JPH06123707A - Method for inspecting surface defect and its device - Google Patents

Method for inspecting surface defect and its device

Info

Publication number
JPH06123707A
JPH06123707A JP27170892A JP27170892A JPH06123707A JP H06123707 A JPH06123707 A JP H06123707A JP 27170892 A JP27170892 A JP 27170892A JP 27170892 A JP27170892 A JP 27170892A JP H06123707 A JPH06123707 A JP H06123707A
Authority
JP
Japan
Prior art keywords
cylindrical body
light
defect
axial direction
light image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27170892A
Other languages
Japanese (ja)
Inventor
Ayumi Hirono
歩 広野
Hideaki Munakata
英明 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP27170892A priority Critical patent/JPH06123707A/en
Publication of JPH06123707A publication Critical patent/JPH06123707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make easy detection of a defect of moderate recesses and projections of a surface on which a uniform membrane is applied to a base of metal and the like by detecting a change of an axial center direction boundary part of a projection light image having an end edge crossing at right angles with an axial center direction formed on the surface of a cylinder. CONSTITUTION:A projector 4 serves to form a belt-like projection light image 6 crossing at right angles with an axial center direction of a cylinder 1 for the surface of the cylinder 1. A light receiver 5 for making a visual field 7 of a boundary part 8 of the projection light image 6 is arranged and serves to receive reflection light in the neighborhood of the boundary part 8 in the visual field 7. In the case where a defect 3 exists on the surface 2 of the cylinder 1, a strain occurs on a projection light image end edge part of the boundary part 8 due to existence of the defect 3 and appears in the output of the light receiver 5. Accordingly a signal corresponding to the strain is analyzed for the purpose of detection of a defect on the surface. As the result, since the neighborhood of the boundary part in the longitudinal direction of the cylinder of the projection image formed on the surface of the cylinder is made a light receiving position of a line sensor constituting the light receiver, the detection of moderate recesses and projections defects of the surface is made easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円筒体の表面欠陥検査
にかかり、特に静電複写機やレーザプリンタなどの電子
写真技術による画像出力装置等に使用される感光体ドラ
ムの塗布工程で発生する表面欠陥を検査する表面欠陥検
査方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection of a cylindrical body, and particularly in a coating process of a photosensitive drum used in an image output device such as an electrostatic copying machine or a laser printer by an electrophotographic technique. The present invention relates to a surface defect inspection method and apparatus for inspecting a surface defect.

【0002】[0002]

【従来の技術】複写機やレーザプリンタに用いられる円
筒体からなる中間記録体,所謂感光体ドラムは、感光体
材料の塗布や蒸着工程、感光体ユニットの組み立て時の
取扱い時に、その表面への打痕やすり傷となる「機械
傷」と呼ばれる欠陥が発生する。この機械傷はコピー上
に黒点や白点等の画質欠陥となって表れるため、感光体
ドラムは、全数の表面検査を行っている。
2. Description of the Related Art An intermediate recording body made of a cylindrical body used in a copying machine or a laser printer, that is, a so-called photosensitive drum, is applied to a surface of a photosensitive body during application of a photosensitive material, vapor deposition, and handling during assembly of a photosensitive unit. Defects called "mechanical scratches" that are dents and scratches occur. Since this mechanical flaw appears as an image quality defect such as a black spot or a white spot on a copy, all the surface inspections are performed on the photosensitive drums.

【0003】また、近年において生産の多数を占めるO
PC(有機感光体)は、上記の「機械傷」と呼ばれる欠
陥の他に感光体の塗布工程において発生する「塗布工程
欠陥」と呼ばれる欠陥がある。図9は感光体ドラムの表
面に生ずる各種欠陥を説明するための感光体ドラムの要
部断面図であって、1は感光体ドラム、21は電荷輸送
層、22は電荷発生層、23は下引き層、24はアルミ
基体である。また、31はアルミ面の露出、32は膜厚
の変化、33は異物、34は表面の凹凸を示す。
Also, in recent years, O
PC (organic photoconductor) has defects called "coating process defects" that occur in the photoconductor coating process in addition to the above-mentioned defects called "mechanical scratches". FIG. 9 is a cross-sectional view of a main part of the photosensitive drum for explaining various defects occurring on the surface of the photosensitive drum. 1 is the photosensitive drum, 21 is a charge transport layer, 22 is a charge generation layer, and 23 is a lower layer. The pulling layer 24 is an aluminum base. Further, 31 is an exposed aluminum surface, 32 is a change in film thickness, 33 is a foreign matter, and 34 is a surface irregularity.

【0004】機械傷はアルミ基体24の露出をもたら
し、中間記録体としての機能を発揮できない。OPCは
アルミ基体24の上に下引き層23、電荷発生層22、
電荷輸送層21を塗布してなるもので、このOPCに発
生する欠陥はその形状や発生原因から電荷発生層22の
「しみ」「軸すじ」「むら」「模様」、電荷輸送層21
への金属細片その他の異物の混入、電荷輸送層21の膜
厚変化(「へこみ」「だれ」「ふくらみ」)等に分類さ
れる合計で10数種類の欠陥がある。これらの欠陥の大
きさは0.1mm〜数mm程度である。
Mechanical scratches expose the aluminum substrate 24 and cannot function as an intermediate recording medium. The OPC consists of an aluminum substrate 24, an undercoat layer 23, a charge generation layer 22,
The charge transport layer 21 is applied, and the defects that occur in the OPC are "spots", "axis lines", "unevenness", and "patterns" of the charge generation layer 22, depending on the shape and the cause thereof.
There are more than 10 kinds of defects in total, which are classified into the inclusion of metal pieces or other foreign substances into the metal, the change in the film thickness of the charge transport layer 21 (“dent”, “sag”, “bulge”) and the like. The size of these defects is about 0.1 mm to several mm.

【0005】図10は感光体ドラムの表面に生ずる各種
欠陥の説明図であって、符号は図9に示した欠陥部分に
対応する。図10に示したように、表面欠陥のうちで、
膜厚の変化32には「しみ」「軸すじ」「風紋模様」
「ひょう模様」「うろこ模様」「段むら」があり、異物
33には金属片やその他の異物が混入することで電荷輸
送特性を劣化させ、また表面の凹凸には「ふくらみ」
「へこみ」「軸すじ」などがある。
FIG. 10 is an explanatory view of various defects that occur on the surface of the photosensitive drum, and the reference numerals correspond to the defective portions shown in FIG. As shown in FIG. 10, among the surface defects,
The change 32 in the film thickness is "spots", "axis lines", "wind ripple patterns".
There are "hail pattern", "scaly pattern", and "step unevenness". The foreign material 33 deteriorates the charge transport property due to the inclusion of metal pieces and other foreign materials, and the surface unevenness is "bulging".
There are "dents" and "axis lines".

【0006】特に「しみ」「むら」欠陥は感光体ドラム
表面の色あいの微妙な変化として、「へこみ」欠陥は感
光体ドラム表面の鏡面の微妙な乱れとして表れ、従来の
目視による検査では、念入りに観察して初めて検出でき
るものである。塗布工程で発生する感光体膜厚の不均一
は表面電位のむらとなり、特に中間調の複写で画質の品
質低下となる。中間調の複写は写真原稿などで用いら
れ、複写機の重要な機能である。このため、感光体塗布
工程での微妙な色むらやへこみの検査は品質確保の点で
今後ますます重要である。
In particular, "stain" and "unevenness" defects appear as subtle changes in the hue of the photosensitive drum surface, and "dent" defects appear as subtle irregularities in the mirror surface of the photosensitive drum surface. It can be detected only after observing. The non-uniformity of the film thickness of the photoconductor that occurs in the coating process causes unevenness of the surface potential, resulting in deterioration of image quality especially in halftone copying. Halftone copying is used for photographic originals and is an important function of copying machines. For this reason, inspecting for subtle color unevenness and dents in the photoconductor coating process is becoming increasingly important in terms of quality assurance.

【0007】円筒体を被検査体とする表面欠陥の検査方
法として、従来から検査員による目視検査が行われてい
る(例えば 実開昭63−54166号公報参照)。し
かしながら、目視による検査では、検査品質のばらつき
や、検査工数の増大、検査スペースの増大、目視疲労に
よる作業環境の悪化、作業者確保の困難性、作業者教育
時間の増大などの問題がある。
As a method for inspecting a surface defect using a cylindrical body as an object to be inspected, a visual inspection by an inspector has been conventionally performed (for example, see Japanese Utility Model Laid-Open No. 63-54166). However, visual inspection has problems such as variation in inspection quality, increase in inspection man-hours, increase in inspection space, deterioration of work environment due to visual fatigue, difficulty in securing workers, and increase in training time for workers.

【0008】そこで、被検査体の表面の目視検査作業を
自動化する技術として従来から次のような方法や装置が
提案されている。図11は従来の感光体ドラム表面の自
動検査装置の第1例の説明図であって、レーザ113の
スポット光を偏向器114を介して被検査体である感光
体ドラム111の表面上で線走査し、集光器112で検
査表面の欠陥による散乱光を集め、これをオプチカルフ
ァイバー束115により導光し光電子増倍管からなる受
光器116で受光し、演算手段117で所定の閾値と演
算して、演算結果を表示手段118に表示するものであ
る(特開昭60−86405号公報)。しかし、この従
来例では感光層での干渉縞が発生して、検査精度を低下
させてしまうという問題がある。
Therefore, as a technique for automating the visual inspection work of the surface of the object to be inspected, the following methods and devices have been conventionally proposed. FIG. 11 is an explanatory diagram of a first example of a conventional automatic inspection device for the surface of a photosensitive drum, in which the spot light of a laser 113 is lined up on the surface of the photosensitive drum 111, which is an object to be inspected, via a deflector 114. Scanning is performed, the scattered light due to defects on the inspection surface is collected by the light collector 112, guided by the optical fiber bundle 115, received by the light receiver 116 composed of a photomultiplier tube, and calculated by the calculation means 117 with a predetermined threshold value. Then, the calculation result is displayed on the display means 118 (JP-A-60-86405). However, in this conventional example, there is a problem that interference fringes are generated in the photosensitive layer and the inspection accuracy is lowered.

【0009】図12は従来の円筒体表面の自動検査装置
の第2例の説明図であって、感光層の光吸収特性に応じ
た所定の波長のレーザ123の光を偏向器124で感光
体ドラム121の表面を走査し、感光体ドラム121か
らの反射光を受光器126で受光するように構成するこ
とにより、前記の例においてレーザ光の走査に伴う感光
層へのレーザ光の入射角度の変化を利用する場合に発生
する干渉縞を改善するものである(特開平2−2011
42号公報)。
FIG. 12 is an explanatory view of a second example of a conventional automatic inspection device for the surface of a cylindrical body, in which light of a laser 123 having a predetermined wavelength according to the light absorption characteristics of a photosensitive layer is deflected by a deflector 124. By scanning the surface of the drum 121 and receiving the reflected light from the photosensitive drum 121 by the light receiver 126, the incident angle of the laser light to the photosensitive layer accompanying the scanning of the laser light in the above example is This is to improve the interference fringes that occur when the change is used (Japanese Patent Laid-Open No. 2011-2011).
42 publication).

【0010】図13は図12の従来例で使用するレーザ
の波長領域の説明図であって、感光層としてポリカーボ
ネート100重量部,ジエチルアミノベンズアルデヒド
フェニルヒドラゾン100重量部,メタルフリーフタロ
シアニン8重量部を用いてなる場合に、レーザ123と
して632.8nmのHe−Cdレーザ源を使用するこ
とにより、前記干渉縞の発生を抑制することを示してい
る。
FIG. 13 is an explanatory view of the wavelength region of the laser used in the conventional example of FIG. 12, in which 100 parts by weight of polycarbonate, 100 parts by weight of diethylaminobenzaldehyde phenylhydrazone, and 8 parts by weight of metal-free phthalocyanine are used as the photosensitive layer. In that case, it is shown that the generation of the interference fringes is suppressed by using a 632.8 nm He—Cd laser source as the laser 123.

【0011】図14は従来の円筒体表面の自動検査装置
の第3例の説明図であって、感光体ドラム141の表面
を照明装置143で照明し、反射光を等倍結像素子14
5でセンサアレー146に結像し、画像処理装置147
で処理することによって得た欠陥データを表面手段14
8に表示するものである(特開平3−54438号公
報)。
FIG. 14 is an explanatory diagram of a third example of a conventional automatic inspection device for the surface of a cylindrical body, in which the surface of the photosensitive drum 141 is illuminated by an illuminating device 143 and the reflected light is imaged by a unity magnification image forming element 14.
5 forms an image on the sensor array 146, and the image processing device 147
The defect data obtained by processing with the surface means 14
No. 8 (Japanese Patent Laid-Open No. 3-54438).

【0012】図15は従来の円筒体表面の自動検査装置
の第4例の説明図であって、151はラインセンサ、1
52はドラム駆動モータ、153は塵除去エア、154
は遮光板、155はシリンダレンズ、156はオプチカ
ルファイバ、157はハロゲン光源、158は被検査体
である感光体ドラム、159は散乱光、160は信号処
理装置、161は判断処理装置である。
FIG. 15 is an explanatory view of a fourth example of the conventional automatic inspection device for the surface of a cylindrical body, in which 151 is a line sensor and 1 is a line sensor.
52 is a drum drive motor, 153 is dust removal air, 154
Is a light-shielding plate, 155 is a cylinder lens, 156 is an optical fiber, 157 is a halogen light source, 158 is a photosensitive drum as an object to be inspected, 159 is scattered light, 160 is a signal processing device, and 161 is a judgment processing device.

【0013】この装置はラインセンサ151を用いた感
光体ドラムの検査装置として、本発明者等が実開平4−
64762号、特開平4−70553号 で既に提案し
たものであり、ハロゲン光源157からの光をオプチカ
ルファイバ156とシリンダレンズ155により集光し
てスリット光として感光体ドラム158の表面に投光
し、感光体ドラム158の表面の散乱光159を縮小光
学系を介してラインセンサ151に集光し、ラインセン
サ151の出力を信号処理装置160で処理した後、判
断処理装置で欠陥の判断を行うものである。
This device is used by the present inventors as an inspection device for a photoconductor drum using the line sensor 151.
No. 64762 and Japanese Patent Application Laid-Open No. 4-70553, the light from the halogen light source 157 is condensed by the optical fiber 156 and the cylinder lens 155 and projected on the surface of the photosensitive drum 158 as slit light. The scattered light 159 on the surface of the photoconductor drum 158 is condensed on the line sensor 151 via a reduction optical system, the output of the line sensor 151 is processed by the signal processing device 160, and then the defect is judged by the judgment processing device. Is.

【0014】図16は従来の円筒体表面の自動検査装置
の第5例の説明図であって、171は感光体ドラム、1
72は走査器、173は受光器、174はレーザ光、1
75は反射光である。この自動検査装置は、走査器17
2に備えたレーザ源からのレーザ光174をフライング
スポット方式において直線偏光をブリュースター角で感
光体ドラム171の検査表面に入射し投写し、反射光1
75を受光器173に備えた2つの受光部173aと1
73bで受光することでなだらかな凹凸からなるうねり
欠陥や微小な凹凸の検出を可能としたものである。ま
た、図17に示したように感光体ドラム171の感光層
が2層の反射層L1 ,L2 からなり、それぞれの反射光
1 ,R2 が干渉するような場合には、レーザ光174
に1/2波長板1722を挿入することで、図18に示
したように感光体ドラム171に入射するレーザ光はP
偏光となって、反射光R1 は0となり、反射光R2 のみ
が受光器173に入射するので、上記の干渉は生じない
(特開平3−291552号公報、他)。
FIG. 16 is a conventional automatic inspection device for the surface of a cylindrical body.
FIG. 17 is an explanatory view of a fifth example of FIG.
72 is a scanner, 173 is a light receiver, 174 is laser light, 1
75 is reflected light. This automatic inspection device is a scanner 17
Flying laser light 174 from the laser source prepared for 2
Sensing linearly polarized light at Brewster's angle in spot method
The reflected light 1 is incident on the inspection surface of the optical drum 171 and projected.
Two light receiving parts 173a provided with the light receiving device 173
Waviness composed of gentle unevenness by receiving light at 73b
This makes it possible to detect defects and minute irregularities. Well
Also, as shown in FIG. 17, the photosensitive layer of the photosensitive drum 171
Is a two-layer reflective layer L1, L2Consists of each reflected light
R 1, R2Laser light 174
Insert the 1/2 wave plate 1722 into
As described above, the laser light incident on the photosensitive drum 171 is P
It becomes polarized light and the reflected light R1Becomes 0, and the reflected light R2only
Is incident on the light receiver 173, so the above interference does not occur.
(JP-A-3-291552, etc.).

【0015】図19は従来の円筒体表面の自動検査装置
の第6例の説明図であって、191は感光体ドラム、1
92は蛍光灯1921とスリット1922からなるスリ
ット光源、193はラインセンサからなる受光器、19
4は投写光像、195は投写光像の中心部、196は投
写光像の境界部、197は画像処理部、198は欠陥判
定部である。
FIG. 19 is an explanatory view of a sixth example of a conventional automatic inspection device for the surface of a cylindrical body, in which 191 is a photosensitive drum and 1
Reference numeral 92 denotes a slit light source including a fluorescent lamp 1921 and a slit 1922, 193 denotes a light receiver including a line sensor, and 19
Reference numeral 4 is a projected light image, 195 is a central portion of the projected light image, 196 is a boundary portion of the projected light image, 197 is an image processing portion, and 198 is a defect determination portion.

【0016】同図に示したように、この従来例は、光源
にスリット光源192を構成する白色散乱光源を用い、
被検査体である感光ドラム191の表面上の投写光像1
94の中心部195及び境界部196をラインセンサか
らなる受光器193で受光し受光信号を画像処理部19
7で処理し、欠陥判定部198で欠陥の判定を行うよう
にしたものであって、本発明者等が先に出願したもので
ある(特願平3−271487号)。
As shown in the figure, in this conventional example, a white scattering light source forming a slit light source 192 is used as a light source,
The projected light image 1 on the surface of the photosensitive drum 191 which is the inspection object
The central portion 195 and the boundary portion 196 of 94 are received by the light receiver 193 including a line sensor, and the received light signal is received by the image processing unit 19
7 and the defect determination unit 198 determines the defect, which was previously filed by the present inventors (Japanese Patent Application No. 3-2714787).

【0017】[0017]

【発明が解決しようとする課題】上記した従来技術の中
で第1例〜第5例は前記図9で説明した機械傷31によ
る強い散乱光Rmを検出している。すなわち第1例では
感光体層の最表面である電荷輸送層21の表面での反射
光と、該感光層の下層にある電荷発生層22の境界面で
の反射光により干渉光が発生するため光電子増倍管で受
光する信号波形上に干渉縞の波形が重畳し、塗布欠陥の
ような弱い散乱光Rcを発する欠陥信号を抽出すること
が困難であった。
Among the above-mentioned conventional techniques, the first to fifth examples detect the strong scattered light Rm due to the mechanical flaw 31 described with reference to FIG. That is, in the first example, interference light is generated by the reflected light on the surface of the charge transport layer 21 which is the outermost surface of the photosensitive layer and the reflected light on the boundary surface of the charge generation layer 22 below the photosensitive layer. The interference fringe waveform is superimposed on the signal waveform received by the photomultiplier tube, and it has been difficult to extract a defect signal that emits weak scattered light Rc such as a coating defect.

【0018】また,第2例で説明した技術を用いて干渉
縞の影響をなくした場合、検査対象が感光体表面の機械
傷に限られてしまい、下層の感光体層22(電荷発生
層)の塗布欠陥32を検出することが困難であった。第
3例の検査方法はセンサアレイに対して等倍結像素子を
用いるため、センサアレイや結像素子が検査ドラム幅以
上のサイズを必要とし、装置が大型化するという問題点
があった。
When the influence of the interference fringes is eliminated by using the technique described in the second example, the object to be inspected is limited to the mechanical scratch on the surface of the photoconductor, and the lower photoconductor layer 22 (charge generation layer). It was difficult to detect the coating defect 32. Since the inspection method of the third example uses the same-magnification imaging element for the sensor array, there is a problem that the sensor array and the imaging element need to have a size larger than the width of the inspection drum, and the apparatus becomes large.

【0019】また、第4例の散乱光を受光して表面欠陥
を検出する方法は、表面の感光体が完全に剥離してアル
ミ等の基体金属表面が露出している機械傷31に対して
有効であり、機械傷はハロゲン光のオプチカルファイバ
ー束によるスリット光の投写により強い散乱光Rmを発
生し、正反射方向の角度に対して10〜20度ずらした
位置でラインセンサで受光するものであるが、しかし多
層に塗布した感光体では各層の厚みが0.1μmから数
十μm程度であるため、微妙な膜厚の変化による「ふく
らみ」「へこみ」等の欠陥34にはオプチカルファイバ
ー束によるスリット光に対して散乱光をほとんど発生し
ない。このため正反射光方向から10〜20度ずらした
受光位置では「へこみ」等の欠陥をラインセンサで検出
することが不可能であった。
Further, in the method of detecting the surface defect by receiving the scattered light of the fourth example, the mechanical flaw 31 in which the surface metal is completely peeled off and the surface of the base metal such as aluminum is exposed. The mechanical flaw is generated by the slit light projected by the optical fiber bundle of halogen light to generate strong scattered light Rm, which is received by the line sensor at a position displaced by 10 to 20 degrees with respect to the angle of the regular reflection direction. However, since the thickness of each layer is about 0.1 μm to several tens of μm in the photoconductor coated in multiple layers, defects 34 such as “bulges” and “dents” due to subtle changes in film thickness are caused by optical fiber bundles. Almost no scattered light is generated for slit light. For this reason, it is impossible for the line sensor to detect defects such as "dents" at the light receiving position deviated from the regular reflection light direction by 10 to 20 degrees.

【0020】第5例の方法は、干渉現象を抑えて感光体
の表面層のなだらかな凹凸34を検出可能としている
が、下層の塗布欠陥32同時に検出することができず、
またフライングスポット方式のため装置が大型化し、暗
室の環境が必要になるなど、検査ラインへの導入が容易
でない。一方、第6例の方法は塗布欠陥の検出に有効で
あり、本発明者等の実験では白色散乱光源から感光体ド
ラム上に投写する光像の中心にラインセンサの焦点を合
わせる正反射光受光方法で「異物」「ふくらみ」「軸す
じ」を、また光像の境界部分に焦点を合わせる散乱光受
光方式により「へこみ」「だれ」を、そして光像の外側
の位置を受光する散乱光外側受光方式により「しみ」
「模様」「むら」を検出できた。しかしながら「へこ
み」や「ふくらみ」34は、深さや高さで5μm程度、
表面の傾きで300分1までの検出が限界であった。
In the method of the fifth example, it is possible to detect the smooth unevenness 34 of the surface layer of the photoconductor while suppressing the interference phenomenon, but it is not possible to simultaneously detect the coating defect 32 of the lower layer,
Further, since the apparatus is a flying spot type, the size of the apparatus is large, and a dark room environment is required. On the other hand, the method of the sixth example is effective for detecting coating defects, and in experiments by the present inventors, the line sensor is focused on the center of the light image projected from the white scattering light source on the photosensitive drum to receive specular reflection light. By the method, "foreign matter", "bulge", and "axis line" are detected. Also, by the scattered light receiving method that focuses on the boundary part of the light image, "dents" and "sags" are received. "Stain" depending on the light receiving method
We were able to detect "patterns" and "mura". However, "dents" and "bulges" 34 have a depth and height of about 5 μm,
The detection of the surface inclination up to 1/300 was the limit.

【0021】この「へこみ」や「ふくらみ」欠陥は高低
差が最も小さいものでは数μm程度の非常に緩やかな感
光層の膜厚変化である。感光体の表面電位は感光層の膜
厚に比例するため、上記高低差の「へこみ」や「ふくら
み」欠陥の部分は、表面電位が数%変化するため、例え
ば中間調原稿では感光体表面電位が50V程度変化して
しまい、画質上の濃淡むらや色むらになる。
The "dent" or "bulge" defect is a very gradual change in film thickness of the photosensitive layer of about several .mu.m when the difference in height is the smallest. Since the surface potential of the photoconductor is proportional to the film thickness of the photosensitive layer, the surface potential changes by several% at the above-mentioned "dimple" or "bulge" defect of the height difference. Changes by about 50 V, resulting in uneven lightness and unevenness in image quality.

【0022】上記のような従来技術の問題点に鑑み、本
発明は、金属等の基体に均一に皮膜を塗布した表面、特
に多層に塗布された感光体層の数μm程度の表面層の非
常に緩やかな「へこみ」や「ふくらみ」による欠陥に対
して、ラインセンサを用いてその閾値により弁別可能な
欠陥信号を受光する光学式感光体欠陥検査装置を提供す
ることを目的とする。
In view of the problems of the prior art as described above, the present invention provides a surface of a substrate such as a metal uniformly coated with a coating, especially a surface layer of several μm of a photoreceptor layer coated in multiple layers. It is an object of the present invention to provide an optical photoreceptor defect inspection apparatus that receives a defect signal that can be discriminated by a threshold value using a line sensor for a defect caused by a gentle "dent" or "bulge".

【0023】[0023]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の発明は、円筒体1の表面2にその軸
心方向と直交する端縁を有する投写光像を形成し、前記
形成された投写光像の前記円筒体の軸心方向境界部分8
における変化を検出することにより、前記円筒体1の表
面欠陥を検出することを特徴とする。
In order to achieve the above object, the first aspect of the present invention is to form a projected light image on the surface 2 of a cylindrical body 1 having an edge perpendicular to the axial direction thereof. A boundary portion 8 of the formed projection light image in the axial direction of the cylindrical body
The surface defect of the cylindrical body 1 is detected by detecting the change in.

【0024】本発明の第2の発明は、円筒体1の表面2
にその軸心方向と直交する長軸を有する帯状の投写光像
6を前記円筒体1の軸心方向に沿って移動形成し、前記
形成された帯状の投写光像6の前記円筒体1の軸心方向
境界部分における変化を検出することにより、前記円筒
体1の表面欠陥を前記軸心方向に連続して検出すること
を特徴とする。
The second aspect of the present invention is the surface 2 of the cylindrical body 1.
A band-shaped projected light image 6 having a long axis orthogonal to the axial direction of the cylindrical body 1 is formed along the axial direction of the cylindrical body 1. The surface defect of the cylindrical body 1 is continuously detected in the axial direction by detecting the change in the boundary portion in the axial direction.

【0025】本発明の第3の発明は、円筒体1を回転さ
せ、その表面2に当該円筒体1の軸心方向と直交する長
軸を有する帯状の投写光像6を前記円筒体1の軸心方向
に沿って移動形成し、前記形成された帯状の投写光像6
の前記円筒体1の軸心方向境界部分8における変化を前
記円筒体1の軸心方向に連続して検出することにより前
記円筒体1の表面全域の表面欠陥を検出することを特徴
とする。
In the third aspect of the present invention, the cylindrical body 1 is rotated, and a band-shaped projected light image 6 having a long axis orthogonal to the axial direction of the cylindrical body 1 is formed on the surface 2 of the cylindrical body 1. The band-shaped projection light image 6 formed by moving along the axial direction
The surface defect of the entire surface of the cylindrical body 1 is detected by continuously detecting the change in the axial center boundary portion 8 of the cylindrical body 1 in the axial direction of the cylindrical body 1.

【0026】本発明の第4の発明は、円筒体1の表面2
に光を照射し、その反射光の変化を検出して当該円筒体
1の表面欠陥を検出する表面欠陥検出装置において、前
記円筒体1の表面2にその軸心方向と直交する長軸を有
する帯状の投写光像6を形成する投光器4と、受光視野
7の長手方向を前記帯状の投写光像6の前記円筒体1の
軸心方向と直交する境界部分8に一致させて前記帯状の
投写光像6の前記軸心方向境界部分8近傍の反射光を検
知する受光器5とを具備し、前記円筒体1の表面欠陥を
前記軸心方向境界部分近傍において検出することを特徴
とする。
The fourth aspect of the present invention is the surface 2 of the cylindrical body 1.
In a surface defect detecting device for irradiating the surface of the cylindrical body 1 with light and irradiating the surface of the cylindrical body 1 with a long axis perpendicular to the axial direction of the cylindrical body 1, the surface defect of the cylindrical body 1 is detected. The projector 4 that forms a strip-shaped projected light image 6 and the strip-shaped projection by aligning the longitudinal direction of the light-receiving visual field 7 with a boundary portion 8 of the strip-shaped projected light image 6 that is orthogonal to the axial center direction of the cylindrical body 1. A light receiver 5 for detecting reflected light in the vicinity of the boundary portion 8 in the axial direction of the light image 6, and detecting a surface defect of the cylindrical body 1 in the vicinity of the boundary portion in the axial direction.

【0027】本発明の第5の発明は、円筒体1の表面2
に光を照射し、その反射光の変化を検出して当該円筒体
1の表面欠陥を検出する表面欠陥検出装置において、前
記円筒体1の表面2にその軸心方向と直交する長軸を有
する帯状の投写光像6を形成する投光器4と、受光視野
7の長手方向を前記帯状の投写光像6の前記円筒体1の
軸心方向と直交する境界部分8に一致させて前記帯状の
投写光像6の前記軸心方向境界部分8近傍の反射光を検
知する受光器5と、前記投光器4と前記受光器5とを前
記円筒体1の軸心方向に沿って同期移動させる同期移動
部10とを具備し、前記円筒体1の表面欠陥を前記軸心
方向境界部分8近傍において前記軸心方向に連続して検
出することを特徴とする。
The fifth aspect of the present invention is the surface 2 of the cylindrical body 1.
In a surface defect detecting device for irradiating the surface of the cylindrical body 1 with light and irradiating the surface of the cylindrical body 1 with a long axis perpendicular to the axial direction of the cylindrical body 1, the surface defect of the cylindrical body 1 is detected. The projector 4 that forms a strip-shaped projected light image 6 and the strip-shaped projection by aligning the longitudinal direction of the light-receiving visual field 7 with a boundary portion 8 of the strip-shaped projected light image 6 that is orthogonal to the axial center direction of the cylindrical body 1. A light receiver 5 for detecting reflected light in the vicinity of the axial boundary portion 8 of the light image 6, and a synchronous movement unit for synchronously moving the light projector 4 and the light receiver 5 along the axial direction of the cylindrical body 1. 10 is provided, and surface defects of the cylindrical body 1 are continuously detected in the axial direction in the vicinity of the axial boundary portion 8.

【0028】そして、本発明の第6の発明は、円筒体1
の表面2に光を照射し、その反射光の変化を検出して当
該円筒体1の表面欠陥を検出する表面欠陥検出装置にお
いて、前記円筒体1の表面2にその軸心方向と直交する
長軸を有する帯状の投写光像6を形成する投光器4と、
受光視野の長手方向を前記帯状の投写光像6の前記円筒
体1の軸心方向と直交する境界部分8に一致させて前記
帯状の投写光像6の前記軸心方向境界部分8近傍の反射
光を検知する受光器5と、前記投光器4と前記受光器5
とを前記円筒体1の軸心方向に沿って同期移動させる同
期移動部10と、前記円筒体1を回転させる円筒体回転
部11と、前記受光部5の受光信号から前記回転体1の
表面2の表面欠陥信号を抽出する欠陥信号抽出部13
と、前記欠陥信号抽出部13で抽出された表面欠陥信号
から当該欠陥の良否と欠陥の種類を判定する欠陥判定処
理部14とを具備し、前記円筒体1の表面欠陥を前記円
筒体1の表面全域で連続して検出することを特徴とす
る。
The sixth aspect of the present invention is the cylindrical body 1.
In the surface defect detection device for irradiating the surface 2 of the cylinder with light and detecting the change in the reflected light to detect the surface defect of the cylindrical body 1, the surface 2 of the cylindrical body 1 has a length perpendicular to its axial direction. A projector 4 for forming a belt-shaped projected light image 6 having an axis;
Reflection in the vicinity of the axial boundary portion 8 of the strip-shaped projected light image 6 by aligning the longitudinal direction of the light-receiving visual field with the boundary portion 8 of the strip-shaped projected light image 6 orthogonal to the axial center direction of the cylindrical body 1. Light receiver 5 for detecting light, the light projector 4 and the light receiver 5
The synchronous moving part 10 for synchronously moving the and along the axial direction of the cylindrical body 1, the cylindrical body rotating part 11 for rotating the cylindrical body 1, and the light receiving signal of the light receiving part 5 from the surface of the rotating body 1. Defect signal extraction unit 13 for extracting the surface defect signal of No. 2
And a defect determination processing unit 14 that determines the quality of the defect and the type of defect from the surface defect signal extracted by the defect signal extraction unit 13, and detects the surface defect of the cylindrical body 1 of the cylindrical body 1. The feature is that detection is performed continuously over the entire surface.

【0029】上記被検査体である円筒体は、例えば感光
体ドラムであり、上記投光器は例えば直管の蛍光灯光源
などのスリット状の白色拡散光源からなり、上記受光器
は例えばラインセンサからなり、被検査体表面に形成さ
れたスリット光の投写による帯状の投写光像をラインセ
ンサの受光視野に一致させるセンサ姿勢調整機構を備え
ることを好適とし、また、上記ラインセンサを備えた受
光器と上記投光器とを同期して移動させる同期移動機構
部は回転体の回転と相関関係をもって制御する構成とす
ることで、例えば帯状の投写光像が円筒体の表面を上記
帯状の投写光像を上記軸心方向に連続走査させると共に
上記帯状の幅で円周方向にステップ走査させることによ
り、当該円筒体の全表面を連続的かつ自動的に検査する
ことができる。
The cylindrical body which is the object to be inspected is, for example, a photosensitive drum, the projector is composed of a slit-shaped white diffused light source such as a straight tube fluorescent lamp light source, and the light receiver is composed of a line sensor. It is preferable to include a sensor attitude adjusting mechanism for matching a strip-shaped projected light image formed by projection of slit light formed on the surface of the inspection object with the light-receiving visual field of the line sensor, and a light receiver including the line sensor. The synchronous movement mechanism section that moves the projector in synchronization with each other is configured to be controlled in correlation with the rotation of the rotating body, so that, for example, a belt-shaped projected light image is formed on the surface of the cylindrical body by the belt-shaped projected light image. By continuously scanning in the axial direction and stepwise scanning in the circumferential direction with the band width, it is possible to continuously and automatically inspect the entire surface of the cylindrical body.

【0030】また、上記欠陥判定処理部は欠陥良否判定
処理部と欠陥種類判定処理部で構成するのを好適とする
が、欠陥信号抽出部と共に既知の画像処理装置を利用し
てもよいものである。なお、本発明は被検査体として、
上記の感光体ドラムに限るものではなく、表面が鏡面
で、かつ曲面となっている円筒状体、あるいはこれに準
ずる形状を対象とすることができるものである。
Further, although it is preferable that the defect judgment processing section is composed of a defect quality judgment processing section and a defect type judgment processing section, a known image processing apparatus may be used together with the defect signal extraction section. is there. Incidentally, the present invention, as the inspection object,
The present invention is not limited to the above-mentioned photoconductor drum, but can be a cylindrical body having a mirror surface and a curved surface, or a shape conforming to this.

【0031】[0031]

【作用】上記第1の発明の構成において、円筒体1の表
面2に形成されたその軸心方向と直交する端縁を有する
投写光像6の前記円筒体1の軸心方向端縁における変化
を検出することで、前記円筒体1の表面欠陥を検出す
る。上記第2の発明の構成において、円筒体1の表面2
にその軸心方向と直交する長軸を有する帯状の投写光像
6を前記円筒体1の軸心方向に沿って移動形成し、前記
形成された帯状の投写光像6の前記円筒体1の軸心方向
端縁領域における変化を、前記円筒体表面の前記端縁領
域の欠陥を前記軸心方向端縁領域において検出する。
In the structure of the first aspect of the invention, the change in the axial edge of the cylindrical body 1 of the projected light image 6 formed on the surface 2 of the cylindrical body 1 and having the edge orthogonal to the axial direction thereof. Is detected, the surface defect of the cylindrical body 1 is detected. In the configuration of the second invention, the surface 2 of the cylindrical body 1
A band-shaped projected light image 6 having a long axis orthogonal to the axial direction of the cylindrical body 1 is formed along the axial direction of the cylindrical body 1. A change in the axial edge region is detected as a defect in the axial edge region of the cylindrical body surface in the axial edge region.

【0032】上記第3の発明の構成において、円筒体1
を回転させ、その表面2に当該円筒体1の軸心方向と直
交する長軸を有する帯状の投写光像6を前記円筒体1の
軸心方向に沿って移動形成し、前記形成された帯状の投
写光像6の前記円筒体1の軸心方向端縁領域における変
化を検出し、前記円筒体表面の前記端縁領域の欠陥を前
記軸心方向端縁領域において連続して検出する。
In the structure of the third invention, the cylindrical body 1
Is rotated, a strip-shaped projected light image 6 having a long axis orthogonal to the axial direction of the cylindrical body 1 is formed on the surface 2 by movement along the axial direction of the cylindrical body 1, and the formed strip-shaped image is formed. Of the projected light image 6 is detected in the axial edge region of the cylindrical body 1, and defects in the edge region of the cylindrical body surface are continuously detected in the axial edge region.

【0033】上記第4の発明の構成において、投光器4
は円筒体1の表面2にその軸心方向と直交する長軸を有
する帯状の投写光像6を形成する。受光器5は前記円筒
体1の軸心方向と直交して配置され前記円筒体1の表面
2に形成された前記帯状の投写光像6の前記軸心方向端
縁近傍の反射光を検知する。上記第5の発明の構成にお
いて、投光器4は前記円筒体1の表面2にその軸心方向
と直交する長軸を有する帯状の投写光像6を形成する。
受光器5は前記円筒体1の軸心方向と直交して配置され
前記円筒体1の表面2に形成された前記帯状の投写光像
6の前記軸心方向端縁近傍の反射光を検知する。また、
同期移動部10は前記投光器4と前記受光器5とを前記
円筒体1の軸心方向に同期移動させる。これにより、帯
状の投写光像6は前記円筒体1の軸心方向に連続移動さ
れ、移動する投写光像6の端縁領域における変化が当該
円筒体の軸心方向に沿って連続的に検出される。
In the configuration of the above-mentioned fourth invention, the projector 4
Forms a band-shaped projected light image 6 having a long axis orthogonal to the axial direction on the surface 2 of the cylindrical body 1. The light receiver 5 is arranged orthogonal to the axial direction of the cylindrical body 1 and detects reflected light in the vicinity of the axial edge of the strip-shaped projected light image 6 formed on the surface 2 of the cylindrical body 1. . In the structure of the fifth aspect of the invention, the projector 4 forms a band-shaped projected light image 6 having a major axis orthogonal to the axial direction on the surface 2 of the cylindrical body 1.
The light receiver 5 is arranged orthogonal to the axial direction of the cylindrical body 1 and detects reflected light in the vicinity of the axial edge of the strip-shaped projected light image 6 formed on the surface 2 of the cylindrical body 1. . Also,
The synchronous moving unit 10 synchronously moves the light projector 4 and the light receiver 5 in the axial direction of the cylindrical body 1. As a result, the strip-shaped projected light image 6 is continuously moved in the axial direction of the cylindrical body 1, and a change in the edge region of the moving projected light image 6 is continuously detected along the axial direction of the cylindrical body. To be done.

【0034】そして、上記第6の発明の構成において、
投光器4は前記円筒体1の表面2にその軸心方向と直交
する長軸を有する帯状の投写光像6を投写する。受光器
5は前記円筒体1の軸心方向と直交して配置され前記円
筒体1の表面2に投写された前記帯状の投写光像6の前
記軸心方向端縁近傍の反射光を検知する。前記投光器4
と前記受光器5とは同期移動部10によって前記円筒体
1の軸心方向に同期移動させられ、移動する投写光像6
の端縁領域における変化が当該円筒体の軸心方向に沿っ
て連続的に検出される。そして、円筒体回転部11は前
記円筒体1を回転させ、当該円筒体の表面の全域を前記
投写光像で走査する。受光器5の出力信号は、欠陥信号
抽出部13において処理され、前記回転体1の表面2の
表面欠陥信号が抽出される。欠陥判定処理部14は欠陥
信号抽出部13で抽出された表面欠陥信号から当該欠陥
の良否と欠陥の種類を判定する。これにより、前記円筒
体表面の全域の表面欠陥が検出される。
Then, in the configuration of the sixth invention,
The light projector 4 projects a band-shaped projected light image 6 having a long axis orthogonal to the axial direction on the surface 2 of the cylindrical body 1. The light receiver 5 is arranged orthogonal to the axial direction of the cylindrical body 1 and detects reflected light near the edge in the axial direction of the strip-shaped projected light image 6 projected on the surface 2 of the cylindrical body 1. . The light projector 4
And the light receiver 5 are synchronously moved in the axial direction of the cylindrical body 1 by the synchronous moving unit 10 to move the projected light image 6
The change in the edge region of the cylinder is continuously detected along the axial direction of the cylindrical body. Then, the cylindrical body rotating unit 11 rotates the cylindrical body 1 and scans the entire surface of the cylindrical body with the projected light image. The output signal of the light receiver 5 is processed by the defect signal extraction unit 13, and the surface defect signal of the surface 2 of the rotating body 1 is extracted. The defect determination processing unit 14 determines the quality of the defect and the type of the defect from the surface defect signal extracted by the defect signal extraction unit 13. As a result, surface defects on the entire surface of the cylindrical body are detected.

【0035】上記において、投光器は帯状の白色散乱光
源からなり、当該光源から発せられた帯状の白色散乱光
源は、感光体ドラム表面の円周方向長軸をもつように照
射される。表面の円周方向に投写形成された投写光像に
対し、表面に緩やかなへこみやふくらみ欠陥が存在する
と、この欠陥により投写光が散乱され該帯状投写光像の
ドラム長手方向の端縁部分が変化する。この投写光像の
端縁部分に沿って当該帯状の投写光像の長手方向に視野
の長軸を配置して当該端縁部に焦点を合わせたラインセ
ンサは、当該投写光像の端縁部の変化を受光し、欠陥の
存在に応じた欠陥信号を出力する。ラインセンサの出力
信号は欠陥信号抽出部において処理され、取り出された
欠陥部分の信号はその程度に応じて欠陥判定処理部で信
号の特徴とその特徴量により良品/不良品の判定処理が
行われ、欠陥の種類別に判別信号が出力される。
In the above, the projector is composed of a band-shaped white scattering light source, and the band-shaped white scattering light source emitted from the light source is irradiated so as to have a long axis in the circumferential direction of the surface of the photosensitive drum. If there is a gradual dent or bulge defect on the surface of the projected light image projected and formed in the circumferential direction of the surface, the projected light is scattered by this defect and the edge portion in the longitudinal direction of the drum of the strip-shaped projected light image is scattered. Change. The line sensor in which the long axis of the visual field is arranged along the edge portion of the projected light image in the longitudinal direction of the striped light image and the focus is on the edge portion is the edge portion of the projected light image. Is received and a defect signal corresponding to the presence of a defect is output. The output signal of the line sensor is processed by the defect signal extraction unit, and the signal of the extracted defective portion is subjected to the non-defective / defective product determination process based on the feature of the signal and its feature amount in the defect determination processing unit according to its degree. , A discrimination signal is output for each type of defect.

【0036】[0036]

【実施例】以下、本発明の実施例につき、図面を参照し
て詳細に説明する。図1は本発明による表面欠陥検査方
法を適用する装置構成の1実施例を説明する模式図であ
って、1は被検査体である円筒体、2は被検査体の表
面、3は欠陥、4は投光器、5は受光器、6は投写光
像、7は受光器の視野、8は投写光像の境界部分であ
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic view for explaining an embodiment of an apparatus configuration to which a surface defect inspection method according to the present invention is applied, in which 1 is a cylindrical body as an inspection object, 2 is a surface of the inspection object, 3 is a defect, Reference numeral 4 is a light projector, 5 is a light receiver, 6 is a projected light image, 7 is a field of view of the light receiver, and 8 is a boundary portion of the projected light image.

【0037】同図において、投光器4は円筒体1の表面
2に対して当該円筒体1の軸心方向と直交する帯状の投
写光像6を形成する。この投写光像6の境界部分8を視
野7とする受光器5を配置し、当該視野7にある上記境
界部分8近傍の反射光を受光する。円筒体1の表面2上
に欠陥3がある場合、当該欠陥3によって上記境界部分
8の上記投写光像端縁部に歪みが生じ、これが受光器5
の出力に現れる。
In the figure, the projector 4 forms a band-shaped projected light image 6 on the surface 2 of the cylindrical body 1 orthogonal to the axial direction of the cylindrical body 1. A light receiver 5 having a boundary portion 8 of the projected light image 6 as a visual field 7 is arranged to receive reflected light near the boundary portion 8 in the visual field 7. When there is a defect 3 on the surface 2 of the cylindrical body 1, the defect 3 causes distortion in the edge portion of the projected light image of the boundary portion 8, and this causes the light receiver 5 to distort.
Appear in the output of.

【0038】したがって、上記歪みに対応する信号を解
析することで上記表面の欠陥が検出できる。図2は本発
明による表面欠陥検査方法を適用する装置構成の他の実
施例を説明する模式図であって、図1と同一符号は同一
部分に対応し、11は円筒体の駆動部、41は蛍光灯、
42はスリット、51はラインセンサ、52は縮小光学
系、10は同期移動部、12は3軸姿勢調整装置、13
は欠陥信号抽出部、14は欠陥判定処理部である。
Therefore, the surface defect can be detected by analyzing the signal corresponding to the distortion. FIG. 2 is a schematic diagram for explaining another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied. The same reference numerals as those in FIG. 1 correspond to the same portions, 11 is a cylindrical driving portion, 41 Is a fluorescent lamp,
42 is a slit, 51 is a line sensor, 52 is a reduction optical system, 10 is a synchronous moving unit, 12 is a three-axis attitude adjustment device, 13
Is a defect signal extraction unit, and 14 is a defect determination processing unit.

【0039】この実施例では、投光器4を構成する光源
として蛍光灯41を用い、蛍光灯41の前面に当該蛍光
灯の長手方向に沿ってスリット42を設置し、円筒体1
である感光体ドラムの検査表面2に対して、その長軸が
上記円筒体1の軸心方向と直交する方向に設置し、帯状
の投写光像6を形成する。光源としての蛍光灯41は、
拡散光源として拡散面の照度が高く光量分布の均一性が
良好なことから選択した。本発明者等の実験によれば、
投光器4と円筒体1との間の光学的位置関係としては、
スリット42から検査表面3までの距離を約100m
m、スリット光の幅は約30mmとし、直径84mmφ
の円筒体1の表面2上において目視観察で約10mmの
スリット光の像(投写光像)を得るのが好ましい。
In this embodiment, a fluorescent lamp 41 is used as a light source forming the floodlight 4, and a slit 42 is provided on the front surface of the fluorescent lamp 41 along the longitudinal direction of the fluorescent lamp 41.
On the inspection surface 2 of the photoconductor drum, the major axis thereof is installed in the direction orthogonal to the axial direction of the cylindrical body 1 to form a strip-shaped projected light image 6. The fluorescent lamp 41 as a light source,
The diffused light source was selected because the illuminance of the diffused surface is high and the uniformity of the light amount distribution is good. According to the experiments by the present inventors,
As an optical positional relationship between the projector 4 and the cylindrical body 1,
The distance from the slit 42 to the inspection surface 3 is about 100 m
m, width of slit light is about 30 mm, diameter 84 mmφ
It is preferable to obtain a slit light image (projection light image) of about 10 mm on the surface 2 of the cylindrical body 1 by visual observation.

【0040】また、蛍光灯41に設置するスリット42
と受光器5を構成するラインセンサ51とは、同期移動
部10により円筒体1に対して同期して当該円筒体1の
軸心方向(長手方向に)沿って移動走査する。円筒体の
軸心方向に沿った走査が完了すると、表面検査体である
円筒体(ここでは感光体ドラム)1を駆動部11により
一定角度(上記帯状の投写光像の長手方向幅に相当する
角度)だけ回転させる。この円筒体1の長手方向走査と
円筒体1の回転走査を交互に順次行うことで円筒体1の
表面2の全域の走査がなされる。
A slit 42 installed on the fluorescent lamp 41
And the line sensor 51 constituting the light receiver 5 are moved and scanned in the axial direction (longitudinal direction) of the cylindrical body 1 in synchronization with the cylindrical body 1 by the synchronous movement unit 10. When the scanning along the axial direction of the cylindrical body is completed, the cylindrical body (photosensitive drum in this case) 1 which is the surface inspection body is driven by the drive unit 11 at a constant angle (corresponding to the width in the longitudinal direction of the belt-shaped projected light image). Rotate only). The entire area of the surface 2 of the cylindrical body 1 is scanned by alternately and sequentially performing longitudinal scanning of the cylindrical body 1 and rotational scanning of the cylindrical body 1.

【0041】円筒体1としての感光体ドラムの表面には
感光体を均一に塗布した鏡面であるため、スリット42
からの投写光は感光体ドラムの表面上に投影されて帯状
の投写光像6を形成する。この帯状の投写光像6の境界
部分8に視野を合わせたラインセンサ51は上記投写光
像6の境界部分8の境界線付近(境界部分近傍)の反射
光を縮小光学系52を通して受光する。
Since the surface of the photosensitive drum as the cylindrical body 1 is a mirror surface on which the photosensitive member is uniformly applied, the slit 42
Is projected onto the surface of the photosensitive drum to form a band-shaped projected light image 6. The line sensor 51 having a visual field aligned with the boundary portion 8 of the band-shaped projected light image 6 receives reflected light near the boundary line (near the boundary portion) of the boundary portion 8 of the projected light image 6 through the reduction optical system 52.

【0042】ラインセンサ51の受光視野9は3軸姿勢
調整装置52により上記境界部分8に一致するように設
定する。すなわち、受光視野9の方向は感光体の円周方
向に合わせられ、投写光像6の境界部分8が表面にへこ
みやふくらみ欠陥3の近傍を走査したとき、当該投写光
像6の境界線部(端縁部)が乱れ、受光視野9で散乱光
が受光される。ラインセンサ51はこの境界部分近傍の
反射光を光電変換し、その出力信号を欠陥信号抽出回路
13に与えて欠陥信号を抽出し、欠陥判定処理部14で
欠陥良否と欠陥種類判定装置の判定が行われる。
The light receiving field 9 of the line sensor 51 is set by the three-axis attitude adjusting device 52 so as to coincide with the boundary portion 8. That is, the direction of the light receiving field 9 is aligned with the circumferential direction of the photoconductor, and when the boundary portion 8 of the projected light image 6 scans the surface in the vicinity of the dent or bulge defect 3, the boundary line portion of the projected light image 6 concerned. The (edge portion) is disturbed, and the scattered light is received in the light receiving field 9. The line sensor 51 photoelectrically converts the reflected light in the vicinity of the boundary portion, supplies the output signal to the defect signal extraction circuit 13 to extract the defect signal, and the defect determination processing unit 14 determines whether the defect is good or not and the defect type determination device determines. Done.

【0043】図3は本発明による表面欠陥検査方法を適
用する装置構成の上記実施例の光学系を被検査体である
円筒体としての感光体ドラムの断面方向からみた模式図
であって、前記図2と同一符号は同一部分に対応する。
同図において、スリット42を通した蛍光灯41の光は
感光体ドラム(円筒体1)の表面上に投写光像6を形成
する。ラインセンサ51は感光体ドラムの円周方向にそ
の長軸を合わせて配置されている。
FIG. 3 is a schematic view of the optical system of the above-described embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied, as seen from the cross-sectional direction of the photosensitive drum as a cylindrical body to be inspected. The same reference numerals as those in FIG. 2 correspond to the same parts.
In the figure, the light of the fluorescent lamp 41 passing through the slit 42 forms a projected light image 6 on the surface of the photosensitive drum (cylindrical body 1). The line sensor 51 is arranged with its major axis aligned in the circumferential direction of the photosensitive drum.

【0044】ラインセンサ51が投写光像6を受光でき
る感光体ドラム円周方向の範囲61は、蛍光灯41とラ
インセンサ51の配置上の干渉から直径84mmφの感
光体ドラムにおいて感光体ドラム中心角度で約35度で
あった。本発明が主として対象とする表面欠陥は多層の
有機感光層からなるドラムの最表面の電荷輸送層に発生
する表面の微妙な「へこみ」や「ふくらみ」である。
The range 61 in the circumferential direction of the photosensitive drum in which the line sensor 51 can receive the projected light image 6 is due to the interference of the arrangement of the fluorescent lamp 41 and the line sensor 51 in the photosensitive drum having a diameter of 84 mmφ. It was about 35 degrees. The surface defects mainly targeted by the present invention are subtle “dents” and “bulges” on the surface generated in the outermost charge transport layer of the drum composed of a plurality of organic photosensitive layers.

【0045】従来の目視観察による検査では、前記図9
に示したように、投写光の境界線部分(境界部近傍)に
「へこみ」や「ふくらみ」欠陥を合わせるようにドラム
の位置を設定すると、当該境界線部分上の表面の凸凹に
よる微弱な散乱光と境界線部分から外側にはずれた部分
の間で散乱光の差異がみられ、本来直線となるスリット
光像の境界線が凸凹状の乱れた線として見える。
According to the conventional inspection by visual observation, as shown in FIG.
As shown in, when the drum position is set so that the "dent" and "bulge" defects are aligned with the boundary line (near the boundary) of the projected light, weak scattering due to surface irregularities on the boundary line is generated. There is a difference in the scattered light between the light and the part deviated from the boundary part to the outside, and the boundary line of the slit light image, which is originally a straight line, appears as an irregular line.

【0046】図4は表面欠陥を説明する円筒体の円周方
向の要部断面模式図であって、「へこみ」や「ふくら
み」欠陥を定量的に示すために、同図に示すように欠陥
34の半径と深さの比を用いて傾き341により表し、
感光体ドラムの円周方向の曲率による傾きを342で表
す。同図において、傾きで300分の1程度の「へこ
み」や「ふくらみ」に対しては、スリット42を通した
蛍光灯41の光を感光体ドラム(円筒体1)の長手方向
に投影して円周方向の境界を観察することで検出でき
た。しかしながら深さが数μmで、傾きで1000分の
1程度の非常に緩やかな「へこみ」は上記の方法では観
察することができない。
FIG. 4 is a schematic cross-sectional view of the main part of the cylindrical body in the circumferential direction for explaining the surface defect. In order to quantitatively show the "dent" or "bulge" defect, as shown in FIG. It is represented by a slope 341 using the radius-depth ratio of 34,
The inclination due to the curvature of the photosensitive drum in the circumferential direction is indicated by 342. In the figure, for a "dent" or "bulge" of about 1/300 in inclination, the light of the fluorescent lamp 41 passing through the slit 42 is projected in the longitudinal direction of the photosensitive drum (cylindrical body 1). It could be detected by observing the boundary in the circumferential direction. However, a very gentle “dent” having a depth of several μm and an inclination of about 1/1000 cannot be observed by the above method.

【0047】これは、図4に示すように「へこみ」欠陥
による表面の傾き341に比べ感光体ドラムの円周方向
の曲率による傾き342が大きくなり、円周方向の散乱
光の分布は曲率による影響が支配的となるため「へこ
み」による散乱光61を検出できないためである。観察
調査の結果、投写光像を感光体ドラムの円周方向に投影
して曲率のない感光体ドラムの長手方向の境界領域を観
察することで非常に緩やかな「へこみ」や「ふくらみ」
を検出できることがわかった。
As shown in FIG. 4, the inclination 342 due to the curvature in the circumferential direction of the photosensitive drum is larger than the inclination 341 on the surface due to the "dent" defect, and the distribution of scattered light in the circumferential direction depends on the curvature. This is because the influence becomes dominant and the scattered light 61 due to the “dent” cannot be detected. As a result of observation and investigation, by projecting the projected light image in the circumferential direction of the photoconductor drum and observing the boundary region in the longitudinal direction of the photoconductor drum with no curvature, very gentle “dents” and “bulges”
It turns out that can be detected.

【0048】図5は表面欠陥を説明する円筒体の軸心方
向の要部断面模式図であって、前記各図と同一符号は同
一部分に対応する。曲率を持たない感光体ドラムの長手
方向(軸心方向)の「へこみ」や「ふくらみ」も、その
部分からの散乱光61を受光して検出するものである。
図6は本発明による表面欠陥検査方法を適用する装置構
成のさらに他の実施例を説明する模式図であって、円筒
体(感光体ドラム)全面の走査時間を短縮するための装
置構成である。
FIG. 5 is a schematic cross-sectional view of the main part of the cylindrical body in the axial direction for explaining the surface defect, and the same reference numerals as those in the above figures correspond to the same parts. The "dent" or "bulge" in the longitudinal direction (axial direction) of the photosensitive drum having no curvature is also detected by receiving the scattered light 61 from that portion.
FIG. 6 is a schematic view for explaining still another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied, and is an apparatus configuration for shortening the scanning time of the entire surface of the cylindrical body (photosensitive drum). .

【0049】同図において、前記実施例の各図と同一符
号は同一部分に対応し、40は面状光源を有する投光
器、401は遮光板、421はスリット状開口部、50
1,502は受光器である。蛍光灯光源等から構成した
面状光源を有する投光器40に対して、複数の受光器5
01,502を配置する。面状光源40には感光体1の
軸線方向と直交する方向に長手方向をもつスリット状開
口部421をもつ遮光板401を全面に設置してなる。
In the figure, the same reference numerals as those in the respective figures of the above-mentioned embodiment correspond to the same portions, 40 is a projector having a planar light source, 401 is a light shielding plate, 421 is a slit-shaped opening, and 50 is a slit.
Reference numerals 1 and 502 are light receivers. A plurality of light receivers 5 are provided for the projector 40 having a planar light source composed of a fluorescent light source or the like.
01 and 502 are arranged. The surface light source 40 is provided with a light shielding plate 401 having a slit-shaped opening 421 having a longitudinal direction in a direction orthogonal to the axial direction of the photoconductor 1 on the entire surface.

【0050】この構成で、スリット状開口部421とラ
インセンサ51をもつ複数の受光器501,502とを
矢印B,C方向に同期して移動させる同期移動手段を設
け、また感光体ドラムを矢印A方向に駆動する駆動手段
をもうけることにより感光体ドラム全面を走査する。こ
の構成により、自動化ラインにおける表面検査体である
円筒体としての感光体ドラムの搬入搬出が容易になるま
た、本実施例では、面状光源をもつ投光器40とするこ
とで、投光角度や受光角度などの光学的条件の設定や変
更が容易になることから、感光体ドラムを軸心方向を縦
方向に設置し、感光体ドラムの下端部を保持して回転す
る機構とするのが好ましい。
With this structure, there is provided a synchronous moving means for synchronously moving the slit-shaped opening 421 and the plurality of light receivers 501 and 502 having the line sensor 51 in the directions of arrows B and C, and the photosensitive drum is indicated by an arrow. The entire surface of the photosensitive drum is scanned by providing a driving means for driving in the A direction. With this configuration, it becomes easy to carry in and out the photosensitive drum as a cylindrical body that is a surface inspection body in the automation line. In addition, in this embodiment, the light projector 40 having a planar light source is used, so that the light projection angle and the light reception can be achieved. Since it is easy to set or change the optical conditions such as the angle, it is preferable that the photosensitive drum is installed in the longitudinal direction and the lower end portion of the photosensitive drum is held and rotated.

【0051】図7は受光器を構成するラインセンサの信
号出力の説明図であって、71は正常表面でのラインセ
ンサの信号出力(暗電流レベル)、72は欠陥部分での
ラインセンサの信号出力、73は判別のための閾値で、
横軸にラインセンサの画素位置を、縦軸にラインセンサ
の信号出力を示す。同図において、欠陥のない正常表面
の信号がほぼ暗電流レベル71であり、欠陥部分からの
信号72は正方向に表れる。これを、閾値73により判
別して欠陥信号を抽出する。
FIG. 7 is an explanatory view of the signal output of the line sensor which constitutes the photodetector, where 71 is the signal output (dark current level) of the line sensor on the normal surface, and 72 is the signal of the line sensor at the defective portion. Output, 73 is a threshold for discrimination,
The horizontal axis shows the pixel position of the line sensor, and the vertical axis shows the signal output of the line sensor. In the figure, the signal on the normal surface having no defect is almost the dark current level 71, and the signal 72 from the defective portion appears in the positive direction. This is discriminated by the threshold value 73 and the defect signal is extracted.

【0052】ラインセンサの投写光像受光位置の調整精
度は被検査面上のラインセンサ分解能の10倍程度あれ
ばよく、直径84mmφの被検査体である感光体ドラム
を縮小光学径の光学倍率5倍程度で受光する場合におい
て0.01度程度であり、これらは前記図2に示した3
軸姿勢調整装置12で実現できる。この姿勢調整は、調
整工数の削減を目的として本出願人の出願にかかる実開
平4−64763号で提案した3軸姿勢調整機構を採用
するのが好適であり、図2示したようにラインセンサ5
1の長手方向軸Z,ラインセンサの光線を受光する軸
X,短手方向軸Y回りの自動姿勢調整により具体化す
る。特に、軸X回りの回転により投写光像6の境界部分
8に視野9が一致するように調整する。
The accuracy of adjusting the projected light image receiving position of the line sensor may be about 10 times as high as the resolution of the line sensor on the surface to be inspected. When the light is received twice as much, it is about 0.01 degree.
This can be realized by the axis attitude adjusting device 12. For this attitude adjustment, it is preferable to adopt the three-axis attitude adjusting mechanism proposed in Japanese Utility Model Application No. 4-64763 filed by the present applicant for the purpose of reducing the adjustment man-hour, and as shown in FIG. 5
This is embodied by automatic posture adjustment around the longitudinal axis Z of 1, the axis X for receiving the light beam of the line sensor, and the lateral axis Y. Particularly, the field of view 9 is adjusted so as to match the boundary portion 8 of the projected light image 6 by the rotation about the axis X.

【0053】なお、上記実施例では、投光器を構成する
光源として直管蛍光灯を用いるものとして説明したが、
これに限らず、つぎのような構成としてもよい。図8は
本発明による表面欠陥検査方法を適用する装置構成のさ
らにまた他の実施例を説明する模式図であって、81
a,81bはハロゲン光源、82a,82bはオプチカ
ルファイバー束、84はレンズホルダ、85は完全拡散
面レンズ、前記実施例と同一符号は同一部分に対応す
る。
In the above embodiment, the straight tube fluorescent lamp is used as the light source forming the floodlight.
The configuration is not limited to this, and the following configuration may be adopted. FIG. 8 is a schematic view for explaining still another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied.
Reference numerals a and 81b are halogen light sources, reference numerals 82a and 82b are optical fiber bundles, reference numeral 84 is a lens holder, reference numeral 85 is a perfect diffusing surface lens, and the same reference numerals as those in the above embodiment correspond to the same portions.

【0054】同図に示すように、投光器4を構成するハ
ロゲン光源81a,81bの光をオプチカルファイバー
束82a,82bによりスリット光とし、このオプチカ
ルファイバー束82a,82bの端面の前面に、表面を
散乱処理したシリンダーレンズ等による完全拡散面レン
ズ85を付加して白色散乱光を発するようにしたことを
可とする。
As shown in the figure, the light from the halogen light sources 81a and 81b constituting the projector 4 is made into slit light by the optical fiber bundles 82a and 82b, and the surface is scattered on the front surface of the end faces of the optical fiber bundles 82a and 82b. It is possible to add a perfect diffusing surface lens 85 such as a treated cylinder lens so as to emit white scattered light.

【0055】この実施例によっても、上記各実施例と同
様の効果がえられる。なお、対象となる被検査体は、上
記で説明した実施例における鏡面加工した金属ドラム上
に塗布された透光性を持つ感光体に限るものではなく、
レーザプリンタ用に金属ドラム基板を粗面加工してある
感光体ドラムであっても、また感光体ドラムに限らず円
筒体の基板に塗布した表面層であっても、さらに表面層
が透光性のない皮膜であっても塗布した表面層が均一で
鏡面状であるから、上記各実施例と同様に非常に緩やか
なへこみ欠陥の検出に有効である。
Also in this embodiment, the same effect as that of each of the above embodiments can be obtained. The object to be inspected is not limited to the light-transmissive photoreceptor applied on the mirror-finished metal drum in the above-described embodiment,
Even if it is a photoconductor drum with a roughened metal drum substrate for a laser printer, or a surface layer applied to a cylindrical substrate as well as the photoconductor drum, the surface layer is transparent. Even in the case of a non-coated film, since the applied surface layer is uniform and has a mirror-like surface, it is effective for detecting a very gentle dent defect as in each of the above examples.

【0056】[0056]

【発明の効果】以上説明したように、 本発明によれ
ば、従来の目視検出の検査方法を踏まえ、感光体ドラム
等の円筒体を被検査体とした当該表面に対し白色散乱光
のスリット光を円筒体円周方向に照射し、当該円筒体の
表面上に形成した投写光像の円筒体長手方向の境界線部
分近傍を受光器を構成するラインセンサの受光位置とす
るので、当該表面の非常に緩やかな「へこみ」や「ふく
らみ」欠陥の検出が容易となる。
As described above, according to the present invention, based on the conventional inspection method of visual detection, the slit light of the white scattered light is applied to the surface of the cylindrical body such as the photosensitive drum as the inspection object. Is irradiated in the circumferential direction of the cylindrical body, and the vicinity of the boundary line portion in the longitudinal direction of the cylindrical body of the projection light image formed on the surface of the cylindrical body is set as the light receiving position of the line sensor that constitutes the light receiver. This makes it easy to detect very gentle “dents” and “bulges” defects.

【0057】また、受光器には縮小光学系を用いること
で検査装置の小型化が可能となり、光源に蛍光灯のよう
な分光分布の広い白色散乱光を用いることで、レーザ光
を投光して検出する従来方式における干渉縞の発生を回
避して表面欠陥位置を容易に抽出することができる等、
欠陥信号の抽出が容易な表面欠陥検査方法とその装置を
提供することができる。
Further, the inspection device can be downsized by using a reduction optical system for the light receiver, and by using white scattered light having a wide spectral distribution such as a fluorescent lamp for the light source, the laser light is projected. It is possible to easily extract the surface defect position while avoiding the occurrence of interference fringes in the conventional method of detecting by
It is possible to provide a surface defect inspection method and a device therefor which can easily extract a defect signal.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による表面欠陥検査方法を適用する装
置構成の1実施例を説明する模式図である。
FIG. 1 is a schematic diagram illustrating one embodiment of an apparatus configuration to which a surface defect inspection method according to the present invention is applied.

【図2】 本発明による表面欠陥検査方法を適用する装
置構成の他の実施例を説明する模式図である。
FIG. 2 is a schematic diagram illustrating another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied.

【図3】 本発明による表面欠陥検査方法を適用する装
置構成の上記実施例の光学系を被検査体である円筒体と
しての感光体ドラムの断面方向からみた模式図である。
FIG. 3 is a schematic view of the optical system of the above-described embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied, as seen from the cross-sectional direction of a photosensitive drum as a cylindrical body that is an inspection object.

【図4】 表面欠陥を説明する要部断面模式図である。FIG. 4 is a schematic sectional view of an essential part for explaining a surface defect.

【図5】 表面欠陥を説明する円筒体の軸心方向の要部
断面模式図である。
FIG. 5 is a schematic cross-sectional view of a main part in the axial direction of a cylindrical body for explaining a surface defect.

【図6】 本発明による表面欠陥検査方法を適用する装
置構成のさらに他の実施例を説明する模式図である。
FIG. 6 is a schematic view for explaining still another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied.

【図7】 受光器を構成するラインセンサの信号出力の
説明図である。
FIG. 7 is an explanatory diagram of a signal output of a line sensor which constitutes a light receiver.

【図8】 本発明による表面欠陥検査方法を適用する装
置構成のさらにまた他の実施例を説明する模式図であ
る。
FIG. 8 is a schematic diagram illustrating still another embodiment of the apparatus configuration to which the surface defect inspection method according to the present invention is applied.

【図9】 感光体ドラムの表面に生ずる各種欠陥を説明
するための感光体ドラムの要部断面図である。
FIG. 9 is a cross-sectional view of a main part of a photosensitive drum for explaining various defects that occur on the surface of the photosensitive drum.

【図10】 感光体ドラムの表面に生ずる各種欠陥の説
明図である。
FIG. 10 is an explanatory diagram of various defects that occur on the surface of the photosensitive drum.

【図11】 従来の感光体ドラム表面の自動検査装置の
第1例の説明図である。
FIG. 11 is an explanatory diagram of a first example of a conventional automatic inspection device for the surface of a photosensitive drum.

【図12】 従来の円筒体表面の自動検査装置の第2例
の説明図である。
FIG. 12 is an explanatory diagram of a second example of a conventional automatic inspection device for the surface of a cylindrical body.

【図13】 図12の従来例で使用するレーザの波長領
域の説明図である。
13 is an explanatory diagram of a wavelength region of a laser used in the conventional example of FIG.

【図14】 従来の円筒体表面の自動検査装置の第3例
の説明図である。
FIG. 14 is an explanatory diagram of a third example of a conventional automatic inspection device for the surface of a cylindrical body.

【図15】 従来の円筒体表面の自動検査装置の第4例
の説明図である。
FIG. 15 is an explanatory diagram of a fourth example of the conventional automatic inspection device for the surface of a cylindrical body.

【図16】 従来の円筒体表面の自動検査装置の第5例
の説明図である。
FIG. 16 is an explanatory diagram of a fifth example of the conventional automatic inspection device for the surface of a cylindrical body.

【図17】 2層の反射層からなる感光体ドラムの感光
層の反射光が干渉する場合の対策を説明する構成図であ
る。
FIG. 17 is a configuration diagram illustrating a countermeasure in the case where reflected light from a photosensitive layer of a photosensitive drum including two reflective layers interferes with each other.

【図18】 2層の反射層からなる感光体ドラムの感光
層の反射光が干渉する場合の受光状態の説明図である。
FIG. 18 is an explanatory diagram of a light receiving state when reflected light from a photosensitive layer of a photosensitive drum including two reflective layers interferes with each other.

【図19】 従来の円筒体表面の自動検査装置の第6例
の説明図である。
FIG. 19 is an explanatory diagram of a sixth example of a conventional automatic inspection device for the surface of a cylindrical body.

【符号の説明】[Explanation of symbols]

1・・・・被検査体である円筒体、2・・・・被検査体
の表面、3・・・・表面欠陥、4・・・・投光器、41
・・・・蛍光灯、42・・・・スリット、5・・・・受
光器、51・・・・ラインセンサ、52・・・・縮小光
学系、6・・・・投写光像、7・・・・受光器の視野、
8・・・・投写光像の境界部分、11・・・・円筒体の
駆動部、10・・・・同期移動部、12・・・・3軸姿
勢調整装置、13・・・・欠陥信号抽出部、14・・・
・欠陥判定処理部
DESCRIPTION OF SYMBOLS 1 ...- Cylindrical body to be inspected, 2 ... Surface of inspected body, 3 ...- Surface defect, 4 ...- Projector, 41
.... Fluorescent lamp, 42 ... Slit, 5 ... Light receiver, 51 ... Line sensor, 52 ... Reduction optical system, 6 ... Projected light image, 7 ... ... View of receiver,
8 ... ・ Boundary portion of projected light image, 11 ... Cylindrical drive unit, 10 ... Synchronous moving unit, 12 ... Triaxial posture adjusting device, 13 ... Defect signal Extraction unit, 14 ...
・ Defect determination processing unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒体の表面にその軸心方向と直交する
端縁を有する投写光像を形成し、前記形成された投写光
像の前記円筒体の軸心方向境界部分における変化を検出
することにより、前記円筒体の表面欠陥を検出すること
を特徴とする表面欠陥検査方法。
1. A projection light image having an edge perpendicular to the axial direction of the cylinder is formed on a surface of the cylinder, and a change in the formed projection light image at a boundary portion in the axial direction of the cylinder is detected. The surface defect inspection method is characterized by detecting the surface defect of the cylindrical body.
【請求項2】 円筒体の表面にその軸心方向と直交する
長軸を有する帯状の投写光像を前記円筒体の軸心方向に
沿って移動形成し、前記形成された帯状の投写光像の前
記円筒体の軸心方向境界部分における変化を検出するこ
とにより、前記円筒体の表面欠陥を前記軸心方向に連続
して検出することを特徴とする表面欠陥検査方法。
2. A strip-shaped projected light image having a long axis orthogonal to the axial direction of the cylindrical body is formed along the axial direction of the cylindrical body by movement, and the formed projected optical image of the strip shape is formed. The surface defect inspection method is characterized in that the surface defect of the cylindrical body is continuously detected in the axial direction by detecting a change in a boundary portion of the cylindrical body in the axial direction.
【請求項3】 円筒体を回転させ、その表面に当該円筒
体の軸心方向と直交する長軸を有する帯状の投写光像を
前記円筒体の軸心方向に沿って移動形成し、前記形成さ
れた帯状の投写光像の前記円筒体の軸心方向境界部分に
おける変化を前記円筒体の軸心方向に連続して検出する
ことにより前記円筒体表面全域の表面欠陥を検出するこ
とを特徴とする表面欠陥検査方法。
3. A cylindrical body is rotated, and a band-shaped projected light image having a long axis orthogonal to the axial direction of the cylindrical body is formed on the surface by moving along the axial direction of the cylindrical body. Characterized in that a surface defect on the entire surface of the cylindrical body is detected by continuously detecting a change in the axial direction boundary portion of the cylindrical body of the formed band-shaped projected light image in the axial center direction of the cylindrical body. Surface defect inspection method.
【請求項4】 円筒体の表面に光を照射し、その反射光
の変化を検出して当該円筒体の表面欠陥を検出する表面
欠陥検出装置において、 前記円筒体の表面にその軸心方向と直交する長軸を有す
る帯状の投写光像を形成する投光器と、受光視野の長手
方向を前記投写光像の前記円筒体の軸心方向と直交する
境界部分に一致させて前記投写光像の前記軸心方向境界
部分近傍の反射光を検知する受光器とを具備し、前記円
筒体の表面欠陥を前記軸心方向境界部分近傍において検
出することを特徴とする表面欠陥検査装置。
4. A surface defect detecting apparatus for irradiating a surface of a cylindrical body with light and detecting a change in reflected light thereof to detect a surface defect of the cylindrical body, wherein A projector for forming a belt-shaped projection light image having orthogonal long axes, and a projection part of the projection light image in which a longitudinal direction of a light receiving field is aligned with a boundary portion orthogonal to the axial center direction of the cylindrical body of the projection light image. A surface defect inspecting apparatus, comprising: a photodetector that detects reflected light in the vicinity of a boundary portion in the axial direction, and detects a surface defect of the cylindrical body in the vicinity of the boundary portion in the axial direction.
【請求項5】 円筒体の表面に光を照射し、その反射光
の変化を検出して当該円筒体の表面欠陥を検出する表面
欠陥検出装置において、 前記円筒体の表面にその軸心方向と直交する長軸を有す
る帯状の投写光像を形成する投光器と、受光視野の長手
方向を前記帯状の投写光像の前記円筒体の軸心方向と直
交する境界部分に一致させて前記帯状の投写光像の前記
軸心方向境界部分近傍の反射光を検知する受光器と、前
記投光器と前記受光器とを前記円筒体の軸心方向に沿っ
て同期移動させる同期移動部とを具備し、前記円筒体の
表面欠陥を前記軸心方向境界部分近傍において前記軸心
方向に連続して検出することを特徴とする表面欠陥検査
装置。
5. A surface defect detecting device for irradiating light on the surface of a cylindrical body and detecting a change in reflected light thereof to detect a surface defect of the cylindrical body, comprising: A projector that forms a strip-shaped projected light image having orthogonal long axes, and the strip-shaped projection in which the longitudinal direction of the light-receiving visual field is aligned with a boundary portion of the strip-shaped projected light image that is orthogonal to the axial direction of the cylindrical body. A light receiver for detecting reflected light in the vicinity of a boundary portion of the optical image in the axial direction, and a synchronous movement unit for synchronously moving the light projector and the optical receiver along the axial direction of the cylindrical body, A surface defect inspecting apparatus, wherein surface defects of a cylindrical body are continuously detected in the axial direction in the vicinity of the boundary portion in the axial direction.
【請求項6】 円筒体の表面に光を照射し、その反射光
の変化を検出して当該円筒体の表面欠陥を検出する表面
欠陥検出装置において、 前記円筒体の表面にその軸心方向と直交する長軸を有す
る帯状の投写光像を形成する投光器と、受光視野の長手
方向を前記帯状の投写光像の前記円筒体の軸心方向と直
交する境界部分に一致させて前記帯状の投写光像の前記
軸心方向境界部分近傍の反射光を検知する受光器と、前
記投光器と前記受光器とを前記円筒体の軸心方向に沿っ
て同期移動させる同期移動部と、前記円筒体を回転させ
る円筒体回転部と、前記受光部の受光信号から前記回転
体の表面の表面欠陥信号を抽出する欠陥信号抽出部と、
前記欠陥信号抽出部で抽出された表面欠陥信号から当該
欠陥の良否と欠陥の種類を判定する欠陥判定処理部とを
具備し、前記円筒体の表面欠陥を前記円筒体の表面全域
で連続して検出することを特徴とする表面欠陥検査装
置。
6. A surface defect detecting device for irradiating a surface of a cylindrical body with light and detecting a change in reflected light thereof to detect a surface defect of the cylindrical body, wherein the surface of the cylindrical body has an axial direction thereof. A projector that forms a strip-shaped projected light image having orthogonal long axes, and the strip-shaped projection in which the longitudinal direction of the light-receiving visual field is aligned with a boundary portion of the strip-shaped projected light image that is orthogonal to the axial direction of the cylindrical body. A light receiver for detecting reflected light in the vicinity of the axial center boundary portion of the optical image, a synchronous moving unit for synchronously moving the light projector and the light receiver along the axial direction of the cylindrical body, and the cylindrical body. A cylindrical rotating part for rotating, and a defect signal extracting part for extracting a surface defect signal of the surface of the rotating part from a light receiving signal of the light receiving part,
The defect signal extraction unit is provided with a defect determination processing unit that determines the quality of the defect and the type of defect from the surface defect signal extracted by the defect signal extraction unit, and the surface defects of the cylindrical body are continuously applied over the entire surface of the cylindrical body. A surface defect inspection device characterized by detecting.
JP27170892A 1992-10-09 1992-10-09 Method for inspecting surface defect and its device Pending JPH06123707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27170892A JPH06123707A (en) 1992-10-09 1992-10-09 Method for inspecting surface defect and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27170892A JPH06123707A (en) 1992-10-09 1992-10-09 Method for inspecting surface defect and its device

Publications (1)

Publication Number Publication Date
JPH06123707A true JPH06123707A (en) 1994-05-06

Family

ID=17503741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27170892A Pending JPH06123707A (en) 1992-10-09 1992-10-09 Method for inspecting surface defect and its device

Country Status (1)

Country Link
JP (1) JPH06123707A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082060A (en) * 2000-06-30 2002-03-22 Nissan Motor Co Ltd Surface defect inspecting method and device
JP2006258726A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Defect-inspecting method
JP2008020219A (en) * 2006-07-11 2008-01-31 Ricoh Co Ltd Method and apparatus for inspecting electrophotographic photoreceptor
JP2008224523A (en) * 2007-03-14 2008-09-25 Denso Corp Inspection device and inspection method of screw component
CN114967395A (en) * 2022-05-31 2022-08-30 珠海美景联合科技有限公司 Selenium drum integration automatic assembly equipment of subsidiary NG detection function

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082060A (en) * 2000-06-30 2002-03-22 Nissan Motor Co Ltd Surface defect inspecting method and device
JP2006258726A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Defect-inspecting method
JP2008020219A (en) * 2006-07-11 2008-01-31 Ricoh Co Ltd Method and apparatus for inspecting electrophotographic photoreceptor
JP2008224523A (en) * 2007-03-14 2008-09-25 Denso Corp Inspection device and inspection method of screw component
CN114967395A (en) * 2022-05-31 2022-08-30 珠海美景联合科技有限公司 Selenium drum integration automatic assembly equipment of subsidiary NG detection function

Similar Documents

Publication Publication Date Title
US7663745B2 (en) Plural light source and camera to detect surface flaws
KR20020097009A (en) Defect detector and method of detecting defect
EP1703274B1 (en) Defect inspecting method
JPH06118007A (en) Method and device for inspecting defect on cylinder surface
JPH06123707A (en) Method for inspecting surface defect and its device
JP4215473B2 (en) Image input method, image input apparatus, and image input program
JPH10206335A (en) Surface defect inspecting device and inspecting method
JP3701477B2 (en) Cylindrical surface inspection device
US7009196B2 (en) Inspection apparatus for inspecting resist removal width
JPH07128240A (en) Inspection device of electrophotographic photoreceptor defect
JPH08219999A (en) Method and apparatus for calibrating surface defect-inspection optical system
JPH07239304A (en) Detector for detecting defect of surface layer
JP2712940B2 (en) Surface layer defect detector
JP3267062B2 (en) Surface layer defect detector
JPH11326236A (en) Surface layer defect-detection device
JPH0518728A (en) Surface inspection apparatus
JP3469714B2 (en) Photoconductor surface inspection method and photoconductor surface inspection device
US20070146692A1 (en) Fiber optic specular surface flaw detection
JP2819892B2 (en) Surface layer defect detector
JPH07128241A (en) Inspection device of electrophotographic photoreceptor defect
JPH0755710A (en) Defect inspecting device for drum of photoreceptor
JPH04169840A (en) Method and apparatus for inspecting flaw of circumferential surface
JPH09113463A (en) Surface defect inspection apparatus
JP2984388B2 (en) Surface inspection method
JPH08101131A (en) Surface flaw inspecting device