JP2002168239A - Oil containing porous bearing of dynamic-pressure type - Google Patents

Oil containing porous bearing of dynamic-pressure type

Info

Publication number
JP2002168239A
JP2002168239A JP2001371165A JP2001371165A JP2002168239A JP 2002168239 A JP2002168239 A JP 2002168239A JP 2001371165 A JP2001371165 A JP 2001371165A JP 2001371165 A JP2001371165 A JP 2001371165A JP 2002168239 A JP2002168239 A JP 2002168239A
Authority
JP
Japan
Prior art keywords
oil
bearing
dynamic pressure
shaft
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001371165A
Other languages
Japanese (ja)
Other versions
JP3665606B2 (en
Inventor
Natsuhiko Mori
夏比古 森
Yasuhiro Yamamoto
康裕 山本
Isao Komori
功 古森
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001371165A priority Critical patent/JP3665606B2/en
Publication of JP2002168239A publication Critical patent/JP2002168239A/en
Application granted granted Critical
Publication of JP3665606B2 publication Critical patent/JP3665606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant

Abstract

PROBLEM TO BE SOLVED: To achieve the high accuracy of rotation by controlling an instable vibration like a whirl and the like, and also by suppressing a shaft dislocation. SOLUTION: A bearing face opposing a sliding face of a shaft to be held via the gap of a bearing is formed at a bearing body made of a porous material, and an inclining dynamic-pressure groove is formed at the bearing face. Openings including the dynamic-pressure groove are distributed at the bearing face, and the ratio of a surface area of the openings is 2 to 20 percent. The sliding face of the shaft is floated and held by a dynamic-pressure oil film of oil lying in the gap of the bearing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質体に潤滑油
あるいは潤滑グリースを含浸させて自己潤滑機能を持た
せると共に、軸受隙間に介在する油の動圧油膜によって
軸の摺動面を浮上支持する動圧型多孔質含油軸受及び軸
受装置に関し、特にレーザビームプリンタのポリゴンミ
ラーや磁気ディスクドライブ用のスピンドルモータな
ど、高速下で高回転精度が要求される機器の軸受として
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a self-lubricating function by impregnating a porous body with a lubricating oil or a lubricating grease, and floats a sliding surface of a shaft by a hydrodynamic oil film of oil interposed in a bearing gap. The present invention relates to a hydrodynamic porous oil-impregnated bearing and a bearing device to be supported, and is particularly suitable as a bearing for equipment requiring high rotational accuracy at high speed, such as a polygon mirror of a laser beam printer and a spindle motor for a magnetic disk drive.

【0002】[0002]

【従来の技術】多孔質含油軸受は、自己潤滑性を有する
軸受として広く用いられているが、真円軸受の一種であ
るため、軸の偏心が小さいところでは、不安定振動が発
生しやすく、回転速度の1/2の速度で振れ回るいわゆ
るホワールが発生しやすい欠点がある。この対策として
は、軸受面にヘリングボーン型やスパイラル型などの動
圧溝を設けることが挙げられる。多孔質含油軸受に動圧
溝を形成し、その動圧作用によって軸を支持し、不安定
振動を抑制しようとした従来例としては、実公昭63-196
27号公報に記載のものがある。
2. Description of the Related Art Porous oil-impregnated bearings are widely used as self-lubricating bearings. However, since they are a kind of perfect circular bearing, unstable vibration is likely to occur where the eccentricity of the shaft is small. There is a drawback that so-called whirling, which swings at half the rotation speed, is likely to occur. As a countermeasure, a dynamic pressure groove such as a herringbone type or a spiral type may be provided on the bearing surface. A conventional example of forming a dynamic pressure groove in a porous oil-impregnated bearing and supporting the shaft by the dynamic pressure action to suppress unstable vibration is described in Japanese Utility Model Publication No. 63-196.
There is one described in No. 27 gazette.

【0003】実公昭63-19627号は、多孔質含油軸受の軸
受面に、表面目つぶし加工を施した動圧発生用の溝を設
けたものである。
[0003] Japanese Utility Model No. 63-19627 is the bearing surface of the porous oil-impregnated bearing, is provided with a groove for dynamic pressure generating subjected to surface blinding machining.

【0004】[0004]

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】実公昭63-19627号の構造では、以下の問題
がある。
The structure of Japanese Utility Model Publication No. 63-19627 has the following problems.

【0006】 溝部が完全に封孔されているので、溝
部では多孔質含油軸受の最大の特徴である油の循環が阻
害される。従って、一旦軸受隙間に滲み出した油はヘリ
ングボーン溝の作用によって溝の屈曲部に押し込まれ、
そこにとどまることになる。軸受隙間内では大きな剪断
作用が働いているので、その剪断力と摩擦熱によって溝
部にとどまった油は変性しやすく、また、温度上昇によ
って酸化劣化が早まる傾向にある。従って、軸受寿命が
短くなる。これに対し、通常の多孔質含油軸受では、含
浸された油は、軸の回転に伴って常に軸受隙間および軸
受内部を循環するため、軸受隙間内で連続的に剪断力を
受けることはなく、いったん暖められても軸受内部で冷
やされるので、温度上昇による酸化劣化の影響は受けに
くい。
[0006] Since the groove is completely sealed, oil circulation, which is the most characteristic feature of the porous oil-impregnated bearing, is hindered in the groove. Therefore, the oil that has once leaked into the bearing gap is pushed into the bent portion of the groove by the action of the herringbone groove,
You will stay there. Since a large shearing action is acting in the bearing gap, the oil remaining in the groove due to the shearing force and frictional heat tends to be denatured, and oxidative deterioration tends to be accelerated due to a rise in temperature. Therefore, the bearing life is shortened. On the other hand, in a normal porous oil-impregnated bearing, the impregnated oil always circulates in the bearing gap and inside the bearing with the rotation of the shaft, so that it does not receive a continuous shearing force in the bearing gap, Once heated, it is cooled inside the bearing, so it is less susceptible to oxidative degradation due to temperature rise.

【0007】 溝部を封孔処理することは極めて困難
である。当該公報では塑性加工により封孔できるとして
いるが、通常、動圧溝の溝深さはμmオーダーのもので
あり、この程度の圧縮成形で表面の開孔部が封孔される
ことはない。また、塑性加工の他の手段としてコーティ
ング等を挙げているが、コーティング被膜の厚さは溝深
さよりも薄くする必要があり、数μmのコーティング被
膜を傾斜した溝部のみに施すのは極めて困難である。
[0007] It is extremely difficult to seal the groove. Although the publication states that the hole can be sealed by plastic working, the groove depth of the dynamic pressure groove is usually on the order of μm, and the opening on the surface is not sealed by this degree of compression molding. In addition, coating is mentioned as another means of plastic working, but the thickness of the coating film needs to be thinner than the groove depth, and it is extremely difficult to apply a coating film of several μm only to the inclined groove portion. is there.

【0008】このような状況に鑑み、本発明の解決しよ
うとする課題は、 通常の多孔質含油軸受のように含浸された油が軸受
隙間と軸受内部を循環するようにし、それによって油が
劣化しにくい構造とすること、 工業的に実現可能なものとするため動圧溝に開孔部
があっても動圧効果を発揮し得る軸受仕様を見出すこと
にある。
In view of such circumstances, the problem to be solved by the present invention is to allow impregnated oil to circulate through the bearing gap and the inside of the bearing as in a normal porous oil-impregnated bearing, thereby deteriorating the oil. The purpose is to find a bearing specification that can exert a dynamic pressure effect even if there is a hole in the dynamic pressure groove so that the structure can be made industrially feasible.

【0009】[0009]

【課題を解決するための手段】軸受本体(1)の軸受面
に動圧溝(ヘリングボーン型やスパイラル型等の複数の
傾斜した溝)を設けると、軸方向断面での油の流れは、
例えば図2に示すようになる。油は、矢印で示すように
軸受本体(1)の軸受面17(内周表面)の開孔部から回
転軸(2)との間の軸受隙間(4)に出入りするが、油
の循環を適性に保とうとすれば、動圧溝(5)、及び当
該溝以外の「背」の部分(6)(何れも図7参照)で開
孔部がほぼ均一に分布しているのが望ましい。表面にお
ける開孔部の割合が小さくなると、油は動きにくくな
り、逆に大きくなると油は動きやすくなる。また、含浸
油の粘度も油の動きやすさに関係し、粘度が低いと動き
やすく、粘度が高いと動きにくくなる。尚、本明細書に
おいて、「開孔部」とは多孔質体である軸受本体の多孔
組織をなす細孔が外表面に開口した部分をいう。
When a dynamic pressure groove (a plurality of inclined grooves such as a herringbone type or a spiral type) is provided on the bearing surface of the bearing body (1), the oil flow in the axial cross section becomes
For example, as shown in FIG. Oil flows in and out of the bearing gap (4) between the rotating shaft (2) and the opening through the opening in the bearing surface 17 (inner peripheral surface) of the bearing body (1) as shown by the arrow. In order to maintain the appropriateness, it is desirable that the apertures be distributed almost uniformly in the dynamic pressure groove (5) and the “back” portion (6) other than the groove (see FIG. 7). The oil becomes difficult to move when the ratio of the openings on the surface is small, and the oil is easy to move when the ratio is large. The viscosity of the impregnated oil also relates to the ease of movement of the oil. The lower the viscosity, the easier it is to move, and the higher the viscosity, the harder it is to move. In the present specification, the "opening portion" refers to a portion where pores forming a porous structure of a bearing body, which is a porous body, are opened on the outer surface.

【0010】開孔率が大きく、粘度が低い場合には、油
は極めて動きやすくなるが、動圧溝(5)の作用によっ
て軸受隙間(4)に滲み出した油は簡単に軸受本体
(1)の内部に戻されるため、動圧効果が小さくなり、
高回転精度を維持できないばかりか、軸(2)と軸受本
体(1)とが接触することにより、軸受本体(1)が摩
耗して軸受機能が損なわれるおそれがある。逆に開孔率
が小さく、粘度が高い場合は、油は極めて動きにくくな
るので、発生圧力は大きくなるが、適切な循環が阻害さ
れ、またトルクも大きくなるため、軸受部分の昇温によ
って油の劣化が促進される。
When the porosity is large and the viscosity is low, the oil becomes extremely easy to move, but the oil that has oozed into the bearing gap (4) by the action of the dynamic pressure groove (5) is easily removed from the bearing body (1). ), The dynamic pressure effect is reduced,
Not only cannot high rotation accuracy be maintained, but also the bearing body (1) is worn by contact between the shaft (2) and the bearing body (1), and the bearing function may be impaired. Conversely, when the porosity is small and the viscosity is high, the oil becomes extremely difficult to move, so the generated pressure increases, but proper circulation is hindered and the torque also increases. Degradation is promoted.

【0011】従って、開孔率と油の粘度には、軸を浮上
支持するために必要な油の動圧油膜形成を確保し、同時
に、油の適切な循環を確保し得る最適な範囲が存在す
る。
Therefore, there is an optimum range of the porosity and the viscosity of the oil that can secure the formation of a dynamic pressure oil film of the oil necessary for floatingly supporting the shaft, and at the same time, ensure the proper circulation of the oil. I do.

【0012】この最適範囲を明らかにすべく、図3及び
図4に示すLBP実機モータを用いて評価試験を行っ
た。両図において、(7)はハウジングであり、(8)
は、軸(2)に固定された、ハブ(ロータ)である。ま
た、(9)は軸(2)の先端と接触してスラスト負荷を
支持するためのスラスト受けである。評価試験に用いた
実機モータは、軸径がφ4のもので、ミラーを実装した
状態であり、また、回転数は10000rpm、雰囲気
温度は40℃とした。
In order to clarify this optimum range, an evaluation test was performed using the actual LBP motor shown in FIGS. In both figures, (7) is a housing, (8)
Is a hub (rotor) fixed to the shaft (2). Further, (9) is a thrust receiver for supporting the thrust load by contacting the tip of the shaft (2). The actual motor used in the evaluation test had a shaft diameter of φ4, was in a state where a mirror was mounted, and had a rotation speed of 10,000 rpm and an ambient temperature of 40 ° C.

【0013】図5に評価試験の結果を示す。図5中、
「○」は1000時間連続運転した耐久試験で問題のな
かったことを示す。「Δ」は500〜1000時間の間
で軸振れ上昇(5μm以上)、トルク上昇=回転数低下
(10000rpmまで回転数が上がらない)、異音発
生などのトラブルを発生し、正常な運転が不可能になっ
たことを示す。「×」は500時間までに上記のような
トラブルが発生したことを示す。
FIG. 5 shows the results of the evaluation test. In FIG.
"O" indicates that there was no problem in the durability test after continuous operation for 1000 hours. “Δ” indicates a problem such as an increase in shaft runout (5 μm or more), an increase in torque = a decrease in the number of revolutions (the number of revolutions does not increase until 10,000 rpm), abnormal noise, etc. Indicates that it is possible. “X” indicates that the above-mentioned trouble occurred by 500 hours.

【0014】以上の評価実験から、開孔率と油の粘度の
最適範囲(「×」の存在しない範囲)は、図5に実線で
区画する領域、すなわち、以下の条件 動圧溝を含む軸受面における開孔部の表面積比率が
2%以上20%以下であり、 含浸される油の40℃での動粘度が2cSt以上で
あり、 軸受面における開孔部の表面積比率と油の40℃で
の動粘度が (3/5)A−1 ≦ η ≦ (40/6)A+(2
0/3) ここで、A;開孔部の表面積率 [%] η;油の40℃での動粘度[cSt] を満たす場合であることが理解できる。このような範囲
で開孔率と油の粘度を選定することにより、軸を浮上支
持するために充分な動圧油膜が形成されると同時に、油
の適切な循環が確保されるので、高回転精度、長寿命を
達成することができる。
From the above evaluation experiments, the optimum range of the porosity and the viscosity of the oil (the range in which “x” does not exist) is the area defined by the solid line in FIG. 5, that is, the following conditions: The surface area ratio of the opening in the surface is 2% or more and 20% or less, the kinematic viscosity of the impregnated oil at 40 ° C. is 2 cSt or more, and the surface area ratio of the opening in the bearing surface and the oil at 40 ° C. Has a kinematic viscosity of (3/5) A-1 ≦ η ≦ (40/6) A + (2
0/3) Here, it can be understood that the case where A; the surface area ratio [%] of the opening portion; and the kinematic viscosity [cSt] of the oil at 40 ° C. is satisfied. By selecting the porosity and the viscosity of the oil in such a range, a dynamic pressure oil film sufficient to support and float the shaft is formed, and at the same time, appropriate circulation of the oil is ensured. Accuracy and long life can be achieved.

【0015】なお、軸受面における開孔部の表面積比率
は望ましくは2%以上、15%以下とするのが良い。
The surface area ratio of the opening on the bearing surface is desirably 2% or more and 15% or less.

【0016】動圧溝(5)の溝深さ(h:図7参照)と
軸受隙間(半径隙間:c)との比には最適な範囲があ
り、この範囲外では充分な動圧効果が得られないと考え
られる。この最適範囲を明らかにすべく、図6に示すよ
うに、図3に示すLBP実機モータの軸(2)を軸振れ
が測定できるように長いものに入れ替えて評価試験を行
った。回転数は10000rpm、試験雰囲気は常温常
湿であり、LBP実機モータはφ4でミラー未実装とし
ている。なお、(10)は非接触型の変位計である。
There is an optimum range for the ratio between the groove depth (h: see FIG. 7) of the dynamic pressure groove (5) and the bearing clearance (radial clearance: c). Outside this range, a sufficient dynamic pressure effect is obtained. Probably not. In order to clarify this optimum range, as shown in FIG. 6, an evaluation test was performed by replacing the shaft (2) of the actual LBP motor shown in FIG. 3 with a longer one so that the shaft runout could be measured. The number of revolutions was 10,000 rpm, the test atmosphere was room temperature and normal humidity, and the LBP actual motor was φ4 and no mirror was mounted. (10) is a non-contact type displacement meter.

【0017】以上の条件の下、c/h(c;半径隙間、
h;溝深さ)に対する軸振れの値をそれぞれプロットし
たところ、図8に示す結果を得た。図8より、c/hが
0.5〜4.0の範囲内であれば、軸振れは5μm以下
になるが、0.5未満、あるいは4.0より大きくなる
と5μm以上となる。従って、高精度を維持するために
は、c/h=0.5〜4.0の範囲内とするのが望まし
い。
Under the above conditions, c / h (c; radius gap,
h; groove depth) was plotted, and the results shown in FIG. 8 were obtained. According to FIG. 8, when c / h is in the range of 0.5 to 4.0, the shaft runout becomes 5 μm or less, but when it is less than 0.5 or more than 4.0, it becomes 5 μm or more. Therefore, in order to maintain high accuracy, it is desirable that c / h be in the range of 0.5 to 4.0.

【0018】多孔質含油軸受は、通常無給油で使用され
るが、油の飛散、蒸発などにより油が徐々に消耗、流出
することが避けられない。その場合には、油膜形成範囲
が収縮するため、軸振れなどの回転精度の悪化を招く。
特に軸姿勢が縦型で使用される場合が多く、毎分1万回
転以上の高速で使用されるレーザビームプリンタ(LB
P)用モータ、あるいは磁気ディスクドライブ(HD
D)用モータ等では、図12に示すように、遠心力の作用
で油が流出し易く、油膜形成性等の潤滑性能の維持が難
しかった。
A porous oil-impregnated bearing is usually used without lubrication. However, it is inevitable that the oil is gradually consumed and flows out due to scattering and evaporation of the oil. In this case, the oil film formation range shrinks, which causes deterioration of rotation accuracy such as shaft runout.
In particular, a shaft attitude is often used in a vertical type, and a laser beam printer (LB) used at a high speed of 10,000 rpm or more is used.
P) motor or magnetic disk drive (HD
In the motor for D), as shown in FIG. 12, the oil easily leaked out due to the action of the centrifugal force, and it was difficult to maintain the lubricating performance such as the oil film forming property.

【0019】LBPやHDDでは、油膜切れを生じるこ
とは、高精度の回転を維持する上で、致命的となる。特
に軸受本体を単独とした場合には、高速で回転すると、
油は周囲の空気も巻き込んで軸受内部を循環するため、
軸受隙間に空気が混入することがある。空気の混入を防
止するためには、軸受本体の内部に少しでも空孔ができ
たら油を補給する部材(補油部材)を配置するのが有効
な対策となる。
In an LBP or HDD, the occurrence of oil film shortage is fatal in maintaining high-precision rotation. Especially when the bearing body is used alone, when rotating at high speed,
Oil circulates inside the bearing by entraining the surrounding air,
Air may enter the bearing gap. In order to prevent air from being mixed in, an effective measure is to arrange a member (oil replenishing member) for replenishing oil when a small amount of holes are formed inside the bearing body.

【0020】このような補油部材として、本発明では、
図1に示すように、合成樹脂を基材とし、これに潤滑油
又は潤滑グリースを配合あるいは含浸させ、少なくとも
20℃以上の温度では、静置した状態でも含有した油が
表面に滲み出すようにした固形状の潤滑組成物(3)を
軸受本体(1)と接触させて配置している。かかる構成
により、軸受本体(1)の油が流失しても、当該軸受本
体(1)に接触させて配置した潤滑組成物(3)から新
たな油が毛細管現象によって軸受本体(1)の内部に補
給されるので、回転軸(2)との間に常時良好な動圧油
膜を形成することが可能となる。
As such a bunkering member, in the present invention,
As shown in FIG. 1, a synthetic resin is used as a base material, and lubricating oil or lubricating grease is blended or impregnated with the synthetic resin as a base material. The solid lubricating composition (3) is placed in contact with the bearing body (1). With this configuration, even if the oil in the bearing body (1) runs off, new oil is generated from the lubricating composition (3) disposed in contact with the bearing body (1) by the capillary phenomenon inside the bearing body (1). , It is possible to always form a good dynamic pressure oil film with the rotating shaft (2).

【0021】具体的には、固形状の潤滑組成物(3)
は、軸受本体が含有する潤滑油又は当該潤滑油を基油と
する潤滑グリース5〜99wt%に、平均分子量が1×
106〜5×106 である超高分子量ポリオレフィンの
粉末95〜1wt%を混合すると共に、超高分子量ポリ
オレフィン粉末のゲル化点以上、かつ、潤滑グリースを
用いた場合はグリースの滴点以下の温度で分散保持させ
ることにより、成形される。
Specifically, a solid lubricating composition (3)
Is obtained by adding lubricating oil contained in a bearing main body or lubricating grease having the lubricating oil as a base oil to 5-99 wt% and an average molecular weight of 1 ×
95 to 1 wt% of ultra high molecular weight polyolefin powder of 10 6 to 5 × 10 6 is mixed, and at a temperature higher than the gel point of the ultra high molecular weight polyolefin powder and below the drop point of the grease when lubricating grease is used. It is molded by dispersing and holding.

【0022】このように、潤滑組成物を潤滑油あるいは
潤滑グリースと超高分子量ポリオレフィン粉末との混合
物で構成して固形状とすると、低コストで量産性に富
み、取扱いが容易で組込み作業が簡単なものとなる。ま
た、この固形状の潤滑組成物は、常温(20℃程度)以上
の温度で内部に含有した油をごく僅かずつ滲出させるの
で、連続的に軸受へ油を補給し続けることができる。図
9は本発明における固形状の潤滑組成物(3)を静置
し、放置時間と油分離率を調べた結果である。雰囲気が
20℃でも1000時間にわたって僅かずつ油を分離し
続けることが理解できる。雰囲気温度が上昇すれば、こ
の分離量も増える。
As described above, when the lubricating composition is composed of a mixture of lubricating oil or lubricating grease and ultrahigh molecular weight polyolefin powder and is solid, the lubricating composition is low in cost, has high mass productivity, is easy to handle, and is easy to assemble. It becomes something. Further, since the solid lubricating composition oozes out the oil contained therein at a temperature not lower than the normal temperature (about 20 ° C.), the oil can be continuously supplied to the bearing continuously. FIG. 9 shows the results obtained by allowing the solid lubricating composition (3) according to the present invention to stand still and examining the standing time and the oil separation rate. It can be understood that the oil continues to be separated little by little over 1000 hours even when the atmosphere is at 20 ° C. As the ambient temperature increases, the amount of separation increases.

【0023】図10は、固形状の潤滑組成物を軸受に密着
させた場合と、このような補油部材がなかった場合の比
較であり、補油部材がない場合には(「黒四角」で示
す)、当初含まれていた油が2000時間の運転で約3
0%流失してしまうが、補油部材がある場合には(「黒
丸」で示す)、軸受本体から油が流失しても補油される
ため、その損失量は僅か5%ほどに抑えられることが理
解できる。
FIG. 10 shows a comparison between the case where the solid lubricating composition is brought into close contact with the bearing and the case where no such bunkering member is provided. ), The oil initially contained was about 3 hours after 2000 hours of operation.
Although 0% is lost, if there is a refueling member (indicated by "black circles"), the oil is replenished even if the oil flows from the bearing body, so that the loss amount is suppressed to only about 5%. I can understand.

【0024】高温雰囲気下で使用される場合や、高速回
転で使用され、摩擦による発熱が大きい場合には、固形
状の潤滑組成物からの油の滲み出しが多すぎる場合が有
るので、潤滑組成物の油滲出抑制剤として、固体ワック
ス、低分子量ポリエチレン、ポリアミド樹脂のうち1種
以上を、1〜50wt%の割合で添加混合するのが好ま
しい。
When used in a high-temperature atmosphere or when used at high speed rotation and generating a large amount of heat due to friction, oil may ooze out of the solid lubricating composition too much. It is preferable to add and mix one or more of solid wax, low molecular weight polyethylene and polyamide resin at a ratio of 1 to 50 wt% as an oil oozing inhibitor of the product.

【0025】図1に示すように、軸受本体(1)(多孔
質含油軸受A)の軸方向一方側又は両側に、軸受本体
(1)と同等若しくはこれよりも僅かに大きい内径を有
する円筒状の油漏れ防止部材(11)を配置し、この油漏
れ防止部材(11)の内周面に、軸(2)との相対回転に
際して軸(2)との間の隙間に軸受本体側へ向けて流れ
る気流を発生させる気流発生溝(12)を設けてもよい。
この気流発生溝(12)は、例えば複数の傾斜溝を設ける
ことによって形成できる。図面では、上下二段に軸受本
体(1)を配置し、上段の軸受本体(1)の外側に油漏
れ防止部材(11)を配置した場合を例示しているが、当
該軸受本体(1)の内側にも油漏れ防止部材(11)を配
置することが可能であり、さらに下段の軸受本体(1)
の一方側又は両側に油漏れ防止部材(11)を配置するこ
とも可能である。
As shown in FIG. 1, on one or both sides in the axial direction of the bearing body (1) (porous oil-impregnated bearing A), a cylindrical body having an inner diameter equal to or slightly larger than the bearing body (1) is provided. The oil leakage prevention member (11) is disposed on the inner peripheral surface of the oil leakage prevention member (11). Airflow generating groove (12) for generating an airflow flowing through the airflow may be provided.
The airflow generating groove (12) can be formed by, for example, providing a plurality of inclined grooves. In the drawings, a case is shown in which the bearing main body (1) is arranged in the upper and lower stages and the oil leakage prevention member (11) is arranged outside the upper stage bearing body (1). It is possible to arrange an oil leakage prevention member (11) inside the bearing, and further, the lower bearing body (1)
It is also possible to arrange an oil leakage prevention member (11) on one side or both sides of the oil leakage prevention member.

【0026】この構成であれば、図11に示すように、回
転軸(2)と油漏れ防止部材(12)の内周面との間の隙
間(13)に、軸(2)の回転に伴って軸受本体(1)の
方向(図面下方)へ流れる気流が発生するので、軸受部
から油が漏れ出たとしても、軸(2)と油漏れ防止部材
(11)との間の隙間(13)を通過できない。この作用に
よって油漏れが防止される。また、静止時には、当該隙
間(13)の毛細管力で油を保持するので、回転が止まっ
ても油が漏れ出ることはない。
With this configuration, as shown in FIG. 11, a gap (13) between the rotating shaft (2) and the inner peripheral surface of the oil leakage preventing member (12) is provided for rotation of the shaft (2). As a result, an airflow that flows in the direction of the bearing body (1) (downward in the drawing) is generated, so that even if oil leaks from the bearing portion, the gap between the shaft (2) and the oil leakage prevention member (11) ( 13) can not pass. This action prevents oil leakage. In addition, at rest, the oil is held by the capillary force of the gap (13), so that the oil does not leak even if rotation stops.

【0027】この場合、油漏れ防止部材(11)を多孔質
体とし、且つ隣接する軸受本体(1)との間に空間(1
4)を設けるとよい。この構成であれば、漏れ出てきた
油を多孔質体からなる油漏れ防止部材(11)に吸収する
ことができる。また、静止時には油漏れ防止部材(11)
と軸(2)との間の油も吸収できるので、大気にさらさ
れる部分が減り、油の蒸発や発塵を減少させることがで
きる。油漏れ防止部材(11)に吸収された油は、回転に
伴って隙間(13)内に引き出され、気流発生溝(12)の
作用で生じた気流により空間(14)を介して軸受本体
(1)側に返される。
In this case, the oil leakage preventing member (11) is made of a porous material, and the space (1) is formed between the oil leak preventing member (11) and the adjacent bearing body (1).
4) should be provided. With this configuration, the leaked oil can be absorbed by the oil leakage prevention member (11) made of a porous body. When stationary, oil leakage prevention member (11)
The oil between the shaft and the shaft (2) can also be absorbed, so that the portion exposed to the atmosphere is reduced, and the evaporation and dust generation of the oil can be reduced. The oil absorbed by the oil leakage prevention member (11) is drawn into the gap (13) with the rotation, and is caused to flow through the space (14) by the airflow generated by the action of the airflow generation groove (12). 1) Returned to the side.

【0028】図1に示すように、油漏れ防止部材(11)
の、軸受本体(1)と反対側の端面(11a)及びチャンフ
ァ部(11b)に目潰し加工を施し、この部分の表面開孔率
が面積比で5%以下、望ましくは完全に封孔すれば、油
漏れ防止部材(11)に吸収された油の蒸発、発塵をさら
に減少させることができる。
As shown in FIG. 1, an oil leakage prevention member (11)
If the end face (11a) and the chamfer part (11b) on the opposite side of the bearing body (1) are crushed, the surface porosity of this part is 5% or less in area ratio, preferably if it is completely sealed. Further, evaporation and dust generation of the oil absorbed by the oil leakage prevention member (11) can be further reduced.

【0029】図1に示すように、一端が開放され、他端
が閉塞されている円筒状のハウジング(7)内に、軸受
本体(1)を圧入固定すると共に、この軸受本体(1)
に接触させて固形状の潤滑組成物(3)を収納し、か
つ、軸受本体(1)の外側に油漏れ防止部材(11)を配
置してハウジング(7)の開口部を閉塞する。この場
合、上述のように、軸受に動圧作用があり、さらに潤滑
組成物(3)から常時油が補給されるので、常に良好な
動圧油膜形成を維持することができ、長期間にわたって
高回転精度を維持することができる。また、軸受部から
の油の漏洩は、油漏れ防止部材(11)によって補足さ
れ、流出することもない。
As shown in FIG. 1, a bearing body (1) is press-fitted and fixed in a cylindrical housing (7) having one end opened and the other end closed, and the bearing body (1) is fixed.
The lubricating composition (3) in a solid state is accommodated by contacting the oil-injection member, and an oil leakage prevention member (11) is arranged outside the bearing body (1) to close the opening of the housing (7). In this case, as described above, the bearing has a dynamic pressure effect, and further, oil is constantly replenished from the lubricating composition (3). Therefore, it is possible to always maintain good dynamic pressure oil film formation, and to maintain a high oil pressure for a long period of time. Rotational accuracy can be maintained. Oil leakage from the bearing portion is supplemented by the oil leakage prevention member (11) and does not flow out.

【0030】ハウジング(7)の底面(7a)と、これに
対向する軸受本体(1)の内側端面(1a)との間に空間
(15)を設け、この空間(15)とハウジング外部とが軸
受隙間(4)以外の箇所で連通するように空気流通路
(16)を設けると、この空気流路(16)は空気抜きとし
て機能する。これにより、組立時に軸(2)が挿入し易
くなる。また、回転時には発熱によって内圧が高まり、
軸(ロータ)が押し上げられて回転が不安定となる場合
があるが、かかる事態も防止可能となる。
A space (15) is provided between the bottom surface (7a) of the housing (7) and the inner end surface (1a) of the bearing body (1) facing the housing (7). When the air flow passage (16) is provided so as to communicate at a location other than the bearing gap (4), the air flow passage (16) functions as an air vent. This makes it easier to insert the shaft (2) during assembly. Also, when rotating, the internal pressure increases due to heat generation,
The shaft (rotor) may be pushed up to make the rotation unstable, but such a situation can be prevented.

【0031】回転軸(2)に回転部材、例えばロータ
(8)を取り付けると共に、このロータと対向する軸受
本体(1)の端面にヘリングボーン型、あるいはスパイ
ラル型等の動圧溝を設け、回転軸(2)の回転時にこの
動圧溝で生じる動圧によりスラスト負荷を支持するよう
にすれば、ラジアル負荷のみならずスラスト負荷も支持
できるようになり、スラスト受け(9)が不要となる。
A rotating member, for example, a rotor (8) is attached to the rotating shaft (2), and a dynamic pressure groove of a herringbone type or a spiral type is provided on an end face of the bearing body (1) opposed to the rotor. If the thrust load is supported by the dynamic pressure generated in the dynamic pressure groove when the shaft (2) rotates, not only the radial load but also the thrust load can be supported, and the thrust receiver (9) becomes unnecessary.

【0032】この場合、動圧溝を設けた軸受本体(1)
の端面における開孔部の表面積比率は、2%以上で20
%以下とするのが好ましい。
In this case, the bearing body (1) provided with the dynamic pressure groove
The surface area ratio of the opening at the end face of
% Is preferable.

【0033】[0033]

【発明の実施の形態】以下、本発明の一実施形態を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0034】図1は、本発明にかかる動圧型多孔質含油
軸受装置の一例を示すもので、一端が開放され、他端が
閉塞されているハウジング(7)内に、軸受面(17)を
有する2つの軸受本体(1)を圧入固定し、この軸受本
体(1)の内周部に軸(2)(回転軸)を挿入して軸方
向に離隔する2つの多孔質含油軸受(A)を構成したも
のである。軸受本体(1)の材質は特に限定されるもの
ではなく、粉末冶金により、あるいは、鋳鉄、セラミッ
クなどを焼結又は発泡成形することにより、多数の気孔
を有する周知の多孔質体状に形成されたものであれば良
いが、望ましくは、銅又は鉄、あるいはその両者を主成
分とする焼結金属、さらに望ましくは銅を20〜95w
t%含有する焼結金属で形成するのが良い。
FIG. 1 shows an example of a hydrodynamic porous oil-impregnated bearing device according to the present invention. A bearing surface (17) is provided in a housing (7) having one end opened and the other end closed. Two bearing bodies (1) are press-fitted and fixed, and two porous oil-impregnated bearings (A) are axially separated by inserting a shaft (2) (rotary shaft) into the inner peripheral portion of the bearing body (1). It is what constituted. The material of the bearing body (1) is not particularly limited, and is formed into a well-known porous body having many pores by powder metallurgy or by sintering or foaming cast iron, ceramic, or the like. Preferably, copper or iron, or a sintered metal containing both as a main component, more preferably copper is 20 to 95 watts.
It is preferable to use a sintered metal containing t%.

【0035】両軸受本体(1)の間には、合成樹脂を基
材とし、これに潤滑油又は潤滑グリースを配合した固形
状の潤滑組成物(3)が配置され、かつ、開放側(上
段)の軸受本体(1)の上方には油漏れ防止部材(11)
が配置されていてハウジング(7)の上端開口部を閉塞
している。油漏れ防止部材(11)の上側端面(11a)及
び上側のチャンファ部(11b)は、封孔処理がなされて
いる。また、閉塞側(下段)の軸受本体(1)の端面
(1a)と、ハウジング(7)の底面(7a)との間に空間
(15)が設けられ、この空間(15)と外部とが連通する
ように空気の流通路(16)が設けられている。この空気
流通路(16)は、例えば軸受本体(1)、潤滑組成物
(3)、及び油漏れ防止部材(11)の外形面の一部に軸
方向の切欠きを設けることにより形成される。軸受本体
(1)及び油漏れ防止部材(11)の内周面には、複数の
傾斜した溝(動圧溝5及び気流発生溝12)が設けられ
る。油漏れ防止部材(11)は多孔質体で形成されてお
り、潤滑油などは含浸されていない。油漏れ防止部材
(11)の材質は、特に限定されるものではなく、粉末冶
金により、あるいは、鋳鉄、合成樹脂、セラミックなど
を焼結または発泡成形することにより、多数の気孔を有
する周知の多孔質体状に成形される。
Between the two bearing bodies (1), there is disposed a solid lubricating composition (3) composed of a synthetic resin as a base material and mixed with lubricating oil or lubricating grease. Above the bearing body (1), an oil leakage prevention member (11)
Are disposed to close the upper end opening of the housing (7). The upper end surface (11a) and the upper chamfer portion (11b) of the oil leakage prevention member (11) are sealed. Further, a space (15) is provided between the end surface (1a) of the bearing body (1) on the closed side (lower stage) and the bottom surface (7a) of the housing (7). An air flow passage (16) is provided so as to be in communication. The air flow passage (16) is formed, for example, by providing a notch in the axial direction on a part of the outer surface of the bearing body (1), the lubricating composition (3), and the oil leakage preventing member (11). . A plurality of inclined grooves (dynamic pressure groove 5 and airflow generation groove 12) are provided on the inner peripheral surfaces of the bearing body (1) and the oil leakage prevention member (11). The oil leakage prevention member (11) is formed of a porous body, and is not impregnated with lubricating oil or the like. The material of the oil leakage prevention member (11) is not particularly limited, and is a well-known porous material having a large number of pores by powder metallurgy or by sintering or foaming cast iron, synthetic resin, ceramic, or the like. It is formed into a solid body.

【0036】図1に示すように、軸受本体(1)の軸受
面(17)に例えばへリングボーン型の動圧溝(5)を設
けることによって、回転軸(2)との相対回転時に軸受
隙間(4)に動圧油膜が形成され、ホワールなどの不安
定振動を効果的に抑制することができる。尚、図1に示
す軸受面(17)(図4に示す軸受面も同じ)において
は、溝領域5(黒く塗りつぶした部分)が軸方向両側に
向かって相反した向きに傾斜し、かつ、相反した向きに
傾斜した溝領域5間に環状の背6(白い部分)が設けら
れている(同図では、環状の背6は軸受面の軸方向中央
に位置している。)。軸受隙間(4)の幅(c)は、軸
(2)の半径をRとした場合に、 c/R=1/2000〜1/400 とするのが望ましい。また、溝深さをhとした場合、 c/h=0.5〜4.0 とするのが良いが、さらに望ましくは、 c/h=0.5〜3.0 とするのが良い。
As shown in FIG. 1, for example, a herringbone type dynamic pressure groove (5) is provided on the bearing surface (17) of the bearing body (1) so that the bearing can be rotated relative to the rotating shaft (2). dynamic pressure oil film is formed in the gap (4), it is possible to effectively suppress the unstable vibration such whirl. In the bearing surface (17) shown in FIG. 1 (the same applies to the bearing surface shown in FIG. 4), the groove region 5 (the black portion) is inclined in opposite directions toward both sides in the axial direction. An annular back 6 (white portion) is provided between the groove regions 5 inclined in the inclined direction (in the figure, the annular back 6 is located at the axial center of the bearing surface). The width (c) of the bearing gap (4) is desirably c / R = 1/2000 to 1/400, where R is the radius of the shaft (2). When the groove depth is h, c / h is preferably 0.5 to 4.0, and more preferably, c / h is 0.5 to 3.0.

【0037】また、軸受本体(1)の軸受面の開孔率
は、表面積比率で、2〜20%とするのが望ましい。2
%以下では油の循環が阻害され、20%以上では動圧効
果が発揮されず、満足な動圧油膜が形成されないためで
ある。この表面開孔率に応じて油の粘度が選択される。
The porosity of the bearing surface of the bearing body (1) is desirably 2 to 20% in terms of surface area ratio. 2
% Or less, the oil circulation is inhibited, and if it is 20% or more, the dynamic pressure effect is not exhibited, and a satisfactory dynamic pressure oil film is not formed. The viscosity of the oil is selected according to the surface porosity.

【0038】軸受本体(1)に接触させて配置される補
油部材(3)は、金属や樹脂などの多孔質体、あるいは
フェルトなどの繊維物質に油を含ませた周知のものでも
よいが、固形状であり、少なくとも20℃以上の温度で
含有する油を表面に滲み出し続ける固形状の潤滑組成物
を用いるのが好ましい。この潤滑組成物は、ごく簡単な
方法で製作することができる。例えば、所定量の潤滑グ
リースあるいは潤滑油と、所定量の超高分子量オレフィ
ン粉末とを均一に混合し、所定形状の型に流し込んで、
超高分子量ポリオレフィン粉末のゲル化点以上の温度
で、さらに潤滑グリースを用いる場合はその滴点以下の
温度で分散保持させ、常温で冷却することによって得ら
れる。この発明における超高分子量ポリオレフィン粉末
は、ポリエチレン、ポリプロピレン、ポリブデン若しく
はこれらの共重合体からなる粉末、またはそれぞれ単独
の粉末を配合した混合粉末であり、各粉末の分子量は、
粘度法により測定される平均分子量が1×106 〜5×
106 になるように選択される。このような平均分子量
の範囲にあるポリオレフィンは、剛性及び保油性におい
て低分子量のポリオレフィンよりも優れ、高温に加熱し
てもほとんど流動することがない。このような超高分子
量ポリオレフィンの潤滑組成物中の配合割合は、95〜
1wt%とする。なお、その量は組成物に要求される離
油度、粘り強さ及び硬さに左右される。超高分子量ポリ
オレフィンの量が多いほど、所定の温度で分散保持させ
た後のゲルの硬さが大きくなる。
The refueling member (3) arranged in contact with the bearing body (1) may be a porous material such as metal or resin, or a known material in which oil is contained in a fibrous material such as felt. It is preferable to use a solid lubricating composition that is solid and that continues to ooze oil containing oil at a temperature of at least 20 ° C. to the surface. The lubricating composition can be manufactured in a very simple way. For example, a predetermined amount of lubricating grease or lubricating oil and a predetermined amount of ultra-high molecular weight olefin powder are uniformly mixed and poured into a mold having a predetermined shape,
When lubricating grease is used at a temperature higher than the gel point of the ultrahigh molecular weight polyolefin powder, and further when the lubricating grease is used, the dispersion is maintained at a temperature lower than the drop point, and the resultant is cooled at room temperature. The ultra-high molecular weight polyolefin powder in the present invention is a powder made of polyethylene, polypropylene, polybutene or a copolymer thereof, or a mixed powder in which a single powder is blended, and the molecular weight of each powder is
The average molecular weight measured by the viscosity method is 1 × 10 6 to 5 ×
It is chosen to be 106. Polyolefins having such an average molecular weight range are superior in rigidity and oil retention to low molecular weight polyolefins, and hardly flow even when heated to a high temperature. The compounding ratio of such an ultrahigh molecular weight polyolefin in the lubricating composition is 95 to
1 wt%. The amount depends on the degree of oil release, toughness and hardness required for the composition. The greater the amount of ultrahigh molecular weight polyolefin, the greater the hardness of the gel after being dispersed and maintained at a predetermined temperature.

【0039】また、この発明に用いる潤滑グリースは、
特に限定されるものではなく、石鹸または非石鹸で増ち
ょうした潤滑グリースとして、リチウム石鹸−ジエステ
ル系、リチウム石鹸−鉱油系、ナトリウム石鹸−鉱油
系、アルミニウム石鹸−鉱油系、リチウム石鹸ージエス
テル鉱油系、非石鹸−ジエステル系、非石鹸−鉱油系、
非石鹸−ポリオールエステル系、リチウム石鹸−ポリオ
ールエステル系などのグリースが挙げられる。同じく潤
滑油も特に限定されるものではなく、ジエステル系、鉱
油系、ジエステル鉱油系、ポリオールエステル系などの
潤滑油を挙げることができる。なお、潤滑グリースの基
油あるいは潤滑油は、当初軸受本体(1)に含浸される
潤滑油と同じものであることが望ましいが、潤滑特性を
損なわない限りにおいて多少異なるものであってもよ
い。
The lubricating grease used in the present invention is:
It is not particularly limited, and as a lubricating grease thickened with soap or non-soap, lithium soap-diester system, lithium soap-mineral oil system, sodium soap-mineral oil system, aluminum soap-mineral oil system, lithium soap diester mineral oil system, Non-soap-diester, non-soap-mineral oil,
Greases such as non-soap-polyol ester type and lithium soap-polyol ester type are exemplified. Similarly, the lubricating oil is not particularly limited, and examples thereof include luster oils such as diester, mineral oil, diester mineral oil, and polyol ester. The base oil or lubricating oil of the lubricating grease is preferably the same as the lubricating oil initially impregnated in the bearing body (1), but may be slightly different as long as the lubricating characteristics are not impaired.

【0040】上記した超高分子量ポリオレフィンの融点
は、その平均分子量に対応して変化するために一定では
ないが、例えば粘度法による平均分子量が2×106 の
ものの融点は136℃である。同平均分子量の市販品と
しては、三井石油化学工業株式会社製の「ミペロン(登
録商標)XM−220」などがある。従って、潤滑グリ
ースあるいは潤滑油に超高分子量ポリオレフィンを分散
保持させるには、上記した材料を混合した後、超高分子
量ポリオレフィンがゲル化を起こす温度以上で、且つ潤
滑グリースを用いた場合はその滴点未満の温度、例えば
150〜200℃に加熱する。
The melting point of the above-mentioned ultrahigh molecular weight polyolefin varies depending on its average molecular weight, but is not constant. For example, the melting point of a substance having an average molecular weight of 2 × 10 6 determined by a viscosity method is 136 ° C. Commercial products having the same average molecular weight include "Miperon (registered trademark) XM-220" manufactured by Mitsui Petrochemical Industries, Ltd. Therefore, in order to disperse and maintain the ultra-high molecular weight polyolefin in the lubricating grease or lubricating oil, after mixing the above-mentioned materials, if the ultra-high-molecular-weight polyolefin gels or exceeds the temperature, and if lubricating grease is used, a drop of the lubricating grease is used. Heat to a temperature below the point, e.g.

【0041】このような軸受装置は、レーザビームプリ
ンタのポリゴンミラーモータや磁気ディスクドライブ用
のスピンドルモータなどの他、軸流ファンや換気扇、扇
風機などの電気製品、自動車用電装品など、各種のモー
タに広範囲に利用することができ、軸受部周辺を油で汚
染させることなく、特にその耐久性を著しく向上させる
ことができる。すなわち、当初多孔質含油軸受内に保持
されていた油が流失しても、油漏れ防止部材(11)があ
るため軸受部の外には流出せず、また、軸受には固形状
の潤滑組成物(3)から油が補給されるので、油膜が常
に維持され、軸受本体(1)の軸受面に設けた動圧溝
(5)の動圧効果によって高い回転精度を常に維持する
ことができる。さらに、起動時の油切れによる摩耗など
を防止し、耐久寿命を大幅に向上させることができるの
である。この固形状の潤滑組成物は、フェルトと違って
繊維状のものを含まないので、軸受隙間内に繊維等のご
みが入り込むことがない。さらにグリースと違って固形
状であるため、回転する軸(2)にまとわりついたりす
ることがなく、回転変動の原因とならない。そして、固
形状であるため取扱いが極めて容易で組立時の効率が良
い。
Such bearing devices include various types of motors such as polygon mirror motors for laser beam printers and spindle motors for magnetic disk drives, as well as electric products such as axial fans, ventilating fans and electric fans, and electrical components for automobiles. The bearing portion can be used in a wide range, and the durability around the bearing portion can be significantly improved without contaminating the periphery of the bearing portion with oil. In other words, even if the oil initially held in the porous oil-impregnated bearing spills out, it does not flow out of the bearing because of the oil leakage prevention member (11). Since oil is supplied from the object (3), an oil film is always maintained, and high rotational accuracy can always be maintained by the dynamic pressure effect of the dynamic pressure groove (5) provided on the bearing surface of the bearing body (1). . Further, wear and the like due to running out of oil at the time of startup can be prevented, and the durable life can be greatly improved. Since this solid lubricating composition does not contain a fibrous material unlike felt, dust such as fibers does not enter the bearing gap. Furthermore, unlike grease, since it is solid, it does not cling to the rotating shaft (2) and does not cause rotation fluctuation. And since it is solid, it is very easy to handle and the efficiency at the time of assembly is good.

【0042】また、磁性流体シールで密封するような構
造ではないため、油漏れ防止部材(11)、軸受本体
(1)、補油部材(潤滑組成物3)をそれぞれハウジン
グ(7)に圧入等の手段によって固定するだけでよいか
ら、組立時の効率が良く、コストが安い利点がある。
Since the structure is not sealed with a magnetic fluid seal, the oil leakage preventing member (11), the bearing body (1), and the oil replenishing member (lubricating composition 3) are each press-fitted into the housing (7). Therefore, there is an advantage that the efficiency at the time of assembly is high and the cost is low.

【0043】[0043]

【発明の効果】以上の説明から明らかなように、本発明
によれば、 ホワールなどの不安定振動を抑制することができ、
軸振れを小さくして高い回転精度を達成することができ
る。 常時、良好な動圧油膜形成を維持することができ
る。 耐久性を大幅に向上させることができる。 という効果が得られる。
As is apparent from the foregoing description, according to the present invention, it is possible to suppress unstable vibrations such as whirl,
High rotational accuracy can be achieved by reducing shaft runout. A good dynamic pressure oil film can always be maintained. It can be significantly improved durability. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す軸方向断面図であ
る。
FIG. 1 is an axial sectional view showing one embodiment of the present invention.

【図2】ヘリングボーン型動圧溝を設けた多孔質含油軸
受における油の動きを示す軸方向断面図である。
FIG. 2 is an axial cross-sectional view showing movement of oil in a porous oil-impregnated bearing provided with a herringbone type dynamic pressure groove.

【図3】評価試験用の多孔質含油軸受の軸方向断面図で
ある。
FIG. 3 is an axial sectional view of a porous oil-impregnated bearing for an evaluation test.

【図4】評価試験用の多孔質含油軸受の軸方向断面図で
ある。
FIG. 4 is an axial sectional view of a porous oil-impregnated bearing for an evaluation test.

【図5】評価試験の結果を示す図である。FIG. 5 is a diagram showing the results of an evaluation test.

【図6】評価試験用の多孔質含油軸受の軸方向断面図で
ある。
FIG. 6 is an axial sectional view of a porous oil-impregnated bearing for an evaluation test.

【図7】多孔質含油軸受の半径方向断面図である。FIG. 7 is a radial cross-sectional view of a porous oil-impregnated bearing.

【図8】c/hと軸振れとの関係を求める評価試験の結
果を示す図である。
FIG. 8 is a diagram showing the results of an evaluation test for determining the relationship between c / h and shaft runout.

【図9】本発明にかかる固形状潤滑組成物の油分離率の
経時変化を示す図である。
FIG. 9 is a graph showing the change over time in the oil separation rate of the solid lubricating composition according to the present invention.

【図10】固形状潤滑組成物の有無による比較試験の結果
を示す図である。
FIG. 10 is a graph showing the results of a comparative test depending on the presence or absence of a solid lubricating composition.

【図11】油漏れ防止部材を有する多孔質含油軸受におけ
る油の動きを示す軸方向断面図である。
FIG. 11 is an axial sectional view showing movement of oil in a porous oil-impregnated bearing having an oil leakage prevention member.

【図12】一般的な多孔質含油軸受の軸方向断面図であ
る。
FIG. 12 is an axial sectional view of a general porous oil-impregnated bearing.

【符号の説明】[Explanation of symbols]

1 軸受本体 2 回転軸 3 潤滑組成物 4 軸受隙間 5 動圧溝 7 ハウジング 8 ロータ(ハブ) 11 油漏れ防止部材 12 気流発生溝 16 空気流通路 17 軸受面 A 多孔質含油軸受 1 the bearing body 2 rotates shaft 3 lubricating composition 4 bearing gap 5 hydrodynamic grooves 7 housing 8 rotor (hub) 11 oil leak preventing member 12 airflow generating grooves 16 air duct 17 bearing surface A porous oil-impregnated bearing

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体からなる軸受本体に、支持すべ
き軸の摺動面と軸受隙間を介して対向する軸受面を設け
ると共に、該軸受面に傾斜状の動圧溝を形成した多孔質
含油軸受において、 前記軸受隙間に介在する油の動圧油膜によって前記軸の
摺動面を浮上支持し、 前記軸受面には、前記動圧溝を含め、開孔部が分布して
おり、 前記開孔部の表面積比率が2〜20%であることを特徴
とする動圧型多孔質含油軸受。
1. A porous body in which a bearing body made of a porous body is provided with a bearing surface opposed to a sliding surface of a shaft to be supported via a bearing gap and an inclined dynamic pressure groove is formed in the bearing surface. In the high quality oil-impregnated bearing, the sliding surface of the shaft is floated and supported by a dynamic pressure oil film of the oil interposed in the bearing gap, and the bearing surface is provided with apertures including the dynamic pressure groove, A hydrodynamic porous oil-impregnated bearing, wherein the surface area ratio of the opening is 2 to 20%.
【請求項2】 多孔質体からなる軸受本体に、支持すべ
き軸の摺動面と軸受隙間を介して対向する軸受面を設け
ると共に、該軸受面に傾斜状の動圧溝を形成した多孔質
含油軸受において、 前記軸受隙間に介在する油の動圧油膜によって前記軸の
摺動面を浮上支持し、 前記動圧溝の溝深さ(h)と前記軸受隙間(c)との比
がc/h=0.5〜4.0であることを特徴とする動圧
型多孔質含油軸受。
2. A porous body in which a bearing body made of a porous body is provided with a bearing surface opposed to a sliding surface of a shaft to be supported via a bearing gap, and an inclined dynamic pressure groove is formed in the bearing surface. In a high quality oil-impregnated bearing, the sliding surface of the shaft is levitated and supported by a dynamic pressure oil film of oil interposed in the bearing gap, and the ratio between the groove depth (h) of the dynamic pressure groove and the bearing gap (c) is adjusted. A dynamic pressure type porous oil-impregnated bearing, wherein c / h is 0.5 to 4.0.
【請求項3】 前記軸受本体が焼結金属で形成されてい
る請求項1又は2記載の動圧型多孔質含油軸受。
3. The hydrodynamic porous oil-impregnated bearing according to claim 1, wherein the bearing body is formed of a sintered metal.
【請求項4】 前記焼結金属が銅又は鉄、あるいは、そ
の両者を主成分とする請求項3記載の動圧型多孔質含油
軸受。
4. The hydrodynamic porous oil-impregnated bearing according to claim 3, wherein the sintered metal contains copper or iron, or both of them as main components.
JP2001371165A 1996-12-25 2001-12-05 Dynamic pressure type porous oil-impregnated bearing Expired - Lifetime JP3665606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371165A JP3665606B2 (en) 1996-12-25 2001-12-05 Dynamic pressure type porous oil-impregnated bearing

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP34578696 1996-12-25
JP7800197 1997-03-28
JP9-78001 1997-03-28
JP8-345786 1997-03-28
JP2001371165A JP3665606B2 (en) 1996-12-25 2001-12-05 Dynamic pressure type porous oil-impregnated bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35553097A Division JP3607480B2 (en) 1996-12-25 1997-12-24 Dynamic pressure type porous oil-impregnated bearing and bearing device

Publications (2)

Publication Number Publication Date
JP2002168239A true JP2002168239A (en) 2002-06-14
JP3665606B2 JP3665606B2 (en) 2005-06-29

Family

ID=27302582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371165A Expired - Lifetime JP3665606B2 (en) 1996-12-25 2001-12-05 Dynamic pressure type porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3665606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294411C (en) * 2004-07-07 2007-01-10 浙江大学 Dynamic load performance test table for oil-impregnated bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294411C (en) * 2004-07-07 2007-01-10 浙江大学 Dynamic load performance test table for oil-impregnated bearing

Also Published As

Publication number Publication date
JP3665606B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US5941646A (en) Hydrodynamic type porous oil-impregnated bearing and bearing device
KR100549102B1 (en) Spindle motor and rotating shaft supporting device of information equipment
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US7147376B2 (en) Dynamic bearing device
JP4481475B2 (en) Hydrodynamic bearing unit
JP2014181750A (en) Fluid dynamic pressure bearing device and motor including the same
JP3607480B2 (en) Dynamic pressure type porous oil-impregnated bearing and bearing device
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
JP3782890B2 (en) Dynamic pressure type sintered grease bearing
JP4263144B2 (en) Spindle motor
JP3665606B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP2004353870A (en) Hydrodynamic type bearing device
JPS624565B2 (en)
JP3908834B2 (en) Support device for spindle motor of information equipment
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JPH10274241A (en) Porous oilless bearing
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive
JP2000035041A (en) Dynamic pressure type sintered and oil retaining bearing unit
JP2013204072A (en) Sintered metal bearing
JPH11191943A (en) Spindle motor and rotary shaft supporting device of optical disc device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term