JP2002171746A - Semiconductor power converter - Google Patents

Semiconductor power converter

Info

Publication number
JP2002171746A
JP2002171746A JP2000367965A JP2000367965A JP2002171746A JP 2002171746 A JP2002171746 A JP 2002171746A JP 2000367965 A JP2000367965 A JP 2000367965A JP 2000367965 A JP2000367965 A JP 2000367965A JP 2002171746 A JP2002171746 A JP 2002171746A
Authority
JP
Japan
Prior art keywords
voltage
igbt
collector
resistor
dividing point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000367965A
Other languages
Japanese (ja)
Other versions
JP3899450B2 (en
Inventor
Shuji Kato
修治 加藤
Shigeta Ueda
茂太 上田
Hiromitsu Sakai
洋満 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000367965A priority Critical patent/JP3899450B2/en
Publication of JP2002171746A publication Critical patent/JP2002171746A/en
Application granted granted Critical
Publication of JP3899450B2 publication Critical patent/JP3899450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep constant the clamp voltage of IGBT for alleviating the loss thereof. SOLUTION: This semiconductor power converter is formed into a circuit structure, such that a voltage for a wiring 13N, having a constant potential difference with respect to the collector and the emitter of the IGBT1, is divided with a high-potential side resistor 3 and a low-potential side resistor 4 and also has a function to protect the IGBT from an overcurrent application to the collector by controlling the gate potential of the IGBT to the potential of a voltage-dividing point 9 via the buffer circuit 6. In this semiconductor power converter, a capacitor 5 is connected in parallel with the low potential side resistor, and the capacitance Cl of the capacitor C5 is set to obtain the relation (1) Cl=Ch×Rh/Rl, when a resistance value of the high potential side resistor 3 is Rh, a parasitic capacitance value is Ch, a resistance value of the low potential side resistor 4 is Rl and a capacitance of the capacitor 5 is Cl. Thereby, a clamp voltage level can be held at the constant value, without relation to a voltage variation coefficient (dv/dt) of the collector voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等を用
いた半導体電力変換装置に係り、特に、スイッチング動
作時の過電圧を抑制する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor power converter using a semiconductor element or the like, and more particularly to a technique for suppressing an overvoltage during a switching operation.

【0002】[0002]

【従来の技術】IGBTを電力変換装置に適用した場
合、ターンオフ時に配線に蓄えられていたエネルギーに
よってサージ電圧が発生し、IGBTに印加される。タ
ーンオフ時のサージ電圧などの過電圧印加による素子破
壊を防止する方式として、例えば、アイ・イー・イー,
アイ・エー・エス・国際会議資料「Series Co
nnection of high voltage
IGBT modulus」平成12年度電気学会産業
応用部門大会予稿集「スナバレスIGBT直列接続」の
図1に紹介されるように、コレクタ電圧を抵抗などで分
圧し、分圧した点の電位を基にゲート電圧指令値を決定
し、過電圧を抑制するアクティブゲート制御方式が知ら
れている。例えば、本明細書に添付の図2に示すよう
に、IGBT1のゲート電圧が分圧点9の電圧となるよ
うに、分圧点9とIGBT1のゲート間をバッファ回路
9を介して接続する。IGBT1がオン状態の時に、オ
ンオフパルス発生器7が負電位を出力すると、ゲート抵
抗8を介してIGBT1のゲートに蓄えられた電荷が引
き抜かれてゲート電圧を低下し始め、ターンオフ状態に
移行し、コレクタ電圧が上昇する。主配線の漏れインダ
クタンスに蓄えられたエネルギーにより、サージ過電圧
が印加されるような状況においても、本制御方式を用い
れば、コレクタ電圧に応じた分圧点の電位の上昇に追随
してゲート−エミッタ間電圧(ゲート電圧)も高くな
り、IGBTのインピーダンスが低下するので、コレク
タ電圧の上昇をクランプして素子を過電圧破壊から保護
することが可能である。ここで、図2において、環流ダ
イオード2がIGBT1に逆並列に接続され、また、パ
ルス発生器7には電源13より電力を供給し、IGBT
1のコレクタ端子とゲートドライバ内の配線間には、高
圧側分圧抵抗器3及び低圧側分圧抵抗器4が接続され
る。
2. Description of the Related Art When an IGBT is applied to a power converter, a surge voltage is generated by energy stored in a wiring at the time of turn-off, and is applied to the IGBT. As a method for preventing element destruction due to application of an overvoltage such as a surge voltage at the time of turn-off, for example, IEE,
I.S.S. International Conference Material “Series Co
nection of high voltage
As shown in Fig. 1 of the IGBT module "Preliminary report of the IEEJ Industry Application Division Conference of 2000," Serial connection of IGBTs ", the gate voltage is divided based on the potential of the divided point by dividing the collector voltage with a resistor or the like. An active gate control system that determines a command value and suppresses an overvoltage is known. For example, as shown in FIG. 2 attached to the present specification, the voltage dividing point 9 and the gate of the IGBT 1 are connected via the buffer circuit 9 so that the gate voltage of the IGBT 1 becomes the voltage of the voltage dividing point 9. When the on / off pulse generator 7 outputs a negative potential while the IGBT 1 is in the on state, the electric charge stored in the gate of the IGBT 1 is drawn out through the gate resistor 8 to start lowering the gate voltage and shift to the turn off state. The collector voltage increases. Even in a situation where a surge overvoltage is applied by the energy stored in the leakage inductance of the main wiring, if this control method is used, the gate-emitter follows the rise of the potential of the voltage dividing point according to the collector voltage. Since the inter-voltage (gate voltage) also increases and the impedance of the IGBT decreases, it is possible to protect the device from overvoltage destruction by clamping an increase in the collector voltage. Here, in FIG. 2, the freewheeling diode 2 is connected in antiparallel to the IGBT 1, and the pulse generator 7 is supplied with power from the power supply 13 to
The high-voltage-side voltage dividing resistor 3 and the low-voltage-side voltage dividing resistor 4 are connected between the collector terminal 1 and the wiring in the gate driver.

【0003】[0003]

【発明が解決しようとする課題】抵抗器によりIGBT
のコレクタ電圧を分圧する場合、分圧に用いる抵抗器
は、分圧点より高圧側の抵抗器では5〜100kΩが好
ましく(IGBT素子のオフ時のインピーダンスが大き
い場合はさらに抵抗値を大きくできる。)、低圧側の抵
抗器は高圧側抵抗器の20分の1以下(ゲート耐圧/コ
レクタ耐圧)の抵抗値であるが、抵抗器にはその抵抗値
に大略比例した寄生容量が存在する。したがって、抵抗
値の大きな高圧側の抵抗器では寄生容量が大きく無視で
きない。コレクタ電圧の分圧には、高圧側は高抵抗、低
圧側は低抵抗の抵抗器で分圧するので、IGBTのター
ンオフ時のコレクタ電圧上昇時等、コレクタ電圧の電圧
上昇率(dv/dt)が大きいと、高圧側の高抵抗の抵
抗器のインピーダンスが低下して分圧点の電圧が高くな
り、必要以上にIGBTのコレクタ電圧を低下させるた
め、IGBTの損失が増大する、という問題がある。
SUMMARY OF THE INVENTION An IGBT is provided by a resistor.
When the collector voltage is divided, the resistor used for voltage division is preferably 5 to 100 kΩ for the resistor on the higher voltage side than the voltage dividing point (if the impedance when the IGBT element is off is large, the resistance value can be further increased). ), The resistor on the low voltage side has a resistance value that is not more than 1/20 (gate breakdown voltage / collector breakdown voltage) of the high voltage side resistor, but the resistor has a parasitic capacitance that is approximately proportional to the resistance value. Therefore, the parasitic capacitance of the high-voltage-side resistor having a large resistance value cannot be ignored. In the voltage division of the collector voltage, since the high voltage side is divided by a high resistance and the low voltage side is divided by a low resistance resistor, the voltage rise rate (dv / dt) of the collector voltage such as when the collector voltage rises when the IGBT is turned off is increased. If it is large, the impedance of the high-resistance resistor on the high voltage side decreases, the voltage at the voltage dividing point increases, and the collector voltage of the IGBT is unnecessarily reduced, so that the loss of the IGBT increases.

【0004】本発明の課題は、IGBTのクランプ電圧
を一定に保持し、IGBTの損失を軽減するに好適な半
導体電力変換装置を提供することにある。
[0004] It is an object of the present invention to provide a semiconductor power conversion device suitable for holding a clamp voltage of an IGBT constant and reducing a loss of the IGBT.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、低圧側の抵抗器に並列にコンデンサを接続し、また
は、低圧側の抵抗器及び高圧側の抵抗器のそれぞれに並
列にコンデンサを接続し、高圧側の分圧回路のインピー
ダンスと低圧側の分圧回路のインピーダンスの比をコレ
クタ電圧の電圧変動率(dv/dt)によらず大略一定
にする。
In order to solve the above-mentioned problems, a capacitor is connected in parallel to a low-voltage-side resistor, or a capacitor is connected in parallel to each of a low-voltage-side resistor and a high-voltage-side resistor. In this case, the ratio of the impedance of the high-voltage-side voltage dividing circuit to the impedance of the low-voltage-side voltage dividing circuit is made substantially constant independently of the voltage fluctuation rate (dv / dt) of the collector voltage.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。なお、実施形態を説明する全図にお
いて、同一の機能を有するものには同一の符号をつけ
る。また、電位はエミッタを基準とする。なお、IGB
Tのコレクタ−エミッタ間に過電圧が印加されるような
条件においては、コレクタ−エミッタ間電圧とコレクタ
−ゲート間電圧はほぼ等しいので、以後は両者ともコレ
クタ電圧と呼ぶ。
Embodiments of the present invention will be described below with reference to the drawings. In all the drawings describing the embodiments, components having the same functions are denoted by the same reference numerals. The potential is based on the emitter. In addition, IGB
Under the condition that an overvoltage is applied between the collector and the emitter of T, the voltage between the collector and the emitter is almost equal to the voltage between the collector and the gate.

【0007】図1は、本発明の半導体電力変換装置であ
る第1の実施形態を示す。図3は、本実施形態を適用す
る電力変換装置の主要部を示す。図1は、図3のアーム
20の主要部であり、電力変換装置は、2直列接続され
たアーム20が3並列され、それぞれ直流電圧源21に
接続され、対となったアームの各中点に負荷22が接続
される。本実施形態の電力変換装置のアームの構成は次
の通りである。IGBT1に逆並列に環流ダイオード2
を接続する。また、IGBT1のゲートには、ゲート抵
抗8を経由してスイッチング指令用のオンオフ信号を発
生するオンオフパルス発生器7を接続する。パルス発生
器7には電源13より電力を供給する。IGBTのコレ
クタ端子とゲートドライバ内の配線13Nの間には、高
圧側分圧抵抗器3及び低圧側分圧抵抗器4を接続する。
さらに、低圧側抵抗器4には並列にコンデンサ5を接続
する。高圧側分圧抵抗器3と低圧側分圧抵抗器4の分圧
点9は、バッファ回路6を介してIGBT1のゲート端
子に接続する。ここで、高圧側抵抗器3の抵抗値をR
h、その寄生容量値をCh、低圧側の抵抗器4の抵抗値
をRl、低圧側の抵抗器4に並列に接続したコンデンサ
5の容量をClとする。 Cl=Ch×Rh/Rl (1) 並列に接続したコンデンサ5の容量Clを(1)の関係
式が成立するように設定すれば、低圧側の抵抗器4と高
圧側の抵抗器3の抵抗値の比と、低圧側の抵抗器4に並
列に接続したコンデンサ5のインピーダンスと高圧側の
抵抗器3の寄生容量のインピーダンスの比が同じとな
る。見方を換えると、低圧側の抵抗成分と容量成分のC
R時定数と、高圧側の抵抗成分と容量成分のCR時定数
が等しい時に(1)式が成立するとも云える。これによ
り、IGBT1のコレクタ電圧の電圧上昇率(dv/d
t)に関係なく、分圧比を一定に保つことができる。
FIG. 1 shows a first embodiment which is a semiconductor power converter of the present invention. FIG. 3 shows a main part of a power converter to which the present embodiment is applied. FIG. 1 shows a main part of the arm 20 shown in FIG. 3. The power converter includes three arms 20 connected in series, three in parallel, each connected to a DC voltage source 21, and each midpoint of a pair of arms. Is connected to the load 22. The configuration of the arm of the power converter of the present embodiment is as follows. Freewheel diode 2 in anti-parallel to IGBT1
Connect. The gate of the IGBT 1 is connected to an on / off pulse generator 7 that generates an on / off signal for a switching command via a gate resistor 8. Power is supplied from a power supply 13 to the pulse generator 7. A high-voltage divider 3 and a low-voltage divider 4 are connected between the collector terminal of the IGBT and the wiring 13N in the gate driver.
Further, a capacitor 5 is connected in parallel to the low voltage side resistor 4. The voltage dividing point 9 of the high voltage dividing resistor 3 and the low voltage dividing resistor 4 is connected to the gate terminal of the IGBT 1 via the buffer circuit 6. Here, the resistance value of the high-voltage side resistor 3 is R
h, the parasitic capacitance value thereof is Ch, the resistance value of the low voltage side resistor 4 is Rl, and the capacitance of the capacitor 5 connected in parallel to the low voltage side resistor 4 is Cl. Cl = Ch × Rh / Rl (1) If the capacitance Cl of the capacitor 5 connected in parallel is set so as to satisfy the relational expression (1), the resistance of the resistor 4 on the low voltage side and the resistor 3 on the high voltage side is set. The value ratio is the same as the ratio of the impedance of the capacitor 5 connected in parallel to the low-voltage side resistor 4 and the impedance of the parasitic capacitance of the high-voltage side resistor 3. In other words, the low-voltage side resistance component and capacitance component C
It can be said that equation (1) is satisfied when the R time constant is equal to the CR time constant of the resistance component and the capacitance component on the high voltage side. As a result, the voltage rise rate (dv / d) of the collector voltage of the IGBT 1
Regardless of t), the partial pressure ratio can be kept constant.

【0008】例えば、抵抗値:50kΩ、寄生容量値:
50pFの抵抗器を高圧側抵抗器3として、175Ωの
抵抗器を低圧側の抵抗器4とする。IGBT1のゲート
電圧閾値を7Vとすると、定常状態では、IGBT1の
コレクタ電圧が2000Vに達した時に分圧点9の電圧
が閾値電圧7Vに達し、コレクタ電圧をクランプする。
図8に、任意のdv/dtでコレクタ電圧を2000V
まで立ち上げた時の2000Vにおける分圧点電位を示
す。並列コンデンサ5が接続されない条件下では、dv
/dtが大きいと、分圧点の電圧が高くなりすぎてしま
い、分圧点の電圧がIGBT1のゲート出力されると、
IGBTが誤点弧してしまう。しかし、(1)式が成立
する容量値のコンデンサすなわち約14286μFのコ
ンデンサ5を低圧側の抵抗器4に並列に接続すれば、分
圧点9の電位は、dv/dtによらず分圧点電位は約7
Vとなる。通常は、ゲート電圧が閾値電圧から10V程
度の範囲では、IGBTの誤点弧なく、コレクタ電圧を
抑制でき、また、コレクタ電圧のdv/dtも5000
V/μs以下である。したがって、図8では、コンデン
サ容量が10000μFの時、dv/dtが5000V
/μs以下で分圧点電位は10V以下である。すなわ
ち、(1)の関係式から得られる容量値より30%の範
囲内のコンデンサ容量であれば、実用の範囲といえる。
For example, resistance value: 50 kΩ, parasitic capacitance value:
The resistor of 50 pF is defined as the high-voltage resistor 3 and the resistor of 175Ω is defined as the low-voltage resistor 4. Assuming that the gate voltage threshold of the IGBT 1 is 7 V, in the steady state, when the collector voltage of the IGBT 1 reaches 2000 V, the voltage at the voltage dividing point 9 reaches the threshold voltage 7 V, and clamps the collector voltage.
FIG. 8 shows that the collector voltage is 2000 V at an arbitrary dv / dt.
5 shows a potential at a voltage dividing point at 2000 V when the voltage is raised up to the maximum. Under the condition that the parallel capacitor 5 is not connected, dv
If / dt is large, the voltage at the voltage dividing point becomes too high, and when the voltage at the voltage dividing point is output to the gate of the IGBT 1,
The IGBT fires incorrectly. However, if a capacitor having a capacitance value that satisfies the expression (1), that is, a capacitor 5 of about 14286 μF is connected in parallel to the resistor 4 on the low voltage side, the potential of the voltage dividing point 9 will be independent of dv / dt. Potential is about 7
V. Usually, when the gate voltage is in the range of about 10 V from the threshold voltage, the collector voltage can be suppressed without igniting the IGBT, and the dv / dt of the collector voltage is also 5000.
V / μs or less. Therefore, in FIG. 8, when the capacitance of the capacitor is 10000 μF, dv / dt is 5000 V
/ Μs or less, and the voltage dividing point potential is 10 V or less. That is, if the capacitance of the capacitor is within 30% of the capacitance obtained from the relational expression (1), it can be said that the capacitance is within a practical range.

【0009】次に、電力変換装置の動作を説明する。電
源13からパルス発生器7の動作に必要な電力を供給
し、PWMやPAM制御により制御したドライブ信号を
パルス発生器7より発生させる。発生したドライブ信号
をゲート抵抗8を介してIGBTのゲートに入力してI
GBT1をオンもしくはオフさせることにより、アーム
20をオンオフさせて交流電圧を作り出し、負荷22に
印加する。対となったアームは同時にオンさせない(例
えば、アーム20(P)とアーム20(N))。ここ
で、アーム20(N)とアーム20(P)を交互にオン
オフ制御してアーム20(P)へのドライブ信号がオン
状態、アーム20(N)がオフ状態である時に着目す
る。アーム20(P)がオン状態において、電流は直流
電圧源21からアーム20(P)、インダクタス負荷2
2といった経路で流れる。アーム20(P)をターンオ
フさせると、アーム20(P)には主回路(直流電圧源
21→アーム20(P)→アーム20(N)→直流電圧
源21)の経路に存在する配線インダクタンス23に発
生する電圧が直流電圧源21の電圧に重畳される。した
がって、アーム20(P)を構成するIGBT1のコレ
クタ−エミッタ間の電圧も跳ね上がる。
Next, the operation of the power converter will be described. The power necessary for the operation of the pulse generator 7 is supplied from the power supply 13, and the pulse generator 7 generates a drive signal controlled by PWM or PAM control. The generated drive signal is input to the gate of the IGBT through the gate resistor 8 and
By turning on or off the GBT 1, the arm 20 is turned on and off to generate an AC voltage, which is applied to the load 22. The paired arms are not turned on at the same time (for example, arm 20 (P) and arm 20 (N)). Here, attention is paid to the case where the drive signal to the arm 20 (P) is on and the arm 20 (N) is off by controlling the arm 20 (N) and the arm 20 (P) alternately on / off. When the arm 20 (P) is in the ON state, the current flows from the DC voltage source 21 to the arm 20 (P) and the inductive load 2.
It flows in a path such as 2. When the arm 20 (P) is turned off, the wiring inductance 23 existing in the path of the main circuit (DC voltage source 21 → arm 20 (P) → arm 20 (N) → DC voltage source 21) is applied to the arm 20 (P). Is superimposed on the voltage of the DC voltage source 21. Therefore, the voltage between the collector and the emitter of the IGBT 1 constituting the arm 20 (P) also jumps.

【0010】図4を用いて、ターンオフ時のIGBTの
コレクタ電圧及びゲート電圧波形をより詳細に説明す
る。図4は、IGBTのコレクタ電圧波形31、IGB
Tのゲート電圧波形32、分圧点の電圧波形33を示
す。IGBT1がオンしている状況において、パルス発
生器7よりゲート電位32に示すオフ信号を発生させる
と(パルス発生器7より負電位を出力する)、IGBT
1のゲートに蓄えられた電荷がゲート抵抗8を介して引
き抜かれてIGBT1はターンオフ状態に移行し、コレ
クタの電位31が上昇する。コレクタ電圧に応じて分圧
点9の電位33も上昇する。前述のように、(1)式の
関係を満足するような並列コンデンサ5の容量を選択す
れば、コレクタ電圧のdv/dtに関係なく、分圧点9
の電位はIGBT1のコレクタ電圧に比例する。また、
IGBT1のゲート電位は、バッファ6により分圧点9
の電位に制御される。したがって、コレクタ電圧に過電
圧(配線インダクタンス23に発生する電圧に直流電圧
源21の電圧に重畳した電圧)が印加され、ゲート電圧
がしきい値を超えると、IGBTのインピーダンスが低
下してコレクタ電圧をクランプするが、分圧点9の電位
は、コレクタ電圧のdv/dtに関係なく、IGBTの
コレクタ電圧に比例して高くなるので、コレクタ電圧の
クランプは、このコレクタ電圧のdv/dtに関係のな
い分圧点9の電位によりなされることになる。これは、
IGBTのコレクタのクランプ電圧レベルを一定に保つ
ことを意味する。このように、本実施形態では、IGB
Tのコレクタ電圧のdv/dtに関係なく、コレクタ電
圧のクランプレベルを一定に保つことができるため、従
来のように必要以上にIGBTのコレクタ電圧を低下さ
せてしまうことがなく、IGBTの損失を軽減すること
ができる。
Referring to FIG. 4, the collector voltage and the gate voltage waveform of the IGBT at the time of turn-off will be described in more detail. FIG. 4 shows the collector voltage waveform 31 of the IGBT,
7 shows a T gate voltage waveform 32 and a voltage waveform 33 at a voltage dividing point. When the pulse generator 7 generates an off signal indicated by the gate potential 32 in a state where the IGBT 1 is on (a negative potential is output from the pulse generator 7), the IGBT 1
The charge stored in the gate of the IGBT 1 is drawn out through the gate resistor 8 and the IGBT 1 is turned off, and the potential 31 of the collector rises. The potential 33 at the voltage dividing point 9 also increases according to the collector voltage. As described above, if the capacitance of the parallel capacitor 5 that satisfies the relationship of the expression (1) is selected, regardless of the collector voltage dv / dt, the voltage dividing point 9
Is proportional to the collector voltage of the IGBT1. Also,
The gate potential of the IGBT 1 is divided by a buffer 6 into a voltage dividing point 9.
Is controlled to the potential of. Therefore, if an overvoltage (a voltage superimposed on the voltage of the DC voltage source 21 on the voltage generated in the wiring inductance 23) is applied to the collector voltage and the gate voltage exceeds the threshold value, the impedance of the IGBT decreases and the collector voltage is reduced. Although the voltage is clamped, the potential of the voltage dividing point 9 increases in proportion to the collector voltage of the IGBT regardless of the collector voltage dv / dt. This is done by the potential of the no voltage dividing point 9. this is,
This means that the clamp voltage level of the collector of the IGBT is kept constant. Thus, in the present embodiment, the IGB
Since the collector voltage clamp level can be kept constant irrespective of the dv / dt of the collector voltage of T, the collector voltage of the IGBT does not decrease unnecessarily as in the related art, and the loss of the IGBT is reduced. Can be reduced.

【0011】図5は、本発明の第2の実施形態を示す。
ここでは、図3に示す電力変換装置のアーム20が図5
のような構成となる。本実施形態は、第1の実施形態に
おいて分圧抵抗4をゲートドライバ内の配線13Nに接
続したのに対し、分圧抵抗4をIGBTのエミッタ端子
に接続することを特徴とする。第1の実施形態と同等の
効果が得られる。
FIG. 5 shows a second embodiment of the present invention.
Here, the arm 20 of the power converter shown in FIG.
The configuration is as follows. The present embodiment is characterized in that the voltage dividing resistor 4 is connected to the wiring 13N in the gate driver in the first embodiment, but the voltage dividing resistor 4 is connected to the emitter terminal of the IGBT. The same effect as in the first embodiment can be obtained.

【0012】図6は、本発明の第3の実施形態を示す。
第1及び第2の実施形態は、低圧側の分圧抵抗器4に並
列に高圧側の抵抗器3の寄生容量値に応じた容量のコン
デンサ5を接続することを特徴としていた。しかし、高
圧側抵抗器3の寄生容量は製造ばらつきがあり、それに
応じた容量のコンデンサを選択するのは多大な手間を伴
う。本実施形態は、高圧側の抵抗器3に並列に、この抵
抗器3の寄生容量値よりも十分大きなコンデンサ51を
接続することを特徴とする。高圧側抵抗器3の抵抗値を
Rh、寄生容量値をCh、低圧側の抵抗器4の抵抗値を
Rl、高圧側の抵抗器3に並列に接続したコンデンサ5
1の容量をCch、低圧側の抵抗器4に並列に接続した
コンデンサ5の容量をClとする。 Cl=(Cch+Ch)×Rh/Rl (2) コンデンサ5の容量Clとコンデンサ51の容量Cch
を(2)の関係式が成立するように設定すれば、IGB
Tのコレクタ電圧のdv/dtに関係なく、分圧比を一
定に保つことができる。ここで、Cch>>Chとすれ
ば、コンデンサ5の容量Clとコンデンサ51の容量C
chの関係式(3)が成立する。 Cl=Cch×Rh/Rl (3) 本実施形態においても、見方を換えると、高圧側の抵抗
成分と容量成分のCR時定数と、低圧側の抵抗成分と容
量成分のCR時定数が等しい時に(3)式が成立すると
も云える。すなわち、本実施形態においても、コレクタ
電圧のdv/dtに関係なく、分圧点9の電位はIGB
Tのコレクタ電圧に比例して高くなる。IGBT1のゲ
ート電位は、バッファ6により分圧点9の電位に制御さ
れる。したがって、コレクタ電圧に過電圧(配線インダ
クタンス23に発生する電圧に直流電圧源21の電圧に
重畳した電圧)が印加され、ゲート電圧がしきい値を超
えると、IGBTのインピーダンスが低下してコレクタ
電圧をクランプするが、分圧点9の電位は、コレクタ電
圧のdv/dtに関係なく、IGBTのコレクタ電圧に
比例して高くなるので、コレクタ電圧のクランプは、こ
のコレクタ電圧のdv/dtに関係のない分圧点9の電
位によりなされることになる。これは、IGBTのコレ
クタのクランプ電圧レベルを一定に保つことを意味す
る。また、Cch>>Chとすれば、高圧側抵抗器3の
寄生容量値ばらつきを気にせず、無視してコンデンサ5
やコンデンサ51の容量を設定することができる。
FIG. 6 shows a third embodiment of the present invention.
The first and second embodiments are characterized in that a capacitor 5 having a capacity corresponding to the parasitic capacitance value of the high-voltage-side resistor 3 is connected in parallel with the low-voltage-side voltage-dividing resistor 4. However, the parasitic capacitance of the high-voltage side resistor 3 varies in production, and selecting a capacitor having a capacitance corresponding to the production variation requires a great deal of trouble. The present embodiment is characterized in that a capacitor 51 that is sufficiently larger than the parasitic capacitance value of the resistor 3 is connected in parallel with the resistor 3 on the high voltage side. The resistance value of the high voltage side resistor 3 is Rh, the parasitic capacitance value is Ch, the resistance value of the low voltage side resistor 4 is Rl, and the capacitor 5 connected in parallel to the high voltage side resistor 3.
The capacity of 1 is Cch, and the capacity of the capacitor 5 connected in parallel with the resistor 4 on the low voltage side is Cl. Cl = (Cch + Ch) × Rh / Rl (2) The capacitance Cl of the capacitor 5 and the capacitance Cch of the capacitor 51
Is set so that the relational expression of (2) holds, IGB
The voltage division ratio can be kept constant irrespective of the dv / dt of the collector voltage of T. Here, if Cch >> Ch, the capacitance Cl of the capacitor 5 and the capacitance C of the capacitor 51
The relational expression (3) for ch holds. Cl = Cch × Rh / Rl (3) Also in this embodiment, from a different viewpoint, when the CR time constant of the high-voltage-side resistance component and the capacitance component is equal to the CR time constant of the low-voltage-side resistance component and the capacitance component, It can be said that equation (3) holds. That is, also in the present embodiment, regardless of the collector voltage dv / dt, the potential at the voltage dividing point 9 is IGB
It increases in proportion to the collector voltage of T. The gate potential of the IGBT 1 is controlled by the buffer 6 to the potential at the voltage dividing point 9. Therefore, if an overvoltage (a voltage superimposed on the voltage of the DC voltage source 21 on the voltage generated in the wiring inductance 23) is applied to the collector voltage and the gate voltage exceeds the threshold value, the impedance of the IGBT decreases and the collector voltage is reduced. Although the voltage is clamped, the potential of the voltage dividing point 9 increases in proportion to the collector voltage of the IGBT regardless of the collector voltage dv / dt. Therefore, the collector voltage clamping is performed in accordance with the collector voltage dv / dt. This is done by the potential of the no voltage dividing point 9. This means that the clamp voltage level of the collector of the IGBT is kept constant. If Cch >> Ch, the capacitor 5 is ignored regardless of the parasitic capacitance value variation of the high-voltage side resistor 3.
And the capacity of the capacitor 51 can be set.

【0013】図7は、本発明の第4の実施形態を示す。
第1乃至第3の実施形態はアームが1直列のIGBTに
よって構成したのに対し、本実施形態は、IGBTが多
直列に接続することを特徴とする。ゲート容量などの素
子特性に違いがあるIGBT素子が直列に接続されたと
する。例えば、ゲート容量が小さい素子は、ターンオフ
時のコレクタ電圧の立ち上がるタイミングが他の素子よ
り早い。ターンオフのタイミングが早いと、他の素子よ
りもインピーダンスの増加速度も他の素子よりも速いの
で、直流電圧をより大きく背負うことになり、1直列で
のターンオフと比べて急激にコレクタ電圧が上昇してし
まい、素子を破壊する恐れがある。しかし、本実施形態
の回路方式では、コレクタ電圧のdv/dtが大きくて
も、コレクタ電圧のクランプレベルが一定であるので、
直列接続したIGBT間の電圧分担を均等化することに
なる。これにより、素子の破壊を防止することができ
る。
FIG. 7 shows a fourth embodiment of the present invention.
In the first to third embodiments, the arms are configured by one series of IGBTs, whereas the present embodiment is characterized in that the IGBTs are connected in multiple series. It is assumed that IGBT elements having differences in element characteristics such as gate capacitance are connected in series. For example, in a device having a small gate capacitance, the timing at which the collector voltage rises at turn-off is earlier than in other devices. If the turn-off timing is earlier, the impedance increases at a faster rate than the other elements, so that the DC voltage is more greatly shouldered, and the collector voltage rises sharply compared to turn-off in one series. It may destroy the element. However, in the circuit system of the present embodiment, even if the dv / dt of the collector voltage is large, the clamp level of the collector voltage is constant.
The voltage sharing between the IGBTs connected in series is equalized. Thereby, destruction of the element can be prevented.

【0014】以上、本発明の実施形態としてIGBT1
について説明したが、パワーMOSFETなどMOSゲ
ートに印加する電圧によりオンオフ制御するデバイスに
置き換えても同様の効果を得ることができることは云う
までもない。
As described above, the IGBT 1 according to the embodiment of the present invention
However, it is needless to say that the same effect can be obtained by replacing the device with a device such as a power MOSFET that controls on / off by a voltage applied to a MOS gate.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
IGBT(パワーMOSFETなど他のMOSゲートデ
バイスを含む。)のコレクタ電圧のdv/dtに関係な
く、コレクタ電圧のクランプレベルを一定に保つことが
できるので、従来のように必要以上にIGBTのコレク
タ電圧を低下させてしまうことがなく、IGBTの損失
を軽減することができる。また、電力変換装置のアーム
構成がIGBTの多直列接続である場合、コレクタ電圧
のdv/dtが大きくても、コレクタ電圧のクランプレ
ベルが一定であるので、直列接続したIGBT間の電圧
分担を均等化することができ、素子の破壊を防止するこ
とができる。
As described above, according to the present invention,
Since the collector voltage clamp level can be kept constant regardless of the collector voltage dv / dt of the IGBT (including other MOS gate devices such as a power MOSFET), the collector voltage of the IGBT is increased more than necessary as in the related art. IGBT is not reduced, and the loss of the IGBT can be reduced. Further, when the arm configuration of the power converter is a multi-series connection of IGBTs, even if the dv / dt of the collector voltage is large, the clamp level of the collector voltage is constant. And destruction of the element can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体電力変換装置である第1の実施
形態
FIG. 1 is a first embodiment of a semiconductor power conversion device according to the present invention.

【図2】従来技術による電力変換装置の1アーム分の主
要部
FIG. 2 is a main part of one arm of a conventional power converter.

【図3】本発明を適用する電力変換装置の主要部FIG. 3 is a main part of a power converter to which the present invention is applied.

【図4】本発明のIGBTのコレクタ、ゲート電圧波形
及び分圧点の電圧波形図
FIG. 4 is a collector, gate voltage waveform and a voltage waveform at a voltage dividing point of the IGBT of the present invention.

【図5】本発明の第2の実施形態FIG. 5 shows a second embodiment of the present invention.

【図6】本発明の第3の実施形態FIG. 6 shows a third embodiment of the present invention.

【図7】本発明の第4の実施形態FIG. 7 shows a fourth embodiment of the present invention.

【図8】本発明の第1の実施形態の説明図FIG. 8 is an explanatory diagram of the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…IGBT、2…還流ダイオード、3…高圧側分圧抵
抗、4…低圧側分圧抵抗、5…コンデンサ素子、51…
コンデンサ素子、6…バッファ回路、7…オンオフパル
ス発生器、8…ゲート抵抗、9…分圧点、13…オンオ
フパルス発生器用電源、13N…ゲート回路内の負電位
配線、20…アーム、21…直流電圧源、22…インダ
クタス負荷、23…寄生インダクタス
DESCRIPTION OF SYMBOLS 1 ... IGBT, 2 ... Reflux diode, 3 ... High-voltage side voltage dividing resistor, 4 ... Low-voltage side voltage dividing resistor, 5 ... Capacitor element, 51 ...
Capacitor element, 6 buffer circuit, 7 on / off pulse generator, 8 gate resistance, 9 voltage dividing point, 13 power supply for on / off pulse generator, 13N negative potential wiring in gate circuit, 20 arm, 21 DC voltage source, 22: Inductance load, 23: Parasitic inductance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 洋満 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所電機システム事業部内 Fターム(参考) 5H006 CA01 CC02 DB03 FA01 5H007 AA03 CA01 CC07 DB03 DB09 FA01 FA13 FA20 5H740 AA06 BB01 BB07 BB08 HH03 HH05 KK01 MM03  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hiromitsu Sakai 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture F-term in the Electric Systems Division, Hitachi, Ltd. (Reference) 5H006 CA01 CC02 DB03 FA01 5H007 AA03 CA01 CC07 DB03 DB09 FA01 FA13 FA20 5H740 AA06 BB01 BB07 BB08 HH03 HH05 KK01 MM03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 IGBTのコレクタとエミッタ間または
IGBTのコレクタとエミッタに対して一定の電位差を
有する配線間の電圧を少なくとも2個以上の抵抗器によ
り分圧する回路構成を有し、前記分圧点の電位にIGB
Tのゲート電位をコントロールすることによってコレク
タへの過電圧印加からIGBTを保護する機能を有する
半導体電力変換装置において、前記分圧点より低圧側の
抵抗器に並列にコンデンサを接続することを特徴とする
半導体電力変換装置。
A circuit for dividing a voltage between a collector and an emitter of the IGBT or a wiring having a constant potential difference between the collector and the emitter of the IGBT with at least two or more resistors; IGB to the potential of
In a semiconductor power converter having a function of protecting an IGBT from application of an overvoltage to a collector by controlling a gate potential of T, a capacitor is connected in parallel to a resistor on the low voltage side from the voltage dividing point. Semiconductor power converter.
【請求項2】 請求項1において、前記分圧点より高圧
側の分圧回路のインピーダンスと前記分圧点より低圧側
の分圧回路のインピーダンスの比がコレクタ電圧の電圧
変動率によらず大略一定であることを特徴とする半導体
電力変換装置。
2. The method according to claim 1, wherein the ratio of the impedance of the voltage dividing circuit on the high voltage side of the voltage dividing point to the impedance of the voltage dividing circuit on the low voltage side of the voltage dividing point is substantially independent of the voltage fluctuation rate of the collector voltage. A semiconductor power conversion device characterized by being constant.
【請求項3】 請求項1において、前記分圧点より高圧
側の抵抗器の抵抗値成分とその寄生容量成分からなるC
R時定数が前記分圧点より低圧側の抵抗器と前記分圧点
より抵抗器に並列に接続されるコンデンサのCR時定数
と大略等しいことを特徴とする半導体電力変換装置。
3. The capacitor according to claim 1, comprising a resistance value component of a resistor higher than the voltage dividing point and a parasitic capacitance component thereof.
A semiconductor power conversion device, wherein an R time constant is substantially equal to a CR time constant of a resistor connected in parallel with the resistor from the voltage dividing point to a resistor lower than the voltage dividing point.
【請求項4】 IGBTのコレクタとエミッタ間または
IGBTのコレクタとエミッタに対して一定の電位差を
有する配線間の電圧を少なくとも2個以上の抵抗器によ
り分圧する回路構成を有し、前記分圧点の電位にIGB
Tのゲート電位をコントロールすることによってコレク
タへの過電圧印加からIGBTを保護する機能を有する
半導体電力変換装置において、前記分圧点より低圧側の
抵抗器及び高圧側の抵抗器のそれぞれに並列にコンデン
サを接続し、前記分圧点より高圧側の分圧回路のインピ
ーダンスと前記分圧点より低圧側の分圧回路のインピー
ダンスの比がコレクタ電圧の電圧変動率によらず大略一
定であることを特徴とする半導体電力変換装置。
4. A circuit for dividing a voltage between a collector and an emitter of an IGBT or a wiring having a fixed potential difference between the collector and the emitter of the IGBT by at least two or more resistors. IGB to the potential of
In a semiconductor power conversion device having a function of protecting an IGBT from overvoltage application to a collector by controlling a gate potential of T, a capacitor is provided in parallel with each of a resistor on a low voltage side and a resistor on a high voltage side from the voltage dividing point. And the ratio of the impedance of the voltage dividing circuit on the higher voltage side than the voltage dividing point to the impedance of the voltage dividing circuit on the lower voltage side than the voltage dividing point is substantially constant irrespective of the voltage fluctuation rate of the collector voltage. Semiconductor power converter.
【請求項5】 IGBTのコレクタとエミッタ間または
IGBTのコレクタとエミッタに対して一定の電位差を
有する配線間の電圧を少なくとも2個以上の抵抗器によ
り分圧する回路構成を有し、前記分圧点の電位にIGB
Tのゲート電位をコントロールすることによってコレク
タへの過電圧印加からIGBTを保護する機能を有する
半導体電力変換装置において、前記分圧点より低圧側の
抵抗器及び高圧側の抵抗器のそれぞれに並列にコンデン
サを接続し、前記分圧点より高圧側の抵抗器と該高圧側
抵抗器に並列に接続するコンデンサとのCR時定数が前
記分圧点より低圧側の抵抗器とコンデンサのCR時定数
と大略等しいことを特徴とする半導体電力変換装置。
5. A circuit structure for dividing a voltage between a collector and an emitter of an IGBT or between wirings having a certain potential difference with respect to a collector and an emitter of the IGBT by at least two or more resistors. IGB to the potential of
In a semiconductor power conversion device having a function of protecting an IGBT from overvoltage application to a collector by controlling a gate potential of T, a capacitor is provided in parallel with each of a resistor on a low voltage side and a resistor on a high voltage side from the voltage dividing point. And the CR time constant of the resistor on the high voltage side from the voltage dividing point and the CR time constant of the capacitor connected in parallel to the high voltage side resistor is approximately equal to the CR time constant of the resistor and the capacitor on the low voltage side from the voltage dividing point. A semiconductor power conversion device characterized by being equal.
【請求項6】 請求項1から請求項5のいずれかにおい
て、電力変換器の一アームに前記IGBTを多直列に接
続することを特徴とする半導体電力変換装置。
6. The semiconductor power conversion device according to claim 1, wherein the IGBT is connected to one arm of the power converter in multiple series.
【請求項7】 請求項1から請求項6のいずれかにおい
て、前記IGBTを他のMOSゲートデバイスに置き換
えることを特徴とする半導体電力変換装置。
7. The semiconductor power conversion device according to claim 1, wherein the IGBT is replaced with another MOS gate device.
JP2000367965A 2000-12-04 2000-12-04 Semiconductor power converter Expired - Fee Related JP3899450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000367965A JP3899450B2 (en) 2000-12-04 2000-12-04 Semiconductor power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000367965A JP3899450B2 (en) 2000-12-04 2000-12-04 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JP2002171746A true JP2002171746A (en) 2002-06-14
JP3899450B2 JP3899450B2 (en) 2007-03-28

Family

ID=18838297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000367965A Expired - Fee Related JP3899450B2 (en) 2000-12-04 2000-12-04 Semiconductor power converter

Country Status (1)

Country Link
JP (1) JP3899450B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027328A1 (en) * 2003-09-10 2005-03-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gate drive circuit
JP2006042564A (en) * 2004-07-30 2006-02-09 Tokyo Electric Power Co Inc:The Power switching circuit, power conversion device, and drive method of semiconductor switching element for power
JP2015115963A (en) * 2013-12-13 2015-06-22 ツェーテー‐コンツェプト テヒノロギー ゲーエムベーハーCT−Concept Technologie GmbH Device and method for detection of short circuit or overcurrent situation in power semiconductor switch
US9203393B2 (en) 2012-08-30 2015-12-01 Denso Corporation Semiconductor apparatus
WO2017119227A1 (en) * 2016-01-04 2017-07-13 日立オートモティブシステムズ株式会社 Rotating electrical machine drive system control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027328A1 (en) * 2003-09-10 2005-03-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Gate drive circuit
US7570102B2 (en) 2003-09-10 2009-08-04 Toshiba Mitsubishi - Electric Industrial Systems Corporation Gate driving circuit for driving a gate electrode of an electric power switching element with simple structure
JP2006042564A (en) * 2004-07-30 2006-02-09 Tokyo Electric Power Co Inc:The Power switching circuit, power conversion device, and drive method of semiconductor switching element for power
US9203393B2 (en) 2012-08-30 2015-12-01 Denso Corporation Semiconductor apparatus
JP2015115963A (en) * 2013-12-13 2015-06-22 ツェーテー‐コンツェプト テヒノロギー ゲーエムベーハーCT−Concept Technologie GmbH Device and method for detection of short circuit or overcurrent situation in power semiconductor switch
WO2017119227A1 (en) * 2016-01-04 2017-07-13 日立オートモティブシステムズ株式会社 Rotating electrical machine drive system control device
JPWO2017119227A1 (en) * 2016-01-04 2018-07-26 日立オートモティブシステムズ株式会社 Control device for rotating electrical machine drive system

Also Published As

Publication number Publication date
JP3899450B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US7368972B2 (en) Power transistor control device
JP3812353B2 (en) Semiconductor power converter
US11139808B2 (en) Semiconductor device and power conversion system
JP3598933B2 (en) Power converter
EP0431492B1 (en) Bridge type power converter with improved efficiency
JP4675302B2 (en) Semiconductor device
JP3462032B2 (en) Power converter
US20090066402A1 (en) Gate drive circuit
EP0467681A2 (en) Drive circuit for current sense IGBT
US4672524A (en) Overcurrent and overvoltage protected transistor inverter
JP2003069401A (en) Semiconductor power converter
US8670253B2 (en) Converter protecting components against overvoltages
JP3915455B2 (en) Semiconductor power converter
JP2002171746A (en) Semiconductor power converter
JP4350295B2 (en) Semiconductor device and semiconductor device module
JP2005328668A (en) Drive circuit of self arc-extinguishing semiconductor device
JP3569192B2 (en) Semiconductor power converter
JPH10209832A (en) Semiconductor switch circuit
JP2002044934A (en) Semiconductor power converter
WO2022153521A1 (en) Semiconductor power conversion device
US20230308008A1 (en) Semiconductor device
WO2023203678A1 (en) Electric power conversion apparatus and driving circuit for electric power conversion apparatus
JPH07143733A (en) Snubber circuit
CN108155895B (en) Modulation circuit and solid-state pulse modulator
JPH06113525A (en) Snubber circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees