JP2005274173A - Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device - Google Patents

Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device Download PDF

Info

Publication number
JP2005274173A
JP2005274173A JP2004083860A JP2004083860A JP2005274173A JP 2005274173 A JP2005274173 A JP 2005274173A JP 2004083860 A JP2004083860 A JP 2004083860A JP 2004083860 A JP2004083860 A JP 2004083860A JP 2005274173 A JP2005274173 A JP 2005274173A
Authority
JP
Japan
Prior art keywords
wafer
light
inspection
inspected
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083860A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
清水勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004083860A priority Critical patent/JP2005274173A/en
Publication of JP2005274173A publication Critical patent/JP2005274173A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection method for inspecting contamination on the surface of a wafer substrate constituted so as to instantaneously discriminate the stain particles or contamination on the wafer substrate having a rough back surface difficult to inspect and taking time by a conventional technique or the flaw such as the surface unevenness or scratch of a fine region in a large visual field to specify the position thereof. <P>SOLUTION: A wafer is irradiated with a laser irradiation beam from the lateral side of the wafer in parallel to the surface of the wafer and the laser irradiation beam is moved in a direction vertical to the surface of the wafer to measure and inspect the particles bonded on the surface of the wafer and the unevenness, scratch or the like on the surface of the wafer over the whole surface of the wafer. Sheetlike light of a range wider than the surface of the wafer is used to instantaneously record the outer shape and position of the wafer to subsequently record scattered light of stain fine particles bonded to the surface of the wafer and a particle size is calculated from the intensities of scattered light to collectively measure the positions of the all of fine particles on the surface of the wafer and the respective particle sizes of them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ウエハー基板、液晶ディスプレイ用透明ガラス等の被検査物の表面上の異物・表面検査方法およびその装置に関するものである。さらに詳細には、従来技術では検査が困難で時間のかかる表面透明で裏面の荒れたウエハー基板や液晶ディスプレイ用透明ガラス等の上に存在する汚染粒子・異物や微細領域の表面の凹凸、スクラッチ等の欠陥を、大視野で瞬時に識別し、その位置を特定することを可能にしたウエハー基板、液晶ディスプレイ用透明ガラス等の被検査物の表面上の異物・表面検査方法およびその装置に関するものである。   The present invention relates to a foreign matter / surface inspection method and apparatus on the surface of an object to be inspected, such as a wafer substrate and a transparent glass for a liquid crystal display. More specifically, it is difficult to inspect with the prior art and takes time, such as transparent surface and rough back surface of wafer substrate, liquid crystal display transparent glass, etc. It is related to a foreign substance / surface inspection method and its apparatus on the surface of an inspection object such as a wafer substrate, a transparent glass for liquid crystal display, etc., which can instantly identify defects in a wide field of view and specify their positions. is there.

従来のウエハー等の基板検査方法について簡単に説明すると以下のような検査方法が知られている。
(A)鏡面および薄膜付ウエハー上異物検査
従来の鏡面および薄膜付ウエハー上異物検査では基板に対して垂直上方照明と斜方照明の両方を備えているものが多く、受光器はウェハーからの正反射光が入らないような角度で散乱光を集光する方法が採られている。しかしこの方法では(a)レーザ光線が拡げられておらず、1本の光線でウェハー上を走査するから検査に時問がかかる。また(b)被測定粒子のウエハー上の位置の特定に時間がかる、等の問題がある。
(B)表面透明裏面荒れウエハー上異物検査
この検査例として非特許文献1に示された方法がある。
この方法は表面と裏面とを弁別して検出する必要があり、ウェハー裏面からの信号を除去する固有の空間フィルタにより、裏面ノイズの除去および装置の感度の向上を行っている。レーザ光はウエハー面に対して高角度をもって照射されている。ウエハーまたは光学ヘツドはリニアステージに載せられ、ウェハーは回転するから、光学ヘッドはらせん状に表面を測定する。そして、検査受光器はエリプソメータ、リフレクトメータ、スキヤツタロメータ、光学式プロファイラを1つの光学ヘッドとして融合したOSA(Optica1 Surface Ana1yzer)で検出する。なお、斜方照射光は裏面反射が強くウェハー表面上に付着した微粒子からの散乱光を裏面散乱の外乱光から分離することには非常に精密な情報光分離の光学系が必要になる。
A conventional inspection method for a substrate such as a wafer will be briefly described below.
(A) Inspection of foreign matter on wafer with mirror surface and thin film In conventional inspection of foreign matter on wafer with mirror surface and thin film, the substrate is often equipped with both vertical upward illumination and oblique illumination. A method of collecting scattered light at an angle that does not allow reflected light to enter. However, in this method, (a) the laser beam is not expanded, and scanning is performed on the wafer with a single beam. In addition, (b) it takes time to specify the position of the particle to be measured on the wafer.
(B) Surface Transparent Back Surface Roughness Foreign Material Inspection on Wafer As an example of this inspection, there is a method disclosed in Non-Patent Document 1.
In this method, it is necessary to discriminate and detect the front surface and the back surface, and the back surface noise is removed and the sensitivity of the apparatus is improved by a unique spatial filter that removes a signal from the back surface of the wafer. The laser beam is irradiated at a high angle with respect to the wafer surface. Since the wafer or optical head is placed on a linear stage and the wafer rotates, the optical head measures the surface in a spiral. Then, the inspection light receiver detects an OSA (Optica 1 Surface Ana1yzer) in which an ellipsometer, a reflectometer, a skitometer, and an optical profiler are combined as one optical head. In addition, the oblique irradiation light has a strong back surface reflection, and a very precise information light separation optical system is required to separate the scattered light from the fine particles adhering to the wafer surface from the disturbance light of the back surface scattering.

2004、オプトデバイス技術大全、P360、P359、Cande1a Instrument/ 東朋テクノロジー2004, Opto Device Technology Encyclopedia, P360, P359, Cande1a Instrument / Dongguan Technology

しかし、前記(B)による方法は、裏面反射ウエハー上の粒子の検出は受光光学系と解析アルゴリズムが複雑であるから、ウェハー面上を大視野で計測することが困難である。また、検査時間が長くなる可能性が高い。斜方照射光は裏面反射が強くウェハー表面上に付着した微粒子からの乱光を裏面散乱の外乱光から分離することには非常に精密な情報光分離の光学系が必要になる、という短所がある。   However, in the method according to (B), since the light receiving optical system and the analysis algorithm are complicated for detection of particles on the back surface reflecting wafer, it is difficult to measure the wafer surface with a large field of view. In addition, the inspection time is likely to be long. Oblique irradiation light is strongly reflected from the back side, and it has the disadvantage that a very precise optical system for separating information light is required to separate the scattered light from the fine particles adhering to the wafer surface from the disturbance light from the backside scattering. is there.

(C)液晶ディスプレイ用透明基板の検査
この透明基板の検査法としては、ガラス基板の表面にレーザ光を低角度から照射し、異物からの散乱光をCCD受光素子により受光し、異物信号として検出する方法がある。この方法では表面0.3μmの感度にて裏面の50μm以下の異物を検出しない。検出部では低角度レーザ光照射し、CCD受光部をガラス面に垂直方向からオートフォーカス部でコントロールして表裏分離性能を向上させている。また、ライン状のレーザ光をサンプル基板表面上に低角度で照射し、基板上の異物からの散乱光を基板上方に配置された結像検出光学系を介してラインセンサーで受光する方式であるため、レーザ照射光学系、検出光学系とも可動部は無く、サンプル基板を搭載したX−Yステージを動かすことによって、全面スキヤン・全面検査を行うことができる。検査速度は1100×1250mm基板の場合3分/1枚である。
この方法は、照射光束がライン状であって被検査基板の全面を一度に検査しようという思想が無い。従って測定時間が長い、微粒子を検出したときの位置決めに時間がかかるなどの欠点がある。また、照射レーザ光が裏面に局所的に当たるから、粒子サイズの検出感度は低くなる。
(D)鏡面ウエハーから表面透明裏面荒れウエハーまであらゆる種類の基板の検査
この方法は、前述した(B)で述べた前記非特許文献1があたるが、(B)で述べたような問題点がある。
(E)パターン付ウエハー上の微粒子検査
この検査法として斜方照明、上方検出が行われている(下記非特許文献2参照)が、上述した方法と同様の問題点がある。
(C) Inspection of transparent substrate for liquid crystal display As this transparent substrate inspection method, the surface of the glass substrate is irradiated with laser light from a low angle, and the scattered light from the foreign matter is received by the CCD light receiving element and detected as a foreign matter signal. There is a way to do it. This method does not detect foreign matter of 50 μm or less on the back surface with a sensitivity of 0.3 μm on the front surface. The detection unit emits low-angle laser light, and the CCD light-receiving unit is controlled by the autofocus unit from the direction perpendicular to the glass surface to improve the front / back separation performance. In addition, a line-shaped laser beam is irradiated on the surface of the sample substrate at a low angle, and scattered light from a foreign substance on the substrate is received by a line sensor via an imaging detection optical system disposed above the substrate. Therefore, there is no movable part in both the laser irradiation optical system and the detection optical system, and the entire scan / inspection can be performed by moving the XY stage on which the sample substrate is mounted. The inspection speed is 3 minutes / 1 sheet for a 1100 × 1250 mm substrate.
This method does not have the idea of inspecting the entire surface of the substrate to be inspected at a time because the irradiation light beam is in a line shape. Therefore, there are drawbacks such as long measurement time and long time for positioning when fine particles are detected. Further, since the irradiated laser light hits the back surface locally, the particle size detection sensitivity is lowered.
(D) Inspection of all types of substrates from mirror wafers to surface transparent backside rough wafers This method is the same as the non-patent document 1 described in (B) described above, but there are problems as described in (B). is there.
(E) Fine particle inspection on patterned wafer Oblique illumination and upward detection are performed as this inspection method (see Non-Patent Document 2 below), but there are problems similar to those described above.

セミコン産業に於ける計測検査技術、秋山伸幸、異物検査技術、 0 pluseE、Vol.23、NO5(2001-5) 、P558Measurement and inspection technology in SEMICON industry, Nobuyuki Akiyama, Foreign matter inspection technology, 0 pluseE, Vol.23, NO5 (2001-5), P558

上述した従来の殆どの検査法・検査装置で用いられるウエハー表面付着微粒子の検出法による問題点。
1)斜方照明で上方検出の方法は、シリコンウエハー等の鏡面ウエハー上の汚染粒子検出にはウエハー表面からの外乱光が入らず効果は高いが、ウエハー表面が透明な基板で特に裏面が荒らされているものに対する微粒子測定では、斜方照射光の裏面反射が強くウエハー表面上に付着した微粒子からの散乱光を裏面散乱の外乱光から分離することは非常に困難である。従って、表面透明裏面荒れのウエハーの表面付着微粒子の測定には非常に精密な情報光分離の光学系が必要になる、という短所がある。また、斜方照射によるウエハー面の外乱光が微粒子からの散乱光より強くなるから、微粒子の測定可能サイズを下げることは困難である、という欠点がある。
2)さらに、1本のビームを照射光とする照明方法では、ウェハー全面を検査するためにはそれが当たったウエハー面上の微粒子を検出器で捉えながら、測定点を走査してウエハー全面を検査することが必要となり、1ビーム照射の従来の方法では、ウェハー面上を大視野で計測することが困難であり、検査時間が長くなる可能性が高い、という欠点がある。
Problems due to the detection method of fine particles adhering to the wafer surface used in most of the conventional inspection methods and inspection apparatuses described above.
1) The upward detection method using oblique illumination is highly effective for detecting contaminant particles on a mirror wafer such as a silicon wafer because no disturbance light enters from the wafer surface. However, the back surface is particularly rough when the wafer surface is a transparent substrate. In the measurement of fine particles, it is very difficult to separate the scattered light from the fine particles adhering to the wafer surface from the back scattered disturbance light because the back surface reflection of oblique irradiation light is strong. Therefore, there is a disadvantage that a very precise optical system for separating information light is required for measuring the fine particles adhering to the surface of the wafer whose surface is transparent. Further, since the disturbance light on the wafer surface due to oblique irradiation becomes stronger than the scattered light from the fine particles, it is difficult to reduce the measurable size of the fine particles.
2) Furthermore, in the illumination method using one beam as irradiation light, in order to inspect the entire surface of the wafer, a particle is scanned on the surface of the wafer hit by the detector, and the measurement point is scanned to scan the entire surface of the wafer. Inspection is required, and the conventional method of 1-beam irradiation has the disadvantages that it is difficult to measure on the wafer surface with a large field of view and the inspection time is likely to be long.

そこで本発明者は、上記のような従来技術のもつ問題点を解決するために、被検査物(ウェハー)面より広い範囲のシート状光を使うことで検査時問を短縮するとともに、被検査物面に平行照射することにより裏面からの反射光の問題も解決できる以下のような検査装置および方法を提供する。
(1)レーザ光のような光線を走査したり、あるいは光学系によってレーザ光を平行シート状光にして、(イ)被検査物としてのウェハー面に平行な照射光、(ロ)被検査物としてのウェハー面より広い範囲の平行照射光をつくって、ウェハー面に対して平行に照射する。
(2)平行照射光がウエハー表面に平行でウエハーの側面に当たる高さで照射され、それをウエハー表面の上方からCCDカメラで撮影すれば、ウエハーの表面と平行な断面の形が明確な形で観測される。
(3)この結果、ウエハー面の全体の形がCCDカメラの画面上の特定の位置に一瞬に記録される。
(4)ウエハー面に平行な拡大平行照射光はウエハー表面に接触した位置から平行に徐々に引き上げられ、ウエハー表面に触らない位置まで上がってくる。
(5)この間に、ウエハー表面に付着した汚染微粒子は平行光に照射されて、側方散乱光を発する。
(6)レーザ光等の照射光の方向がウエハー表面に平行に照射されている関係で、ウエハー表面からの散乱の外乱光は付着微粒子等の散乱光に比べて非常に弱いから、微粒子からの散乱光は容易に分離観測される。
(7)ウエハー表面に対して斜方向から照射される場合に比べて、ウエハー表面あるいは裏面からの外乱光の影響は格段に小さい。
(8)散乱光計測にあたっては、照射光はウエハーに触らない位置から徐々にウエハー表面に触る位置まで下げながら、ウエハー表面上の粒子による散乱光を検出することも同様の効果がある。なお、照射光学系を移動せずにウエハー面を上下に移動しても散乱光を検出することもできる。
Therefore, in order to solve the above-mentioned problems of the prior art, the present inventor shortens the inspection time by using a sheet-shaped light in a wider range than the surface of the object to be inspected (wafer) and The following inspection apparatus and method are provided that can solve the problem of reflected light from the back surface by irradiating the object surface in parallel.
(1) A light beam such as a laser beam is scanned, or the laser beam is converted into a parallel sheet-like light by an optical system, and (a) irradiation light parallel to the wafer surface as the inspection object, and (b) the inspection object. A parallel irradiation light having a wider range than that of the wafer surface is produced and irradiated in parallel to the wafer surface.
(2) When the parallel irradiation light is irradiated at a height that is parallel to the wafer surface and hits the side surface of the wafer and is photographed with a CCD camera from above the wafer surface, the shape of the cross section parallel to the wafer surface is clear. Observed.
(3) As a result, the entire shape of the wafer surface is instantaneously recorded at a specific position on the screen of the CCD camera.
(4) Expanded parallel irradiation light parallel to the wafer surface is gradually lifted in parallel from the position in contact with the wafer surface and rises to a position where the wafer surface is not touched.
(5) During this time, the contaminating fine particles adhering to the wafer surface are irradiated with parallel light and emit side scattered light.
(6) Since the direction of the irradiation light such as laser light is irradiated parallel to the wafer surface, the disturbance light scattered from the wafer surface is much weaker than the scattered light such as adhering fine particles. Scattered light is easily separated and observed.
(7) The influence of disturbance light from the wafer surface or back surface is much smaller than when the wafer surface is irradiated obliquely.
(8) In the scattered light measurement, detecting the scattered light by the particles on the wafer surface while the irradiation light is gradually lowered from the position not touching the wafer to the position touching the wafer surface has the same effect. The scattered light can also be detected by moving the wafer surface up and down without moving the irradiation optical system.

このため、本発明が採用した技術解決手段は、
レーザー照射光をウエハーまたは液晶ディスプレイ用透明ガラス等の被検査物側方から被検査物面に対して平行に照射し、照射光を被検査物面に対して垂直方向に移動させて被検査物の表面形状を記録し、さらに、照射光を被検査物面に対して垂直方向に移動させて被検査物面上に付着する粒子、被検査物面上の凹凸、スクラッチ等からの側方散乱光を捕らえ、前記被検査物表面の輪郭内に表示することにより、全被検査物面に亘って散乱光の強度から粒子径、被検査物の表面上の凹凸、スクラッチを求めることを特徴とする被検査物の表面上の異物・表面検査方法である。
また、前記照射光は、一本または多方面から照射される複数本のレーザ光であることを特徴とする被検査物の表面上の異物・表面検査方法である。
また、前記照射光は、平行走査シート状光かまたは拡大平行シート光であることを特徴とする被検査物の表面上の異物・表面検査方法である。
また、前記平行走査シート状光または拡大平行シート光は被検査物面より広い平行走査シート状光かまたは拡大平行シート光であることを特徴とする被検査物の表面上の異物・表面検査方法である。
また、前記に記載の被検査物の表面上の異物・表面検査方法に使用する装置であって、前記装置は、レーザ光源、前記レーザ光源からのレーザ光を被検査物の表面に平行に照射するレーザ照射手段、被測定物としての被検査物を支持する支持手段、被検査物からの散乱光や反射光または被検査物面の欠陥や異物からの散乱光や反射光を撮影する撮影手段を備え、前記レーザ照射手段と支持手段は互いの位置を調整できる調整機構を備えていることを特徴とする被検査物の表面上の異物・表面検査装置である。
また、前記被検査物の表面に平行に照射するレーザ照射手段はシート状のレーザ光を照射できるようにしたことを特徴とする被検査物の表面上の異物・表面検査装置である。
また、被検査物の全面にわたって微粒子の散乱光強度を撮影するために、前記レーザ照射手段の光学系に1/2波長板を配置するとともに、前記撮影手段の光学系に偏光板を配置したことを特徴とする被検査物の表面上の異物・表面検査装置である。
また、前記撮影手段の光学系中に分光光学系を配置し、微粒子の組成を測定できるようにしたことを特徴とする被検査物の表面上の異物・表面検査装置である。
For this reason, the technical solution means adopted by the present invention is:
Laser irradiation light is irradiated in parallel to the surface of the inspection object from the side of the inspection object such as a wafer or transparent glass for liquid crystal display, and the irradiation light is moved in a direction perpendicular to the surface of the inspection object. The surface shape is recorded, and the scattered light is moved in the direction perpendicular to the surface of the inspection object to adhere to the surface of the inspection object, unevenness on the surface of the inspection object, side scatter from scratches, etc. By capturing light and displaying within the contour of the surface of the object to be inspected, the particle diameter, unevenness on the surface of the object to be inspected, and scratch are obtained from the intensity of scattered light over the entire surface of the object to be inspected. This is a foreign matter / surface inspection method on the surface of an inspection object.
The irradiation light is a foreign matter / surface inspection method on the surface of an object to be inspected, wherein the irradiation light is a single laser beam or a plurality of laser beams irradiated from various directions.
Further, the irradiation light is a parallel scanning sheet-like light or an enlarged parallel sheet light, and is a foreign matter / surface inspection method on the surface of an inspection object.
The method for inspecting foreign matter / surface on the surface of the object to be inspected is characterized in that the parallel scanning sheet light or the enlarged parallel sheet light is a parallel scanning sheet light or an enlarged parallel sheet light wider than the surface of the object to be inspected. It is.
Further, the apparatus is used for the foreign matter / surface inspection method on the surface of the inspection object described above, wherein the apparatus irradiates the surface of the inspection object in parallel with the laser light source and the laser light from the laser light source. Laser irradiating means, supporting means for supporting the object to be inspected, imaging means for photographing scattered light or reflected light from the object to be inspected, scattered light or reflected light from the object to be inspected, or defects or foreign matter on the surface of the object to be inspected The laser irradiation means and the support means are provided with an adjustment mechanism capable of adjusting the position of each other, and are a foreign object / surface inspection apparatus on the surface of an object to be inspected.
The laser irradiation means for irradiating the surface of the inspection object in parallel can irradiate a sheet-like laser beam.
Further, in order to photograph the scattered light intensity of the fine particles over the entire surface of the object to be inspected, a half-wave plate is disposed in the optical system of the laser irradiation unit, and a polarizing plate is disposed in the optical system of the imaging unit. This is a foreign matter / surface inspection apparatus on the surface of an object to be inspected.
Further, the present invention is the foreign matter / surface inspection apparatus on the surface of the object to be inspected, wherein a spectroscopic optical system is arranged in the optical system of the photographing means so that the composition of the fine particles can be measured.

本発明によれば、
1.被検査物としての基板(たとえばウエハー)のサイズに合わせて広い検査視野をつくり、ウエハー面上の全体をいちどに検査することができ、従来の方法に無い検査速度の優位性がある。
2.拡大平行光をウエハー面に平行照射することによってウエハー面の外乱光を抑え、汚染粒子からの微弱な散乱光を瞬時に全面的に取得するという手法を使うことにより、従来法に比べて被検査粒径限界を高め、検査速度を高める優位性がある。
3.装置が構造上比較的簡単で、製造上コスト面で従来法に比べて優位である。
等の優れた効果を奏することができる。
According to the present invention,
1. A wide inspection field of view can be created in accordance with the size of a substrate (for example, a wafer) as an object to be inspected, and the entire surface of the wafer can be inspected at a time.
2. Compared with the conventional method by using a method that suppresses disturbance light on the wafer surface by irradiating magnified parallel light to the wafer surface and instantly acquires weak scattered light from contaminating particles. There is an advantage of increasing the particle size limit and increasing the inspection speed.
3. The apparatus is relatively simple in structure, and is superior to the conventional method in terms of manufacturing cost.
And the like.

本発明は、レーザー照射光を被検査物側方から被検査物面に対して平行に照射し、照射光を被検査物面に対して垂直方向に移動させ、被検査物面上に付着する粒子、被検査物面上の凹凸、スクラッチ等を全被検査物面に亘って計測検査する方法である。被検査物面より広い範囲のシート状光を使用し、被検査物(ウェハー)面に対して平行に側面から照射し、それを徐々に上方に引き上げ、平行照射光が被検査物表面に触らない位置まで上がった瞬間に、ウェハー表面の上方からCCDカメラで撮影する。この工程によりウェハーの外形と位置を瞬時に記録することができる。ついで、照射光を更に上方に移動すると、ウェハー表面に付着した汚染微粒子がこの平行光に照射されるため、ウェハー表面からの外乱光に比べてはるかに強い側方散乱光が微粒子から発せられる。これらの散乱光を記録し、更に散乱光の強度から粒子径を求めることで、被検査物上の全汚染微粒子の位置とそれぞれの粒径を一括して測定することができ、被検査物の検査時間を著しく短縮することができる。また本発明は、ウェハー表面上の突起物を平行光の照射により検出するものであるため、汚染微粒子だけではなく、被検査物自体の凹凸、スクラッチ等の検査も迅速に行なうことができる。   The present invention irradiates laser irradiation light parallel to the surface of the inspection object from the side of the inspection object, moves the irradiation light in a direction perpendicular to the inspection object surface, and adheres to the inspection object surface. This is a method for measuring and inspecting particles, unevenness on the surface of the object to be inspected, scratches and the like over the entire surface of the object to be inspected. Use a sheet of light in a wider range than the surface of the object to be inspected, irradiate it from the side parallel to the surface of the object to be inspected (wafer), pull it up gradually, and the parallel irradiation light touches the surface of the object to be inspected The image is taken with a CCD camera from above the wafer surface at the moment when it rises to a position where it does not exist. By this process, the outer shape and position of the wafer can be recorded instantaneously. Next, when the irradiation light is moved further upward, the contaminated fine particles adhering to the wafer surface are irradiated to the parallel light, so that side scattered light that is much stronger than the disturbance light from the wafer surface is emitted from the fine particles. By recording these scattered light and further obtaining the particle diameter from the intensity of the scattered light, it is possible to measure the position of all the contaminating fine particles on the object to be inspected and the respective particle diameters at once. Inspection time can be significantly shortened. Further, according to the present invention, the projection on the wafer surface is detected by irradiation with parallel light, so that not only the contaminating fine particles but also the unevenness and scratches of the inspection object itself can be rapidly inspected.

以下、本発明の実施例を説明すると、図1は本発明を実施するための装置の概略構成図である。装置は、従来の検査装置と略同じ構成を備えており、図1に示すCCDカメラから取得された画像は、画像解析装置で解析され、ウエハー面上の汚染微粒子の状況が適宜表示手段で表示される。図2は本発明の要部の拡大図、図3は同要部の平面図、図4はレーザ光源から、ウエハー面に平行なレーザー光照射する照射手段の平面図である。   Hereinafter, embodiments of the present invention will be described. FIG. 1 is a schematic configuration diagram of an apparatus for carrying out the present invention. The apparatus has substantially the same configuration as that of a conventional inspection apparatus, and an image acquired from the CCD camera shown in FIG. 1 is analyzed by an image analysis apparatus, and the state of contaminant particles on the wafer surface is appropriately displayed by display means. Is done. FIG. 2 is an enlarged view of the main part of the present invention, FIG. 3 is a plan view of the main part, and FIG. 4 is a plan view of irradiation means for irradiating laser light parallel to the wafer surface from a laser light source.

図1において、1はウエハー支持台、2は被検査物としてのウエハー、3はレーザ光源、4はビームエキスパンダー、5はレーザ照射手段、5aはシート状レーザ光、6はCCDカメラ、7は画像解析装置、これらの光学系には適宜ミラー、レンズ、1/2波長板、偏光板8が配置されている。なお、被検査物は以下の説明ではウエハー基板を前提に説明するが、ウエハー基板に限定することなく液晶ディスプレイ用透明ガラス基板等を対象とすることもできる。
レーザ照射手段5、ウエハー支持台1は、後述するようにウエハー面に平行なレーザ光を照射できるよう、またレーザ光とウエハー面との相対位置(X、Y、Z方向の位置)を変えることができるようになっている。なお、この位置調整機構は、現在公知の種々の手段を採用することができる。
In FIG. 1, 1 is a wafer support, 2 is a wafer as an object to be inspected, 3 is a laser light source, 4 is a beam expander, 5 is a laser irradiation means, 5a is a sheet-like laser beam, 6 is a CCD camera, and 7 is an image. In the analysis apparatus and these optical systems, a mirror, a lens, a half-wave plate, and a polarizing plate 8 are appropriately arranged. In the following description, the inspection object will be described on the premise of a wafer substrate. However, the inspection object is not limited to the wafer substrate, and may be a transparent glass substrate for liquid crystal display.
As will be described later, the laser irradiation means 5 and the wafer support 1 are capable of irradiating laser light parallel to the wafer surface, and changing the relative position (position in the X, Y, and Z directions) between the laser light and the wafer surface. Can be done. The position adjusting mechanism can employ various currently known means.

この装置において、レーザ光源3からの照射光は、ミラー、ビームエキスパンダー、1/2波長板を通して、レーザ照射手段5からシート状レーザ光5aとしてウエハー2に側面から照射される。この状態を図2に示す。なお、平行照射光束は複数方向から照射されてもよい。ウエハー2表面からの散乱光は、偏光板8を介してCCDカメラ6によって撮影され、画像解析装置7(図1参照)で、解析され、ウエハー表面上の微粒子、ウエハー自体の凹凸、スクラッチ等を検出する。レーザ光は、図3に示すように、ウエハーの面よりも大きな幅を持つシート状光5aとしてウエハーに側面から照射される。このとき照射されるレーザ光5aは、λ/2板(1/2波長板)を通して照射する。被検査物(基板面)に平行照射する光束は検査面を舐める形で面平行に照射されてもよい。   In this apparatus, the irradiation light from the laser light source 3 is irradiated from the side surface to the wafer 2 as a sheet-like laser light 5a from the laser irradiation means 5 through a mirror, a beam expander, and a half-wave plate. This state is shown in FIG. The parallel irradiation light beam may be irradiated from a plurality of directions. Scattered light from the surface of the wafer 2 is photographed by the CCD camera 6 through the polarizing plate 8 and analyzed by the image analysis device 7 (see FIG. 1), and fine particles on the wafer surface, unevenness of the wafer itself, scratches, etc. are removed. To detect. As shown in FIG. 3, the laser light is irradiated onto the wafer from the side surface as sheet-like light 5a having a width larger than the surface of the wafer. The laser beam 5a irradiated at this time is irradiated through a λ / 2 plate (1/2 wavelength plate). The light beam irradiated in parallel on the object to be inspected (substrate surface) may be irradiated parallel to the surface in a form that licks the inspection surface.

上記装置による検査方法を説明する。
図2に示すようにレーザ光を被検査ウェハー面に平行な照射光、あるいは被検査ウェハー面より広い範囲の平行シート状照射光として、ウェハー面に対して平行に照射する。なお、レーザ光は1本のレーザ光であってもよいし、多方向から照射される複数本のレーザ光であってもよい。
An inspection method using the above apparatus will be described.
As shown in FIG. 2, the laser light is irradiated in parallel to the wafer surface as irradiation light parallel to the wafer surface to be inspected or parallel sheet-shaped irradiation light in a wider range than the wafer surface to be inspected. The laser beam may be a single laser beam or a plurality of laser beams irradiated from multiple directions.

先ず、レーザ照射手段5あるいはウエハー支持台の相対的位置を調整して平行照射光5aをウエハー2表面に平行で、かつ、ウエハーの側面に当たる高さで照射し、それをウエハー2表面の上方からCCDカメラ6で撮影する。具体的には、被検査ウエハー面に対してレーザ光5aを平行に側面から照射し、それを徐々に上方に引き上げ、平行照射光がウエハー2表面に触らない位置まで上げる。それを、ウェハー2表面の上方からCCDカメラ6で撮影することで、シート状の平行照射光5aがウエハー2表面に接触するときにはウエハー2の外形と位置が一瞬に記録される。この結果、ウエハー2の表面と平行な断面の形が明確な形で観測される。言い換えるとウエハー2面の全体の形がCCDカメラの画面上の特定の位置に一瞬に記録される。   First, the relative position of the laser irradiation means 5 or the wafer support is adjusted to irradiate the parallel irradiation light 5a parallel to the surface of the wafer 2 and at a height corresponding to the side surface of the wafer, from above the surface of the wafer 2. Take picture with CCD camera 6. Specifically, the laser beam 5a is irradiated from the side surface in parallel to the wafer surface to be inspected, and is gradually pulled upward to raise the position where the parallel irradiation light does not touch the wafer 2 surface. By photographing this with the CCD camera 6 from above the surface of the wafer 2, the outer shape and position of the wafer 2 are recorded instantaneously when the sheet-like parallel irradiation light 5 a comes into contact with the surface of the wafer 2. As a result, a cross-sectional shape parallel to the surface of the wafer 2 is observed in a clear shape. In other words, the entire shape of the wafer 2 surface is instantaneously recorded at a specific position on the screen of the CCD camera.

その後、ウエハー2面に平行な拡大シート状の平行照射光5aはウエハー2表面に接触した位置から平行に徐々に引き上げられ、ウエハー2表面に触らない位置まで上がってくる。この間に、ウエハー2表面に付着した汚染微粒子は平行光に照射されてウエハー表面からの外乱光に比べてはるかに強い側方散乱光を発する。レーザ光等の照射光の方向がウエハー2表面に平行に照射されている関係で、ウエハー2表面からの散乱の外乱光は付着微粒子等の散乱光に比べて非常に弱いから、微粒子からの散乱光は容易に分離観測される。そして、それらの散乱光強度と位置は前述した方法で観測されたウエハー2輸郭内に実時間的に表示される。また、散乱光強度によってミイ散乱(レーリー散乱も含まれる)から粒子径が求められ、ウエハー画像面上に粒径が位置と共に画像的に表示される。
このように本発明では従来の検査法のようにウエハー表面に対して斜方向からウエハーを照射する場合に比べて、ウエハー表面あるいは裏面からの外乱光の影響は格段に小さくなる。
なお、散乱光計測にあたっては、照射光はウエハーに触らない位置から徐々にウエハー表面に触る位置まで下げながら、ウエハー表面上の粒子による散乱光を検出することも同様の効果がある。なお、更に、照射光は固定し、ウエハー支持台を上下に移動してもよい。
Thereafter, the parallel irradiation light 5a in the form of an enlarged sheet parallel to the surface of the wafer 2 is gradually pulled up in parallel from the position in contact with the surface of the wafer 2 and rises to a position where the surface of the wafer 2 is not touched. During this time, the contaminating fine particles adhering to the surface of the wafer 2 are irradiated with parallel light and emit side scattered light that is much stronger than the disturbance light from the wafer surface. Since the direction of the irradiation light such as laser light is applied to the surface of the wafer 2 in parallel, the disturbance light scattered from the surface of the wafer 2 is much weaker than the scattered light such as adhering fine particles. Light is easily observed separately. The scattered light intensity and position are displayed in real time in the wafer 2 contour observed by the method described above. Further, the particle diameter is obtained from the My scattering (including Rayleigh scattering) by the scattered light intensity, and the particle diameter is displayed on the wafer image surface together with the position in an image.
As described above, in the present invention, the influence of disturbance light from the wafer front surface or the back surface is remarkably reduced as compared with the case of irradiating the wafer surface obliquely with respect to the wafer surface as in the conventional inspection method.
In the scattered light measurement, the same effect can be obtained by detecting scattered light caused by particles on the wafer surface while the irradiation light is gradually lowered from a position not touching the wafer to a position touching the wafer surface. Furthermore, the irradiation light may be fixed and the wafer support may be moved up and down.

ところで、上記検査方法を実施する際には、照射するレーザ光線はガウス分布強度をピンホールやレンズを用いた光学系等を補正し(このような補正は従来周知であり、説明は省略する)、光線の端部分の強度が弱くならないような光線断面の分布強度を保つようにしておくことが重要である。
被検査ウェハー面と付着微粒子からの散乱光を分離し、微粒子の散乱光強度を被検査基板全面にわたって画像上に実時間撮影するためには、照射光の偏光面がウエハー面と一定の角度を持つ必要がある。 照射光の偏光面を適切に選べるようにするため、照射光はλ/2板(1/2波長板)を通して照射する。
ウェハー面での散乱光と微粒子からの散乱光の画像を更に明確に分離するために、散乱光等の画像撮影には偏光板を備えた光学系を用い、微粒子からの散乱光画像を明確に分離可能にする。
レーザ光等照射光の波長は被測定物体の特性に合わせて適宜選択する。
受光光学系は分光光学系をCCDカメラの前に付加し、微粒子の組成を測定可能とする。
測定粒子径は、粒子からの散乱光強度によってミイ散乱(レーリー散乱も含まれる)から求められ・ウェハー面上の位置と共に画像的に表示される。
なお、前記CCDカメラの代わりに光強度検出器(例えばアレイセンサ)、あるいは画像検出器(例えばICCカメラ(イメージインテンシファイア付きCCDカメラ))を使用することもできる。
By the way, when carrying out the above inspection method, the irradiating laser beam corrects the Gaussian distribution intensity to an optical system using a pinhole or a lens (such correction is well known in the art and will not be described). It is important to keep the distribution intensity of the light beam cross section so that the intensity of the end portion of the light beam does not become weak.
In order to separate the scattered light from the wafer surface to be inspected and adhering fine particles, and to capture the scattered light intensity of the fine particles over the entire surface of the inspected substrate on the image in real time, the polarization plane of the irradiated light should be at a certain angle with the wafer surface It is necessary to have. In order to appropriately select the polarization plane of the irradiation light, the irradiation light is irradiated through a λ / 2 plate (1/2 wavelength plate).
In order to separate the image of the scattered light from the wafer surface and the scattered light from the fine particles more clearly, an optical system with a polarizing plate is used to capture the image of the scattered light, etc., and the scattered light image from the fine particles is clearly defined. Make it separable.
The wavelength of irradiation light such as laser light is appropriately selected according to the characteristics of the object to be measured.
The light receiving optical system has a spectroscopic optical system added in front of the CCD camera so that the composition of the fine particles can be measured.
The measured particle diameter is obtained from the My scattering (including Rayleigh scattering) by the intensity of scattered light from the particle, and is displayed imageically together with the position on the wafer surface.
Instead of the CCD camera, a light intensity detector (for example, an array sensor) or an image detector (for example, an ICC camera (a CCD camera with an image intensifier)) can be used.

以上、本発明についてその実施例を説明したが、その実施例に限定されることなく、例えば、被検査物面に平行照射する光束は検査面を舐める形で面平行に照射されてもよい。また照射光線はレーザ光線等の平行光束であってもよいし、レーザ以外の光源からの光線であってもよい。さらに、照射光線は一本の光線を走査してもよいし、被検査基板に平行な拡大シート光、あるいは多方向から照射される複数のレーザ光であっでもよい。また、照射光の偏光面は1/2波長板を通してウェハー面と一定の角度を持たせて照射し、受光器であるCCDカメラの前に偏光板と波長フィルタを付加して、微粒子の粒径検査性能を高めると共に組成測定を可能とする。また被検査物としては、ウエハー基板、液晶ディスプレイ用透明ガラス基板等の限定されることなく、同様の機能を達成する基板などを対象とすることもできる。
さらに、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the embodiment. For example, the light beam irradiated in parallel to the surface of the object to be inspected may be irradiated in parallel to the surface so as to lick the inspection surface. The irradiation light beam may be a parallel light beam such as a laser beam, or may be a light beam from a light source other than the laser. Furthermore, the irradiation light may be a single light beam, may be an enlarged sheet light parallel to the substrate to be inspected, or a plurality of laser lights irradiated from multiple directions. In addition, the polarization plane of the irradiated light is irradiated through the half-wave plate at a constant angle with the wafer surface, and a polarizing plate and a wavelength filter are added in front of the CCD camera as a light receiver to reduce the particle size of the fine particles. Improves inspection performance and enables composition measurement. In addition, the object to be inspected is not limited to a wafer substrate, a transparent glass substrate for a liquid crystal display, or the like, but can also be a substrate that achieves the same function.
In addition, the present invention can be implemented in any other form without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.

本発明は、表面透明で裏面の荒れたウェハーの検査、液晶ディスプレイ用透明基板の検査、鏡面ウエハー等も含むあらゆる種類の基板の検査、パターン付ウエハー上の微粒子検査等に広く利用できる。   INDUSTRIAL APPLICABILITY The present invention can be widely used for inspection of wafers with transparent front surfaces and rough back surfaces, inspection of transparent substrates for liquid crystal displays, inspection of all types of substrates including mirror-surface wafers, inspection of fine particles on patterned wafers, and the like.

本発明を実施するための装置の概略構成図である。It is a schematic block diagram of the apparatus for implementing this invention. 本発明の要部の拡大図である。It is an enlarged view of the principal part of this invention. 同要部の平面図である。It is a top view of the principal part. レーザ光源から、ウエハー面に平行なレーザー光照射する照射手段の平面図である。It is a top view of the irradiation means to irradiate a laser beam parallel to a wafer surface from a laser light source.

符号の説明Explanation of symbols

1 ウエハー支持台
2 被検査物としてのウエハー
3 レーザ光源
4 ビームエキスパンダー
5 レーザ照射手段
5a シート状レーザ光
6 CCDカメラ
7 画像解析装置
8 偏光板
DESCRIPTION OF SYMBOLS 1 Wafer support stand 2 Wafer as a to-be-inspected object 3 Laser light source 4 Beam expander 5 Laser irradiation means 5a Sheet-like laser beam 6 CCD camera 7 Image analyzer 8 Polarizing plate

Claims (8)

レーザー照射光をウエハーまたは液晶ディスプレイ用透明ガラス等の被検査物側方から被検査物面に対して平行に照射し、照射光を被検査物面に対して垂直方向に移動させて被検査物の表面形状を記録し、さらに、照射光を被検査物面に対して垂直方向に移動させて被検査物面上に付着する粒子、被検査物面上の凹凸、スクラッチ等からの側方散乱光を捕らえ、前記被検査物表面の輪郭内に表示することにより、全被検査物面に亘って散乱光の強度から粒子径、被検査物の表面上の凹凸、スクラッチを求めることを特徴とする被検査物の表面上の異物・表面検査方法。 Laser irradiation light is irradiated in parallel to the surface of the inspection object from the side of the inspection object such as a wafer or transparent glass for liquid crystal display, and the irradiation light is moved in a direction perpendicular to the surface of the inspection object. The surface shape is recorded, and the scattered light is moved in the direction perpendicular to the surface of the inspection object to adhere to the surface of the inspection object, unevenness on the surface of the inspection object, side scatter from scratches, etc. By capturing light and displaying within the contour of the surface of the object to be inspected, the particle diameter, unevenness on the surface of the object to be inspected, and scratch are obtained from the intensity of scattered light over the entire surface of the object to be inspected. Inspection method for foreign matter on the surface of the object to be inspected. 前記照射光は、一本または多方面から照射される複数本のレーザ光であることを特徴とする請求項1に記載の被検査物の表面上の異物・表面検査方法。 2. The foreign matter / surface inspection method on the surface of an inspection object according to claim 1, wherein the irradiation light is a single laser beam or a plurality of laser beams irradiated from various directions. 前記照射光は、平行走査シート状光かまたは拡大平行シート光であることを特徴とする請求項1に記載の被検査物の表面上の異物・表面検査方法。 2. The foreign matter / surface inspection method on the surface of an object to be inspected according to claim 1, wherein the irradiation light is a parallel scanning sheet light or an expanded parallel sheet light. 前記平行走査シート状光または拡大平行シート光は被検査物面より広い平行走査シート状光かまたは拡大平行シート光であることを特徴とする請求項3に記載の被検査物の表面上の異物・表面検査方法。 4. The foreign matter on the surface of the inspection object according to claim 3, wherein the parallel scanning sheet light or the enlarged parallel sheet light is parallel scanning sheet light wider than the inspection object surface or the enlarged parallel sheet light. -Surface inspection method. 前記請求項1〜請求項4に記載の被検査物の表面上の異物・表面検査方法に使用する装置であって、前記装置は、レーザ光源、前記レーザ光源からのレーザ光を被検査物の表面に平行に照射するレーザ照射手段、被測定物としての被検査物を支持する支持手段、被検査物からの散乱光や反射光または被検査物面の欠陥や異物からの散乱光や反射光を撮影する撮影手段を備え、前記レーザ照射手段と支持手段は互いの位置を調整できる調整機構を備えていることを特徴とする被検査物の表面上の異物・表面検査装置。 An apparatus for use in the foreign matter / surface inspection method on a surface of an object to be inspected according to any one of claims 1 to 4, wherein the apparatus uses a laser light source and a laser beam from the laser light source to inspect the object to be inspected. Laser irradiation means for irradiating the surface in parallel, support means for supporting the inspection object as the object to be measured, scattered light or reflected light from the inspection object, or scattered light or reflected light from defects or foreign matter on the inspection object surface An apparatus for inspecting a foreign object / surface on the surface of an object to be inspected, comprising: an imaging means for taking an image, wherein the laser irradiating means and the supporting means are provided with an adjustment mechanism capable of adjusting the positions of each other. 前記被検査物の表面に平行に照射するレーザ照射手段はシート状のレーザ光を照射できるようにしたことを特徴とする請求項5に記載の被検査物の表面上の異物・表面検査装置。 6. The foreign matter / surface inspection apparatus on the surface of an inspection object according to claim 5, wherein the laser irradiation means for irradiating the surface of the inspection object in parallel can irradiate a sheet-like laser beam. 被検査物の全面にわたって微粒子の散乱光強度を撮影するために、前記レーザ照射手段の光学系に1/2波長板を配置するとともに、前記撮影手段の光学系に偏光板を配置したことを特徴とする請求項5または請求項6に記載の被検査物の表面上の異物・表面検査装置。 In order to image the scattered light intensity of fine particles over the entire surface of the inspection object, a half-wave plate is disposed in the optical system of the laser irradiation unit, and a polarizing plate is disposed in the optical system of the imaging unit. The foreign matter / surface inspection apparatus on the surface of the inspection object according to claim 5 or 6. 前記撮影手段の光学系中に分光光学系を配置し、微粒子の組成を測定できるようにしたことを特徴とする請求項5または請求項6に記載の被検査物の表面上の異物・表面検査装置。
7. A foreign matter / surface inspection on the surface of an object to be inspected according to claim 5 or 6, wherein a spectroscopic optical system is arranged in the optical system of the photographing means so that the composition of the fine particles can be measured. apparatus.
JP2004083860A 2004-03-23 2004-03-23 Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device Pending JP2005274173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083860A JP2005274173A (en) 2004-03-23 2004-03-23 Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083860A JP2005274173A (en) 2004-03-23 2004-03-23 Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device

Publications (1)

Publication Number Publication Date
JP2005274173A true JP2005274173A (en) 2005-10-06

Family

ID=35174025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083860A Pending JP2005274173A (en) 2004-03-23 2004-03-23 Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device

Country Status (1)

Country Link
JP (1) JP2005274173A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014697A (en) * 2006-07-04 2008-01-24 Nikon Corp Surface inspection device
US7433033B2 (en) 2006-05-05 2008-10-07 Asml Netherlands B.V. Inspection method and apparatus using same
JP2010522441A (en) * 2007-04-25 2010-07-01 エスエヌユー プレシジョン カンパニー リミテッド Semiconductor wafer foreign matter inspection and repair system and method
US8107078B2 (en) * 2008-03-03 2012-01-31 Lg Display Co., Ltd. Detecting device and method for detecting unevenness of a glass substrate
CN107884414A (en) * 2017-11-03 2018-04-06 电子科技大学 It is a kind of to reject mirror article surface defect detecting system and the method that dust influences
JP2018112408A (en) * 2017-01-06 2018-07-19 株式会社ディスコ Inspection apparatus
JP2018159634A (en) * 2017-03-23 2018-10-11 日本電気株式会社 Dirt detection device, terminal device, and dirt detection method
JP2018159600A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Printed image inspection device, printed image inspection method, and program
CN117491391A (en) * 2023-12-29 2024-02-02 登景(天津)科技有限公司 Glass substrate light three-dimensional health detection method and equipment based on chip calculation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180758U (en) * 1986-05-08 1987-11-17
JPH0658745A (en) * 1993-06-15 1994-03-04 Omron Corp Roughness observation device
JPH09288064A (en) * 1996-04-22 1997-11-04 Nikon Corp Foreign-body detection apparatus
JPH10160683A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Foreign object inspection method and device
JP2001195576A (en) * 2000-01-06 2001-07-19 Olympus Optical Co Ltd Circle diameter measuring instrument
JP2001201462A (en) * 2000-01-20 2001-07-27 Sumitomo Osaka Cement Co Ltd Apparatus and method for inspection of transparent material or object wrapped with transparent material
JP3290784B2 (en) * 1993-10-29 2002-06-10 ラトックシステムエンジニアリング株式会社 Crystal defect detection method using confocal optical system
JP2003172708A (en) * 2001-12-10 2003-06-20 Fuji Photo Film Co Ltd Defect inspection device for magnetic tape
JP2003254914A (en) * 2002-02-28 2003-09-10 Ryota Arima Quality inspection method of transparent package

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180758U (en) * 1986-05-08 1987-11-17
JPH0658745A (en) * 1993-06-15 1994-03-04 Omron Corp Roughness observation device
JP3290784B2 (en) * 1993-10-29 2002-06-10 ラトックシステムエンジニアリング株式会社 Crystal defect detection method using confocal optical system
JPH09288064A (en) * 1996-04-22 1997-11-04 Nikon Corp Foreign-body detection apparatus
JPH10160683A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Foreign object inspection method and device
JP2001195576A (en) * 2000-01-06 2001-07-19 Olympus Optical Co Ltd Circle diameter measuring instrument
JP2001201462A (en) * 2000-01-20 2001-07-27 Sumitomo Osaka Cement Co Ltd Apparatus and method for inspection of transparent material or object wrapped with transparent material
JP2003172708A (en) * 2001-12-10 2003-06-20 Fuji Photo Film Co Ltd Defect inspection device for magnetic tape
JP2003254914A (en) * 2002-02-28 2003-09-10 Ryota Arima Quality inspection method of transparent package

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433033B2 (en) 2006-05-05 2008-10-07 Asml Netherlands B.V. Inspection method and apparatus using same
JP2008014697A (en) * 2006-07-04 2008-01-24 Nikon Corp Surface inspection device
JP2010522441A (en) * 2007-04-25 2010-07-01 エスエヌユー プレシジョン カンパニー リミテッド Semiconductor wafer foreign matter inspection and repair system and method
US8107078B2 (en) * 2008-03-03 2012-01-31 Lg Display Co., Ltd. Detecting device and method for detecting unevenness of a glass substrate
JP7093158B2 (en) 2017-01-06 2022-06-29 株式会社ディスコ Inspection equipment
JP2018112408A (en) * 2017-01-06 2018-07-19 株式会社ディスコ Inspection apparatus
JP7039851B2 (en) 2017-03-22 2022-03-23 日本電気株式会社 Print image inspection device, print image inspection method, program
JP2018159600A (en) * 2017-03-22 2018-10-11 日本電気株式会社 Printed image inspection device, printed image inspection method, and program
JP2018159634A (en) * 2017-03-23 2018-10-11 日本電気株式会社 Dirt detection device, terminal device, and dirt detection method
JP7114859B2 (en) 2017-03-23 2022-08-09 日本電気株式会社 Dirt detection device, terminal device, and dirt detection method
CN107884414B (en) * 2017-11-03 2019-12-27 电子科技大学 System and method for detecting surface defects of mirror surface object by eliminating influence of dust
CN107884414A (en) * 2017-11-03 2018-04-06 电子科技大学 It is a kind of to reject mirror article surface defect detecting system and the method that dust influences
CN117491391A (en) * 2023-12-29 2024-02-02 登景(天津)科技有限公司 Glass substrate light three-dimensional health detection method and equipment based on chip calculation
CN117491391B (en) * 2023-12-29 2024-03-15 登景(天津)科技有限公司 Glass substrate light three-dimensional health detection method and equipment based on chip calculation

Similar Documents

Publication Publication Date Title
US20230393185A1 (en) Apparatus, method and computer program product for defect detection in work pieces
JP4500641B2 (en) Defect inspection method and apparatus
TWI713638B (en) Method for detecting defects and associated device
WO2009142305A1 (en) Method for inspecting defects, and defect inspecting apparatus
KR101376831B1 (en) Surface defect detecting apparatus and control method thereof
JP2010197367A (en) Detection apparatus for particle on glass and detection method using the same
JP2009244035A (en) Method and its apparatus for inspecting defects
JPH03267745A (en) Surface property detecting method
JP2004170495A (en) Method and device for inspecting substrate for display
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
JP2999712B2 (en) Edge defect inspection method and apparatus
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
JP2007263612A (en) Visual inspection device of wafer
KR100532238B1 (en) Thin film inspection method, apparatus and inspection system used therein
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JP2001124538A (en) Method and device for detecting defect in surface of object
KR20110061287A (en) Apparatus and method for inspecting surface, and slit coater having the same
JP2004257776A (en) Inspection device for light transmission body
TWI485392B (en) Foreign body inspection device and inspection method
KR101685703B1 (en) Alien substance inspection apparatus and inspection method
JP2004163240A (en) Surface evaluation device
KR101103347B1 (en) Detection apparatus for particle on the glass
JP2012088070A (en) Method and apparatus for inspecting patterned substrate
JPH09218162A (en) Surface defect inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413