JPH04169840A - Method and apparatus for inspecting flaw of circumferential surface - Google Patents

Method and apparatus for inspecting flaw of circumferential surface

Info

Publication number
JPH04169840A
JPH04169840A JP29372590A JP29372590A JPH04169840A JP H04169840 A JPH04169840 A JP H04169840A JP 29372590 A JP29372590 A JP 29372590A JP 29372590 A JP29372590 A JP 29372590A JP H04169840 A JPH04169840 A JP H04169840A
Authority
JP
Japan
Prior art keywords
circumferential
flaw
main scanning
drum
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29372590A
Other languages
Japanese (ja)
Other versions
JP3060523B2 (en
Inventor
Ayumi Hirono
広野 歩
Maki Yamada
真樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2293725A priority Critical patent/JP3060523B2/en
Publication of JPH04169840A publication Critical patent/JPH04169840A/en
Application granted granted Critical
Publication of JP3060523B2 publication Critical patent/JP3060523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect a flaw in the circumferential direction accurately in addition to the detection of a linear flaw and a dent in the parallel direction with a drum shaft by increasing the ratio between a main scanning period and the rotating period of a body under inspection in comparison with the ratio when a lateral linear flaw is detected. CONSTITUTION:For example, the circumferential length of a drum 3 of a light sensitive body 3 is made to be 250mm. When a main scanning period is made to be 1 millisecond under the state wherein the drum 3 is rotated by one rotation for 5 seconds, the surface of the drum is moved by about 50mum in the secondary scanning direction. When the period of the main scanning is made to be about 6 milliseconds, the surface of the drum 3 is moved by about 300mum during the main scanning period. Namely, when the starting point of the main scanning on the drum 3 is P and the terminating point of one main scanning is q2, the length of the Pq2 measured in the secondary scanning direction becomes about 300mum. Therefore, the scattered light signal caused by the flaw for 300mum in the secondary scanning direction is received in one main scanning, and the signals can be accumulated. In this way, the circumferential flaw can be accurately detected in addition to the detection of the linear flaw and the dent in parallel with the drum shaft.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は円周表面傷検査方法および装置に関し、特に
被検査体の回転軸に直角な面内の表面傷、すなわち円周
方向の筋状の傷を精度良く検出できるようにした円周表
面傷検査方法および装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method and apparatus for inspecting circumferential surface flaws, and particularly to surface flaws in a plane perpendicular to the rotational axis of an object to be inspected, that is, circumferential streaks. The present invention relates to a circumferential surface flaw inspection method and device that can detect flaws with high accuracy.

(従来の技術) 前記被検査体の具体的な物品としては、複写機。(Conventional technology) A specific example of the object to be inspected is a copying machine.

の感光体ドラム、フユーザロール、プレッシャロール等
がある。以下−Cは、感光体ドラムを例にして説明する
が、これに限定されるものでi、′/、ない。
There are photoreceptor drums, fuser rolls, pressure rolls, etc. -C will be explained below using a photosensitive drum as an example, but is not limited to this.

従来、感光体ドラムの表面傷検査方法とし、て、第7図
に示す方法が採られている。
Conventionally, a method shown in FIG. 7 has been adopted as a method for inspecting surface flaws on a photoreceptor drum.

感光体ドラム31に投光器32からスリット光33を照
射する。私!光体ドラム310表面に傷かないと、がj
記スリット光33はこの表面で正反射し、正反射光33
aとなって進行する。しかしながら、感光体ドラム31
の表面に傷かあると、前記スリット光33はこの傷によ
り散乱し、散M光33bが前記正反射光33aと(、(
l異なる方向に進行する。
A photosensitive drum 31 is irradiated with slit light 33 from a light projector 32. I! If the surface of the light drum 310 is not damaged,
The slit light 33 is specularly reflected on this surface, and the specularly reflected light 33
a and progresses. However, the photoreceptor drum 31
If there is a scratch on the surface of
l Proceed in different directions.

34は散乱光33bを受光し1、正反射光、(3aを受
光しない位置に配置された受光器である。この受光器の
中にはラインセンサか組込まわており、受光した散乱光
を電気信号に変換する。う1′5センサからの信号出力
は表面傷かないときにはレヘルが低く、表面傷があると
高くなる。これにより、表面傷の有無を検8することが
できる。
34 is a light receiver placed in a position that receives the scattered light 33b and does not receive the specularly reflected light 1, (3a).A line sensor is built into this light receiver, and the received scattered light is converted into electricity. The level of the signal output from the sensor 1'5 is low when there is no surface flaw, and becomes high when there is a surface flaw.Thereby, the presence or absence of surface flaws can be detected.

(発明が解決し、ようとする課題) 最近の複写機では、枯光体l・ラムの交換を利用者自身
ができるように、トラムユニットリッジ)形式を利用す
るものか増2で♂−いる。メーカにおいて、トラムユニ
ット は、ドラムを回転さぜる丁,程が入るので、ドラム表面
に付着した塵等と、該ドラノ、に常に接触しているブし
・−トとの間に擦ねか介t4−. t−、ドラム円周方
間に縦筋状の傷(以ド、円周型と11−fふ)か発生す
ることがある。
(Problems to be solved and attempted by the invention) Recent copying machines utilize a tram unit ridge type so that the user can replace the photoluminescent body and ram by himself/herself. . At the manufacturer, the tram unit rotates the drum, so there is a possibility of friction between the dust attached to the drum surface and the brushes that are in constant contact with the drum. Intervention t4-. t-, vertical streak-like scratches (hereinafter referred to as circumferential type and 11-f) may occur along the circumference of the drum.

このような円周型はノ勇常画質に影響を与え、複写紙に
記録された伸j像に現れる。このため、円周型が付いた
ドラムは、不良品として排除する必要がある。したがっ
て、トラムユニット形式の感光体ドラムの表面検査は、
トラム単品の検査に加え、l・ラムユ〜ツト組立て後の
検査も必要になる。
Such circumferential shapes affect the normal image quality and appear in stretched images recorded on copy paper. For this reason, drums with circumferential molds must be rejected as defective products. Therefore, the surface inspection of the tram unit type photoreceptor drum is
In addition to inspecting the tram individually, inspection after the l/ram unit is assembled is also required.

ところで、感光体トラム31の表■jjには、第8図(
a)に示されているようl; ドラム軸と平行な方向の
線傷41、方向性をもたない打痕等の黒傷43、同図(
b)に示されているような円周型45等かある。
By the way, in the table ■jj of the photoconductor tram 31, FIG.
As shown in a), there are line scratches 41 in the direction parallel to the drum axis, black scratches 43 such as dents with no directionality,
There is a circumferential type 45 as shown in b).

前記ドラム軸と平行な方向の線傷41や打痕等の黒傷4
3にスリット光33が照射さ第1ると、第7図で説明し
た方向に散乱光33bが生ずる。また、この散乱光33
bは感光体トラム31の円周方向に分布する。
Black scratches 4 such as line scratches 41 and dents in the direction parallel to the drum axis
When the slit light 33 is irradiated to the first lens 3, scattered light 33b is generated in the direction explained in FIG. In addition, this scattered light 33
b is distributed in the circumferential direction of the photoreceptor tram 31.

これに対して、円周型45にスリノl−t33か照射さ
れた場合には、散乱光33a′は第7図の正反射方向3
3a土はぼ同じ方向に進み,、かつ徳光体ドラム31の
軸線方向に分布する。
On the other hand, when the circumferential mold 45 is irradiated with the Surino lt 33, the scattered light 33a' is reflected in the regular reflection direction 3 in FIG.
The soil 3a advances in approximately the same direction and is distributed in the axial direction of the Tokuko body drum 31.

したがって、従来の表面傷検出方式では、前記ドラム軸
出平行な方向の線傷41や打痕等の点傷43はかなり精
度良く検出できるが、前記円周型45からの散乱光は少
ffiLか受光器34に入らないため、精度良く検出す
ることができないとい)問題があった。
Therefore, in the conventional surface flaw detection method, the line flaws 41 in the direction parallel to the drum axis and the point flaws 43 such as dents can be detected with high accuracy, but the scattered light from the circumferential mold 45 is small. There was a problem in that the light could not be detected accurately because it did not enter the light receiver 34.

この問題を解決するために、受光器34内にうインセン
づを複数本並べることが考えられるが、装置か大型化し
,、またラインセンサの出力信号を処理する信号処理装
置が複数系統必要になるため、設備費が増大するという
問題があった。
In order to solve this problem, it is conceivable to arrange multiple false sensors in the light receiver 34, but this would increase the size of the device and require multiple systems of signal processing devices to process the output signals of the line sensors. Therefore, there was a problem that equipment costs increased.

本発明の目的は、前記した従来方式の問題点を除去し、
前記ドラム軸と平行な方向の線傷や打痕等の黒傷の検出
に加え、前記円周型も精度良く検出できる表面傷検査方
法および装置を提供することにある。
The purpose of the present invention is to eliminate the problems of the conventional method described above,
It is an object of the present invention to provide a surface flaw inspection method and apparatus that can detect black flaws such as line flaws and dents in a direction parallel to the drum axis, as well as detect the circumferential flaws with high accuracy.

(課届を解決するための手段および作用)前記目的を達
成するために、請求項(1)の発明は、ラインセンサの
読みたし周期によって決まる主走査周期と、前記被検査
体の回転速度との比を、横線傷検出時の比に比べて大き
くした点に特徴がある。
(Means and effects for resolving the division report) In order to achieve the above object, the invention of claim (1) provides a main scanning period determined by the reading period of the line sensor and a rotation speed of the object to be inspected. The feature is that the ratio between the two is larger than the ratio when horizontal line flaws are detected.

一般に、横線傷は主走査方向に長いが、副走査方向には
幅が小さく、一方、円周型は主走査方向には幅が小さく
、副走査方向には連続する形状であるため、この発明の
ラインセンサには、円周型からの散乱光の蓄積量が横線
傷からの散乱光の蓄積置に比べ、相対的に大きくなる。
In general, horizontal line scratches are long in the main scanning direction but have a small width in the sub-scanning direction, whereas circumferential scratches have a small width in the main scanning direction and a continuous shape in the sub-scanning direction. In the line sensor, the accumulated amount of scattered light from the circumferential type is relatively large compared to the accumulated amount of scattered light from the horizontal line flaw.

この結果、円周傷の情報が強調され、円周傷を精度良く
検出できるようになる。
As a result, information on circumferential flaws is emphasized, and circumferential flaws can be detected with high accuracy.

請求項(3)の発明は、ラインセンサの信号出力を入力
とするハイパスフィルタと、所定の閾値とを具備し、該
閾値を越えるノ1イバスフィルタの信号出力が前記被検
査体の円周方向に連続して検出された時に円周傷と判定
するようにした点に特徴がある。
The invention according to claim (3) comprises a high-pass filter that receives the signal output of the line sensor as input, and a predetermined threshold value, and the signal output of the high-pass filter that exceeds the threshold value is determined by the circumference of the object to be inspected. The feature is that it is determined to be a circumferential flaw when it is detected continuously in the direction.

この発明によれば、前記ラインセンサによって検出され
る円周傷の信号出力は小さいが、円周傷情報は前記ハイ
パスフィルタによって強調されるため、円周傷の検出漏
れがなくなる。
According to this invention, although the signal output of the circumferential flaw detected by the line sensor is small, the circumferential flaw information is emphasized by the high-pass filter, so that no circumferential flaw is missed.

この結果、円周傷を精度良く検出てきるようになる。As a result, circumferential flaws can be detected with high precision.

(実施例) 以下に、図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の斜視図を示す。FIG. 1 shows a perspective view of an embodiment of the invention.

図において、1はハロゲン光等の投光器、2は投光器1
から発射されたスリット先、3は被検査体である感光体
ドラム、4は感光体ドラム3の表面の傷によって散乱さ
れた散乱光を集光する光学系、5は前記散乱光を受光す
るラインセンサである。5aはラインセンサ5の画素列
であり、例えば5000画素から形成されている。
In the figure, 1 is a projector such as a halogen light, and 2 is a projector 1.
3 is a photoreceptor drum which is an object to be inspected; 4 is an optical system that collects the scattered light scattered by scratches on the surface of the photoreceptor drum 3; 5 is a line that receives the scattered light. It is a sensor. 5a is a pixel column of the line sensor 5, which is formed of, for example, 5000 pixels.

6はラインセンサ5の受光視野であり、その幅6aは約
70μmである。感光体ドラム3はその全表面を走査す
るために、一定速度で矢印7方向に1回転させられる。
6 is a light-receiving field of view of the line sensor 5, and its width 6a is approximately 70 μm. The photosensitive drum 3 is rotated once in the direction of the arrow 7 at a constant speed in order to scan its entire surface.

これによって、副走査か行われる。一方、前記ラインセ
ンサ5は受光した情報を矢印8方向に走査して出力する
。これによって、主走査が行われる。
As a result, sub-scanning is performed. On the other hand, the line sensor 5 scans the received information in the direction of arrow 8 and outputs it. This performs main scanning.

前記副走査および主走査に関し、従来は副走査は感光体
ドラム3を5秒で1回転させる割合で行い、主走査の周
期は1m秒で行っていた。この従来方法によれば、前記
ドラム軸と平行な方向の線傷41や打痕等の黒傷43は
かなり精度良く検出できた。しかし、円周傷45は精度
よく検出てきなかった。
Regarding the sub-scanning and main scanning, conventionally, the sub-scanning was performed at a rate of rotating the photosensitive drum 3 once every 5 seconds, and the period of the main scanning was 1 msec. According to this conventional method, the line scratches 41 and black scratches 43 such as dents in the direction parallel to the drum axis could be detected with considerably high accuracy. However, the circumferential flaw 45 has not been detected accurately.

そこで、本実施例では、主走査の速度を遅くして、主走
査の周期が例えば6m秒になるようにした。その結果、
ラインセンサ5の信号出力から前記円周傷を精度良く検
出できるようになった。
Therefore, in this embodiment, the main scanning speed is slowed down so that the main scanning period is, for example, 6 msec. the result,
The circumferential flaw can now be detected with high accuracy from the signal output of the line sensor 5.

その理由を第2図を参照して説明する。図において、1
1は感光体ドラム3に付いた円周傷、12はドラム軸と
平行な方向の横線傷を示し、第1図と同符号は第1図の
ものと同一物を示す。
The reason for this will be explained with reference to FIG. In the figure, 1
Reference numeral 1 indicates a circumferential scratch on the photoreceptor drum 3, 12 indicates a horizontal line scratch in a direction parallel to the drum axis, and the same reference numerals as in FIG. 1 indicate the same items as in FIG.

いま、前記感光体ドラム3の円周長を250■とすると
、感光体ドラム3を5秒で1回転させている状態におい
て、従来方法のように主走査周期を1m秒とすると、こ
の主走査周期の間に感光体ドラム3の表面は副走査方向
に約50μm移動することになる。
Now, if the circumference of the photoreceptor drum 3 is 250 cm, and the photoreceptor drum 3 is rotated once every 5 seconds, and the main scanning period is 1 msec as in the conventional method, this main scanning During the period, the surface of the photosensitive drum 3 moves about 50 μm in the sub-scanning direction.

例えば、感光体ドラム3上の主走査の開始点をpとし、
1主走査の終了点をqtとすると、副走査方向に計った
pqlの長さは約50μmとなる。
For example, let the starting point of main scanning on the photoreceptor drum 3 be p,
If the end point of one main scan is qt, the length of pql measured in the sub-scanning direction is about 50 μm.

これに対して、本実施例では、主走査の周期を約6m秒
にしている。
In contrast, in this embodiment, the main scanning period is approximately 6 msec.

主走査の周期を約6m秒にすると、この主走査周期の間
に感光体ドラム3の表面は副走査方向に約300μm移
動することになる。すなわち、感光体ドラム3上の主走
査の開始点をpとし、1主走査の終了点をq2とすると
、副走査方向に測ったpq2の長さは約300μmとな
る。
If the main scanning period is about 6 msec, the surface of the photosensitive drum 3 will move about 300 μm in the sub-scanning direction during this main scanning period. That is, if the starting point of main scanning on the photosensitive drum 3 is p and the ending point of one main scanning is q2, the length of pq2 measured in the sub-scanning direction is about 300 μm.

したがって、本実施例によれば、1回の主走査で、副走
査方向300μm分の傷による散乱光信号を受光し、こ
れを蓄積できるようになる。
Therefore, according to this embodiment, it is possible to receive and accumulate scattered light signals due to scratches of 300 μm in the sub-scanning direction in one main scan.

ここで、ラインセンサ5の画素列5aが受光する信号に
着目すると、第n+1番目の画素は円周傷11を視野と
し、’4n+3、n+4番目の画素は横線傷12を視野
とする。本実施例のように、主走査周期を遅くすると、
前記のように副走査方向の移動距離が長くなるので、主
走査周期毎に前記第n+1番目の画素には円周傷11か
らの散乱光が連続して入射し蓄積されるのに対して、第
n+3、n+4番目の画素には、横線傷12からの散乱
光は連続しては入射しない。したがって、円周瘍11か
らの散乱光が前記第n+1番目の画素に入射して蓄積さ
れる量は、横線gi、12からの散乱光が前記第fi 
+3、n + 4番目の画素に入射して蓄積されるゴに
比へ、相対的に大きくなる。
Here, focusing on the signal received by the pixel row 5a of the line sensor 5, the (n+1)th pixel has the circumferential scratch 11 as its field of view, and the '4n+3 and n+4th pixels have the horizontal line scratch 12 as its field of view. As in this example, if the main scanning period is slowed down,
As described above, since the moving distance in the sub-scanning direction becomes long, the scattered light from the circumferential scratch 11 continuously enters and accumulates in the n+1-th pixel every main scanning period, whereas The scattered light from the horizontal line scratches 12 does not enter the n+3rd and n+4th pixels continuously. Therefore, the amount of scattered light from the circumferential ulcer 11 that is incident on the n+1th pixel and accumulated is the amount that the scattered light from the horizontal line gi and the amount of scattered light from the circumferential tumor 12 are
+3, n + The ratio becomes relatively large compared to the amount of light incident on the fourth pixel and accumulated.

したがって、ラインセンサ5から出力される円周傷11
に対する信号出力は横線傷12に対する信号出力より相
対的に大きくなり、強調されることになる。
Therefore, the circumferential scratch 11 output from the line sensor 5
The signal output for the horizontal line flaw 12 is relatively larger than the signal output for the horizontal line flaw 12, and is emphasized.

第3図に本実施例による表面傷検査方法を採用した感光
体ドラムの傷検査方法のフローチャートを示す。
FIG. 3 shows a flowchart of a photosensitive drum flaw inspection method employing the surface flaw inspection method according to this embodiment.

ステップS1では、感光体ドラムの1回転の回転速度を
5秒に設定17、かつ主走査周期を1m秒とする。ステ
ップS2では、前記ラインセンサで主走査周期を1m秒
で感光体ドラム面からの散η光を検出することにより、
横線傷、黒傷等の検出をする。ステップS3で感光体ド
ラムか1回転(7゜たかとうかの判断をする。ステップ
S3か肯定にjよると、感光体ドラムの全面について横
線傷、−シ傷等の検査をしたことになるので、次のステ
ップに進む。
In step S1, the rotational speed of one rotation of the photosensitive drum is set to 5 seconds 17, and the main scanning period is set to 1 msec. In step S2, the line sensor detects the scattered η light from the photoreceptor drum surface at a main scanning period of 1 msec.
Detects horizontal line scratches, black scratches, etc. In step S3, it is determined whether the photoreceptor drum has rotated one rotation (7 degrees or not.) According to the affirmative answer in step S3, the entire surface of the photoreceptor drum has been inspected for horizontal line scratches, -scratches, etc. , proceed to the next step.

ステップS4では、前記主走査周期を6 m秒に設定す
る。そして、感光体ドラムを前記と同じ速度で回動する
。ステップS5では、前記円周傷11の検出をする。ス
テップS6では、感光体ドラムか1/3回転し、たかと
うかの判断をし、この判断が肯定になると、一連の傷検
査処理を終了する。
In step S4, the main scanning period is set to 6 msec. Then, the photosensitive drum is rotated at the same speed as above. In step S5, the circumferential flaw 11 is detected. In step S6, it is determined whether the photoreceptor drum has rotated 1/3 of a revolution or not, and if this determination is affirmative, a series of flaw inspection processes is completed.

このフローチャートでは、感光体ドラムを173回転さ
せるたけて円周傷11の検出を終了したが、通常円周傷
は感光体ドラムの全周に渡ってトjいているので、1/
3回転の検査で十分である。これにより、傷判定の検査
時間を短縮することかできる。なお、フローチャート中
の具体的な時間は一例を示すものであって、本発明はこ
れに限定されるものではない。
In this flowchart, the detection of the circumferential flaw 11 is completed after the photoreceptor drum has been rotated 173 times, but since circumferential flaws normally extend over the entire circumference of the photoreceptor drum,
A test of 3 rotations is sufficient. Thereby, the inspection time for flaw determination can be shortened. Note that the specific times in the flowchart are merely examples, and the present invention is not limited thereto.

前記の実施例では、主走査周期を長くしているが、主走
査周期を長くすると同時に副走査速度を〒くしても良い
。このようにすると、円周傷がさらに相対的に強調され
、かつ検査時間の短縮を図ることができる。また、主走
査周期は一定(例えば、、1m秒)で、副走査周期のみ
を変えるようにしてもよい。
In the embodiment described above, the main scanning period is lengthened, but the sub-scanning speed may be increased at the same time as the main scanning period is lengthened. In this way, the circumferential flaw is further emphasized and the inspection time can be shortened. Alternatively, the main scanning period may be constant (for example, 1 msec) and only the sub-scanning period may be changed.

次に、本発明の第2実施例を第4図を参照I−で説明す
る。第4図は該実施例のブロック図を示す。
Next, a second embodiment of the present invention will be described with reference to FIG. 4. FIG. 4 shows a block diagram of the embodiment.

図において、5はラインセンサ、15はラインセンサ5
の出力を入力とするハイパスフィルタ、16は閾値、1
7は比較器、18は比較器17の出力を表示する表示器
である。本実施例では、円周傷の幅が最入で、() 3
順程度であることから、3QQKHz稈度の・1イパス
ーフイルタを用いた。
In the figure, 5 is a line sensor, 15 is a line sensor 5
A high-pass filter whose input is the output of , 16 is a threshold, 1
7 is a comparator, and 18 is a display that displays the output of the comparator 17. In this example, the width of the circumferential scratch is at its maximum, () 3
Since it was a normal level, a 1 Ipasu filter with a 3QQKHz culmness was used.

前記ラインセンサ5からは、第3図の方法で受光した散
乱光の出力信号が出力される。この1宇力信号の波形は
1、第5図のCのようになる。C1は横線傷、C2は円
周傷の信号出力を示1゜第3図の方法−ご受光した散乱
光の出力信号を用いて傷判定をする方法は、従来のよう
に光量分布むらを考慮した閾値d4用いζ前3Li出力
信号を2値仕する方法でもよいが、本実施例ではより確
実に光量分布(、−5の影響を受は第1、−円囚伽を抽
1’するために、。′)1ンセシ廿5の出力信号をハイ
パスフィルタ15に入力するようにしf、:。
The line sensor 5 outputs an output signal of the scattered light received by the method shown in FIG. The waveform of this 1-power signal is as shown in C in Figure 5. C1 indicates the signal output of a horizontal line flaw, and C2 indicates the signal output of a circumferential flaw.1゜The method shown in Figure 3 - The method of determining flaws using the output signal of the received scattered light takes into account the unevenness of the light intensity distribution as in the conventional method. However, in this embodiment, the light intensity distribution (, which is affected by -5 is the first, and in order to extract the -circle 1'.') The output signal of the filter 5 is input to the high-pass filter 15.

ハイパスフィルタ15の出力信号波形は第5図のaに示
すように傷の部分が抽出された信号になる。そこで、閾
値16を同図のbのような一定値の大きさに17で、信
号aと閾値すとを比較器17で比較する。そ17て、そ
の出力を表示器18に表示する。
The output signal waveform of the high-pass filter 15 becomes a signal in which the flawed portion is extracted, as shown in FIG. 5A. Therefore, the threshold value 16 is set to a constant value 17 as shown in b in the figure, and the signal a and the threshold value S are compared by a comparator 17. Then, the output is displayed on the display 18.

本実施例によれば、ラインセンサ5の出力信号をノ1イ
バスフィルタ15(J通Aようにしているので、傷の幅
の情報は失われる。しかし、円周傷64ヨ、傷の面積で
判定せすに、円周方向に連続してG在するか否かで判定
できるので、円周傷の検出精度を1げろことができる。
According to this embodiment, since the output signal of the line sensor 5 is filtered through the No. 1 bus filter 15 (J through A), information on the width of the scratch is lost. Instead of making a determination, the determination can be made based on whether G exists continuously in the circumferential direction, so the accuracy of detecting circumferential flaws can be increased by one.

次に、本発明の第3実施例を第6図を参照して説明する
。図において、20は受光器を示し、第1図と同符号は
第1図のものと同一物を示す。
Next, a third embodiment of the present invention will be described with reference to FIG. In the figure, 20 indicates a light receiver, and the same reference numerals as in FIG. 1 indicate the same parts as in FIG.

本実施例では、投光器1から発射されたスリ・・ト光2
の焦点2aを、発光体トラム3の表面かl;約5市離れ
た位置に結ばせる)うにすら11.まノ感光体ドラノ、
3の蓼・面トC・)スリット光照射部21の正反射方向
21)、1はH3すれた位置であって、0.1記スリッ
ト光照射部21の周辺部に光軸23が来るように、受光
器20を配置する。
In this embodiment, the slit light 2 emitted from the floodlight 1 is
The focal point 2a of the light emitter tram 3 is placed at a position approximately 5 cities away from the surface of the light emitter tram 3). Mano Photoreceptor Drano,
3. Leg/Front C.) Specular reflection direction 21) of the slit light irradiation section 21), 1 is a position that is off H3, and the optical axis 23 is placed at the peripheral part of the slit light irradiation section 21 described in 0.1. The light receiver 20 is placed at.

本実施例は、発明者の実験により理由は定かてないが、
受光器20のラインセンサに円周傷の散乱光が良好に入
射し、円周傷の検出精度が良好になることがわかった。
In this example, although the reason is not clear due to the inventor's experiment,
It was found that the scattered light from the circumferential flaws was incident on the line sensor of the light receiver 20 well, and the detection accuracy of the circumferential flaws was improved.

本実施例の装置を実現するには、従来の表面傷を検出す
る光学装置の配置から、投光器1と受光器20を若干移
動すればよく、簡単に実現できる。
In order to realize the apparatus of this embodiment, it is only necessary to slightly move the light projector 1 and the light receiver 20 from the conventional arrangement of the optical device for detecting surface flaws, and the apparatus can be easily realized.

また、この実施例と前記第1実施例とを組合わせると、
より精度良く、円周傷の検出を行うことができる。
Furthermore, when this embodiment and the first embodiment are combined,
Circumferential flaws can be detected with higher accuracy.

本発明による円周傷の検出方法は、感光体ドラムに限定
されず、フユーザロール、プレッシャロール等の円筒体
金属ロールの円周錫の検出にも用いることができる。
The method for detecting circumferential scratches according to the present invention is not limited to photosensitive drums, but can also be used to detect circumferential tin on cylindrical metal rolls such as fuser rolls and pressure rolls.

(発明の効果) 以上の説明から明らかなように、本発明によれば、ライ
ンセンサから出力される円周傷情報は、その他の傷情報
に比べ、相対的に強調されるから、円周傷を精度良く検
出することができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, the circumferential flaw information output from the line sensor is relatively emphasized compared to other flaw information. can be detected with high accuracy.

この結果、被検査体の良品、不良品の判別の精度を向上
させることができる。
As a result, the accuracy of determining whether the inspected object is good or defective can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略斜視図、第2図はその
要部の拡大図、第3図はこの実施例の動作を説明するた
めのフローチャート、第4図は本発明の第2実施例のブ
ロック図、第5図はその要部の信号の波形図、第6図は
本発明の第3実施例の概略図、第7図は従来gt置の概
略図、第8図は傷による散乱光の進行方向の説明図であ
る。 1・・・投光器、3・・・感光体ドラム、5・・・ライ
ンセンサ、11・・・円周傷、12・・−横線傷、15
・・・ハイパスフィルタ、20・・・受光器。 代理人 弁理士 平木通人 外1名 第1図 第2図 第   3   図
Fig. 1 is a schematic perspective view of an embodiment of the present invention, Fig. 2 is an enlarged view of its main parts, Fig. 3 is a flowchart for explaining the operation of this embodiment, and Fig. 4 is a schematic perspective view of an embodiment of the present invention. FIG. 5 is a block diagram of the second embodiment, FIG. 5 is a waveform diagram of the main part of the signal, FIG. 6 is a schematic diagram of the third embodiment of the present invention, FIG. 7 is a schematic diagram of the conventional GT position, and FIG. 8 is a schematic diagram of the conventional GT position. FIG. 3 is an explanatory diagram of the traveling direction of scattered light due to scratches. DESCRIPTION OF SYMBOLS 1... Floodlight, 3... Photoreceptor drum, 5... Line sensor, 11... Circumferential scratch, 12... - Horizontal line scratch, 15
...High-pass filter, 20... Light receiver. Agent: Patent attorney Michito Hiraki and 1 other person Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)被検査体をその軸の回りに回転させ、その表面に
軸方向に延びる光を投射し、該表面からの散乱光をライ
ンセンサで受光することにより、前記被検査体の表面傷
を検出する表面傷検査方法であって、 ラインセンサの読みだし周期によって決まる主走査周期
と、前記被検査体の回転周期との比を、横線傷検出時の
比に比べて大きくしたことを特徴とする円周表面傷検査
方法。
(1) By rotating the object to be inspected around its axis, projecting light extending in the axial direction onto the surface of the object, and receiving the scattered light from the surface with a line sensor, damage to the surface of the object to be inspected is detected. A surface flaw inspection method for detecting surface flaws, characterized in that the ratio between the main scanning period determined by the readout period of a line sensor and the rotation period of the object to be inspected is larger than the ratio when detecting horizontal line flaws. Circumferential surface flaw inspection method.
(2)被検査体をその軸の回りに回転させ、その表面に
軸方向に延びる光を投射し、該表面からの散乱光をライ
ンセンサで受光することにより、前記被検査体の表面傷
を検出する表面傷検査方法であって、 前記被検査体の表面に、前記軸方向に延びる光を焦点外
れの状態で照射し、その周辺部からの散乱光を前記ライ
ンセンサで受光するようにしたことを特徴とする円周表
面傷検査方法。
(2) By rotating the object to be inspected around its axis, projecting light extending in the axial direction onto the surface of the object, and receiving the scattered light from the surface with a line sensor, the scratches on the surface of the object to be inspected are removed. A surface flaw inspection method for detecting surface flaws, wherein the surface of the object to be inspected is irradiated with light extending in the axial direction in an out-of-focus state, and the line sensor receives scattered light from the periphery of the light. A circumferential surface flaw inspection method characterized by:
(3)被検査体をその軸の回りに回転させ、その表面に
軸方向に延びる光を投射し、該表面からの散乱光をライ
ンセンサで受光することにより、前記被検査体の表面傷
を検出する表面傷検査装置であって、 前記ラインセンサの信号出力を入力とするハイパスフィ
ルタと、 所定の閾値とを具備し、 該閾値を越えるハイパスフィルタの信号出力が前記被検
査体の円周方向に連続して検出された時に円周傷と判定
するようにしたことを特徴とする円周表面傷検査装置。
(3) By rotating the object to be inspected around its axis, projecting light extending in the axial direction onto the surface of the object, and receiving the scattered light from the surface with a line sensor, damage to the surface of the object to be inspected is detected. A surface flaw inspection device for detecting surface flaws, comprising a high-pass filter that receives the signal output of the line sensor as input, and a predetermined threshold value, and the signal output of the high-pass filter that exceeds the threshold value is detected in the circumferential direction of the object to be inspected. A circumferential surface flaw inspection device characterized in that a circumferential surface flaw is determined to be a circumferential flaw when continuously detected.
JP2293725A 1990-11-01 1990-11-01 Circumferential surface flaw inspection method and device Expired - Lifetime JP3060523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293725A JP3060523B2 (en) 1990-11-01 1990-11-01 Circumferential surface flaw inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293725A JP3060523B2 (en) 1990-11-01 1990-11-01 Circumferential surface flaw inspection method and device

Publications (2)

Publication Number Publication Date
JPH04169840A true JPH04169840A (en) 1992-06-17
JP3060523B2 JP3060523B2 (en) 2000-07-10

Family

ID=17798435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293725A Expired - Lifetime JP3060523B2 (en) 1990-11-01 1990-11-01 Circumferential surface flaw inspection method and device

Country Status (1)

Country Link
JP (1) JP3060523B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940608B2 (en) * 2001-03-08 2005-09-06 Ricoh Company, Ltd. Method and apparatus for surface configuration measurement
JP2008045935A (en) * 2006-08-11 2008-02-28 Jfe Steel Kk Method and apparatus for inspecting abutted welding part
JP2009139333A (en) * 2007-12-10 2009-06-25 Internatl Business Mach Corp <Ibm> Macro inspection device, and macro inspection method
JP2017102194A (en) * 2015-11-30 2017-06-08 キヤノン株式会社 Inspection method in manufacturing method of electrophotographic photoreceptor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200497064Y1 (en) 2021-11-16 2023-07-19 한국도로공사 Mobile video management system for lane guidance on the road

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940608B2 (en) * 2001-03-08 2005-09-06 Ricoh Company, Ltd. Method and apparatus for surface configuration measurement
JP2008045935A (en) * 2006-08-11 2008-02-28 Jfe Steel Kk Method and apparatus for inspecting abutted welding part
JP2009139333A (en) * 2007-12-10 2009-06-25 Internatl Business Mach Corp <Ibm> Macro inspection device, and macro inspection method
JP2017102194A (en) * 2015-11-30 2017-06-08 キヤノン株式会社 Inspection method in manufacturing method of electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP3060523B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US4223346A (en) Automatic defect detecting inspection apparatus
JP3560694B2 (en) Lens inspection system and method
JP4930748B2 (en) Film inspection apparatus and method
JP2003329606A (en) Inner surface inspection device
EP1703274B1 (en) Defect inspecting method
JPH11311510A (en) Method and apparatus for inspection of very small uneven part
JP3429966B2 (en) Surface defect inspection device and inspection method
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
JP3701477B2 (en) Cylindrical surface inspection device
JPH0921628A (en) Method for detecting projecting/recessed defect of surface of cylindrical object
JP2004108828A (en) Image input method, image input device and surface defect inspection device
JP2003222597A (en) Copper foil surface inspection device and copper foil surface inspection method
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JPH04216445A (en) Device for inspecting bottle
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JPH06221836A (en) Surface defect inspection device
JPH08128968A (en) Defect inspection method for transparent sheet formed body
JP4069535B2 (en) Collapsed lid detector
JP3340879B2 (en) Surface defect detection method and apparatus
JP2000292307A (en) Appearance inspection device for light transmission body
JPH06123707A (en) Method for inspecting surface defect and its device
JP4253742B2 (en) Saddle bottom inspection method
JPH07286968A (en) Surface defect inspecting device
JP2002168611A (en) Method and device for inspecting cylindrical object to be inspected for surface ruggedness
JPH09145339A (en) Surface flaw inspection method