選ばれる1種以上を30重量%以下の割合で含有してもよい。
【0012】
本発明によれば、サーメット1の粉末0.2gを塩酸(1+1)20mlにて50℃、1時間加熱溶出させた主として結合相2が溶け込んだ溶出溶液中に、0.4<(b+d)/(a+b+c+d)<0.8(ただしa、b、c、dはそれぞれTi、Zr、V、Wの重量比)の金属成分を含有せしめることが大きな特徴であり、これによって、硬質分散相3が微細(平均粒径0.1〜2.0μm)で均一な組織になるとともに、結合相2との濡れ性に優れるためにサーメット1の高強度化に寄与する結果、かかる硬質分散相3を結合する結合相2にZrかつWが固溶することにより結合相2中の耐塑性変形性が向上し、特に乾式切削においてもサーメット1の耐欠損性が向上する。
【0013】
一方、前記溶出溶液中の(b+d)/(a+b+c+d)が0.4を下回ると、特に乾式切削によって切刃部が高温になるような場合に金属相の耐塑性変形性が低下して、サーメット自体の耐塑性変形性が低下して耐欠損性および耐摩耗性が低下してしまう。他方、前記溶出溶液中の(b+d)/(a+b+c+d)が0.8を上回ると、金属相の揮散や金属相の濡れ不良によってボイド等の焼結不良が発生してしまい、そこが破壊源となって耐欠損性が低下してしまう。また、硬質分散相の粒径を0.5〜3μmの微粒にすることでサーメット1の強度を向上させることができるが、結合相に良好な濡れ性が必要となるため、前記関係式の値が0.8以下であることが重要である。
【0014】
さらに、前記溶出溶液中の0<b/(a+b+c+d)<0.15以下であることが焼結不良の発生による耐欠損性の低下を防ぐ点で望ましい。
【0015】
さらに、前記溶出溶液中の金属元素が0.1<(b+d)/(a+b+c+d+e+f)<0.25(ただしa、b、c、d、e、fはそれぞれ結合相中のTi、Zr、V、W、Co、Niの重量比)の関係を満たすことが耐塑性変形性の向上および焼結性改善による焼結体強度の向上の点で望ましい。
【0016】
また、本発明によれば、結合相2および溶出溶液中にZr、Wに加えてVを固溶させることにより、硬質分散相の成長が抑制されることになり、硬質分散相3間の平均結合相厚みが薄くなることによってサーメット1の熱伝導率が向上し、かつ硬質分散相3と結合相2の熱膨張係数による歪が小さくなるため、湿式切削時に生じる熱疲労に伴う亀裂の発生を抑制することができる。特に前記溶出溶液中の0.01<c/(a+b+c+d)<0.1であるとき耐熱衝撃性が改善され、長時間の湿式切削が可能となる点で望ましい。
【0017】
また、図1によれば、硬質分散相3は、TiCNからなる芯部4と、Tiと、Zr、V、W、Mo、TaおよびNbのうちの1種以上との複合化合物からなる周辺部5とから構成される2重有芯構造をなしている。このように、硬質分散相3が2重有芯構造をなすことでサーメット1の硬度および靭性を向上させることができる。
【0018】
なお、これらの有芯構造は芯部4と周辺部5との間に異なる組成からなる他の周辺部が存在する3重有芯構造であってもよい。
【0019】
(製造方法) 次に、本発明のTi基サーメットの製造方法について説明する。
【0020】
まず、TiCN粉末とTiN粉末、W、V、Ta、ZrおよびNbのうちの1種以上を含有する炭化物粉末、窒化物粉末、炭窒化物粉末の少なくとも1種、Co粉末および/またはNi粉末を、TiCNを19−45質量%、TiNを13−40質量%、WCを2−20質量%、ZrCを2−5質量%、VCを0−5質量%とCo及びNiからなる結合相5−30質量%からなる成分組成に混合した混合粉末および固溶体、共沈体を調整する。
【0021】
そして、この混合粉末にバインダーを添加して、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形して生成形体を形成する。
【0022】
次に、この生成形体を下記の条件にて焼成することにより、上述した所定の組成比で結合相にTi、Zr、V、Wを固溶させることができる。焼成条件としては、(a)室温から800〜1100℃の第1の焼成温度まで昇温し、(b)第1の焼成温度から1300℃までを0.1〜3℃/minで昇温(昇温速度I)し、(c)ついで窒素分圧0〜1350Paの雰囲気下1300℃から1400〜1600℃の第2の焼成温度まで5〜15℃/minで昇温(昇温速度II)して(d)保持し、(e)前記第2の焼成温度から1300℃までを1〜3Paの窒素減圧中で10〜20℃/minで降温(降温速度I)し、(f)1300℃から1200℃までを1〜5℃/minで降温(降温速度II)し(g)1000℃から室温まで降温する条件で焼成することが重要である。
【0023】
すなわち、上記焼成条件のうち、(b)の昇温速度が0.1℃/minより遅いと結合相中への炭窒化物の拡散が不充分になり、逆に(b)の昇温速度が3℃/minより速いと結合相中へ過剰に金属元素が固溶する。さらに、(e)の窒素減圧が1Paより低いときは、表面から脱窒が起こり、それにともない結合相中に存在する金属元素が不均一な分布となり(b+d)/(a+b+c+d)が0.4未満となってしまう。逆に3Paより高い場合においても金属元素が過剰に移動するため、不均一な分布となり(b+d)/(a+b+c+d)が0.8以上となってしまう。(f)の降温速度が10℃/minより遅いと、表面付近の結合相が揮散し焼肌にボイドを発生させる。逆に(f)の降温速度が20℃/minより速いと焼結体表面付近に異常粒成長が起こり、破壊源となる。
【0024】
【実施例】
(実施例) 平均粒径1.0μmのTiCN粉末、平均粒径1.5μmのTiN粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末)、平均粒径1.1μmのWC粉末、平均粒径2.4μmのNi粉末、平均粒径1.9μmのCo粉末、平均粒径1.0μmのC粉末を用いて表1に示すような成分組成に配合し、これをステンレス製ボールミルと超硬ボールを用いて、IPAにて湿式混合し、パラフィンを3重量%添加、混合した後、この混合粉末を200MPaでCNMG120408にプレス成形し、表1に示す条件で焼成した。
【0025】
【表1】

Figure 0004280037
【0026】
得られた焼結体表面をダイヤモンド砥石によって加工し、下記条件にて切削性能を評価した。
切削条件I
切削速度:250m/min
送り :0.25mm/rev
切込み :2.0mm
被削材 :SCM435
切削時間:欠損するまでの時間(min)
切削状態:湿式(エマルジョン)
切削条件II
切削速度:250m/min
送り :0.25mm/rev
切込み :2.0mm
被削材 :SCM435
切削時間:欠損するまでの時間(min)
切削状態:乾式
また、各試料について結合相中の金属元素の組成を以下の方法にて測定した。まず、上記焼結体(サーメット)を超硬合金製乳鉢に入れて40メッシュにてメッシュパスした状態で残渣がないように粉砕し、この粉末0.2gを塩酸(1+1)20mlにて50℃、1時間加熱溶出させた後、塩酸(1+1)にて100ml定容とした。この溶出溶液中に含まれる金属元素をICP分析によってそれぞれ算出し、(b+d)/(a+b+c+d)、c/(a+b+c+d)、(b+d)/(a+b+c+d+e+f)の値を求めた。その結果を表2に示す。
【0027】
【表2】
Figure 0004280037
【0028】
表2より、所定の条件で焼成した試料No.1〜10では、いずれも溶出溶液中の金属元素が0.4<(b+d)/(a+b+c+d)<0.8の範囲内であり、切削試験での切削寿命が20分以上と長いものであった。中でも溶出溶液中の0.01<c/(a+b+c+d)<0.1の関係を満たす試料No.1〜5は、湿式切削においても超硬工具並みの高い切削性能を発揮するものであった。
【0029】
また、乾式切削においても同様においても優れた切削性能を示した。これに対して、窒素分圧が1Paより低い雰囲気で焼成を行った試料No.11では、溶出溶液中の(b+d)/(a+b+c+d)の値が0.4よりも小さくなり、湿式では切削寿命も12分と短いものだった。乾式でも同様に他の工具と比較して8分と短い工具寿命であった。
【0030】
また、昇温を1回だけ行い、窒素分圧を0.5Paとして焼成を行った試料No.12でも、溶出溶液中の(b+d)/(a+b+c+d)の値が0.4よりも小さくなり切削寿命も5分とかなり短いものであった。
【0031】
さらに、第2の焼成温度を1600℃と高くし、かつ窒素分圧を5Paと高い雰囲気にして焼成を行った試料No.13でも試料No.11,12と同様に溶出溶液中の(b+d)/(a+b+c+d)の値が0.4よりも小さくなり切削寿命も7分と短かった。
【0032】
また、第1の降温速度を20℃/minより高くし、降温時に窒素減圧を行わずに焼成を行った試料No.14も溶出溶液中の(b+d)/(a+b+c+d)の値が0.4よりも小さくなり切削寿命も3分と短かった。
【0033】
さらに、第1の昇温速度を3℃/min以上で焼成した試料No.15では、結合相中の金属元素が過剰に固溶してしまい、溶出溶液中の(b+d)/(a+b+c+d)の値が0.8を超え、焼結体表面にボイドが発生してしまった。切削性能も湿式で1分と非常に短かった。
【0035】
【発明の効果】
発明のTi基サーメットの製造方法によれば、TiCNを19−45質量%、TiNを13−40質量%、WCを2−20質量%、ZrCを2−5質量%、VCを0−5質量%とCo及びNiからなる結合相5−30質量%からなる成分組成の生成形体を用いて、(a)室温から800〜1100℃の第1の焼成温度まで昇温し、(b)前記第1の焼成温度から1300℃までを0.1〜3℃/min昇温し、(c)ついで窒素分圧0〜1350Paの雰囲気下1300℃から1400〜1600℃の第2の焼成温度まで5〜15℃/minで昇温して(d)保持し、(e)前記第2の焼成温度から1300℃までを1〜3Paの窒素減圧中で10〜20℃/minで降温し、(f)1300℃から1200℃までを1〜5℃/minで降温し(g)1000℃から室温まで降温して焼成することから、Coおよび/またはNiを主体とする結合相中に0.4<(b+d)/(a+b+c+d)<0.8(ただしa、b、c、dはそれぞれ結合相中のTi、Zr、V、Wの重量)の関係を満たす金属元素を固溶させることができ、もって結合相の耐塑性変形性が高まり、サーメットの耐欠損性、耐熱衝撃性を向上させることができる。
【図面の簡単な説明】
【図1】 本発明のTi基サーメットの任意箇所における透過型電子顕微鏡イメージ(TEMイメージ像)である。
【符号の説明】
1:Ti基サーメット(サーメット)
2:結合相
3:硬質分散相
4:芯部
5:周辺部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Ti-based cermet having both toughness and hardness suitable for cutting tool members, wear-resistant tool members, and the like.
[0002]
[Prior art]
Although cemented carbide (WC-based sintered alloy) is known as an alloy for wear-resistant tools and cutting tools, it has improved crater wear in steel cutting, and has superior wear resistance than cemented carbide. Base cermet alloys have been developed.
[0003]
[Problems to be solved by the invention]
However, the conventional Ti-based cermet has poor thermal conductivity compared to cemented carbide and has a large coefficient of thermal expansion. Therefore, especially when wet cutting is performed for a long time, defects due to thermal shock occur. Therefore, thermal shock resistance comparable to that of a WC-based sintered alloy having a hard coating film on the surface has been desired. Also, in dry cutting, because the thermal conductivity is low, the cutting edge part in the middle of cutting causes high temperature plastic deformation, resulting in increased cutting resistance and chipping, resulting in improved plastic deformation resistance. Was desired.
[0004]
The present invention is to solve the above-mentioned problems of the prior art, and an object thereof is to provide a Ti-based cermet having excellent Ti-based cermet thermal shock resistance and excellent plastic deformation resistance.
[0005]
[Means for Solving the Problems]
As a result of investigating the structure for improving the thermal shock resistance and plastic deformation resistance of Ti-based cermets, the present inventors have studied Ti, in an elution solution in which a binder phase mainly composed of Co and / or Ni is dissolved. It has been found that the plastic deformation resistance and the thermal shock resistance of the binder phase are improved by containing specific metals of Zr, V and W in a specific ratio.
[0009]
According to the manufacturing method of Ti-based cermet of the present invention, the Periodic Table 4a other than Ti or Ti, 5a, carbides represented by the one or more kinds of 6a group metal, nitrides, carbonitrides And a hard dispersed phase composed of one or more of the composite carbonitrides, a binder phase 5 containing a metal element of Ti, Zr, V, W, Co, Ni mainly containing Co and / or Ni. In a method for producing a Ti-based cermet formed by bonding at 30 % by mass , TiCN is 19-45% by mass, TiN is 13-40% by mass, WC is 2-20% by mass, ZrC is 2-5% by mass, and VC is The Ti-based cermet product formed from the component composition consisting of 0-5% by mass and 5-30% by mass of Co and Ni binder phase is heated from (a) room temperature to a first firing temperature of 800-1100 ° C. (B) the first firing The temperature is raised from the formation temperature to 1300 ° C. by 0.1 to 3 ° C./min, (c) and then from 1300 ° C. to 1400 to 1600 ° C. under a nitrogen partial pressure of 0 to 1350 Pa to 5 to 15 ° C. (D) hold at (d), and (e) lower the temperature from the second firing temperature to 1300 ° C. at 10-20 ° C./min in a nitrogen reduced pressure of 1 to 3 Pa, and (f) 1300 ° C. The temperature is lowered from 1 to 1200 ° C. at 1 to 5 ° C./min (g), and the temperature is lowered from 1000 ° C. to room temperature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The Ti-based cermet of the present invention (hereinafter simply abbreviated as cermet) and the method for producing the Ti-based cermet will be described with reference to FIG. 1, which is a plot of a transmission electron micrograph (TEM image) of an arbitrary portion of the Ti-based cermet. .
[0011]
As shown in FIG. 1, the cermet 1 of the present invention is composed of carbides, nitrides, carbonitrides represented by Ti, or one or more of Periodic Tables 4a, 5a, 6a metals other than Ti and Ti. Cermet obtained by bonding the hard dispersed phase 3 with a binder phase 2 mainly composed of 5 to 30% by weight of Co and / or Ni. At this time, the main crystal phase of cermet 1 is preferably composed of TiCN, and (Ti, M) CN contains one or more selected from the group of TiC, TiN, and TiCN in a proportion of 30% by weight or less. May be.
[0012]
According to the present invention, 0.2 g of cermet powder 1 was heated and eluted with 20 ml of hydrochloric acid (1 + 1) at 50 ° C. for 1 hour in an elution solution in which mainly the binder phase 2 was dissolved, 0.4 <(b + d) / The main feature is that it contains a metal component of (a + b + c + d) <0.8 (where a, b, c and d are weight ratios of Ti, Zr, V and W, respectively). As a result of contributing to the increase in strength of the cermet 1 because it is fine (average particle size 0.1 to 2.0 μm) and has a uniform structure and excellent wettability with the binder phase 2, the hard dispersed phase 3 is bonded. When Zr and W are dissolved in the binder phase 2 to be formed, the plastic deformation resistance in the binder phase 2 is improved. In particular, the fracture resistance of the cermet 1 is also improved in dry cutting.
[0013]
On the other hand, when (b + d) / (a + b + c + d) in the elution solution is less than 0.4, the plastic deformation resistance of the metal phase is lowered particularly when the cutting edge becomes hot due to dry cutting, and the cermet As a result, the plastic deformation resistance of itself decreases, and the fracture resistance and wear resistance decrease. On the other hand, if (b + d) / (a + b + c + d) in the elution solution is more than 0.8, sintering failure such as voids may occur due to volatilization of the metal phase or poor wetting of the metal phase, As a result, the fracture resistance is lowered. Further, the strength of the cermet 1 can be improved by making the particle size of the hard dispersed phase 0.5 to 3 μm, but the binder phase needs to have good wettability. Is less than or equal to 0.8.
[0014]
Further, it is desirable that 0 <b / (a + b + c + d) <0.15 or less in the elution solution from the viewpoint of preventing a decrease in fracture resistance due to the occurrence of sintering failure.
[0015]
Further, the metal element in the elution solution is 0.1 <(b + d) / (a + b + c + d + e + f) <0.25 (where a, b, c, d, e, and f are Ti, Zr, V, It is desirable to satisfy the relationship of (weight ratio of W, Co, Ni) in terms of improving the plastic deformation resistance and improving the strength of the sintered body by improving the sinterability.
[0016]
In addition, according to the present invention, the growth of the hard dispersed phase is suppressed by dissolving V in addition to Zr and W in the binder phase 2 and the elution solution. Since the thermal conductivity of the cermet 1 is improved by reducing the thickness of the binder phase, and the strain due to the thermal expansion coefficient of the hard dispersed phase 3 and the binder phase 2 is reduced, the generation of cracks due to thermal fatigue that occurs during wet cutting. Can be suppressed. In particular, it is preferable that 0.01 <c / (a + b + c + d) <0.1 in the elution solution is improved in thermal shock resistance and enables long-time wet cutting.
[0017]
Further, according to FIG. 1, the hard dispersed phase 3 includes a core portion 4 made of TiCN and a peripheral portion made of a composite compound of Ti and one or more of Zr, V, W, Mo, Ta, and Nb. 5 to form a double cored structure. Thus, the hardness and toughness of the cermet 1 can be improved because the hard dispersed phase 3 has a double-core structure.
[0018]
These cored structures may be a triple cored structure in which another peripheral part having a different composition exists between the core part 4 and the peripheral part 5.
[0019]
(Manufacturing method) Next, the manufacturing method of Ti group cermet of this invention is demonstrated.
[0020]
First, at least one of TiCN powder and TiN powder, carbide powder, nitride powder, carbonitride powder containing one or more of W, V, Ta, Zr and Nb, Co powder and / or Ni powder. , TiCN 19-45 mass%, TiN 13-40 mass%, WC 2-20 mass%, ZrC 2-5 mass%, VC 0-5 mass%, and a binder phase 5- A mixed powder, a solid solution, and a coprecipitate mixed in a component composition of 30% by mass are prepared.
[0021]
And a binder is added to this mixed powder, and it shape | molds by the well-known shaping | molding methods, such as press molding, extrusion molding, and injection molding, and forms a production | generation form.
[0022]
Next, by firing this formed shape under the following conditions, Ti, Zr, V, and W can be dissolved in the binder phase at the predetermined composition ratio described above. As firing conditions, (a) the temperature is raised from room temperature to a first firing temperature of 800 to 1100 ° C., and (b) the temperature is raised from the first firing temperature to 1300 ° C. at 0.1 to 3 ° C./min ( (C) Next, the temperature was raised from 1300 ° C. to a second firing temperature of 1400 to 1600 ° C. in a nitrogen partial pressure of 0 to 1350 Pa at a rate of 5 to 15 ° C./min (temperature raising rate II). (D) holding, (e) lowering the temperature from the second firing temperature to 1300 ° C. at a rate of 10 to 20 ° C./min in a reduced pressure of 1 to 3 Pa at a rate of 10 to 20 ° C./min (f) from 1300 ° C. It is important that the temperature is lowered to 1200 ° C. at a rate of 1 to 5 ° C./min (temperature-decreasing rate II) (g) and fired under the condition of decreasing the temperature from 1000 ° C. to room temperature.
[0023]
That is, among the firing conditions described above, if the heating rate of (b) is slower than 0.1 ° C./min, the diffusion of carbonitride into the binder phase becomes insufficient, and conversely, the heating rate of (b) If it is faster than 3 ° C./min, the metal element is excessively dissolved in the binder phase. Further, when the nitrogen pressure reduction in (e) is lower than 1 Pa, denitrification occurs from the surface, and accordingly, the metal elements present in the binder phase are unevenly distributed, and (b + d) / (a + b + c + d) is less than 0.4. End up. Conversely, even when the pressure is higher than 3 Pa, the metal element moves excessively, resulting in non-uniform distribution and (b + d) / (a + b + c + d) is 0.8 or more. When the temperature lowering rate of (f) is slower than 10 ° C./min, the binder phase near the surface is volatilized and voids are generated on the skin. On the other hand, when the rate of temperature decrease in (f) is faster than 20 ° C./min, abnormal grain growth occurs near the surface of the sintered body, which becomes a fracture source.
[0024]
【Example】
(Example) TiCN powder with an average particle diameter of 1.0 μm, TiN powder with an average particle diameter of 1.5 μm, ZrC powder with an average particle diameter of 1.8 μm, VC powder with an average particle diameter of 1.0 μm), average particle diameter of 1. Using 1 μm WC powder, Ni powder having an average particle size of 2.4 μm, Co powder having an average particle size of 1.9 μm, and C powder having an average particle size of 1.0 μm, the composition shown in Table 1 was blended. Was wet mixed with IPA using a stainless steel ball mill and cemented carbide balls, 3% by weight of paraffin was added and mixed, and then the mixed powder was press-molded into CNMG120408 at 200 MPa and fired under the conditions shown in Table 1. .
[0025]
[Table 1]
Figure 0004280037
[0026]
The surface of the obtained sintered body was processed with a diamond grindstone, and the cutting performance was evaluated under the following conditions.
Cutting condition I
Cutting speed: 250 m / min
Feeding: 0.25mm / rev
Cutting depth: 2.0mm
Work material: SCM435
Cutting time: Time until chipping (min)
Cutting state: wet (emulsion)
Cutting condition II
Cutting speed: 250 m / min
Feeding: 0.25mm / rev
Cutting depth: 2.0mm
Work material: SCM435
Cutting time: Time until chipping (min)
Cutting state: dry type Moreover, the composition of the metal element in the binder phase of each sample was measured by the following method. First, the sintered body (cermet) was put in a cemented carbide mortar and pulverized so that there was no residue in a state of being passed through a mesh with 40 mesh, and 0.2 g of this powder was added at 50 ° C. with 20 ml of hydrochloric acid (1 + 1). After elution with heating for 1 hour, the volume was adjusted to 100 ml with hydrochloric acid (1 + 1). The metal elements contained in this elution solution were calculated by ICP analysis, and the values of (b + d) / (a + b + c + d), c / (a + b + c + d), (b + d) / (a + b + c + d + e + f) were obtained. The results are shown in Table 2.
[0027]
[Table 2]
Figure 0004280037
[0028]
From Table 2, sample No. baked under the predetermined conditions. 1 to 10, all of the metal elements in the elution solution were within the range of 0.4 <(b + d) / (a + b + c + d) <0.8, and the cutting life in the cutting test was as long as 20 minutes or longer. . Among them, sample No. 1 satisfying the relationship of 0.01 <c / (a + b + c + d) <0.1 in the elution solution. Nos. 1 to 5 exhibited high cutting performance similar to that of carbide tools even in wet cutting.
[0029]
In addition, the dry cutting showed excellent cutting performance in the same manner. On the other hand, sample No. 1 fired in an atmosphere having a nitrogen partial pressure lower than 1 Pa. 11, the value of (b + d) / (a + b + c + d) in the elution solution was smaller than 0.4, and the wet cutting life was 12 minutes. Similarly, the dry tool life was as short as 8 minutes compared to other tools.
[0030]
In addition, sample No. 1 was heated only once and baked with a nitrogen partial pressure of 0.5 Pa. No. 12, the value of (b + d) / (a + b + c + d) in the elution solution was smaller than 0.4, and the cutting life was as short as 5 minutes.
[0031]
Further, Sample No. No. 1 was fired in an atmosphere in which the second firing temperature was increased to 1600 ° C. and the nitrogen partial pressure was increased to 5 Pa. 13 also sample no. Similar to 11 and 12, the value of (b + d) / (a + b + c + d) in the elution solution was smaller than 0.4 and the cutting life was as short as 7 minutes.
[0032]
Sample No. 1 was fired without first reducing the nitrogen pressure when the first temperature-decreasing rate was higher than 20 ° C./min. 14, the value of (b + d) / (a + b + c + d) in the elution solution was smaller than 0.4, and the cutting life was as short as 3 minutes.
[0033]
Furthermore, sample No. 1 fired at a first heating rate of 3 ° C./min or more. 15, the metal element in the binder phase was excessively dissolved, the value of (b + d) / (a + b + c + d) in the elution solution exceeded 0.8, and voids were generated on the surface of the sintered body. . Cutting performance was also very short at 1 minute when wet.
[0035]
【The invention's effect】
According to the method for producing a Ti-based cermet of the present invention, TiCN is 19-45% by mass, TiN is 13-40% by mass, WC is 2-20% by mass, ZrC is 2-5% by mass, and VC is 0-5. Using a product having a component composition consisting of 5% by mass of a binder phase consisting of 5% by mass and Co and Ni, (a) raising the temperature from room temperature to a first firing temperature of 800-1100 ° C., (b) The temperature is raised from the first firing temperature to 1300 ° C. by 0.1 to 3 ° C./min, (c) and then from 1300 ° C. to 1400 to 1600 ° C. under a nitrogen partial pressure of 0 to 1350 Pa. The temperature is raised at ˜15 ° C./min and held (d), and (e) the temperature from the second firing temperature to 1300 ° C. is lowered at 10 to 20 ° C./min in a nitrogen reduced pressure of 1 to 3 Pa, and (f ) From 1300 ° C to 1200 ° C at 1-5 ° C / min (G) Since the sintering is performed by lowering the temperature from 1000 ° C. to room temperature, 0.4 <(b + d) / (a + b + c + d) <0.8 (where a, b, c, and d can each dissolve a metal element satisfying the relationship of the weight of Ti, Zr, V, and W in the binder phase, thereby increasing the plastic deformation resistance of the binder phase and increasing the resistance to fracture of the cermet. And thermal shock resistance can be improved.
[Brief description of the drawings]
FIG. 1 is a transmission electron microscope image (TEM image) at an arbitrary position of a Ti-based cermet according to the present invention.
[Explanation of symbols]
1: Ti-based cermet (cermet)
2: Binder phase 3: Hard dispersed phase 4: Core part 5: Peripheral part

Claims (1)

Ti、またはTiおよびTi以外の周期律表における4a、5a、6a金属の1種または2種以上で表される炭化物、窒化物、炭窒化物および複合炭窒化物のうちの1種または2種以上から成る硬質分散相を、Coおよび/またはNiを主体としてTi、Zr、V、W、Co、Niの金属元素を含有する結合相5〜30質量%で結合してなるTi基サーメットの製造方法において、TiCNを19−45質量%、TiNを13−40質量%、WCを2−20質量%、ZrCを2−5質量%、VCを0−5質量%とCo及びNiからなる結合相5−30質量%からなる成分組成からなる前記Ti基サーメットの生成形体を(a)室温から800〜1100℃の第1の焼成温度まで昇温し、(b)前記第1の焼成温度から1300℃までを0.1〜3℃/min昇温し、(c)ついで窒素分圧0〜1350Paの雰囲気下1300℃から1400〜1600℃の第2の焼成温度まで5〜15℃/minで昇温して(d)保持し、(e)前記第2の焼成温度から1300℃までを1〜3Paの窒素減圧中で10〜20℃/minで降温し、(f)1300℃から1200℃までを1〜5℃/minで降温し、(g)1000℃から室温まで降温して焼成することを特徴とするTi基サーメットの製造方法。Ti or 4a in the periodic table other than Ti and Ti,, 5a, carbides represented by the one or more kinds of 6a group metal, nitride, one of carbonitride and composite carbonitride or Ti-based cermet obtained by bonding a hard dispersed phase composed of two or more kinds with a binding phase of 5 to 30 % by mass containing a metal element of Ti, Zr, V, W, Co, and Ni mainly containing Co and / or Ni. In this manufacturing method, TiCN is 19-45% by mass, TiN is 13-40% by mass, WC is 2-20% by mass, ZrC is 2-5% by mass, VC is 0-5% by mass, and Co and Ni are included. The Ti-based cermet formed body having a component composition consisting of 5-30% by mass of a binder phase is heated from (a) room temperature to a first firing temperature of 800 to 1100 ° C., and (b) the first firing temperature. 0 to 1300 ° C. (C) Then, the temperature was raised from 1300 ° C. to a second firing temperature of 1400 to 1600 ° C. at a rate of 5 to 15 ° C./min in an atmosphere with a nitrogen partial pressure of 0 to 1350 Pa (d And (e) the temperature from the second firing temperature to 1300 ° C. is decreased at 10 to 20 ° C./min in a nitrogen reduced pressure of 1 to 3 Pa, and (f) the temperature from 1300 ° C. to 1200 ° C. is 1 to 5 ° C. (G) A method for producing a Ti-based cermet, wherein the temperature is lowered from 1000 ° C. to room temperature and firing is performed.
JP2002222428A 2002-07-31 2002-07-31 Method for producing Ti-based cermet Expired - Fee Related JP4280037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002222428A JP4280037B2 (en) 2002-07-31 2002-07-31 Method for producing Ti-based cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002222428A JP4280037B2 (en) 2002-07-31 2002-07-31 Method for producing Ti-based cermet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008215178A Division JP4969533B2 (en) 2008-08-25 2008-08-25 Ti-based cermet

Publications (2)

Publication Number Publication Date
JP2004060021A JP2004060021A (en) 2004-02-26
JP4280037B2 true JP4280037B2 (en) 2009-06-17

Family

ID=31942452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002222428A Expired - Fee Related JP4280037B2 (en) 2002-07-31 2002-07-31 Method for producing Ti-based cermet

Country Status (1)

Country Link
JP (1) JP4280037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969533B2 (en) * 2008-08-25 2012-07-04 京セラ株式会社 Ti-based cermet

Also Published As

Publication number Publication date
JP2004060021A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP2622131B2 (en) Alloys for cutting tools
KR20040085050A (en) Sintered alloy having radient composition and method of producing the same
WO2011002008A1 (en) Cermet and coated cermet
JP3046336B2 (en) Sintered alloy with graded composition and method for producing the same
JP4974980B2 (en) TiCN-based cermet
JP5273987B2 (en) Cermet manufacturing method
JP5127110B2 (en) TiCN-based cermet and method for producing the same
JPH10110234A (en) Cutting tool mode of carbo-nitrided titanium cermet excellent in chipping resistance
JP4607954B2 (en) TiCN-based cermet, cutting tool, and method of manufacturing workpiece using the same
JP4703122B2 (en) Method for producing TiCN-based cermet
JP3366659B2 (en) Heterogeneous layer surface-finished sintered alloy and method for producing the same
JP4280037B2 (en) Method for producing Ti-based cermet
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP4969533B2 (en) Ti-based cermet
JP4025607B2 (en) Surface-coated Ti-based cermet cutting tool
JP5031610B2 (en) TiCN-based cermet
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP2004223666A (en) Cutting tool for rough machining
JP4553382B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2000336450A (en) Titanium base carbonitride alloy
JP5153455B2 (en) cermet
JP3067514B2 (en) Cermet cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees