JP2006351441A - Optical sensor device - Google Patents

Optical sensor device Download PDF

Info

Publication number
JP2006351441A
JP2006351441A JP2005178402A JP2005178402A JP2006351441A JP 2006351441 A JP2006351441 A JP 2006351441A JP 2005178402 A JP2005178402 A JP 2005178402A JP 2005178402 A JP2005178402 A JP 2005178402A JP 2006351441 A JP2006351441 A JP 2006351441A
Authority
JP
Japan
Prior art keywords
light
divided
optical sensor
area
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005178402A
Other languages
Japanese (ja)
Other versions
JP4534877B2 (en
Inventor
Yuichi Inoue
祐一 井上
Hiroshi Nakamoto
浩 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2005178402A priority Critical patent/JP4534877B2/en
Publication of JP2006351441A publication Critical patent/JP2006351441A/en
Application granted granted Critical
Publication of JP4534877B2 publication Critical patent/JP4534877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect foreign matters by improving detecting sensitivity even if the distance between a floodlight and a light receiver become larger. <P>SOLUTION: As for two-dimensional CCD 11 of a light receiver to receive projection of the light from a floodlight, the measurement region 19 to measure a light receiving amount is divided into a plurality of divided regions 19a along the moving direction of the foreign matters 5 that move relatively so that the foreign matters 5 are detected based on changes of a receiving light amount, and the ratio of shading area of the foreign matters 5 occupying against the area of divided region 19a is raised, and the detecting sensitivity is enhanced by enlarging the changes of the light amount by shading of the foreign matters 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、検出領域に対して光を投光し、その光を受光することによって、検出領域に存在する異物等の検出に好適な光学式センサ装置に関する。   The present invention relates to an optical sensor device suitable for detecting a foreign substance or the like existing in a detection area by projecting light to the detection area and receiving the light.

従来、投光手段から検出領域に平行光を投光し、受光手段でその平行光を受光し、前記検出領域に存在する物体によって遮られる受光量の変化に基いて、前記物体の偏心量などを測定するようにした装置がある(例えば、特許文献1参照)。   Conventionally, the parallel light is projected from the light projecting means to the detection area, the parallel light is received by the light receiving means, and the amount of eccentricity of the object is determined based on the change in the amount of received light blocked by the object existing in the detection area. There is an apparatus that measures the above (for example, see Patent Document 1).

このような検出原理に基いて、例えば、図17に示すように、ガラス基板等のワーク1上に存在する異物5を検出するようにした装置がある。   On the basis of such a detection principle, for example, as shown in FIG. 17, there is an apparatus that detects a foreign object 5 existing on a workpiece 1 such as a glass substrate.

この異物検出装置は、ワーク1上に平行光2’を投光する投光器3’と、この平行光2’を受光する受光器4’とを備えており、ワーク1に対して、投光器3’および受光器4’を矢符A方向に移動させながらワーク1上に存在する異物5を、受光量の変化に基いて検出するものである。   The foreign object detection apparatus includes a light projector 3 ′ that projects parallel light 2 ′ on the work 1 and a light receiver 4 ′ that receives the parallel light 2 ′. The foreign object 5 existing on the workpiece 1 is detected based on the change in the amount of received light while moving the light receiver 4 ′ in the direction of the arrow A.

図18は、図17の投光器3’および受光器4’の配置および平行光2’を示す構成図である。   FIG. 18 is a configuration diagram showing the arrangement of the light projector 3 ′ and the light receiver 4 ′ in FIG. 17 and the parallel light 2 ′.

投光器3’は、半導体レーザ8と、この半導体レーザ8からの光を平行光にするコリメートレンズ9と、円形の開口10a’を有するスリット10’とを備えており、ワーク1上に平行光2’を投光する。   The light projector 3 ′ includes a semiconductor laser 8, a collimator lens 9 that converts the light from the semiconductor laser 8 into parallel light, and a slit 10 ′ having a circular opening 10 a ′. 'Light up.

一方、受光器4’は、集光レンズ25と、この集光レンズ25からの光を受光するフォトダイオード26とを備えており、このフォトダイオード26によって受光される受光量の変化に基いて、ワーク1上の異物5を検出するものである。
特開平8−247717号公報
On the other hand, the light receiver 4 ′ includes a condenser lens 25 and a photodiode 26 that receives light from the condenser lens 25, and based on a change in the amount of light received by the photodiode 26, The foreign object 5 on the workpiece 1 is detected.
JP-A-8-247717

かかる従来例では、投光器3’のスリット10’から出射された平行光2’は、光の回折現象によって広がっていくために、図18に示すように、異物5が、ワーク1上の投光器3’に近い側に存在している場合には、投光面積に対する異物5による遮光面積が大きいので、受光器4’で受光される受光量の変化が大きく、異物5を検出できるけれども、異物5が、投光器3’から離れてワーク1上の受光器4’に近い側に存在している場合には、平行光2’の広がりのために、投光面積に対する異物5による遮光面積が相対的に小さくなって、受光量の変化が小さくなり、異物5の検出が困難となる。   In such a conventional example, since the parallel light 2 ′ emitted from the slit 10 ′ of the projector 3 ′ spreads due to the light diffraction phenomenon, as shown in FIG. In the case of being present on the side close to ', since the light shielding area by the foreign matter 5 with respect to the projection area is large, the change in the amount of light received by the light receiver 4' is large and the foreign matter 5 can be detected. However, when the light is present on the side close to the light receiver 4 ′ on the workpiece 1 away from the light projector 3 ′, the light shielding area by the foreign matter 5 relative to the light projection area is relatively large due to the spread of the parallel light 2 ′. As a result, the change in the amount of received light is reduced, making it difficult to detect the foreign material 5.

そこで、図18とは、投光器3’と受光器4’とを、ワーク1に対して逆に配置した装置を、一組追加し、図18の配置では、検出できない受光器4’に近い側に存在する異物5を、追加した組の装置で検出することが考えられるが、ガラス基板等のワーク1自体が大型化すると、投光器3’と受光器4’との距離は、大きくならざるを得ず、このため、投光器3’と受光器4’との二組の装置で検出しようとしても、平行光2’の広がりによって、投光器3’と受光器4’との中間の領域に存在する異物5の検出は、困難である。   18 is a side closer to the light receiver 4 ′ that cannot be detected in the arrangement of FIG. 18 by adding a pair of devices in which the projector 3 ′ and the light receiver 4 ′ are arranged opposite to the workpiece 1. However, if the workpiece 1 such as a glass substrate is increased in size, the distance between the light projector 3 ′ and the light receiver 4 ′ must be increased. For this reason, even if it tries to detect with two sets of apparatus of light projector 3 'and light receiver 4', it exists in the area | region between light projector 3 'and light receiver 4' by the spread of parallel light 2 '. It is difficult to detect the foreign material 5.

本発明は、上述のような点に鑑みて為されたものであって、投光器と受光器との距離が大きくても検出できるように検出感度を高めることを目的としている。   The present invention has been made in view of the above-described points, and an object of the present invention is to increase detection sensitivity so that detection is possible even when the distance between the projector and the light receiver is large.

本発明では、上述の目的を達成するために、次のように構成している。   The present invention is configured as follows in order to achieve the above-described object.

すなわち、本発明の光学式センサ装置は、平行光を投光する投光手段と、該投光手段からの投光を受光する二次元のCCDを有する受光手段とを備え、前記両手段に対して相対的に移動する物体を、該物体で遮光されることにより変化する受光量に基いて検出する光学式センサ装置であって、前記CCDは、受光量を計測する計測領域が前記移動方向に沿って複数に分割されてなる分割領域を有し、前記投光手段は、複数の前記分割領域に投光し、複数の前記分割領域の受光量に基いて、前記物体を検出するものである。   That is, the optical sensor device of the present invention comprises a light projecting means for projecting parallel light and a light receiving means having a two-dimensional CCD for receiving the light projected from the light projecting means. An optical sensor device that detects a relatively moving object based on the amount of received light that is changed by being shielded from light by the object, wherein the CCD has a measurement region for measuring the amount of received light in the moving direction. A plurality of divided areas, and the light projecting unit projects the plurality of divided areas and detects the object based on the amount of light received by the plurality of divided areas. .

ここで、分割領域は、物体の遮光による光量の変化が大きくなるように可及的に小さいのが好ましい。   Here, it is preferable that the divided area is as small as possible so that the change in the amount of light due to the light shielding of the object becomes large.

計測領域は、CCDの撮像領域の一部とするが好ましいが、CCDが小さい場合には、撮像領域の全領域としてもよい。計測領域を、CCDの撮像領域の一部とする場合には、撮像領域における計測領域の位置は固定としてもよいが、可変であるのが好ましい。   The measurement area is preferably a part of the imaging area of the CCD. However, when the CCD is small, it may be the entire imaging area. When the measurement area is a part of the imaging area of the CCD, the position of the measurement area in the imaging area may be fixed, but is preferably variable.

投光手段は、複数の分割領域の全ての分割領域を覆うように投光するものであるのが好ましいが、その一部の複数の分割領域を覆うように投光するものであってもよい。   The light projecting means preferably projects light so as to cover all the divided areas of the plurality of divided areas, but may project light so as to cover some of the divided areas. .

なお、複数の分割領域の受光量は、必ずしも各分割領域毎の受光量として用いる場合に限られず、複数の分割領域の全領域の受光量として用いてもよい。   Note that the received light amount of the plurality of divided regions is not necessarily limited to the case where the received light amount is used for each divided region, and may be used as the received light amount of all the divided regions.

本発明によると、計測領域を複数に分割した各分割領域の受光量に基いて、物体を検出するので、分割領域の面積に対して物体の遮光面積が占める比率を大きなものとすることができ、物体の遮光による光量の変化が大きなものとなり、検出感度が向上する。   According to the present invention, since the object is detected based on the amount of light received in each divided area obtained by dividing the measurement area into a plurality of areas, the ratio of the light shielding area of the object to the area of the divided area can be increased. The change in the amount of light due to the light shielding of the object becomes large and the detection sensitivity is improved.

本発明の一つの実施態様においては、前記投光手段は、前記移動方向に長い開口のスリットを備え、前記分割領域は、想定される前記物体によって遮光される受光量の変化によって該物体を検出できる大きさに分割されている。   In one embodiment of the present invention, the light projecting means includes a slit having an opening that is long in the moving direction, and the divided area detects the object based on a change in the amount of light received by the object. Divided into as large as possible.

この実施態様によると、投光手段では、移動方向に長いスリット状の平行光を、CCDの計測領域の複数の分割領域に投光することができる一方、分割領域の大きさは、想定される物体のサイズや形状に応じて設定されるので、検出感度が向上する。   According to this embodiment, the light projecting means can project slit-shaped parallel light that is long in the moving direction to a plurality of divided areas of the measurement area of the CCD, while the size of the divided areas is assumed. Since it is set according to the size and shape of the object, the detection sensitivity is improved.

本発明の他の実施態様においては、前記計測領域の前記移動方向に沿う幅は、前記物体が前記計測領域に対応する検出領域を通過するのに要する時間が、受光量の計測周期よりも大きくなるように設定されている。   In another embodiment of the present invention, the width of the measurement region along the moving direction is such that the time required for the object to pass through the detection region corresponding to the measurement region is greater than the measurement period of the received light amount. It is set to be.

この実施態様によると、相対的に移動する物体が検出領域を通過する間に、少なくも1回、計測領域の受光量が計測されるので、物体の検出精度が高まる。   According to this embodiment, since the amount of light received in the measurement region is measured at least once while the relatively moving object passes through the detection region, the detection accuracy of the object is increased.

本発明の更に他の実施態様においては、前記分割領域を構成する画素の濃度の平均値を、各分割領域毎にそれぞれ算出し、算出した平均濃度値に基いて、前記物体の有無を判定する判定手段を備えている。   In still another embodiment of the present invention, the average value of the density of the pixels constituting the divided area is calculated for each divided area, and the presence / absence of the object is determined based on the calculated average density value. Judgment means is provided.

この実施態様によると、物体の遮光による受光量の変化を、各分割領域を構成する多数の画素の濃度の平均値として検出し、該物体の有無を判定することができる。   According to this embodiment, it is possible to detect the change in the amount of received light due to light shielding of an object as an average value of the density of a large number of pixels constituting each divided region, and determine the presence or absence of the object.

本発明の好ましい実施態様においては、前記判定手段は、前記計測周期毎に前記平均濃度値を算出するものであって、算出される平均濃度値と、所定回前に算出された平均濃度値との差を、各分割領域毎にそれぞれ算出し、算出した前記差に基いて、前記物体の有無を判定するものである。   In a preferred embodiment of the present invention, the determination means calculates the average density value for each measurement cycle, and the calculated average density value and the average density value calculated a predetermined time ago Is calculated for each divided region, and the presence or absence of the object is determined based on the calculated difference.

この実施態様によると、算出される平均濃度値と、所定回前に算出された平均濃度値との差を用いて物体の有無を判定するので、物体以外の要因によるなだらかな光量の変化の影響を除去して検出精度を高めることができる。   According to this embodiment, since the presence / absence of an object is determined using the difference between the calculated average density value and the average density value calculated a predetermined number of times ago, the influence of a gentle change in light amount due to factors other than the object The detection accuracy can be increased by removing the.

他の実施態様として、必ずしも所定回前の濃度値との差を用いることなく、各分割領域の濃度値または全分割領域(複数の分割領域の全領域)の濃度値から物体の有無を判定してもよく、更に、所定回前の濃度値との差を併用してもよい。   As another embodiment, the presence / absence of an object is determined from the density value of each divided area or the density value of all divided areas (all areas of a plurality of divided areas) without necessarily using the difference from the density value of a predetermined number of times. Further, a difference from the density value before the predetermined time may be used in combination.

本発明の一つの実施態様においては、前記CCDの撮像領域の撮像画像を表示する表示部を備え、前記計測領域は、前記撮像領域の一部の領域を占めるものである。   In one embodiment of the present invention, a display unit for displaying a captured image of the imaging region of the CCD is provided, and the measurement region occupies a part of the imaging region.

この実施態様によると、表示部には、CCDによる撮像画像が表示されるので、撮像領域で受光された受光像も併せて表示されることになり、この受光像を見ながら、投光手段と受光手段との光軸合せを行うことが可能となる。   According to this embodiment, since the captured image by the CCD is displayed on the display unit, the received light image received in the imaging region is also displayed. It becomes possible to perform optical axis alignment with the light receiving means.

本発明の好ましい実施態様においては、前記撮像領域における前記計測領域の位置を設定するために操作される操作手段を備え、前記表示部には、設定される計測領域の位置が表示されるものである。   In a preferred embodiment of the present invention, operation means operated to set the position of the measurement area in the imaging area is provided, and the position of the measurement area to be set is displayed on the display unit. is there.

この実施態様によると、撮像画像を表示する表示部には、受光像および計測領域の位置が併せて表示されるので、操作手段を操作して計測領域の位置を、受光像、すなわち、受光領域に合せることができる。   According to this embodiment, since the position of the light reception image and the measurement region is displayed together on the display unit that displays the captured image, the position of the measurement region is changed to the light reception image, that is, the light reception region by operating the operation unit. Can be adapted.

本発明の一つの実施態様においては、前記判定手段は、前記操作手段で設定される計測領域の各分割領域について前記平均濃度値を算出するものである。   In one embodiment of the present invention, the determination means calculates the average density value for each divided area of the measurement area set by the operation means.

この実施態様によると、操作手段によって撮像領域における計測領域が設定されると、判定手段は、設定された計測領域の各分割領域に対して、平均濃度値を算出し、これに基いて、物体の有無を判定することができる。   According to this embodiment, when the measurement area in the imaging area is set by the operation means, the determination means calculates the average density value for each divided area of the set measurement area, and based on this, the object The presence or absence of can be determined.

本発明の好ましい実施態様においては、前記物体が、前記投光手段と前記受光手段との間を、相対的に移動する被検査物に存在する異物である。   In a preferred embodiment of the present invention, the object is a foreign substance existing on an object to be moved relatively between the light projecting means and the light receiving means.

この実施態様によると、例えば、基板等の被検査物に付いた異物の検出に好適に実施できる。   According to this embodiment, for example, it can be suitably carried out for detecting foreign matter attached to an inspection object such as a substrate.

本発明によると、計測領域を複数に分割した各分割領域の受光量に基いて、異物等の物体を検出するので、分割領域の面積に対して物体の遮光面積が占める比率を大きなものとすることができ、物体の遮光による光量の変化が大きなものとなって検出感度が向上し、従来検出が困難であった異物等の検出が可能となる。   According to the present invention, since an object such as a foreign object is detected based on the amount of light received in each divided area obtained by dividing the measurement area into a plurality of areas, the ratio of the light shielding area of the object to the area of the divided area is increased. Therefore, the change in the amount of light due to the light shielding of the object becomes large, the detection sensitivity is improved, and it is possible to detect a foreign object or the like that has been difficult to detect conventionally.

以下に、本発明の好適な実施の形態を添付図面を参照しながら詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る光学式センサ装置の全体構成を示すブロック図であり、図2は、この光学式センサ装置を異物検出に適用した場合の投光器および受光器の配置を示す構成図であり、図3は、図2の投光器、受光器および平行光を示す構成図である。   FIG. 1 is a block diagram showing the overall configuration of an optical sensor device according to the present invention, and FIG. 2 is a configuration diagram showing the arrangement of projectors and light receivers when this optical sensor device is applied to foreign object detection. FIG. 3 is a configuration diagram illustrating the projector, the light receiver, and the parallel light of FIG. 2.

この実施の形態の光学式センサ装置は、ガラス基板等の被検査物としてのワーク1上に平行光2を投光する投光器3と、この平行光2を受光する受光器4と、この受光器4の出力を信号処理してワーク1上の異物5の有無を判定する信号処理装置6とを備えており、ワーク1に対して、投光器3および受光器4を、図2の矢符Aで示すように、移動させながらワーク1上に存在する異物5を、受光量の変化に基いて検出するものである。なお、異物5は、ワーク1上に存在する場合に限らず、ワーク1の下に存在し、そのためワーク1の表面が盛り上がって遮光する場合にも検出できるものである。   The optical sensor device of this embodiment includes a light projector 3 that projects parallel light 2 onto a work 1 that is an inspection object such as a glass substrate, a light receiver 4 that receives the parallel light 2, and the light receiver. 2 and a signal processing device 6 for determining the presence or absence of the foreign matter 5 on the workpiece 1. The projector 3 and the light receiver 4 are connected to the workpiece 1 by the arrow A in FIG. As shown, the foreign object 5 present on the workpiece 1 while being moved is detected based on a change in the amount of received light. The foreign matter 5 is not limited to being present on the workpiece 1 but is present under the workpiece 1 and can be detected even when the surface of the workpiece 1 is raised and shielded.

また、異物5の有無の検査が終了したガラス基板等のワーク1は、図示しない塗布装置によって、その表面に成膜材料が塗布される。   In addition, the workpiece 1 such as a glass substrate that has been inspected for the presence or absence of the foreign matter 5 is coated with a film forming material on the surface thereof by a coating apparatus (not shown).

投光器3は、レーザ駆動回路7によって駆動される半導体レーザ8と、この半導体レーザ8からの光を平行光にするコリメートレンズ9と、開口10aを有するスリット10とを備えており、ワーク1上に平行光2を投光する。   The projector 3 includes a semiconductor laser 8 driven by a laser driving circuit 7, a collimating lens 9 that collimates the light from the semiconductor laser 8, and a slit 10 having an opening 10 a. The parallel light 2 is projected.

一方、受光器4は、二次元の受光素子であるCCD11を備えており、信号処理装置6は、図1に示すように、CCD11から読み出された画素信号をサンプルホールドするサンプルホールド(S/H)回路12と、このサンプルホールド回路12の出力を、A/D変換するA/D変換器13と、A/D変換された画素データを記憶する画像メモリ14と、画像メモリ14の画素データに基づいて、後述のようにして異物の有無を判定する判定手段としての機能を有するCPU15と、画像メモリ14の画素データに基いて、CCD11のよる撮像画像を表示する液晶表示部16と、操作手段としての各種の操作キー17とを備えている。   On the other hand, the light receiver 4 includes a CCD 11 which is a two-dimensional light receiving element. As shown in FIG. 1, the signal processing device 6 samples and holds a pixel signal read from the CCD 11 (S / S). H) A circuit 12, an A / D converter 13 for A / D converting the output of the sample hold circuit 12, an image memory 14 for storing A / D converted pixel data, and a pixel data of the image memory 14 And a liquid crystal display unit 16 for displaying a captured image by the CCD 11 based on the pixel data of the image memory 14 based on the pixel data of the image memory 14 and the operation. Various operation keys 17 are provided as means.

この実施の形態では、検出感度を高めて投光器3と受光器4との距離が離れても異物を検出できるようにするために、次にように構成している。   In this embodiment, in order to increase the detection sensitivity so that foreign matter can be detected even when the distance between the projector 3 and the light receiver 4 is increased, the following configuration is provided.

すなわち、この実施の形態では、受光器4では、図4に示すように、CCD11の有効な撮像領域18の一部を、投光器3からの投光を受光する計測領域19とし、この計測領域19を、投光器3および受光器4の移動方向(図4の左右方向)に沿って複数、図4では6つに分割し、各分割領域19a毎に受光量を計測するものである。   That is, in this embodiment, in the light receiver 4, as shown in FIG. 4, a part of the effective imaging region 18 of the CCD 11 is a measurement region 19 that receives the light projected from the projector 3. Is divided into a plurality along the moving direction of the light projector 3 and the light receiver 4 (left and right direction in FIG. 4), and in FIG. 4, the light receiving amount is measured for each divided region 19a.

また、図3に示す投光器3のスリット10の開口10aは、投光器3および受光器4の移動方向(図3の紙面に垂直な方向)に長い矩形、例えば、1mm×5mmの矩形に形成されており、投光器3からのスリット状の平行光2が、CCD11の計測領域19を覆うように投光される。   Also, the opening 10a of the slit 10 of the projector 3 shown in FIG. 3 is formed in a rectangular shape that is long in the moving direction of the projector 3 and the light receiver 4 (direction perpendicular to the paper surface of FIG. 3), for example, a 1 mm × 5 mm rectangle. The slit-shaped parallel light 2 from the projector 3 is projected so as to cover the measurement area 19 of the CCD 11.

次に、この実施の形態の光学式センサ装置による異物の検出原理について、図5に基づいて説明する。   Next, the principle of foreign object detection by the optical sensor device of this embodiment will be described with reference to FIG.

図5は、定盤20に載置されるワーク1上の異物5とCCD11の計測領域19との位置関係を示す図であり、この実施の形態では、CCD11の計測領域19を、例えば、10個の分割領域19aに分割した例を示している。   FIG. 5 is a diagram showing the positional relationship between the foreign matter 5 on the work 1 placed on the surface plate 20 and the measurement area 19 of the CCD 11. In this embodiment, the measurement area 19 of the CCD 11 is, for example, 10 An example in which the image is divided into a plurality of divided areas 19a is shown.

この実施の形態では、CCD11の撮像領域18は、例えば、縦3.2mm×横3.46mmであり、計測領域19は、例えば、縦1mm×横3mmとしている。したがって、各分割領域19aは、縦1mm×横0.3mmとなる。
また、異物5は、そのサイズが、例えば、直径100μm程度以上である。
なお、図5においては、図18の従来例の円形の受光領域21の境界を、破線で示しており、この受光領域21は、例えば、直径が2mmである。
In this embodiment, the imaging area 18 of the CCD 11 is, for example, 3.2 mm long × 3.46 mm wide, and the measurement area 19 is, for example, 1 mm long × 3 mm wide. Therefore, each divided region 19a is 1 mm long × 0.3 mm wide.
Further, the size of the foreign material 5 is, for example, about 100 μm or more in diameter.
In FIG. 5, the boundary of the circular light receiving region 21 of the conventional example of FIG. 18 is indicated by a broken line, and the light receiving region 21 has a diameter of 2 mm, for example.

この実施の形態では、分割領域19aの面積は、0.3mmであるが、この分割領域19aは、その面積が1mm以下であるのが好ましい。 In this embodiment, the area of the divided area 19a is 0.3 mm 2 , but the area of the divided area 19a is preferably 1 mm 2 or less.

また、この実施の形態では、CCD11は、3.2mm×3.46mmであるが、投光器3と受光器4との光軸合わせを考慮すると、2mm×2mm以上であるのが好ましい。   Further, in this embodiment, the CCD 11 is 3.2 mm × 3.46 mm, but it is preferably 2 mm × 2 mm or more in consideration of the optical axis alignment between the projector 3 and the light receiver 4.

このように受光量を計測する各分割領域19aは、従来の受光領域21に比べて、例えば、約10分の1と小さく、したがって、各分割領域19aに対して異物5による遮光面積の占める割合が大きなものとなり、従来例に比べて、検出感度が向上し、従来検出できなかった異物5の検出が可能となる。   Thus, each divided area 19a for measuring the amount of received light is, for example, about 1/10 smaller than the conventional light receiving area 21. Therefore, the ratio of the light shielding area by the foreign matter 5 to each divided area 19a. The detection sensitivity is improved as compared with the conventional example, and the foreign object 5 that cannot be detected conventionally can be detected.

しかも、複数の分割領域19aを、投光器3および受光器4の移動方向(図5の左右方向)に沿って配置するので、相対移動する異物5が、複数の分割領域19aを通過する間に、CCD11による画素信号の取り込みを少なくとも1回行えるように設定することが可能となる。   Moreover, since the plurality of divided regions 19a are arranged along the moving direction of the projector 3 and the light receiver 4 (left and right direction in FIG. 5), the relatively moving foreign matter 5 passes through the plurality of divided regions 19a. It is possible to set so that the pixel signal can be captured by the CCD 11 at least once.

この実施の形態では、計測領域19の移動方向に沿う幅を、例えば、3mm、最大の移動速度を、例えば、150mm/sとしており、したがって、計測領域19の前の検出領域を異物5が通過するのに要する時間は、例えば、20msとなり、CCD11の取り込み周期16.7msよりも大きなものとなり、異物5が通過する間に、画像信号の取り込みを行うことが可能となる。   In this embodiment, the width along the moving direction of the measurement area 19 is, for example, 3 mm, and the maximum movement speed is, for example, 150 mm / s. Therefore, the foreign substance 5 passes through the detection area in front of the measurement area 19. The time required to do this is, for example, 20 ms, which is longer than the capture period 16.7 ms of the CCD 11, and the image signal can be captured while the foreign material 5 passes.

この実施の形態では、各分割領域19aの受光量に基いて、次のようにして、異物5の有無を判定するようにしている。   In this embodiment, the presence or absence of the foreign material 5 is determined as follows based on the amount of light received by each divided region 19a.

すなわち、図1の信号処理装置6のCPU15では、CCD11の取り込み周期(16.7msec)毎に、分割領域19aを構成する多数の画素の濃度の平均値(平均濃度値)を、各分割領域19a毎にそれぞれ算出する。次に、算出した各分割領域19a毎の平均濃度値と、所定回(T回)前にそれぞれ算出された各分割領域19a毎の平均濃度値との差(平均濃度差)の絶対値を、各分割領域19a毎にそれぞれ算出し、算出された各分割領域19a毎の平均濃度差の絶対値の内の最大値が、予め定めた閾値を超えたか否かを判定し、閾値を超えたときに、異物が有ると判定して対応する判定出力を外部に与えるものであり、この判定出力に基いて、異物の存在を報知したり、ワーク1に対する処理を停止させるといった適宜の措置をとることができる。   That is, in the CPU 15 of the signal processing device 6 of FIG. 1, for each capture region (16.7 msec) of the CCD 11, an average value (average density value) of the density of a large number of pixels constituting the divided area 19a is obtained. Each is calculated. Next, the absolute value of the difference (average density difference) between the calculated average density value for each divided region 19a and the average density value for each divided region 19a calculated before a predetermined number of times (T times), When it is calculated for each divided area 19a, and it is determined whether or not the calculated maximum value of the absolute value of the average density difference for each divided area 19a exceeds a predetermined threshold value. In addition, it is determined that there is a foreign object and a corresponding determination output is given to the outside. Based on this determination output, appropriate measures such as notifying the presence of the foreign object or stopping the processing on the workpiece 1 are taken. Can do.

図6は、各分割領域19a毎の今回の平均濃度値、所定回(T回)前の平均濃度値およびその平均濃度差の一例を示すものであるり、横軸は、複数の各分割領域19aに対応し、縦軸は、平均濃度値に対応しており、この図6では、第1〜第4の4個の分割領域19aについての値を示している。   FIG. 6 shows an example of the current average density value for each divided area 19a, an average density value before a predetermined number of times (T times), and an average density difference thereof, and the horizontal axis represents a plurality of divided areas. Corresponding to 19a, the vertical axis corresponds to the average density value, and FIG. 6 shows values for the first to fourth divided regions 19a.

この図6において、ラインL1は、今回計測された各分割領域19aの平均濃度値を結んだものであり、ラインL2は、所定回(T回)前に計測された各分割領域19aの平均濃度値を結んだものであり、ラインL3は、今回と所定回(T回)前との平均濃度値の差の絶対値(平均濃度差の絶対値)を結んだものであり、ラインL4は、異物の有無の判定の閾値を示している。   In FIG. 6, the line L1 connects the average density values of the divided areas 19a measured this time, and the line L2 shows the average density of the divided areas 19a measured before a predetermined number of times (T times). The line L3 is an absolute value of the difference between the average density values of this time and the predetermined time (T times) before (the absolute value of the average density difference), and the line L4 is The threshold value for determining the presence or absence of a foreign object is shown.

この図6では、第3の分割領域19aの平均濃度差の絶対値Pが、最大値となっており、この最大値Pが閾値L4を超えているので、異物有りと判定されることになる。   In FIG. 6, the absolute value P of the average density difference of the third divided region 19a is the maximum value, and since this maximum value P exceeds the threshold value L4, it is determined that there is a foreign object. .

このように今回の平均濃度値と所定回(T回)前の平均濃度値との差を用いるのは、なだらかな光量の変化、例えば、ワーク1である基板表面での反射光量のなだらかな変化の影響を除去して異物による受光量の変化を明確にするためである。   In this way, the difference between the current average density value and the average density value before a predetermined number of times (T times) is used for a gentle change in the amount of light, for example, a gentle change in the amount of reflected light on the substrate surface that is the workpiece 1. This is to clarify the change in the amount of received light due to the foreign matter by removing the influence of.

したがって、この所定回(T回)は、想定される滑らかな光量の変化などに応じて、適宜定められることになり、例えば、数回ないし数十回であり、この実施の形態では、例えば、10回とされる。   Therefore, the predetermined number of times (T times) is appropriately determined according to the assumed smooth change in the amount of light, for example, several times to several tens of times. In this embodiment, for example, 10 times.

本発明の他の実施の形態として、所定回前の平均濃度値との差を算出することなく、今回の平均濃度値と予め定めた閾値とを比較して異物の有無を判定するようにしてもよい。   As another embodiment of the present invention, the present average density value is compared with a predetermined threshold value to determine the presence or absence of foreign matter without calculating the difference from the average density value before a predetermined number of times. Also good.

図7は、以上の異物検出の判定処理のフローチャートであり、この図に示すように、先ず、1〜nの複数の各分割領域19a毎に平均濃度値D1(0)〜Dn(0)を算出するとともに、算出した平均濃度値を蓄積し(ステップn1)、算出した各分割領域毎の平均濃度値と、所定回(T回)前に算出した各分割領域19a毎の平均濃度値D1(T)〜Dn(T)との平均濃度差の絶対値│D1(T)−D1(0)│〜│Dn(T)−Dn(0)│を算出するとともに、所定回(T回)前に算出した各分割領域19a毎の平均濃度値D1(T)〜Dn(T)を消去する(ステップn2)。   FIG. 7 is a flowchart of the foreign matter detection determination process described above. As shown in FIG. 7, first, the average density values D1 (0) to Dn (0) are obtained for each of the plurality of divided areas 19a. The calculated average density value is accumulated (step n1), and the calculated average density value for each divided area and the average density value D1 for each divided area 19a calculated before a predetermined number of times (T times) ( Calculates absolute values | D1 (T) −D1 (0) | to Dn (T) −Dn (0) | and calculates the absolute value of the average density difference from T) to Dn (T) The average density values D1 (T) to Dn (T) for each divided area 19a calculated in (1) are deleted (step n2).

次に、算出した平均濃度差の絶対値の内の最大値が、予め定めた閾値よりも大きいか否かを判断し(ステップn3)、大きくないときには、次の取り込み計測サイクルまで待機し(ステップn4)、大きいときには、異物であるとして判定出力をオンする(ステップn5)。   Next, it is determined whether or not the maximum value of the calculated absolute value of the average density difference is larger than a predetermined threshold value (step n3). If not, the process waits for the next capture measurement cycle (step n3). n4) When it is larger, the judgment output is turned on as a foreign object (step n5).

次に、この実施の形態の光学式センサ装置による異物検出の評価実験について説明する。   Next, a foreign object detection evaluation experiment by the optical sensor device of this embodiment will be described.

図8は、この評価実験に用いた装置の構成図であり、2500mmの間隔W1をあけて固定配置された投光器3と受光器4との間に、ワーク1としての厚さ0.7mmのガラスプレートが載置された石定盤20を、矢符B方向に、50〜150mm/sの移動速度で移動させ、ワーク1上に、異物5として直径0.1mmのセラミックボールを置いた場合と、ワーク1の下に、異物として厚さ0.1mmで1.5mm角の矩形のゲージを挟み込んだ場合とについて実験を行った。また、受光器4と異物5との距離W2を、500mm、1000mm、1500mm、2000mm、2400mmとした場合についてそれぞれ実験を行った。   FIG. 8 is a block diagram of the apparatus used for this evaluation experiment. Between the light projector 3 and the light receiver 4 fixedly arranged with an interval W1 of 2500 mm, a glass having a thickness of 0.7 mm as the workpiece 1 is shown. When the stone surface plate 20 on which the plate is placed is moved in the direction of the arrow B at a moving speed of 50 to 150 mm / s, and a ceramic ball having a diameter of 0.1 mm is placed on the workpiece 1 as a foreign object 5 An experiment was conducted in the case where a rectangular gauge having a thickness of 0.1 mm and a 1.5 mm square was sandwiched as a foreign object under the workpiece 1. In addition, an experiment was performed for each of cases where the distance W2 between the light receiver 4 and the foreign material 5 was 500 mm, 1000 mm, 1500 mm, 2000 mm, and 2400 mm.

同様にして、図18の従来例の投光器3’および受光器4’についても評価実験を行った。   Similarly, an evaluation experiment was performed on the projector 3 ′ and the light receiver 4 ′ of the conventional example of FIG. 18.

図9および図10は、異物5としてセラミックボールを配置し、移動速度を100mm/sとした場合の結果を示しており、図9は、実施の形態による結果を、図10は、従来例による結果を、それぞれ示しており、各図において、(a)は受光器と異物との距離を500mm、(b)は1500mmにした場合をそれぞれ示している。   9 and 10 show results when ceramic balls are arranged as the foreign matter 5 and the moving speed is 100 mm / s. FIG. 9 shows the results according to the embodiment, and FIG. 10 shows the results according to the conventional example. The results are shown respectively. In each figure, (a) shows the case where the distance between the light receiver and the foreign object is 500 mm, and (b) shows the case where the distance is 1500 mm.

また、図11および図12は、同様に、異物5としてゲージを挟み込んだ場合の結果を示している。   Similarly, FIGS. 11 and 12 show the results when a gauge is sandwiched as the foreign material 5.

図9および図11の実施の形態では、横軸が時間、縦軸が平均濃度差の絶対値の内の最大値であり、平均濃度差の絶対値の内の最大値の時間変化を示しており、図10および図12の従来例では、横軸が時間、縦軸が受光量であり、受光量の時間変化を示している。   In the embodiment of FIGS. 9 and 11, the horizontal axis represents time, the vertical axis represents the maximum value of the absolute values of the average density difference, and the time change of the maximum value of the absolute values of the average density difference is shown. 10 and 12, the horizontal axis represents time, and the vertical axis represents the amount of received light, showing the temporal change in the amount of received light.

従来例では、図12に示すように、異物と受光器との距離が1500mmのときに僅かに受光量の変化が認められるのに対して、図9および図11の実施の形態では、異物と受光器との距離が、500mm、1500mmのいずれのときにも、平均濃度差の絶対値の変化が認められ、検出感度が向上していることが分かる。   In the conventional example, as shown in FIG. 12, a slight change in the amount of received light is recognized when the distance between the foreign object and the light receiver is 1500 mm, whereas in the embodiment of FIGS. It can be seen that when the distance to the light receiver is 500 mm or 1500 mm, a change in the absolute value of the average density difference is recognized and the detection sensitivity is improved.

図13は、図1の信号処理装置6の正面図である。この信号処理装置6は、その正面に液晶表示部16を備えるとともに、その下方に、各種の操作キー17を備えており、液晶表示部16には、受光器4のCCD11によって撮像された映像が映し出されるように構成されている。   FIG. 13 is a front view of the signal processing device 6 of FIG. The signal processing device 6 includes a liquid crystal display unit 16 on the front surface and various operation keys 17 below the liquid crystal display unit 16. The liquid crystal display unit 16 displays images captured by the CCD 11 of the light receiver 4. It is configured to be projected.

したがって、例えば、図14に示すように、投光器3からの投光を受光した受光像22が、液晶表示部16に表示される。   Therefore, for example, as shown in FIG. 14, a light reception image 22 that receives the light projected from the light projector 3 is displayed on the liquid crystal display unit 16.

このようにCCD11で撮像された画像が表示されるので、この画像の受光像22を、見ながら投光器3と受光器4との光軸合わせを行うことができ、図18の従来例に比べて、光軸合わせが容易となる。   Thus, since the image picked up by the CCD 11 is displayed, the optical axis alignment of the light projector 3 and the light receiver 4 can be performed while viewing the light reception image 22 of this image, and compared with the conventional example of FIG. Alignment of the optical axis becomes easy.

しかも、この実施の形態では、上述の図5に示したCCD11の撮像領域18における計測領域19の上下の位置を、操作キー7の操作によって、上下方向に可変設定できるように構成されている。   Moreover, in this embodiment, the vertical position of the measurement area 19 in the imaging area 18 of the CCD 11 shown in FIG. 5 described above can be variably set in the vertical direction by operating the operation keys 7.

すなわち、ワーク1の平面に対する水平度および左右方向のずれを、投光器3の光軸合せで調整した後、例えば、図15に示す液晶表示部16の受光像22に対して、操作手段としての複数の操作キー17の内の計測領域設定用の設定キーを操作することにより、計測領域の位置を示す矩形の領域設定枠23が表示される。   That is, after adjusting the horizontal degree and the horizontal shift with respect to the plane of the work 1 by adjusting the optical axis of the projector 3, for example, a plurality of light receiving images 22 of the liquid crystal display unit 16 shown in FIG. By operating the setting key for setting the measurement area among the operation keys 17, a rectangular area setting frame 23 indicating the position of the measurement area is displayed.

この状態で、複数の操作キー17の内の上下キーを操作して領域設定枠23を、該領域設定枠23内に受光像22が入るように上下方向に調整し、受光像22が領域設定枠23内に納まったときに、複数の操作キー17の内のセットキーを操作することにより、受光像22、すなわち、受光領域が計測領域として設定されることになる。   In this state, the area setting frame 23 is adjusted in the vertical direction so that the received light image 22 enters the area setting frame 23 by operating the up and down keys of the plurality of operation keys 17. By operating the set key of the plurality of operation keys 17 when it falls within the frame 23, the light reception image 22, that is, the light reception area is set as the measurement area.

図1の信号処理装置6のCPU15は、かかる操作キー17の操作による計測領域の設定操作に応じて、設定された計測領域に対応するCCD11の画素の信号を用いて上述の平均濃度値等の演算処理を行って異物の有無の判定を行うものである。   The CPU 15 of the signal processing device 6 shown in FIG. 1 uses the pixel signal of the CCD 11 corresponding to the set measurement area in accordance with the setting operation of the measurement area by operating the operation key 17, and calculates the above average density value and the like. An arithmetic process is performed to determine the presence or absence of foreign matter.

このようにCCD11の撮像領域18における計測領域19の上下の位置を可変できるので、例えば、図16に示すように、光軸がずれて受光像22が液晶表示部16の上方寄りに表示されているような場合には、領域設定枠23を上方に移動せて計測領域を設定することにより、光軸のずれを補正できることになる。   Thus, since the vertical position of the measurement area 19 in the imaging area 18 of the CCD 11 can be varied, for example, as shown in FIG. 16, the optical axis is shifted and the received light image 22 is displayed near the upper side of the liquid crystal display section 16. In such a case, the shift of the optical axis can be corrected by moving the area setting frame 23 upward to set the measurement area.

なお、図15および図16においては、ワーク1の表面のラインLを併せて示している。   In FIGS. 15 and 16, a line L on the surface of the workpiece 1 is also shown.

この実施の形態では、計測領域の設定位置を上下方向に調整できるようにしたけれども、他の実施の形態として、左右方向に調整できるようにしてもよい。   In this embodiment, the setting position of the measurement region can be adjusted in the vertical direction, but as another embodiment, it may be adjusted in the horizontal direction.

上述の実施の形態では、異物の検出に適用して説明したけれども、本発明は、異物検出に限らず、他の物体、例えば、糸の毛羽の検出などに適用してもよい。   In the above-described embodiment, the present invention has been described as applied to foreign object detection. However, the present invention is not limited to foreign object detection, and may be applied to detection of other objects, for example, yarn fluff.

本発明は、異物検出装置として有用である。   The present invention is useful as a foreign object detection device.

本発明の光学式センサ装置の概略構成図である。It is a schematic block diagram of the optical sensor apparatus of this invention. 図1の光学式センサ装置を異物検出に適用した場合の投光器および受光器の配置を示す構成図である。It is a block diagram which shows arrangement | positioning of a light projector and a light receiver at the time of applying the optical sensor apparatus of FIG. 1 to a foreign material detection. 図3は、図2の投光器、受光器および平行光の関係を示す構成図である。FIG. 3 is a configuration diagram illustrating a relationship between the projector, the light receiver, and the parallel light in FIG. CCDの撮像領域を示す図である。It is a figure which shows the imaging area of CCD. 異物とCCDの計測領域との位置関係を示す図である。It is a figure which shows the positional relationship of a foreign material and the measurement area | region of CCD. 各分割領域の平均濃度値および平均濃度差の一例を示す図である。It is a figure which shows an example of the average density value of each division area, and an average density difference. 動作説明に供するフローチャートである。It is a flowchart with which operation | movement description is provided. 異物検出の評価実験に用いた装置の構成図である。It is a block diagram of the apparatus used for the evaluation experiment of a foreign material detection. 実施の形態の結果を示す図である。It is a figure which shows the result of embodiment. 従来例の結果を示す図である。It is a figure which shows the result of a prior art example. 実施の形態の結果を示す図である。It is a figure which shows the result of embodiment. 従来例の結果を示す図である。It is a figure which shows the result of a prior art example. 信号処理装置の正面図である。It is a front view of a signal processing device. 液晶表示部の表示例を示す図である。It is a figure which shows the example of a display of a liquid crystal display part. 計測領域の設定の際の液晶表示部の表示例を示す図である。It is a figure which shows the example of a display of the liquid crystal display part in the case of setting of a measurement area | region. 計測領域の設定の際の液晶表示部の表示例を示す図である。It is a figure which shows the example of a display of the liquid crystal display part in the case of setting of a measurement area | region. 従来例の異物検出の構成図である。It is a block diagram of the foreign material detection of a prior art example. 従来例の投光器、受光器および平行光の関係を示す構成図である。It is a block diagram which shows the relationship between the projector of a prior art example, a light receiver, and parallel light.

符号の説明Explanation of symbols

1 ワーク 3,3’ 投光器
4,4’ 受光器 5 異物
6 信号処理装置 10,10a スリット
11 CCD 15 CPU
16 液晶表示部 18 撮像領域
19 計測領域 19a 分割領域
22 受光像
DESCRIPTION OF SYMBOLS 1 Work 3, 3 'Emitter 4, 4' Light receiver 5 Foreign material 6 Signal processing device 10, 10a Slit 11 CCD 15 CPU
16 Liquid crystal display section 18 Imaging area 19 Measurement area 19a Division area 22 Light reception image

Claims (9)

平行光を投光する投光手段と、該投光手段からの投光を受光する二次元のCCDを有する受光手段とを備え、前記両手段に対して相対的に移動する物体を、該物体で遮光されることにより変化する受光量に基いて検出する光学式センサ装置であって、
前記CCDは、受光量を計測する計測領域が前記移動方向に沿って複数に分割されてなる分割領域を有し、
前記投光手段は、複数の前記分割領域に投光し、
複数の前記分割領域の受光量に基いて、前記物体を検出することを特徴とする光学式センサ装置。
A light projecting means for projecting parallel light; and a light receiving means having a two-dimensional CCD for receiving the light projected from the light projecting means, the object moving relative to the both means An optical sensor device that detects based on the amount of received light that is changed by being shielded from light,
The CCD has a divided region in which a measurement region for measuring the amount of received light is divided into a plurality along the moving direction,
The light projecting unit projects a plurality of the divided areas,
An optical sensor device that detects the object based on the amount of light received by the plurality of divided regions.
前記投光手段は、前記移動方向に長い開口のスリットを備え、
前記分割領域は、想定される前記物体によって遮光される受光量の変化によって該物体を検出できる大きさに分割されている請求項1に記載の光学式センサ装置。
The light projecting means includes a slit having a long opening in the moving direction,
2. The optical sensor device according to claim 1, wherein the divided area is divided into a size that allows the object to be detected by a change in an amount of light received by the object.
前記計測領域の前記移動方向に沿う幅は、前記物体が前記計測領域に対応する検出領域を通過するのに要する時間が、受光量の計測周期よりも大きくなるように設定される請求項1または2に記載の光学式センサ装置。   The width of the measurement region along the moving direction is set so that the time required for the object to pass through the detection region corresponding to the measurement region is larger than the measurement period of the amount of received light. 2. The optical sensor device according to 2. 前記分割領域を構成する画素の濃度の平均値を、各分割領域毎にそれぞれ算出し、算出した平均濃度値に基いて、前記物体の有無を判定する判定手段を備える請求項1〜3のいずれか1項に記載の光学式センサ装置。   4. The apparatus according to claim 1, further comprising: a determination unit that calculates an average value of the density of the pixels constituting the divided area for each divided area and determines the presence or absence of the object based on the calculated average density value. The optical sensor device according to claim 1. 前記判定手段は、前記計測周期毎に前記平均濃度値を算出するものであって、算出される平均濃度値と、所定回前に算出された平均濃度値との差を、各分割領域毎にそれぞれ算出し、算出した前記差に基いて、前記物体の有無を判定する請求項4に記載の光学式センサ装置。   The determination means calculates the average density value for each measurement cycle, and calculates the difference between the calculated average density value and the average density value calculated a predetermined number of times for each divided region. The optical sensor device according to claim 4, wherein the optical sensor device calculates the presence or absence of the object based on the calculated difference. 前記CCDの撮像領域の撮像画像を表示する表示部を備え、前記計測領域は、前記撮像領域の一部の領域を占めるものである請求項5に記載の光学式センサ装置。   The optical sensor device according to claim 5, further comprising a display unit that displays a captured image of the imaging region of the CCD, wherein the measurement region occupies a part of the imaging region. 前記撮像領域における前記計測領域の位置を設定するために操作される操作手段を備え、前記表示部には、設定される計測領域の位置が表示される請求項6に記載の光学式センサ装置。   The optical sensor device according to claim 6, further comprising an operation unit operated to set a position of the measurement area in the imaging area, wherein the position of the measurement area to be set is displayed on the display unit. 前記判定手段は、前記操作手段で設定される計測領域の各分割領域について前記平均濃度値を算出するものである請求項7に記載の光学式センサ装置。   The optical sensor device according to claim 7, wherein the determination unit calculates the average density value for each divided region of the measurement region set by the operation unit. 前記物体が、前記投光手段と前記受光手段との間を、相対的に移動する被検査物に存在する異物である請求項1〜8のいずれか1項に記載の光学式センサ装置。   The optical sensor device according to any one of claims 1 to 8, wherein the object is a foreign substance existing in an object to be moved relatively between the light projecting unit and the light receiving unit.
JP2005178402A 2005-06-17 2005-06-17 Optical sensor device Active JP4534877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005178402A JP4534877B2 (en) 2005-06-17 2005-06-17 Optical sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005178402A JP4534877B2 (en) 2005-06-17 2005-06-17 Optical sensor device

Publications (2)

Publication Number Publication Date
JP2006351441A true JP2006351441A (en) 2006-12-28
JP4534877B2 JP4534877B2 (en) 2010-09-01

Family

ID=37647061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005178402A Active JP4534877B2 (en) 2005-06-17 2005-06-17 Optical sensor device

Country Status (1)

Country Link
JP (1) JP4534877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042113A (en) * 2007-08-09 2009-02-26 Kde Corp Optical flaw detector and optical flaw detecting method
JP2009212382A (en) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp Proximity exposure device, substrate moving method of proximity exposure device and method of manufacturing displaying panel substrate
JP2009244256A (en) * 2008-03-14 2009-10-22 Omron Corp Optical sensor device
JP2010078348A (en) * 2008-09-24 2010-04-08 Tokyo Electron Ltd Optical foreign matter detector and treatment liquid coating device loaded therewith

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245702A (en) * 1988-08-08 1990-02-15 Nissan Motor Co Ltd Position measuring instrument
JPH06222014A (en) * 1993-01-22 1994-08-12 Sunx Ltd Inspection system for translucent sheet material
WO2001084128A1 (en) * 2000-04-27 2001-11-08 Seiko Epson Corporation Inspection method for foreign matters inside through hole

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245702A (en) * 1988-08-08 1990-02-15 Nissan Motor Co Ltd Position measuring instrument
JPH06222014A (en) * 1993-01-22 1994-08-12 Sunx Ltd Inspection system for translucent sheet material
WO2001084128A1 (en) * 2000-04-27 2001-11-08 Seiko Epson Corporation Inspection method for foreign matters inside through hole

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042113A (en) * 2007-08-09 2009-02-26 Kde Corp Optical flaw detector and optical flaw detecting method
JP2009212382A (en) * 2008-03-05 2009-09-17 Hitachi High-Technologies Corp Proximity exposure device, substrate moving method of proximity exposure device and method of manufacturing displaying panel substrate
JP2009244256A (en) * 2008-03-14 2009-10-22 Omron Corp Optical sensor device
KR100998781B1 (en) 2008-03-14 2010-12-06 오므론 가부시키가이샤 Optics sensing device
JP2010078348A (en) * 2008-09-24 2010-04-08 Tokyo Electron Ltd Optical foreign matter detector and treatment liquid coating device loaded therewith
TWI412894B (en) * 2008-09-24 2013-10-21 Tokyo Electron Ltd Optical foreign material detection device and processing liquid coating apparatus equipped with this
KR101377774B1 (en) 2008-09-24 2014-03-24 도쿄엘렉트론가부시키가이샤 Optical foreign material detection device and processing liquid coating apparatus equipped with this

Also Published As

Publication number Publication date
JP4534877B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
KR20160013813A (en) Auto-Focus system
TW201926247A (en) Defect inspection method and defect inspection system
JP4534877B2 (en) Optical sensor device
KR100876257B1 (en) Optical measuring method and device therefor
JP2006258582A (en) Image input device and image input method
JP5446316B2 (en) Optical sensor device
JP2015108582A (en) Three-dimensional measurement method and device
JP2012013614A (en) Specular inspection method and specular inspection device
JP4873231B2 (en) Polarization-selective imaging device
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2004219119A (en) Defect inspection method and device
JP2012008078A (en) Defect inspecting device
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2006349351A (en) Three-dimensional microstructure measuring method
JP2009222485A (en) Optical sensor device and its installation state confirming method
JPH0236339A (en) Defect inspecting device by light beam
JP2006003168A (en) Measurement method for surface shape and device therefor
KR101103347B1 (en) Detection apparatus for particle on the glass
JP2006258649A (en) Surface inspection device
JP2009036696A (en) Image inspecting apparatus
JP2002214155A (en) Flaw inspecting device for test object
JP2002168611A (en) Method and device for inspecting cylindrical object to be inspected for surface ruggedness
JP2007024559A (en) Lens unit, shape detector, shape detection method, and sheet manufacturing method
JP2015049091A (en) Rolled film concave-convex defect inspection device and inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250