JP2002168611A - Method and device for inspecting cylindrical object to be inspected for surface ruggedness - Google Patents

Method and device for inspecting cylindrical object to be inspected for surface ruggedness

Info

Publication number
JP2002168611A
JP2002168611A JP2001265637A JP2001265637A JP2002168611A JP 2002168611 A JP2002168611 A JP 2002168611A JP 2001265637 A JP2001265637 A JP 2001265637A JP 2001265637 A JP2001265637 A JP 2001265637A JP 2002168611 A JP2002168611 A JP 2002168611A
Authority
JP
Japan
Prior art keywords
light
test object
cylindrical test
scanning
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001265637A
Other languages
Japanese (ja)
Inventor
Ryuji Sakida
隆二 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001265637A priority Critical patent/JP2002168611A/en
Publication of JP2002168611A publication Critical patent/JP2002168611A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device by which a cylindrical object to be inspected, such as photosensitive drum, etc., can be inspected for surface flaws with high sensitivity. SOLUTION: The cylindrical object 1 to be inspected is scanned with a spot light 2, by moving the light 2 at a uniform velocity in the axial direction of the object 1, and the reflected light from the object 1 is received by means of a linear light-receiving element 3. The scanning clock of the element 3 is set equally to the scanning speed of the light 2. Since the light 2 is positioned, so that the reflected light lies in side of the visual field 4 of the element 3, the received light quantity becomes larger. However, when the height of the object 1 is changed, a spot light 2' goes out of the visual field 4 and the received light quantity decreases. Therefore, scanning is performed by rotating the object 1, so that the whole surface of the object 1 is irradiated with the spot light 2. Since the received light quantity decreases at a spot where the surface ruggedness of the object 1 changes, the object 1 can be inspected for surface ruggedness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒状被検物の表
面欠陥の検出に関し、より詳細には、円筒軸の方向に略
平行な稜線の膨らみや凹凸欠陥の検出、3次元測定に用
いる方法、装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection of surface defects of a cylindrical test object, and more particularly, to the detection of bulges and irregularities of ridges substantially parallel to the direction of a cylindrical axis, and three-dimensional measurement. The present invention relates to a method and an apparatus.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】画像形
成装置用の感光体ドラムなどの円筒状被検物の従来の欠
陥検査方法としては、特開平2−201142号公報あ
るいは特開平4−169840号公報に示されるものが
ある。
2. Description of the Related Art A conventional defect inspection method for a cylindrical test object such as a photosensitive drum for an image forming apparatus is disclosed in Japanese Patent Application Laid-Open No. 2-201142 or 4-169840. There is one shown in Japanese Patent Publication No.

【0003】図1は、特開平2−201142号公報の
方法を示す斜視図である。同図において、光源31から
のレーザ光ビーム32を、回転多面鏡36を介して感光
体ドラム33の軸方向に走査するように照射させる。走
査光は、ドラム30の感光層表面にて反射され、正常な
表面からの反射光は、ほぼ受光器35に進入し、反射光
の強度が検出され、出力は、所定の演算処理部等に入力
される。ここでの処理は、検出値が異常に低下した時
に、表面状態の異常として検出するというものである。
FIG. 1 is a perspective view showing a method disclosed in Japanese Patent Application Laid-Open No. Hei 2-201142. In the figure, a laser light beam 32 from a light source 31 is irradiated via a rotary polygon mirror 36 so as to scan in the axial direction of a photosensitive drum 33. The scanning light is reflected on the photosensitive layer surface of the drum 30, and the reflected light from the normal surface almost enters the light receiver 35, the intensity of the reflected light is detected, and the output is sent to a predetermined arithmetic processing unit or the like. Is entered. In this process, when the detection value drops abnormally, it is detected as an abnormality in the surface state.

【0004】一方、図2は、特開平4−169840号
公報の方法を示す図である。同図において、ハロゲン光
源等を備えた投光器41から感光体ドラム43へ向けて
スリット光42が投射される。感光体ドラム43の表面
欠陥によって散乱された散乱光は、レンズ44によって
集光され、ラインセンサ45で受光される。ラインセン
サ45は、画素列を有し、その受光範囲は、感光体ドラ
ム43表面上の431で示される範囲である。ここで
は、欠陥による散乱光の異常を検出している。
FIG. 2 is a diagram showing a method disclosed in Japanese Patent Application Laid-Open No. 4-169840. In the figure, a slit light 42 is projected from a light projector 41 having a halogen light source and the like toward a photosensitive drum 43. The scattered light scattered by the surface defect of the photoconductor drum 43 is collected by the lens 44 and received by the line sensor 45. The line sensor 45 has a pixel row, and its light receiving range is a range indicated by 431 on the surface of the photosensitive drum 43. Here, abnormalities in scattered light due to defects are detected.

【0005】感光体ドラムには、ピンホール、打痕、擦
り傷、気泡の巻き込み、クラック、ゴミ等の付着による
欠陥ならびに感光層の膜厚のムラ、液ダレや支持体の傷
等多種多様な欠陥の生ずる可能性がある。上述のような
従来の光学式検査装置による場合では、ピンホール、打
痕、擦り傷、ゴミ等の付着による欠陥のように、表面凹
凸の変化率の大きな欠陥に対しては高い検出力を発揮す
ることができるが、感光層の膜厚ムラ等のように凹凸の
変化率の小さい欠陥、あるいは支持体の傷のように感光
体表面に凹凸の変化のない欠陥に対しては検出精度に問
題がある。
A variety of defects such as pinholes, dents, abrasions, entrapment of air bubbles, cracks, dust and the like, irregularities in the thickness of the photosensitive layer, liquid dripping, and scratches on the support are all present on the photosensitive drum. May occur. In the case of the conventional optical inspection device as described above, a high detection power is exhibited for a defect having a large rate of change in surface unevenness, such as a defect due to adhesion of pinholes, dents, abrasions, dust and the like. However, there is a problem in detection accuracy for a defect having a small rate of change in unevenness, such as unevenness in the thickness of the photosensitive layer, or a defect having no change in unevenness on the surface of the photosensitive member, such as a scratch on a support. is there.

【0006】そこで本発明は、上記従来における円筒状
被検物の欠陥検査における問題点にかんがみ、感光体ド
ラム等の円筒状被検物の凹凸欠陥を感度よく検出できる
方法、装置を提供することを目的とする。
In view of the above problems in the conventional defect inspection of a cylindrical test object, the present invention provides a method and an apparatus capable of detecting irregularities on a cylindrical test object such as a photosensitive drum with high sensitivity. With the goal.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
円筒状被検物の表面凹凸検査方法は、上記目的を達成す
るために、円筒状被検物を回転させながら該円筒状被検
物の稜線上にスポット光を走査させ、該スポット光走査
方向と同方向に画素が配列されたライン型受光素子を用
いて上記スポット光走査と同期させながら受光し、上記
ライン型受光素子の各画素での受光量の減少から上記円
筒状被検物の表面凹凸を検出することを特徴とする。
According to a first aspect of the present invention, there is provided a method for inspecting the surface unevenness of a cylindrical object, wherein the cylindrical object is rotated while rotating the cylindrical object. The spot light is scanned on the ridge line of the inspection object, and light is received while synchronizing with the spot light scanning using a line type light receiving element in which pixels are arranged in the same direction as the spot light scanning direction. The surface unevenness of the cylindrical test object is detected from a decrease in the amount of light received at each pixel.

【0008】同請求項2に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1の検
査方法において、上記スポット光走査を、レーザ光源、
ポリゴンミラー及びfθレンズからなる走査光学系によ
って行うことを特徴とする。
According to a second aspect of the present invention, in order to achieve the above object, the method for inspecting the surface unevenness of a cylindrical object according to the first aspect of the present invention comprises the steps of:
The scanning is performed by a scanning optical system including a polygon mirror and an fθ lens.

【0009】同請求項3に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1の検
査方法において、上記スポット光走査を、LEDアレイ
によって行うことを特徴とする。
According to a third aspect of the present invention, in order to achieve the above object, in the inspection method of the first aspect, the spot light scanning is performed by an LED array. And

【0010】同請求項4に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1ない
し3のいずれかの検査方法において、上記ライン型受光
素子の視野方向を変えて複数回撮像を行い、各画素毎に
受光量が最大になる視野方向を特定し、その方向から上
記円筒状被検物の凹凸方向及びその量を判定することを
特徴とする。
According to a fourth aspect of the present invention, in order to achieve the above object, the method of inspecting the surface unevenness of a cylindrical object is the same as the inspection method of any one of the first to third aspects, wherein the viewing direction of the line type light receiving element is changed. The imaging is performed a plurality of times by changing the direction, and the viewing direction in which the amount of received light is maximized is specified for each pixel, and the direction of the unevenness of the cylindrical test object and the amount thereof are determined from the direction.

【0011】同請求項5に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1ない
し3のいずれかの検査方法において、上記スポット光の
照射位置を変えて複数回撮像を行い、各画素毎に受光量
が最大になる照射位置を特定し、該照射位置から上記円
筒状被検物の凹凸方向及びその量を判定することを特徴
とする。
According to a fifth aspect of the present invention, there is provided a method for inspecting the surface unevenness of a cylindrical test object, wherein the irradiation position of the spot light is changed in the inspection method according to any one of the first to third aspects. The imaging position is determined a plurality of times, the irradiation position at which the amount of received light is maximized is specified for each pixel, and the unevenness direction and the amount of the cylindrical test object are determined from the irradiation position.

【0012】同請求項6に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1ない
し3のいずれかの検査方法において、上記円筒状被検物
の高さを変えて複数回撮像を行い、各画素毎に受光量が
最大になる高さを特定し、該高さから上記円筒状被検物
の凹凸方向及びその量を判定することを特徴とする。
According to a sixth aspect of the present invention, in order to achieve the above object, the method for inspecting the surface unevenness of a cylindrical object according to any one of the first to third aspects, comprises: The imaging is performed a plurality of times by changing the height, the height at which the amount of received light is maximized is specified for each pixel, and the unevenness direction and the amount of the cylindrical test object are determined from the height. .

【0013】同請求項7に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1ない
し3のいずれかの検査方法において、上記スポット光を
走査するための走査光学系及び上記受光のための受光光
学系全体の高さを変えて複数回撮像を行い、各画素毎に
受光量が最大になる高さを特定し、該高さから上記円筒
状被検物の凹凸方向及びその量を判定することを特徴と
する。
According to a seventh aspect of the present invention, in order to achieve the above object, the method for inspecting the surface unevenness of a cylindrical test object according to any one of the first to third aspects, comprises the steps of: A plurality of images are taken by changing the height of the scanning optical system and the entire light receiving optical system for receiving light, and the height at which the amount of received light is maximized is specified for each pixel, and the cylindrical test object is determined from the height. It is characterized in that the direction of the unevenness of the object and the amount thereof are determined.

【0014】同請求項8に係る円筒状被検物の表面凹凸
検査方法は、上記目的を達成するために、請求項1ない
し7のいずれかの検査方法において、共焦点光学系を用
いることを特徴とする。
According to an eighth aspect of the present invention, in order to achieve the above object, the method for inspecting the surface unevenness of a cylindrical test object uses a confocal optical system in any one of the first to seventh aspects. Features.

【0015】同請求項9に係る円筒状被検物の表面凹凸
検査装置は、上記目的を達成するために、円筒状被検物
を回転させる手段と、該円筒状被検物の稜線上にスポッ
ト光を走査させる手段と、該スポット光走査方向と同方
向に画素が配列されたライン型受光素子を用いて上記ス
ポット光走査と同期させながら受光する手段と、上記ラ
イン型受光素子の各画素での受光量の減少から上記円筒
状被検物の表面凹凸を検出する手段とからなることを特
徴とする。
According to a ninth aspect of the present invention, there is provided an apparatus for inspecting the surface unevenness of a cylindrical test object, comprising: means for rotating the cylindrical test object; Means for scanning the spot light, means for receiving light while synchronizing with the spot light scanning using a line type light receiving element in which pixels are arranged in the same direction as the spot light scanning direction, and each pixel of the line type light receiving element And means for detecting the surface irregularities of the cylindrical test object from the decrease in the amount of received light.

【0016】同請求項10に係る円筒状被検物の表面凹
凸検査装置は、上記目的を達成するために、請求項9の
検査装置において、上記ライン型受光素子の視野方向、
上記スポット光の照射位置、上記円筒状被検物の高さあ
るいは上記スポット光を走査するための走査光学系及び
上記受光のための受光光学系全体の高さを変える手段を
有し、複数回撮像を行い、上記検出手段が、各画素毎に
受光量が最大になる視野方向を特定し、その方向から上
記円筒状被検物の凹凸方向及びその量を判定することを
特徴とする。
According to a tenth aspect of the present invention, in order to achieve the above object, the inspection apparatus according to the ninth aspect has the following features.
Means for changing the irradiation position of the spot light, the height of the cylindrical test object or the entire height of the scanning optical system for scanning the spot light and the entire light receiving optical system for light reception, Imaging is performed, and the detecting means specifies a visual field direction in which the amount of received light is maximized for each pixel, and determines the uneven direction and the amount of the cylindrical test object from the direction.

【0017】[0017]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図3は本発明の第1の実施形態を示
す斜視図である。図示のように、スポット光2を円筒状
被検物1の軸方向に沿って等速走査させ、その反射光を
ライン型受光素子3で受光する。このとき、ライン型受
光素子3の走査周期をスポット光2の走査速度と同じに
なるように設定する(図4参照)。その結果、図5に示
すように、円筒状被検物1の場合は、スポット光2の位
置がライン型受光素子3の視野4の内側であるため受光
量が大きい。しかし、高さが変化して円筒状被検物1’
になった場合、スポット光2’が視野4の外側になって
しまうため受光量が減少する。そこで円筒状被検物1を
回転させることにより全面にスポット光2を走査させ
る。その結果、図6に示すように、円筒状被検物1に凹
凸の変化があるところでは受光量が減少するため、円筒
状被検物1の凹凸検査を行うことが可能となる。またこ
の方法によれば、表面凹凸の検出だけではなく、濃淡ム
ラ等の凹凸はないが反射率のみが異なる欠陥に対して
も、受光量の違いから検出することができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a perspective view showing the first embodiment of the present invention. As shown in the drawing, the spot light 2 is scanned at a constant speed along the axial direction of the cylindrical test object 1, and the reflected light is received by the line type light receiving element 3. At this time, the scanning cycle of the line type light receiving element 3 is set to be the same as the scanning speed of the spot light 2 (see FIG. 4). As a result, as shown in FIG. 5, in the case of the cylindrical specimen 1, the amount of received light is large because the position of the spot light 2 is inside the visual field 4 of the line-type light receiving element 3. However, the height changes and the cylindrical test object 1 '
In this case, the amount of received light decreases because the spot light 2 ′ is outside the visual field 4. Therefore, the spot light 2 is scanned over the entire surface by rotating the cylindrical test object 1. As a result, as shown in FIG. 6, the amount of received light is reduced where the irregularity of the cylindrical test object 1 changes, so that the irregularity test of the cylindrical test object 1 can be performed. Further, according to this method, not only the detection of the surface unevenness but also the defect which does not have the unevenness such as the shading unevenness but differs only in the reflectance can be detected from the difference in the amount of received light.

【0018】図7は本発明の第2の実施形態を示す斜視
図である。スポット光2を等速走査させるために図示の
ようにレーザ光源5、ポリゴンスキャナ6及びfθレン
ズ7を用いる。そしてその反射光を結像レンズ8で集光
し、CCDラインセンサ9で受光することにより、第1
の実施形態の検査方法を実現している。なおCCDライ
ンセンサ9の走査クロックとポリゴンスキャナ6の回転
数を調整して、スポット光2とCCDラインセンサ9の
走査速度を同期させる。
FIG. 7 is a perspective view showing a second embodiment of the present invention. In order to scan the spot light 2 at a constant speed, a laser light source 5, a polygon scanner 6, and an fθ lens 7 are used as shown. Then, the reflected light is condensed by the imaging lens 8 and received by the CCD line sensor 9, whereby the first
The inspection method according to the embodiment is realized. The scanning speed of the CCD line sensor 9 and the rotation speed of the polygon scanner 6 are adjusted to synchronize the spot light 2 and the scanning speed of the CCD line sensor 9.

【0019】図8は本発明の第3の実施形態を示す斜視
図である。図示のようにLEDアレイ10を用いてスポ
ット光2を等速走査させる。そしてその反射光を結像レ
ンズ8で集光し、CCDラインセンサ9で受光すること
により、第1の実施形態の検査方法を実現している。な
おCCDラインセンサ9の走査クロックとLEDアレイ
10の点灯周波数を調整して、スポット光2とCCDラ
インセンサ9の走査速度を同期させる。
FIG. 8 is a perspective view showing a third embodiment of the present invention. As shown, the spot light 2 is scanned at a constant speed using the LED array 10. The reflected light is condensed by the imaging lens 8 and received by the CCD line sensor 9, thereby realizing the inspection method of the first embodiment. The scanning clock of the CCD line sensor 9 and the lighting frequency of the LED array 10 are adjusted to synchronize the spot light 2 and the scanning speed of the CCD line sensor 9.

【0020】図9は本発明の第4の実施形態を示す斜視
図である。上記第1〜第3の実施形態の検査方法では、
円筒状被検物1の凹凸の有無は分かっても、凹凸の区別
まではできない。そこで、図9に示すようにライン型受
光素子3の位置を変化させて複数回撮像を行う。まずラ
イン型受光素子を3の位置にして1回目の撮像を行う
と、円筒状被検物が1の高さにある場合のみ受光量が大
きい。次に、ライン型受光素子を3’の位置にして2回
目の撮像を行うと、円筒状被検物が1’の高さにある場
合のみ受光量が大きい。さらにライン型受光素子を3”
の位置にして3回目の撮像を行うと、円筒状被検物が
1”の高さにある場合のみ受光量が大きい。このように
所定回数の撮像を繰り返し、図15に示すように各画素
毎に受光量が最大になる撮像回数を算出する。その結果
から円筒状被検物1の凹凸を判定できる。すなわち図9
の実施形態の場合、ライン型受光素子3’での受光量が
最大であれば、円筒状被検物の高さは図に符号1’と示
す高さであると判定できる。信号処理のフローを図16
に示す。
FIG. 9 is a perspective view showing a fourth embodiment of the present invention. In the inspection methods of the first to third embodiments,
Even if the presence or absence of the unevenness of the cylindrical test object 1 is known, the unevenness cannot be distinguished. Therefore, as shown in FIG. 9, the image is taken a plurality of times by changing the position of the line type light receiving element 3. First, when the first imaging is performed with the line-type light receiving element at the position 3, the amount of received light is large only when the cylindrical test object is at the height of 1. Next, when the second imaging is performed with the line-type light receiving element at the position 3 ', the amount of received light is large only when the cylindrical test object is at the height of 1'. In addition, 3 "line type photo detector
When the third imaging is performed at the position, the amount of received light is large only when the cylindrical test object is at a height of 1 ″. The imaging is repeated a predetermined number of times as described above, and each pixel is scanned as shown in FIG. The number of times of imaging at which the amount of received light is maximized is calculated for each time, and as a result, the unevenness of the cylindrical test object 1 can be determined, that is, FIG.
In the case of the embodiment, if the amount of light received by the line-type light receiving element 3 'is the maximum, it can be determined that the height of the cylindrical test object is the height indicated by reference numeral 1' in the figure. FIG. 16 shows the flow of signal processing.
Shown in

【0021】なお、本実施形態の機器の構成としては、
図7に示したポリゴンスキャナ6、あるいは図8に示し
たLEDアレイ10によるスポット光2の等速走査と、
CCDラインセンサ9による受光において、CCDライ
ンセンサ9の視野を変化させて(変化させる機構は図示
しないが適宜公知の機構を用いればよい)、複数回撮像
を繰り返せばよい。
The configuration of the device according to the present embodiment is as follows.
Constant-speed scanning of the spot light 2 by the polygon scanner 6 shown in FIG. 7 or the LED array 10 shown in FIG.
In the light reception by the CCD line sensor 9, the field of view of the CCD line sensor 9 may be changed (a mechanism for changing the view is not shown, but a known mechanism may be used as appropriate), and the imaging may be repeated a plurality of times.

【0022】図10は本発明の第5の実施形態を示す斜
視図で、図9の実施形態と同様に凹凸の判定が可能な別
の方法を示す。図示のようにスポット光2の照射位置を
変化させて複数回撮像を行う。まずスポット光の照射位
置を2にして1回目の撮像を行うと、円筒状被検物が1
の高さにある場合のみ受光量が大きい。次に、スポット
光の照射位置を2’にして2回目の撮像を行うと、円筒
状被検物が1’の高さにある場合のみ受光量が大きい。
このように所定回数の撮像を繰り返し、図15に示すよ
うに各画素毎に受光量が最大になる撮像回数を算出す
る。その結果から円筒状被検物1の凹凸を判定する。信
号処理のフローは図16と同じである。
FIG. 10 is a perspective view showing a fifth embodiment of the present invention, and shows another method capable of judging unevenness similarly to the embodiment of FIG. As shown in the drawing, imaging is performed a plurality of times by changing the irradiation position of the spot light 2. First, when the irradiation position of the spotlight is set to 2 and the first imaging is performed, the cylindrical test object becomes 1
The received light amount is large only when the height is Next, when the second imaging is performed with the irradiation position of the spot light set to 2 ′, the received light amount is large only when the cylindrical test object is at the height of 1 ′.
In this manner, the imaging is repeated a predetermined number of times, and the number of times of imaging that maximizes the amount of received light is calculated for each pixel as shown in FIG. The unevenness of the cylindrical test object 1 is determined from the result. The flow of the signal processing is the same as in FIG.

【0023】なおスポット光2の照射位置を変化させる
方法、装置としては、図11に示すように光路中に反射
ミラー11を置いて、その角度を変える方法や、図12
に示すように光源ユニット12全体の角度を変える等の
方法が考えられる。
As a method and an apparatus for changing the irradiation position of the spot light 2, a method of changing the angle by placing a reflecting mirror 11 in the optical path as shown in FIG.
As shown in (1), a method of changing the angle of the entire light source unit 12 can be considered.

【0024】図9の実施形態と同様に円筒状被検物の凹
凸の判定が可能な他の方法を説明する。円筒状被検物1
の高さを変化さて複数回撮像を行うのであるが、まず円
筒状被検物1をある高さに設定して1回目の撮像を行
い、次に高さを所定回数変えて撮像を行い、受光量が最
大になる高さを探す。その結果から円筒状被検物1の凹
凸を判定する。信号処理のフローは図16と同じであ
る。
Another method capable of determining the unevenness of the cylindrical test object as in the embodiment of FIG. 9 will be described. Cylindrical test object 1
The imaging is performed a plurality of times by changing the height of the cylindrical object 1. First, the cylindrical object 1 is set to a certain height to perform the first imaging, and then the height is changed a predetermined number of times to perform the imaging. Search for the height that maximizes the amount of received light. The unevenness of the cylindrical test object 1 is determined from the result. The flow of the signal processing is the same as in FIG.

【0025】なお、円筒状被検物1の高さを変化させる
代わりに、光学系全体の高さを変化させて複数回撮像を
行うようにしてもよい。
It should be noted that instead of changing the height of the cylindrical test object 1, imaging may be performed a plurality of times by changing the height of the entire optical system.

【0026】また上記実施形態において、共焦点型の光
学系を構成して検出感度を向上させる方法を図13に示
す。すなわち図13に示すように、光源ユニット12か
らの光をレンズ13を用いて円筒状被検物1上に集光さ
せ、その反射光を結像レンズ14を用いて集光し、その
結像位置にピンホール15を配置し、背後に置かれたラ
イン型受光素子3で受光する。この場合、円筒状被検物
1の高さが変化すると(図13の場合、紙面上左右方向
に変化すると)、反射スポットは結像位置からずれ、そ
の結果ピンホール15を通過できず、ほとんど受光する
ことができない。すなわち、円筒状被検物1が所定の高
さにある場合のみ、受光量が急激に多くなるのが共焦点
光学系の特徴である。
FIG. 13 shows a method for improving the detection sensitivity by configuring a confocal optical system in the above embodiment. That is, as shown in FIG. 13, the light from the light source unit 12 is condensed on the cylindrical test object 1 using the lens 13, and the reflected light is condensed using the imaging lens 14, and the image is formed. A pinhole 15 is arranged at the position, and light is received by the line type light receiving element 3 placed behind. In this case, if the height of the cylindrical test object 1 changes (in FIG. 13, if it changes in the horizontal direction on the paper surface), the reflection spot deviates from the image forming position, and as a result, it cannot pass through the pinhole 15, and No light can be received. That is, a characteristic of the confocal optical system is that the amount of received light sharply increases only when the cylindrical test object 1 is at a predetermined height.

【0027】共焦点型の光学系の具体的な構成例を図1
4に示す。図示の例は、ライン型受光素子3の各素子に
対して結像レンズ14を設け、その結像位置にピンホー
ル15を置き、直後にライン型受光素子3を配置したも
のである。もちろんその他の構成でも良いことは当然で
ある。この構成の装置を用いることにより、円筒状被検
物1のいっそう高感度な凹凸検出が可能となる。
FIG. 1 shows a specific configuration example of a confocal optical system.
It is shown in FIG. In the illustrated example, an imaging lens 14 is provided for each element of the line type light receiving element 3, a pinhole 15 is placed at the image forming position, and the line type light receiving element 3 is arranged immediately after. Of course, other configurations may be used. By using the device having this configuration, it is possible to detect the unevenness of the cylindrical test object 1 with higher sensitivity.

【0028】なお、上述の実施形態において、円筒状被
検物1の高さを変化させる代わりに、光学系全体の高さ
を変化させてもよい。
In the above embodiment, instead of changing the height of the cylindrical test object 1, the height of the entire optical system may be changed.

【0029】[0029]

【発明の効果】請求項1に係る円筒状被検物の表面凹凸
検査方法は、以上説明してきたように、スポット光走査
とライン型受光素子の走査速度を同期させることによ
り、円筒状被検物の凹凸を高感度に検出することができ
るという効果がある。
According to the first aspect of the present invention, the method for inspecting the unevenness of the surface of a cylindrical test object is achieved by synchronizing the spot light scanning with the scanning speed of the line type light receiving element. There is an effect that irregularities of an object can be detected with high sensitivity.

【0030】請求項2に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、レーザ光源とポリ
ゴンミラー及びfθミラーからなる走査光学系及びCC
Dラインセンサを用いることにより、上記請求項1の方
法と共通の効果に加え、スポット光走査と受光素子の同
期を取ることが可能になるという効果がある。
According to a second aspect of the present invention, as described above, the scanning optical system including the laser light source, the polygon mirror, and the fθ mirror,
The use of the D-line sensor has an effect that it is possible to synchronize the spot light scanning with the light receiving element in addition to the effect common to the method of the first aspect.

【0031】請求項3に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、LEDアレイから
なる走査光学系及びCCDラインセンサを用いることに
より、上記請求項1の方法と共通の効果に加え、スポッ
ト光走査と受光素子の同期を取ることが可能になるとい
う効果がある。
According to a third aspect of the present invention, as described above, the method for inspecting the surface unevenness of a cylindrical object uses the scanning optical system composed of the LED array and the CCD line sensor to realize the method of the first aspect. In addition to the common effect, there is an effect that it is possible to synchronize the spot light scanning with the light receiving element.

【0032】請求項4に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、ライン型受光素子
の視野方向を変えて複数回撮像を行い、各画素毎に受光
量が最大になる視野方向を特定することにより、請求項
1ないし3の方法と共通の効果に加え、円筒状被検物の
凹凸方向を判定することが可能となるという効果があ
る。
In the method for inspecting the surface unevenness of a cylindrical object according to a fourth aspect, as described above, imaging is performed a plurality of times while changing the viewing direction of the line type light receiving element, and the amount of light received for each pixel is reduced. By specifying the direction of the visual field which is maximized, in addition to the effects common to the methods of claims 1 to 3, there is an effect that it is possible to determine the uneven direction of the cylindrical test object.

【0033】請求項5に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、スポット光の照射
位置を変えて複数回撮像を行い、各画素毎に受光量が最
大になる照射位置を特定することにより、請求項1ない
し3の方法と共通の効果に加え、円筒状被検物の凹凸方
向を判定することが可能となるという効果がある。
In the method for inspecting the surface unevenness of a cylindrical test object according to the fifth aspect, as described above, imaging is performed a plurality of times while changing the irradiation position of the spot light, and the amount of received light is maximized for each pixel. By specifying such an irradiation position, in addition to the effects common to the methods of claims 1 to 3, there is an effect that it is possible to determine the uneven direction of the cylindrical test object.

【0034】請求項6に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、円筒状被検物の高
さを変えて複数回撮像を行い、各画素毎に受光量が最大
になる高さを特定することにより、請求項1ないし3の
方法と共通の効果に加え、円筒状被検物の凹凸方向を判
定することが可能となるという効果がある。
In the method for inspecting the surface unevenness of a cylindrical object according to a sixth aspect, as described above, imaging is performed a plurality of times while changing the height of the cylindrical object, and the amount of received light is determined for each pixel. By specifying the height at which is maximized, in addition to the effects common to the methods of claims 1 to 3, there is an effect that it is possible to determine the uneven direction of the cylindrical test object.

【0035】請求項7に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、走査光学系及び受
光光学系全体の高さを変えて複数回撮像を行い、各画素
毎に受光量が最大になる高さを特定することにより、請
求項1ないし3の方法と共通の効果に加え、円筒状被検
物の凹凸方向を判定することが可能となるという効果が
ある。
According to a seventh aspect of the present invention, in the method for inspecting the surface unevenness of a cylindrical test object, as described above, the imaging is performed a plurality of times by changing the height of the entire scanning optical system and the light receiving optical system, By specifying the height at which the amount of received light is maximized, in addition to the effects common to the methods of claims 1 to 3, there is an effect that it is possible to determine the uneven direction of the cylindrical test object.

【0036】請求項8に係る円筒状被検物の表面凹凸検
査方法は、以上説明してきたように、共焦点光学系を構
成することにより、請求項1ないし7の方法と共通の効
果に加え、円筒状被検物の凹凸を高感度に検出すること
ができるという効果がある。
According to the eighth aspect of the present invention, as described above, the method for inspecting the unevenness of the surface of the cylindrical test object has the same effects as those of the first to seventh aspects by configuring the confocal optical system. In addition, there is an effect that unevenness of a cylindrical test object can be detected with high sensitivity.

【0037】請求項9に係る円筒状被検物の表面凹凸検
査装置は、以上説明してきたように、円筒状被検物の高
さを変えて複数回撮像を行い、各画素毎に受光量が最大
になる高さを特定することにより、円筒状被検物の凹凸
方向を判定することが可能となるという効果がある。
According to a ninth aspect of the present invention, as described above, the apparatus for inspecting the unevenness of the surface of a cylindrical object performs imaging a plurality of times while changing the height of the cylindrical object, and receives the amount of received light for each pixel. By specifying the height at which is maximized, it is possible to determine the uneven direction of the cylindrical test object.

【0038】請求項10に係る円筒状被検物の表面凹凸
検査装置は、以上説明してきたように、走査光学系及び
受光光学系全体の高さを変えて複数回撮像を行い、各画
素毎に受光量が最大になる高さを特定することにより、
請求項9の装置と共通の効果に加え、円筒状被検物の凹
凸方向を判定することが可能となるという効果がある。
According to the tenth aspect of the present invention, as described above, the apparatus for inspecting the surface unevenness of a cylindrical object performs imaging a plurality of times by changing the heights of the scanning optical system and the light receiving optical system as a whole, and performs each pixel. By specifying the height at which the amount of received light is maximized,
In addition to the same effects as the device according to claim 9, there is an effect that it is possible to determine the uneven direction of the cylindrical test object.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の円筒状被検物の表面凹凸検査方法の一例
を示す斜視図である。
FIG. 1 is a perspective view showing an example of a conventional method for inspecting the surface unevenness of a cylindrical test object.

【図2】従来の円筒状被検物の表面凹凸検査方法の他の
例を示す斜視図である。
FIG. 2 is a perspective view showing another example of the conventional method for inspecting the surface unevenness of a cylindrical test object.

【図3】本発明の第1の実施形態を示す斜視図である。FIG. 3 is a perspective view showing the first embodiment of the present invention.

【図4】本発明の実施形態における走査クロックと走査
速度との関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between a scan clock and a scan speed in the embodiment of the present invention.

【図5】円筒状被検物の高さ変化と受光量の変化を説明
するための斜視図である。
FIG. 5 is a perspective view for explaining a change in the height of the cylindrical test object and a change in the amount of received light.

【図6】円筒状被検物の凹凸変化と受光量変化を説明す
るための図である。
FIG. 6 is a diagram for explaining a change in unevenness and a change in a received light amount of a cylindrical test object.

【図7】本発明の第2の実施形態を示す斜視図である。FIG. 7 is a perspective view showing a second embodiment of the present invention.

【図8】本発明の第3の実施形態を示す斜視図である。FIG. 8 is a perspective view showing a third embodiment of the present invention.

【図9】本発明の第4の実施形態を示す斜視図である。FIG. 9 is a perspective view showing a fourth embodiment of the present invention.

【図10】本発明の第5の実施形態を示す斜視図であ
る。
FIG. 10 is a perspective view showing a fifth embodiment of the present invention.

【図11】スポット光の照射位置を変化させる方法、装
置を示す斜視図である。
FIG. 11 is a perspective view showing a method and an apparatus for changing the irradiation position of the spot light.

【図12】スポット光の照射位置を変化させる他の方
法、装置を示す斜視図である。
FIG. 12 is a perspective view showing another method and apparatus for changing the irradiation position of the spot light.

【図13】共焦点型の光学系の構成を示す概念図であ
る。
FIG. 13 is a conceptual diagram showing a configuration of a confocal optical system.

【図14】共焦点型の光学系の具体的な構成例を示す図
である。
FIG. 14 is a diagram illustrating a specific configuration example of a confocal optical system.

【図15】複数回走査時の1画素における受光量の変化
例を示す図である。
FIG. 15 is a diagram illustrating an example of a change in the amount of received light in one pixel during multiple scanning.

【図16】本発明の実施形態における動作のフロー図で
ある。
FIG. 16 is a flowchart of an operation in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、1’、1” 円筒状被検物 2、2’ スポット光 3、3’、3” ライン型受光素子 4 ライン型受光素子の視野 5 レーザ光源 6 ポリゴンスキャナ 7 fθレンズ 8 結像レンズ 9 CCDラインセンサ 10 LEDアレイ 11 反射ミラー 12 光源ユニット 13 レンズ 14 結像レンズ 15 ピンホール 1, 1 ', 1 "cylindrical test object 2, 2' spot light 3, 3 ', 3" line type light receiving element 4 field of view of line type light receiving element 5 laser light source 6 polygon scanner 7 fθ lens 8 imaging lens 9 CCD line sensor 10 LED array 11 Reflecting mirror 12 Light source unit 13 Lens 14 Imaging lens 15 Pinhole

フロントページの続き Fターム(参考) 2F065 AA49 BB08 FF01 FF04 GG04 GG14 HH04 JJ02 JJ25 LL15 MM26 MM28 2G051 AA90 AB07 BA10 BA20 BB09 BB11 BC01 BC06 CA03 CB01 CC07 CD01 CD02 2H035 CA07 CB01 CB02 2H068 EA41 EA43 2H134 QA02 Continued on the front page F-term (reference) 2F065 AA49 BB08 FF01 FF04 GG04 GG14 HH04 JJ02 JJ25 LL15 MM26 MM28 2G051 AA90 AB07 BA10 BA20 BB09 BB11 BC01 BC06 CA03 CB01 CC07 CD01 CD02 2H035 CA07 CB01 CB02 2

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 円筒状被検物を回転させながら該円筒状
被検物の稜線上にスポット光を走査させ、該スポット光
走査方向と同方向に画素が配列されたライン型受光素子
を用いて上記スポット光走査と同期させながら受光し、
上記ライン型受光素子の各画素での受光量の減少から上
記円筒状被検物の表面凹凸を検出することを特徴とする
円筒状被検物の表面凹凸検査方法。
1. A line type light receiving element in which pixels are arranged in the same direction as the spot light scanning direction by scanning a spot light on a ridge line of the cylindrical object while rotating the cylindrical object. To receive light while synchronizing with the spot light scanning,
A method for inspecting the surface unevenness of a cylindrical test object, wherein the surface unevenness of the cylindrical test object is detected from a decrease in the amount of light received at each pixel of the line type light receiving element.
【請求項2】 上記スポット光走査を、レーザ光源、ポ
リゴンミラー及びfθレンズからなる走査光学系によっ
て行うことを特徴とする請求項1の円筒状被検物の表面
凹凸検査方法。
2. A method according to claim 1, wherein said spot light scanning is performed by a scanning optical system comprising a laser light source, a polygon mirror and an fθ lens.
【請求項3】 上記スポット光走査を、LEDアレイに
よって行うことを特徴とする請求項1の円筒状被検物の
表面凹凸検査方法。
3. The method according to claim 1, wherein the spot light scanning is performed by an LED array.
【請求項4】 上記ライン型受光素子の視野方向を変え
て複数回撮像を行い、各画素毎に受光量が最大になる視
野方向を特定し、その方向から上記円筒状被検物の凹凸
方向及びその量を判定することを特徴とする請求項1な
いし3のいずれかの円筒状被検物の表面凹凸検査方法。
4. A plurality of images are taken by changing the viewing direction of the line-type light receiving element, a viewing direction in which the amount of received light is maximized for each pixel is specified, and the uneven direction of the cylindrical object is determined from the direction. 4. The method for inspecting the surface unevenness of a cylindrical test object according to claim 1, wherein the amount is determined.
【請求項5】 上記スポット光の照射位置を変えて複数
回撮像を行い、各画素毎に受光量が最大になる照射位置
を特定し、該照射位置から上記円筒状被検物の凹凸方向
及びその量を判定することを特徴とする請求項1ないし
3のいずれかの円筒状被検物の表面凹凸検査方法。
5. An image pickup operation is performed a plurality of times while changing the irradiation position of the spot light, an irradiation position at which the amount of received light is maximized is specified for each pixel, and the projection and depression directions of the cylindrical test object are determined from the irradiation position. 4. The method according to claim 1, wherein the amount is determined.
【請求項6】 上記円筒状被検物の高さを変えて複数回
撮像を行い、各画素毎に受光量が最大になる高さを特定
し、該高さから上記円筒状被検物の凹凸方向及びその量
を判定することを特徴とする請求項1ないし3のいずれ
かの円筒状被検物の表面凹凸検査方法。
6. A plurality of images are taken by changing the height of the cylindrical test object, a height at which the amount of received light is maximized is specified for each pixel, and the height of the cylindrical test object is determined from the height. 4. The method for inspecting the surface unevenness of a cylindrical test object according to claim 1, wherein the direction and the amount of the unevenness are determined.
【請求項7】 上記スポット光を走査するための走査光
学系及び上記受光のための受光光学系全体の高さを変え
て複数回撮像を行い、各画素毎に受光量が最大になる高
さを特定し、該高さから上記円筒状被検物の凹凸方向及
びその量を判定することを特徴とする請求項1ないし3
のいずれかの円筒状被検物の表面凹凸検査方法。
7. A scanning optical system for scanning the spot light and a light receiving optical system for receiving light are changed in height to perform image pickup a plurality of times, and a height at which the amount of received light is maximized for each pixel. 4. The method according to claim 1, further comprising: determining an uneven direction of the cylindrical test object and an amount thereof based on the height.
Inspection method for surface unevenness of any one of the cylindrical specimens.
【請求項8】 共焦点光学系を用いることを特徴とする
請求項1ないし7のいずれかの円筒状被検物の表面凹凸
検査方法。
8. The method according to claim 1, wherein a confocal optical system is used.
【請求項9】 円筒状被検物を回転させる手段と、該円
筒状被検物の稜線上にスポット光を走査させる手段と、
該スポット光走査方向と同方向に画素が配列されたライ
ン型受光素子を用いて上記スポット光走査と同期させな
がら受光する手段と、上記ライン型受光素子の各画素で
の受光量の減少から上記円筒状被検物の表面凹凸を検出
する手段とからなることを特徴とする円筒状被検物の表
面凹凸検査装置。
9. A means for rotating a cylindrical test object, a means for scanning a spot light on a ridge line of the cylindrical test object,
Means for receiving light while synchronizing with the spot light scanning using a line type light receiving element in which pixels are arranged in the same direction as the spot light scanning direction; and Means for detecting surface irregularities of a cylindrical test object.
【請求項10】 上記ライン型受光素子の視野方向、上
記スポット光の照射位置、上記円筒状被検物の高さある
いは上記スポット光を走査するための走査光学系及び上
記受光のための受光光学系全体の高さを変える手段を有
し、複数回撮像を行い、上記検出手段が、各画素毎に受
光量が最大になる視野方向を特定し、その方向から上記
円筒状被検物の凹凸方向及びその量を判定することを特
徴とする請求項9の円筒状被検物の表面凹凸検査装置。
10. A scanning optical system for scanning the field direction of the line type light receiving element, the irradiation position of the spot light, the height of the cylindrical test object or the spot light, and the light receiving optical system for the light reception. It has a means for changing the height of the entire system, performs imaging a plurality of times, and the detecting means specifies a viewing direction in which the amount of received light is maximized for each pixel, and from that direction, the unevenness of the cylindrical test object is determined. The apparatus for inspecting the surface unevenness of a cylindrical test object according to claim 9, wherein the direction and the amount thereof are determined.
JP2001265637A 2000-09-08 2001-09-03 Method and device for inspecting cylindrical object to be inspected for surface ruggedness Pending JP2002168611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265637A JP2002168611A (en) 2000-09-08 2001-09-03 Method and device for inspecting cylindrical object to be inspected for surface ruggedness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000272799 2000-09-08
JP2000-272799 2000-09-08
JP2001265637A JP2002168611A (en) 2000-09-08 2001-09-03 Method and device for inspecting cylindrical object to be inspected for surface ruggedness

Publications (1)

Publication Number Publication Date
JP2002168611A true JP2002168611A (en) 2002-06-14

Family

ID=26599521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265637A Pending JP2002168611A (en) 2000-09-08 2001-09-03 Method and device for inspecting cylindrical object to be inspected for surface ruggedness

Country Status (1)

Country Link
JP (1) JP2002168611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258726A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Defect-inspecting method
JP2007040854A (en) * 2005-08-03 2007-02-15 Showa Denko Kk Surface inspection method and surface inspection device
KR101018121B1 (en) 2008-12-10 2011-02-25 삼성엘이디 주식회사 Method for Inspecting Concave and Convex Patterns of LED
JP2012181150A (en) * 2011-03-02 2012-09-20 Niigata Univ Method for observing cam surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258726A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Defect-inspecting method
JP2007040854A (en) * 2005-08-03 2007-02-15 Showa Denko Kk Surface inspection method and surface inspection device
JP4694915B2 (en) * 2005-08-03 2011-06-08 昭和電工株式会社 Surface inspection method and apparatus
KR101018121B1 (en) 2008-12-10 2011-02-25 삼성엘이디 주식회사 Method for Inspecting Concave and Convex Patterns of LED
JP2012181150A (en) * 2011-03-02 2012-09-20 Niigata Univ Method for observing cam surface

Similar Documents

Publication Publication Date Title
US5125741A (en) Method and apparatus for inspecting surface conditions
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP2003075363A (en) Device and method for inspecting defect
JP2003139523A (en) Surface defect detecting method and surface defect detecting device
JP2008216054A (en) Device and method for inspecting test object
EP1703274B1 (en) Defect inspecting method
JPH06294749A (en) Flaw inspection method for plat glass
JP2012013614A (en) Specular inspection method and specular inspection device
JP3429966B2 (en) Surface defect inspection device and inspection method
JP4215473B2 (en) Image input method, image input apparatus, and image input program
JP2002168611A (en) Method and device for inspecting cylindrical object to be inspected for surface ruggedness
JP2008008689A (en) Surface inspection device and surface inspection method
JP4534877B2 (en) Optical sensor device
JPH06281593A (en) Method and apparatus for inspecting surface
JPS6210379B2 (en)
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP4258401B2 (en) Surface defect inspection system for uneven surfaces
JPH06148088A (en) Method for detecting defect of hard disk
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
JPH09145339A (en) Surface flaw inspection method
JPH063279A (en) Method and device for inspecting hard disc or wafer
JP2009244052A (en) Surface inspection apparatus and surface inspection method
JPH0346545A (en) Defect detecting device
JPH08271240A (en) Device and method for testing hollow fiber module
JP2003240729A (en) Method and apparatus for examining surface