JPS6210379B2 - - Google Patents

Info

Publication number
JPS6210379B2
JPS6210379B2 JP54056993A JP5699379A JPS6210379B2 JP S6210379 B2 JPS6210379 B2 JP S6210379B2 JP 54056993 A JP54056993 A JP 54056993A JP 5699379 A JP5699379 A JP 5699379A JP S6210379 B2 JPS6210379 B2 JP S6210379B2
Authority
JP
Japan
Prior art keywords
inspected
spherical body
light
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54056993A
Other languages
Japanese (ja)
Other versions
JPS55149830A (en
Inventor
Junichi Ishiwatari
Seiichiro Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP5699379A priority Critical patent/JPS55149830A/en
Publication of JPS55149830A publication Critical patent/JPS55149830A/en
Publication of JPS6210379B2 publication Critical patent/JPS6210379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/951Balls

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 この発明は、球状体表面の欠陥を光学的に検出
し、光電変換素子を介して電気的に処理し、不良
とすべき欠陥の有無を判定する球状体の外観検査
装置に関する。
Detailed Description of the Invention The present invention is an external appearance inspection of a spherical body in which defects on the surface of a spherical body are optically detected and electrically processed through a photoelectric conversion element to determine the presence or absence of defects that should be considered defective. Regarding equipment.

一般に球状体表面の欠陥を検査する方法とし
て、例えば球状表面上にスポツト状に光を投射
し、その反射光を光電変換素子でとられ、球状体
に回転運動の他にスキユーを与えつつ被検査表面
を走査する方法が知られているが、この方法を実
用化した装置ではすべりを伴なう運動によつて被
検査表面を走査しているために走査に不安定を生
ずること、駆動装置が複雑になること、駆動ロー
ラの摩耗及び検査に時間がかかる等の問題があ
る。
Generally, as a method for inspecting defects on the surface of a spherical body, light is projected onto the spherical surface in the form of a spot, and the reflected light is captured by a photoelectric conversion element. A method of scanning a surface is known, but devices that have put this method into practical use scan the surface to be inspected using sliding motion, which causes instability in scanning, and problems with the driving device. Problems include complexity, wear of the drive rollers, and time-consuming inspections.

他の従来技術としては、被検査球の半周上に光
学繊維から成る投光部と受光部の対を複数個配列
し、各受光部にそれぞれ独立な光電変換素子と処
理判別回路とで構成し、被検査球を受光部の配列
方向に対して直角方向に回転させることにより被
検査球全表面を検査する装置がある。
Another conventional technique involves arranging a plurality of pairs of light emitters and light receivers made of optical fibers on the half circumference of the bulb to be inspected, and each light receiver is configured with an independent photoelectric conversion element and a processing discrimination circuit. There is an apparatus that inspects the entire surface of a sphere to be inspected by rotating the sphere to be inspected in a direction perpendicular to the direction in which the light receiving sections are arranged.

しかし、上記の従来技術においても、検出精度
を上げるために各受光部の大きさを小さくすれ
ば、光電変換素子及び判別処理回路の数が多くな
り、装置が高価、かつ調整の繁雑さが増える欠点
があり、さらには、光学繊維の開口角が大きいこ
とにより、隣接する受光部の視野の重なりをでき
るだけ小さくするためには受光部をできるだけ球
状体の表面に近づける必要があり、その結果、球
状体表面の油等による受光部に汚れが生ずるとい
う欠点もあつた。
However, even in the above-mentioned conventional technology, if the size of each light receiving part is made smaller in order to improve detection accuracy, the number of photoelectric conversion elements and discrimination processing circuits will increase, making the device expensive and making adjustments more complicated. Moreover, due to the large aperture angle of the optical fiber, the receiver must be placed as close as possible to the surface of the spherical body in order to minimize the overlap of the fields of view of adjacent receivers; Another drawback was that the light-receiving part became dirty due to oil on the body surface.

この発明は上記の欠点を除去するためになされ
たもので、被検査球状体を駆動装置によつて一方
向に回転させ、被検査球状体表面に対して投光
部、受光側の複数の結像系、光電変換素子を、投
光部より照射された投射光の被検査球状体よりの
反射光が光電変換素子面に結像するように配置
し、光電変換素子からの出力信号を処理判断する
ための電気回路を設けて、被検査球状表面の回転
軸方向の走査は電気的に行い、回転方向の走査は
機械的に行うことを特徴とする球状体の外観検査
装置である。
This invention was made in order to eliminate the above-mentioned drawbacks.The spherical body to be inspected is rotated in one direction by a drive device, and a plurality of points on the light emitting part and the light receiving side are connected to the surface of the spherical body to be inspected. The imaging system and the photoelectric conversion element are arranged so that the reflected light from the spherical body to be inspected of the projection light emitted from the light projecting section forms an image on the surface of the photoelectric conversion element, and the output signal from the photoelectric conversion element is processed and judged. This is an external appearance inspection apparatus for a spherical body, characterized in that an electric circuit is provided to perform scanning of the spherical surface to be inspected in the direction of the rotational axis electrically, and scanning in the rotational direction is carried out mechanically.

次にこの発明の一実施例を図を参照しながら説
明する。1は被検査球状体である鋼球、21,2
2は鋼球1を回転する駆動ローラであり、この2
本の駆動ローラ21,22はローラ駆動装置3に
よつて、同一方向に駆動される。ローラ21の端
面には鋼球1の位置決め用のストツパー4が装着
されており、鋼球1を駆動ローラ21,22の軸
方向の一定位置に位置決めしている。51,5
2,53,54は下記に詳述する結像系で、この
実施例においては4個使用されており、隣接する
結像系の視野は多少の重なりを持ちながら鋼球1
の少なくとも半周上以上にわたる視野を有する。
6は光学繊維によつて構成された投光部で、検査
される鋼球1の回転軸線10と鋼球1の表面との
交点を含み、鋼球表面における円弧の半周AB
(第2図参照)以上にわたつて一様な光を投射
し、かつ各結像系51,52,53,54と鋼球
1の表面の視野の中心に対して正反射の関係を維
持する位置に設けられ、その光源はランプ7によ
つて供給される。各結像系51,52,53,5
4の結像面には光電変換素子としての固体撮像ア
レー素子81,82,83,84が配置されてお
り、9は前記の固体撮像アレー素子で得られた信
号の処理判別回路である。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 is a steel ball which is a spherical body to be inspected, 21, 2
2 is a drive roller that rotates the steel ball 1;
The book drive rollers 21, 22 are driven in the same direction by the roller drive device 3. A stopper 4 for positioning the steel ball 1 is attached to the end face of the roller 21, and the steel ball 1 is positioned at a fixed position in the axial direction of the drive rollers 21, 22. 51,5
Reference numerals 2, 53, and 54 are imaging systems described in detail below, and four of them are used in this embodiment, and the fields of view of adjacent imaging systems overlap steel ball 1 with some overlap.
It has a field of view that extends over at least half of the circumference.
Reference numeral 6 denotes a light projecting section composed of optical fibers, which includes the intersection point of the rotational axis 10 of the steel ball 1 to be inspected and the surface of the steel ball 1, and extends around the half circumference AB of the arc on the surface of the steel ball 1.
(See Figure 2) Uniform light is projected over the area, and a relationship of regular reflection is maintained between each imaging system 51, 52, 53, and 54 and the center of field of view of the surface of the steel ball 1. The light source is provided by a lamp 7. Each imaging system 51, 52, 53, 5
Solid-state imaging array elements 81, 82, 83, and 84 as photoelectric conversion elements are arranged on the imaging plane 4, and 9 is a circuit for processing and determining signals obtained by the solid-state imaging array elements.

第2図は第1図の装置を矢印A方向から見た鋼
球1と各結像系51,52,53,54との位置
関係を示したものである。各結像系51,52,
53,54はマイクロレンズ(例えば日本板ガラ
ス(株)製セルフオツクレンズ)もしくは通常のレン
ズ系で構成されており、各結像系51,52,5
3,54は、少なくとも鋼球1の子午線上の半周
ABよりも大きな視野CDとなるように隣接する結
像系の視野に適当な重なり△θを持たせながら、
それぞれ視野角θ(CE)、θ(FG)、θ
(HI)、θ(JD)を有する。各結像系51,5
2,53,54の光軸は、それぞれの視野角の中
心点P1,P2,P3及びP4を通り、かつ視野角の中心
点P1,P2,P3,P4及び鋼球1の回転軸線10を含
む平面に対して、それぞれの視野角の中心点P1
P2,P3,P4を通る入射光軸と対称かつ正反射の位
置にある。このように配置された光学系におい
て、各結像系51,52,53,54の結像面に
はそれぞれの視野に相当する鋼球1の表面の
CE,FG,HI,JDの像が形成される。したがつ
て、各結像面に配置された各固体撮像アレー素子
81,82,83,84の電気出力信号として第
3図aに示す波形が得られる。各固体撮像アレー
素子81,82,83,84を駆動すべきスター
ト信号を、固体撮像アレー素子81,82,8
3,84の走査時間Ts、固体撮像アレー素子の
数n(本実施例ではn=4)とした時、例えばカ
ウンタにより時間Ts/nずつずらすことによつて、 各固体撮像アレー素子81,82,83,84か
らの鋼球1の表面上の各視野に対応する像の電気
信号は時間的に重なりのない信号となり(第3図
b)、処理判別回路9へ入力される。処理判別回
路9は第4図に示すように、各固体撮像アレー素
子81,82,83,84の出力信号は、それぞ
れのバツフアー回路91,92,93,94へ入
力され、マルチプレクサー95を介することによ
つて時分割的な処理が可能であり、以後の処理回
路を各固体撮像アレー素子81,82,83,8
4に対して共通な一つの回路で構成でき、装置の
コストアツプ及び複雑さを除去できる。
FIG. 2 shows the positional relationship between the steel ball 1 and each of the imaging systems 51, 52, 53, and 54 when the apparatus shown in FIG. 1 is viewed from the direction of arrow A. Each imaging system 51, 52,
53 and 54 are composed of microlenses (for example, self-occurring lenses manufactured by Nippon Sheet Glass Co., Ltd.) or ordinary lens systems, and each imaging system 51, 52, 5
3, 54 is at least half the circumference of the steel ball 1 on the meridian
While having an appropriate overlap △θ between the fields of view of adjacent imaging systems so that the field of view CD is larger than AB,
Viewing angle θ 1 (CE), θ 2 (FG), θ 3 respectively
(HI) and θ 4 (JD). Each imaging system 51, 5
The optical axes of the lenses 2, 53, and 54 pass through the viewing angle center points P 1 , P 2 , P 3 , and P 4 , and pass through the viewing angle center points P 1 , P 2 , P 3 , P 4 and the steel With respect to the plane containing the rotation axis 10 of the sphere 1, the center point P 1 of each viewing angle,
It is located symmetrically with the incident optical axis passing through P 2 , P 3 , and P 4 and at a position of regular reflection. In the optical system arranged in this way, the imaging plane of each imaging system 51, 52, 53, 54 has a surface of the steel ball 1 corresponding to each field of view.
Images of CE, FG, HI, and JD are formed. Therefore, the waveform shown in FIG. 3a is obtained as the electrical output signal of each solid-state imaging array element 81, 82, 83, 84 arranged on each imaging plane. The start signal to drive each solid-state imaging array element 81, 82, 83, 84 is transmitted to each solid-state imaging array element 81, 82, 84.
When the scanning time Ts is 3,84, and the number n of solid-state imaging array elements (n=4 in this embodiment), each solid-state imaging array element 81, 82 is shifted by a time Ts/n using a counter, for example. , 83 and 84 of the images corresponding to each field of view on the surface of the steel ball 1 become signals that do not overlap in time (FIG. 3b), and are input to the processing discrimination circuit 9. As shown in FIG. This makes it possible to perform time-division processing, and the subsequent processing circuits are connected to each solid-state imaging array element 81, 82, 83, 8.
It can be configured with one circuit common to all four circuits, thereby eliminating the cost increase and complexity of the device.

第1の比較回路96では、あらかじめ基準信号
設定器98に設定された基準信号又は何走査か前
の各固体撮像アレー素子81,82,83,84
の出力信号の包絡線を基に生成された基準信号
と、各固体撮像アレー素子81,82,83,8
4の出力信号とを比較することによつて走査方向
の欠陥の幅を検出し、この検出された欠陥の幅と
あらかじめ設定器99に定められた不良とすべき
最小の走査方向の欠陥幅の設定値とを第2の比較
回路97で比較し、設定値以上であれば不良と判
定し、不良排出ゲート(図示せず)を作動させ
る。
In the first comparison circuit 96, the reference signal set in advance in the reference signal setter 98 or each solid-state image pickup array element 81, 82, 83, 84 from several scans ago is used.
and the reference signal generated based on the envelope of the output signal of each solid-state imaging array element 81, 82, 83, 8.
The width of the defect in the scanning direction is detected by comparing the width of the defect in the scanning direction by comparing the width of the defect in the scanning direction with the output signal of No. The second comparing circuit 97 compares the set value with the set value, and if it is equal to or higher than the set value, it is determined to be defective, and a defective discharge gate (not shown) is activated.

ここで、各固体撮像アレー素子81,82,8
3,84で検出されるアレー方向の分解Dhは次
式で表わされる。
Here, each solid-state imaging array element 81, 82, 8
The resolution Dh in the array direction detected at 3.84 is expressed by the following equation.

Dh=a/Mcos〓−θi/2≦θ≦θi/2i=1
,2,…n ただし、aは固体撮像アレー素子81,82,
83,84の1ビツトの走査方向の長さ、Mは結
像系51,52,53,54の倍率である。
Dh=a/Mcos=−θi/2≦θ≦θi/2i=1
, 2,...n, where a is the solid-state imaging array element 81, 82,
The length of 1 bit in the scanning direction of 83 and 84, and M is the magnification of the imaging systems 51, 52, 53, and 54.

また、各固体撮像アレー素子81,82,8
3,84に垂直方向の分解能Dvは次式で表わさ
れる。
In addition, each solid-state imaging array element 81, 82, 8
The resolution Dv in the vertical direction to 3.84 is expressed by the following equation.

Dv=pvn/f ここで P:固体撮像アレー素子のビツト数 v:鋼球の周速度 f:固体撮像アレー素子のクロツク周
波数 n:固体撮像アレー素子数 鋼球全表面を測定するのに要する時間T1は T1=xD/v D:鋼球の直径 V1:本方式による鋼球の周速度 一方前記の従来技術のスキユー方式での鋼球全表
面を測定するのに要する時間T2は T2=xDN/v N:鋼球全表面を走査するのに必要な回転数 v2:スキユー方式による鋼球の周速度 N=180゜/ :スキユー角 したがつて、測定時間T1=T2とすれば、本発明
の装置における被検査球の周速度は、前記従来技
術のスキユー方式での周速度の1/Nですみ、被検
査球の安定度及び駆動ロールの摩耗の点で従来技
術より優れる。
Dv=pvn/f where P: Number of bits of the solid-state imaging array v: Circumferential velocity of the steel ball f: Clock frequency of the solid-state imaging array n: Number of solid-state imaging array elements Time required to measure the entire surface of the steel ball T 1 is T 1 = xD/v 1 D: Diameter of the steel ball V 1 : Peripheral speed of the steel ball according to this method On the other hand, the time required to measure the entire surface of the steel ball using the conventional skew method described above T 2 is T 2 =xDN/v 2 N: Number of revolutions required to scan the entire surface of the steel ball v 2 : Circumferential speed of the steel ball using the skew method N=180°/: Skew angle Therefore, measurement time T 1 = T 2 , the circumferential speed of the ball to be inspected in the device of the present invention is only 1/N of the circumferential speed in the skew method of the prior art, which reduces the stability of the ball to be inspected and the wear of the drive roll. superior to conventional technology.

また、周速度v1=v2とすれば、本発明の装置に
おける測定時間は、前記従来技術のスキユー方式
での測定時間の1/Nですみ、高速度の検査が可能
である。
Further, if the circumferential velocity v 1 =v 2 , the measurement time in the apparatus of the present invention is 1/N of the measurement time in the skew method of the prior art, and high-speed inspection is possible.

次に示すこの発明の他の実施例は、前記の実施
例と同様に鋼球の表面を検査する外観検査装置で
あり、鋼球の駆動装置や投光部は同じであるが、
受光部側において、結像系51,52,53,5
4と、固体撮像アレー素子8との間にイメージガ
イド111,112,113,114を設けるこ
とにより、固体撮像アレー素子8を1個ですま
せ、固体撮像アレー素子8より取出された信号の
処理判別回路が簡単に構成できた点に差異があ
る。この第2の実施例においては、固体撮像アレ
ー素子は上記のように1個使用し、バツフアー回
路91を介して直接第1比較器96に信号を入れ
ることが出来る。97は第2の比較器、98は基
準信号設定器、99は不良とする欠陥幅の大きさ
が設定された設定器である。この装置において、
鋼球1を回転させながら鋼球1表面に投光部6よ
り光線を投射し、鋼球1表面よりの反射光を結像
系51,52,53,54でとらえ、さらに結像
系51,52,53,54でとらえた反射光をイ
メージガイド111,112,113,114を
介して固体撮像アレー素子面8に結像させる。こ
の固体撮像アレー素子8で電気信号に変換させら
れた信号は、バツフアー回路91に入力し、さら
に各比較器に入力することより、前記実施例と同
様、欠陥による信号の検出、およびその欠陥の大
きさによる判定が行われる。
Another embodiment of the present invention shown below is an appearance inspection device for inspecting the surface of a steel ball in the same manner as the above embodiment, and the steel ball driving device and light projecting unit are the same.
On the light receiving section side, imaging systems 51, 52, 53, 5
By providing image guides 111, 112, 113, and 114 between the solid-state imaging array element 8 and the solid-state imaging array element 8, only one solid-state imaging array element 8 is required, and the processing and discrimination of signals extracted from the solid-state imaging array element 8 can be performed. The difference is that the circuit can be easily constructed. In this second embodiment, one solid-state imaging array element is used as described above, and a signal can be input directly to the first comparator 96 via the buffer circuit 91. 97 is a second comparator, 98 is a reference signal setting device, and 99 is a setting device in which the size of defect width to be determined as defective is set. In this device,
While rotating the steel ball 1, a light beam is projected onto the surface of the steel ball 1 from the light projection unit 6, and the reflected light from the surface of the steel ball 1 is captured by the imaging systems 51, 52, 53, and 54, and the imaging systems 51, The reflected light captured by 52, 53, and 54 is imaged on the solid-state imaging array element surface 8 via image guides 111, 112, 113, and 114. The signal converted into an electrical signal by the solid-state imaging array element 8 is inputted to a buffer circuit 91 and further inputted to each comparator, thereby detecting a signal due to a defect and detecting the defect. Judgment is made based on size.

上記の装置を前記の実施例の装置と比較する
と、固体撮像アレー素子で得られた信号の処理判
別回路が簡単となり、従つて安価となる。
Comparing the above device with the device of the above-described embodiment, the circuit for processing and determining the signal obtained by the solid-state imaging array element is simpler and therefore less expensive.

上述のようにこの発明によれば、被検査球状体
の表面を走査する場合、スキユーを必要としない
ため、被検査球状体のスキユーによる不安定さ、
駆動ローラの摩耗という問題がなく、かつローラ
駆動機構が簡単になり、高速、高精度の検査が可
能となる。またこの発明においては、被検査球状
体の表面に対して適度の間隔をあけて投光部、受
光部を位置させることが出来るので、従来の装置
の欠点であつた球面からの油の飛沫による受光部
の汚染の心配がない。また被検球状体が投光部や
受光部に接触する心配も全くなく、しかも高精度
の検査が可能である。
As described above, according to the present invention, when scanning the surface of the spherical body to be inspected, skew is not required, so instability caused by skew of the spherical body to be inspected,
There is no problem of drive roller wear, the roller drive mechanism is simplified, and high-speed, high-precision inspection is possible. In addition, in this invention, the light emitting part and the light receiving part can be positioned with an appropriate distance from the surface of the spherical body to be inspected, so that the problem of oil droplets from the spherical surface, which was a drawback of conventional devices, can be avoided. There is no need to worry about contamination of the light receiving section. Furthermore, there is no fear that the spherical body to be inspected will come into contact with the light projecting section or the light receiving section, and moreover, highly accurate inspection is possible.

さらに、複数の固体撮像アレー素子の信号を一
つの処理判別回路で処理することにより、高精度
の検出を低価格で達成することができる。
Furthermore, by processing signals from a plurality of solid-state imaging array elements with one processing/discriminating circuit, highly accurate detection can be achieved at low cost.

また結像系と光電変換素子との間にイメージガ
イドを使用した場合には、さらに検出処理の回路
は簡単になり、より低価格となる。
Furthermore, when an image guide is used between the imaging system and the photoelectric conversion element, the detection processing circuit becomes simpler and the cost becomes lower.

さらに投光の走査は不要であり、検査時間が短
いと云う特長もある。
Another advantage is that scanning of the projected light is not required and the inspection time is short.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す装置の概略
図、第2図は、第1図における装置を矢印A方向
から見た被検査球状体と結像系の位置関係を示す
説明図、第3図aは第1図に示された装置におけ
る視野と固体撮像アレー素子の出力信号との関係
を示す図、第3図bは同じく第1図に示された装
置における複数の固体撮像アレー素子間の出力信
号の位相関係を示すタイムチヤート図、第4図は
上記第1図の装置における信号の処理回路図、第
5図はこの発明の他の実施例を示す装置の概略図
である。 符号の説明、1は被検査球状体、21,22は
駆動ローラ、51,52,53,54は結像系、
6は投光部、81,82,83,84は光電変換
素子、9は信号の処理判別回路、91,92,9
3,94はバツフアー回路、95はマルチプレク
サー、96は第1の比較器、97は第2の比較
器、111,112,113,114はイメージ
ガイド。
FIG. 1 is a schematic diagram of an apparatus showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the positional relationship between the spherical body to be inspected and the imaging system when the apparatus in FIG. 1 is viewed from the direction of arrow A. FIG. 3a is a diagram showing the relationship between the field of view and the output signal of the solid-state imaging array element in the device shown in FIG. 1, and FIG. FIG. 4 is a time chart showing the phase relationship of output signals between elements, FIG. 4 is a signal processing circuit diagram in the device shown in FIG. 1, and FIG. 5 is a schematic diagram of a device showing another embodiment of the present invention. . Explanation of the symbols: 1 is a spherical body to be inspected; 21, 22 are drive rollers; 51, 52, 53, 54 are imaging systems;
6 is a light projecting unit; 81, 82, 83, 84 are photoelectric conversion elements; 9 is a signal processing/discrimination circuit; 91, 92, 9
3 and 94 are buffer circuits, 95 is a multiplexer, 96 is a first comparator, 97 is a second comparator, and 111, 112, 113, and 114 are image guides.

Claims (1)

【特許請求の範囲】 1 被検査球状体に必要な回転を与え、その被検
査球状面に投光部より光線を照射し、その反射光
を光電変換素子により電気信号に変換し、この電
気信号を判別処理回路に入力して被検査球状体表
面の欠陥を検査する外観検査装置において、被検
査球状体を所定の回転軸のまわりに回転させる駆
動装置と、前記被検査球状体の回転軸線と被検査
球状体表面との交点を含み被検査球状体表面にお
ける円弧の半周AB以上にわたつて一様な光量を
投射し得る位置に設けられた投光部と前記投光部
より被検査球状体表面における円弧の半周AB以
上にわたり照射された投射光の反射光が受光でき
る位置に視野角が適当な重なり(Δθ)をもつよ
うに配置された複数個の結像系と、前記複数個の
結像系のそれぞれの結像面に配置された光電変換
素子と、前記光電変換素子からの電気信号を処理
判別する電気回路とからなり、被検査球状体表面
の回転軸方向の走査は電気的に行ない、回転方向
の走査は機械的に行なうことを特徴とする球状体
の外観検査装置。 2 特許請求の範囲第1項記載の装置において、
処理判別回路は、複数個の光電変換素子を駆動す
るスタート信号を時間的にずらせるための回路
と、前記光電変換素子の出力信号を時分割処理す
るためのマルチプレクサを設け、前記複数個の光
電変換素子に対して単一の処理、判別回路で信号
の処理判別が行なわれる球状体の外観検査装置。 3 特許請求の範囲第1項記載の装置において、
複数個の結像系の結像面のそれぞれに、光学繊維
で構成されたイメージガイドの一端を配し、前記
イメージガイドの他端を単一の光電変換素子上に
配列した球状体の外観検査装置。
[Scope of Claims] 1. The spherical body to be inspected is given the necessary rotation, the spherical surface to be inspected is irradiated with a light beam from a light projector, the reflected light is converted into an electric signal by a photoelectric conversion element, and the electric signal is converted into an electric signal. In a visual inspection device that inspects defects on the surface of a spherical body to be inspected by inputting the spherical body to a discrimination processing circuit, the spherical body to be inspected is rotated around a predetermined rotation axis, and the rotation axis of the spherical body to be inspected is A light projecting section provided at a position capable of projecting a uniform amount of light over half a circumference AB of an arc on the surface of the spherical object to be inspected, including the intersection with the surface of the spherical object to be inspected, and a spherical object to be inspected from the light projecting section. a plurality of imaging systems arranged so that the viewing angles have an appropriate overlap (Δθ) at positions where the reflected light of the projection light irradiated over half a circumference AB of the circular arc on the surface can be received; It consists of a photoelectric conversion element placed on each image forming plane of the imaging system and an electric circuit that processes and discriminates the electrical signals from the photoelectric conversion element. An apparatus for inspecting the appearance of a spherical body, characterized in that scanning in the rotational direction is performed mechanically. 2. In the device according to claim 1,
The processing discrimination circuit includes a circuit for temporally shifting a start signal for driving a plurality of photoelectric conversion elements, and a multiplexer for time-divisionally processing the output signal of the photoelectric conversion element, A spherical body appearance inspection device in which signal processing and discrimination are performed by a single processing and discrimination circuit for the conversion element. 3. In the device according to claim 1,
Appearance inspection of a spherical body in which one end of an image guide made of optical fiber is arranged on each of the imaging surfaces of a plurality of imaging systems, and the other end of the image guide is arranged on a single photoelectric conversion element. Device.
JP5699379A 1979-05-11 1979-05-11 Inspection apparatus for appearance of spherical body Granted JPS55149830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5699379A JPS55149830A (en) 1979-05-11 1979-05-11 Inspection apparatus for appearance of spherical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5699379A JPS55149830A (en) 1979-05-11 1979-05-11 Inspection apparatus for appearance of spherical body

Publications (2)

Publication Number Publication Date
JPS55149830A JPS55149830A (en) 1980-11-21
JPS6210379B2 true JPS6210379B2 (en) 1987-03-05

Family

ID=13043009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5699379A Granted JPS55149830A (en) 1979-05-11 1979-05-11 Inspection apparatus for appearance of spherical body

Country Status (1)

Country Link
JP (1) JPS55149830A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124205A (en) * 1981-01-27 1982-08-03 Fuji Electric Co Ltd Inspection device for surface of cylindrical body
JPS57137857A (en) * 1981-02-20 1982-08-25 Satake Eng Co Ltd Cracked grain detecting device
US5012116A (en) * 1989-10-12 1991-04-30 Russell John P System for inspecting bearing balls for defects
EP0657732A1 (en) * 1993-12-06 1995-06-14 Elpatronic Ag Method and device for the optical inspection of a transparent part of a container, especially the mouth
NL9402092A (en) * 1994-12-09 1996-07-01 Skf Ind Trading & Dev Method for optical inspection of a surface, and arrangement therefor
CN102221524B (en) * 2010-04-15 2012-10-10 上海瑞银电子科技有限公司 Light source seat
JP5430801B2 (en) * 2011-08-10 2014-03-05 天津大学 Steel ball surface spreading method and apparatus using multi-image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112579A (en) * 1976-02-13 1977-09-21 Staalkat Bv Process and apparatus for automatic inspection of eggs on splits and cracks on egg shell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112579A (en) * 1976-02-13 1977-09-21 Staalkat Bv Process and apparatus for automatic inspection of eggs on splits and cracks on egg shell

Also Published As

Publication number Publication date
JPS55149830A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
US5694214A (en) Surface inspection method and apparatus
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
GB2051349A (en) Automatic defecting inspection apparatus
JPS6345543A (en) Test apparatus for unconformability and occlusion of surface of transparent material element
JP3105702B2 (en) Optical defect inspection equipment
US4465374A (en) Method and apparatus for determining dimensional information concerning an object
US5677763A (en) Optical device for measuring physical and optical characteristics of an object
JPH0933446A (en) Apparatus for inspecting surface defect
JPS6210379B2 (en)
US4561778A (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPH0882753A (en) Inside surface image photographing device
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JPH0656366B2 (en) Cable surface defect detector
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPH0511573B2 (en)
US4808001A (en) Optical inspection system for cylindrical objects
JP2002168611A (en) Method and device for inspecting cylindrical object to be inspected for surface ruggedness
JPH1068612A (en) Method and apparatus for detecting surface shape of object
WO1988007190A1 (en) Optical inspection system for cylindrical objects
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
JP3360795B2 (en) Optical member inspection device
JPH0579994A (en) Transparent body defect inspecting device
SU1073645A1 (en) Device for checking body of revolution surface flaws
JPS5949537B2 (en) Defect detection device
JPH0411414Y2 (en)