JP2002161394A - Method for manufacturing copper foil for micro wiring - Google Patents

Method for manufacturing copper foil for micro wiring

Info

Publication number
JP2002161394A
JP2002161394A JP2001279234A JP2001279234A JP2002161394A JP 2002161394 A JP2002161394 A JP 2002161394A JP 2001279234 A JP2001279234 A JP 2001279234A JP 2001279234 A JP2001279234 A JP 2001279234A JP 2002161394 A JP2002161394 A JP 2002161394A
Authority
JP
Japan
Prior art keywords
copper
current density
copper foil
ion
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001279234A
Other languages
Japanese (ja)
Other versions
JP3429290B2 (en
Inventor
Yasuhiro Endo
安浩 遠藤
Hiroki Hara
広樹 原
Atsuchika Yagihashi
敦睦 八木橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP2001279234A priority Critical patent/JP3429290B2/en
Publication of JP2002161394A publication Critical patent/JP2002161394A/en
Application granted granted Critical
Publication of JP3429290B2 publication Critical patent/JP3429290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a copper foil for micro wiring, which has fine surface roughness on a surface to be bonded, is uniformly roughened, has a high etching factor without lowering a bonding strength between the copper foil and a base resin material, and does not leave copper particles on the base material, to form micro wiring. SOLUTION: The method for manufacturing a copper foil for micro wiring comprises; forming a composite metal layer on the surface to be bonded of the copper foil, by electrolyzing it in a plating bath which contains copper ion, ion of metals selected from tungsten or molybdenum, ion of metals selected from nickel, cobalt, iron, or zinc, and chloride ion of 1-100 mg/l, at an electric current density of less than limiting current density of the bath; forming a dendritic copper electrodeposited layer on the composite metal layer, by electrolyzing it in a plating bath containing copper ion, at the electric current density of more than the limiting current density of the bath; and forming coarsened layer consisting of copper, by further electrolyzing it at the current density of less than the limiting current density of the bath to form knotty copper.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細配線用銅箔の
製造方法に関し、更に詳しくは、被接着面となる銅箔表
面の表面粗さが小さく、粗化が均一で、エッチング性に
優れ、高密度微細配線が可能であり、かつ基材との接着
強度が高い微細配線用銅箔の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper foil for fine wiring, and more particularly to a method for producing a copper foil having a small surface roughness, uniform roughness, and excellent etching properties. The present invention relates to a method for producing a copper foil for fine wiring, which enables high-density fine wiring and has high adhesive strength to a substrate.

【0002】[0002]

【従来の技術】プリント配線板用銅箔は、一般に、樹脂
基材と積層する銅箔の被接着面が何らかの方法によっ
て、より強固な接着強度が得られるように、予め粗化処
理されている。この粗化処理手段として適用されている
主流の方法は、電解銅箔の場合めっき法である。めっき
法には、例えば、特公昭53−39376号公報に開示
されている方法がある。この方法は酸性銅めっき浴を用
いて、銅生箔を陰極として、まず限界電流密度以上の電
流によりいわゆるコガシめっきによる樹枝状銅電着層を
銅箔の少なくとも一方の被接着面に形成させ、更に該層
上に限界電流密度未満の電流により前記樹枝状銅電着層
に平滑な銅電着層(カブセめっき)を形成して前記樹枝
状銅をいわゆるコブ状銅に変化させ、このコブ状銅によ
り、接着強度の増強を得ようとするものである。このコ
ブ状銅を形成することにより該銅箔面は、電解処理前に
比べて比表面積の増大が図られるとともにコブ状銅によ
るアンカー効果が発揮されて樹脂基材と銅箔間の接着強
度が向上する。このコブ状銅が形成される銅生箔が電解
銅箔の場合、一般に一方の面(粗面側)は他方の面(光
沢面側)に比べて凹凸があり、電流は主に凸部に集中し
やすく、コブ状銅は殆ど凸部の先端に集中して形成され
る。
2. Description of the Related Art A copper foil for a printed wiring board is generally roughened in advance so that a bonding surface of a copper foil to be laminated on a resin base material can have a stronger bonding strength by some method. . The mainstream method applied as the roughening means is a plating method in the case of electrolytic copper foil. As the plating method, for example, there is a method disclosed in Japanese Patent Publication No. 53-39376. This method uses an acidic copper plating bath, using a copper raw foil as a cathode, first forming a dendritic copper electrodeposited layer by so-called kogashi plating on at least one surface to be bonded of the copper foil by a current not lower than the limiting current density, Further, a smooth copper electrodeposited layer (cube plating) is formed on the dendritic copper electrodeposited layer by a current less than the limiting current density on the layer to change the dendritic copper into a so-called bumpy copper. It is intended to obtain an increase in adhesive strength by using copper. By forming this bump-shaped copper, the copper foil surface is increased in specific surface area as compared to before the electrolytic treatment, and the anchor effect by the bump-shaped copper is exerted, whereby the adhesive strength between the resin substrate and the copper foil is increased. improves. When the copper raw foil on which the bump-shaped copper is formed is an electrolytic copper foil, one surface (rough surface side) generally has irregularities as compared with the other surface (glossy surface side), and the current mainly flows to the convex portions. It is easy to concentrate, and the bumpy copper is formed almost at the tip of the convex portion.

【0003】近年、ノートパソコン、携帯電話等の普及
に伴い、これらに組み込まれるプリント配線板の回路
幅、回路間隔は、100μm以下の高密度、微細配線化
が著しい。また、樹脂基材として高TgタイプのFR−
5材を使用したガラスエポキシプリント配線板が増加し
ている。高Tgタイプのエポキシ樹脂は、従来のFR−
4材と比較すると高耐熱性である反面、銅箔との接着強
度が低くなる傾向がある。樹脂基材との接着強度を高め
る方法として、銅箔の被接着面の粗面粗さを大きくする
方法がある。しかし、粗面粗さを大きくした場合、小さ
な摩擦力でもコブ状銅が脱落するいわゆる銅粉落ち現象
や、プリント回路作製時に行うエッチング工程後におい
て樹脂基材の中にコブ状銅が残存する残銅現象が発生し
やすくなる。
In recent years, with the spread of notebook personal computers, mobile phones, and the like, the circuit width and circuit interval of printed wiring boards incorporated therein have been significantly reduced in density and fine wiring to 100 μm or less. In addition, high Tg type FR-
Glass epoxy printed wiring boards using five materials are increasing. High Tg type epoxy resin is the same as conventional FR-
Although it has higher heat resistance than the four materials, the adhesive strength to the copper foil tends to be low. As a method of increasing the adhesive strength with the resin substrate, there is a method of increasing the roughness of the surface to be bonded of the copper foil. However, when the roughness of the rough surface is increased, the so-called copper powder phenomenon in which the bump-like copper falls off even with a small frictional force or the residual bump-like copper remaining in the resin base material after the etching step performed at the time of producing a printed circuit. Copper phenomenon is likely to occur.

【0004】これらを改良する手段として、特公昭54
−38053号公報等に酸性銅めっき浴中に砒素、アン
チモン、ビスマス、セレン、テルルから選ばれた1種又
は2種以上を特定量添加し、限界電流密度前後で電解処
理する粗面形成方法がある。砒素、アンチモン、ビスマ
ス、セレン、テルルを微量含有させることにより微小な
突起が形成されるが、銅生箔の凸部に集中する現象は改
善されない。更に、毒物、劇物等である砒素、アンチモ
ン、ビスマス、セレン、テルルを含有する銅箔をプリン
ト配線板に用いた場合、エッチング廃液やプリント配線
板そのものの廃棄時に、環境汚染の問題が発生する。
[0004] As means for improving these, Japanese Patent Publication No. Sho 54
JP-A-38053 discloses a rough surface forming method in which one or two or more selected from arsenic, antimony, bismuth, selenium, and tellurium are added to an acidic copper plating bath in a specific amount, and electrolytic treatment is performed before and after the limit current density. is there. Although minute projections are formed by adding a small amount of arsenic, antimony, bismuth, selenium, and tellurium, the phenomenon of concentration on the projections of the raw copper foil is not improved. Furthermore, when a copper foil containing arsenic, antimony, bismuth, selenium, and tellurium, which are toxic substances and deleterious substances, is used for a printed wiring board, a problem of environmental pollution occurs at the time of discarding the etching waste liquid or the printed wiring board itself. .

【0005】また、酸性銅めっき浴中にベンゾキノリン
を添加する方法(特公昭56−41196号公報)やモ
リブデンを添加する方法(特公昭62−56677号公
報)が開示されているが、接着強度の向上が十分に得ら
れなかった。
A method of adding benzoquinoline to an acidic copper plating bath (Japanese Patent Publication No. 56-41196) and a method of adding molybdenum (Japanese Patent Publication No. 62-56677) are disclosed. Was not sufficiently obtained.

【0006】この課題を更に改良した方法として、特開
平8−236930号公報にクロム及びタングステンか
ら選ばれた1種以上の金属イオンと、バナジウム、ニッ
ケル、鉄、コバルト、亜鉛、ゲルマニウム及びモリブデ
ンから選ばれる1種以上の金属イオンを含む酸性銅めっ
き浴を用いて、限界電流密度付近で電解し、添加金属を
含有する粗化処理層を形成する方法が開示されている。
また、特開平11−256389号公報にモリブデンと
鉄、コバルト、ニッケル、タングステンから選ばれる1
種以上の金属イオンを含む酸性銅めっき浴を用いて、限
界電流密度付近で電解し、添加金属を含有するやけめっ
き層(コガシめっき層)を形成する方法が開示されてい
る。
[0006] As a method for further improving this problem, Japanese Patent Application Laid-Open No. 8-236930 discloses that at least one metal ion selected from chromium and tungsten and one selected from vanadium, nickel, iron, cobalt, zinc, germanium and molybdenum. A method is disclosed in which an electrolytic copper plating bath containing at least one type of metal ion is used to electrolyze near a critical current density to form a roughened layer containing an additional metal.
Also, Japanese Patent Application Laid-Open No. 11-256389 describes that molybdenum and one selected from iron, cobalt, nickel, and tungsten are used.
A method is disclosed in which an acidic copper plating bath containing at least one kind of metal ion is used to electrolyze near a critical current density to form a burnt plating layer (kogashi plating layer) containing an additional metal.

【0007】しかし、これらの方法を用いても、コブ状
銅は銅生箔凸部の先端に集中して形成される傾向がある
ため、銅粉落ち現象や、残銅現象がなお発生する。
However, even when these methods are used, the bumpy copper tends to be formed at the tip of the convex portion of the raw copper foil, so that the copper powder dropping phenomenon and the residual copper phenomenon still occur.

【0008】また、銅張積層板のエッチング特性を示す
尺度として、エッチングファクター(Ef)が用いられ
ている。図1はエッチングファクター(Ef)を説明す
るための回路銅箔の模式的断面図で、Bは電気絶縁性基
材であり、Aはその上に銅箔をエッチングして形成した
回路銅箔である。回路銅箔のトップ幅をWT、回路銅箔
のボトム幅をWB、回路銅箔の厚さをHとすると、Ef
=2H/(WB−WT)で表される。この値が大きい程
形成された回路パターンの側壁は垂直に近い状態になる
ことを表しており、微細配線を形成しようとする場合、
できるだけEf値が大きい銅箔を選択することが望まし
い。
[0008] An etching factor (Ef) is used as a measure of the etching characteristics of a copper clad laminate. FIG. 1 is a schematic sectional view of a circuit copper foil for explaining an etching factor (Ef), wherein B is an electrically insulating base material, and A is a circuit copper foil formed by etching a copper foil thereon. is there. Assuming that the top width of the circuit copper foil is WT, the bottom width of the circuit copper foil is WB, and the thickness of the circuit copper foil is H, Ef
= 2H / (WB-WT). The larger the value is, the more the side wall of the formed circuit pattern is close to vertical, indicating that when a fine wiring is to be formed,
It is desirable to select a copper foil having as large an Ef value as possible.

【0009】このEf値は銅箔の厚さ、銅箔の被接着面
の表面粗さ等でその大小が決まってくるが、被接着面の
表面粗さが大きい場合は基材に食い込んだ銅箔の粗化面
の突起部を完全にエッチング除去する必要があるためエ
ッチングに長時間を要し、すでに形成されている回路壁
がさらにエッチングされて回路形状が悪化してEf値が
小さくなる。また、この粗化面の突起部を完全にエッチ
ングしないと基材側に銅粒子が残ってしまい、微細配線
の間隔が狭いときには断線若しくは絶縁不良の原因にな
ることがある。
The Ef value is determined by the thickness of the copper foil, the surface roughness of the surface to which the copper foil is to be adhered, and the like. Since it is necessary to completely remove the projections on the roughened surface of the foil by etching, a long time is required for etching, and the already formed circuit walls are further etched, thereby deteriorating the circuit shape and reducing the Ef value. In addition, if the projections on the roughened surface are not completely etched, copper particles remain on the base material side, and when the distance between the fine wirings is small, disconnection or poor insulation may be caused.

【0010】そこで、銅箔の被接着面側の粗化が均一で
表面粗さが小さく、エッチング特性に優れ、更に基材と
の接着強度に優れた銅箔が微細配線用銅箔として要求さ
れる。
Therefore, a copper foil having uniform roughness on the surface to be bonded of the copper foil, small surface roughness, excellent etching characteristics, and excellent adhesive strength to the substrate is required as a copper foil for fine wiring. You.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、銅箔
の被接着面側の表面粗さが小さく、粗化が均一であり、
銅箔と樹脂基材間の接着強度を低下させることなく、高
いエッチングファクターを持ち、基材側に銅粒子を残す
ことなく微細配線を形成することができる微細配線用銅
箔の製造方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a copper foil having a small surface roughness on the side to be bonded and a uniform roughness.
Provided is a method for manufacturing a copper foil for fine wiring, which has a high etching factor without lowering the adhesive strength between the copper foil and the resin base material and can form fine wiring without leaving copper particles on the base material side. Is to do.

【0012】すなわち、本発明は、銅箔を陰極として、
銅箔の被接着面に(1)銅イオン、(2)タングステン
及びモリブデンから選ばれる1種以上の金属の金属イオ
ン、(3)ニッケル、コバルト、鉄及び亜鉛から選ばれ
る少なくとも1種以上の金属の金属イオン及び(4)塩
素イオン1〜100mg/lを含有するめっき浴(A)
を用いて浴の限界電流密度未満の電流密度で電解処理す
ることにより、(I)銅、(II)タングステン及びモ
リブデンから選ばれる少なくとも1種以上の金属及び
(III)ニッケル、コバルト、鉄及び亜鉛から選ばれ
る少なくとも1種以上の金属からなる複合金属層を設
け、次いでこの複合金属層上に銅イオンを含有するめっ
き浴(B)を用いて、浴の限界電流密度以上の電流密度
で電解処理して、樹枝状銅電着層を形成し、更に浴の限
界電流密度未満の電流密度で電解処理してコブ状銅を形
成することにより銅からなる粗化層を設けることを特徴
とする微細配線用銅箔の製造方法を提供するものであ
る。
That is, according to the present invention, a copper foil is used as a cathode,
(1) copper ions, (2) metal ions of at least one metal selected from tungsten and molybdenum, and (3) at least one metal selected from nickel, cobalt, iron and zinc on the surface to be bonded of the copper foil. Plating bath (A) containing 1 to 100 mg / l of metal ions and (4) chloride ions
By electrolysis at a current density lower than the limiting current density of the bath, so that at least one metal selected from (I) copper, (II) tungsten and molybdenum and (III) nickel, cobalt, iron and zinc A composite metal layer made of at least one metal selected from the group consisting of: a) a plating bath (B) containing copper ions on the composite metal layer at an electric current density higher than the limit current density of the bath; Forming a dendritic copper electrodeposition layer, and further performing electrolytic treatment at a current density lower than the limiting current density of the bath to form a rough copper layer, thereby providing a roughened layer made of copper. An object of the present invention is to provide a method for manufacturing a copper foil for wiring.

【0013】ここで浴の限界電流密度とは、金属及び金
属化合物の析出する陰極反応において、水素ガスの発生
を伴うようになる電流密度を意味する。
Here, the limiting current density of the bath means a current density accompanied by generation of hydrogen gas in a cathode reaction in which a metal and a metal compound are precipitated.

【0014】[0014]

【発明の実施の形態】本発明に用いられる銅箔(銅生
箔)は主に電解銅箔が好適に用いられるが、圧延銅箔や
真空蒸着法等によって、例えば、プラスチックフィルム
上に銅膜を形成させたものであってもよい。また、銅箔
の厚さ、銅箔表面の粗さや形態については特に限定する
ものではない。更に銅箔の被接着面は両面であってもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION The copper foil (copper raw foil) used in the present invention is preferably mainly an electrolytic copper foil. May be formed. Further, the thickness of the copper foil and the roughness and form of the copper foil surface are not particularly limited. Further, the surfaces to be bonded of the copper foil may be both surfaces.

【0015】この銅生箔の被接着面には、(I)銅の付
着量が好ましくは1,000〜10,000μg/dm
2、(II)タングステン及びモリブデンから選ばれる
1種以上の金属の付着量が好ましくは10〜1,000
μg/dm2、より好ましくは10〜200μg/d
2、(III)ニッケル、コバルト、鉄及び亜鉛から
選ばれる少なくとも1種以上の金属の付着量が好ましく
は1〜1,000μg/dm2、より好ましくは5〜3
00μg/dm2、更に好ましくは10〜50μg/d
2である複合金属層を形成する。
[0015] The adhesion amount of copper (I) to the surface to be adhered of the raw copper foil is preferably 1,000 to 10,000 µg / dm.
2 , the amount of one or more metals selected from (II) tungsten and molybdenum is preferably 10 to 1,000.
μg / dm 2 , more preferably 10 to 200 μg / d
m 2 , (III) the adhesion amount of at least one metal selected from nickel, cobalt, iron and zinc is preferably 1 to 1,000 μg / dm 2 , more preferably 5 to 3 μg / dm 2 .
00 μg / dm 2 , more preferably 10 to 50 μg / d
forming a composite metal layer of m 2 .

【0016】ニッケル、コバルト、鉄及び亜鉛から選ば
れる少なくとも1種以上の金属の付着量が1μg/dm
2未満の場合には、めっき法によりコブ状銅を形成して
もコブ状銅は均一に形成されず、凸部に集中して形成さ
れる傾向があり、1,000μg/dm2を超える場合
には、銅回路形成において、不要な銅をエッチングによ
り除去するとき該めっき層のエッチング時間が著しく遅
くなる傾向がある。ニッケル、コバルト、鉄及び亜鉛か
ら選ばれる少なくとも1種以上の金属の付着量は、めっ
き浴の組成やその処理条件の設定などに関連するもので
あり、後記する浴組成、電解条件等から適宜選択され
る。
The adhesion amount of at least one metal selected from nickel, cobalt, iron and zinc is 1 μg / dm.
When the value is less than 2, the bumpy copper is not uniformly formed even when the bumpy copper is formed by the plating method, and tends to be formed concentrated on the protruding portion, and when it exceeds 1,000 μg / dm 2. In the formation of a copper circuit, when unnecessary copper is removed by etching, the etching time of the plating layer tends to be extremely slow. The deposition amount of at least one metal selected from nickel, cobalt, iron and zinc is related to the composition of the plating bath and the setting of the treatment conditions, and is appropriately selected from the bath composition and electrolysis conditions described later. Is done.

【0017】また、複合金属層の銅の付着量が1,00
0μg/dm2未満であると全体に均一なコブ状銅が形
成されない傾向にあり、10,000μg/dm2を超
えると全体に均一なコブ状銅の形成効果は小さく、ま
た、製造コストが増大する傾向がある。複合金属層のタ
ングステン及びモリブデンから選ばれる1種以上の金属
の付着量が10μg/dm2未満であると、全体に均一
なコブ状銅が形成されない傾向にあり、また1,000
μg/dm2を超えるとコブ状銅が大きくならない傾向
がある。複合金属層の厚さは0.01〜0.15μmで
あることが好ましい。
The amount of copper deposited on the composite metal layer is 1,000
Located 0 Pg / dm uniform nodular copper throughout is less than 2 is not formed tends, 10,000 [/ dm 2 to more than the effect of forming uniform nodular copper throughout the small and the manufacturing cost increases Tend to. If the amount of one or more metals selected from tungsten and molybdenum of the composite metal layer is less than 10 μg / dm 2 , a uniform copper-like copper tends not to be formed as a whole,
If it exceeds μg / dm 2 , the bumpy copper tends not to increase. The thickness of the composite metal layer is preferably from 0.01 to 0.15 μm.

【0018】本発明における複合金属層の形成は、銅箔
を陰極として、銅箔の被接着面に(1)銅イオン、
(2)タングステン及びモリブデンから選ばれる1種以
上の金属の金属イオン、(3)ニッケル、コバルト、鉄
及び亜鉛から選ばれる少なくとも1種以上の金属の金属
イオン及び(4)塩素イオン1〜100mg/lを含有
するめっき浴(A)を用いて浴の限界電流密度未満の電
流密度で電解処理することにより行われる。銅箔の被接
着面は予め、酸洗、脱脂処理を施しておくことが好まし
い。
In the present invention, the composite metal layer is formed by using a copper foil as a cathode, (1) copper ions,
(2) metal ions of at least one metal selected from tungsten and molybdenum; (3) metal ions of at least one metal selected from nickel, cobalt, iron and zinc; and (4) 1 to 100 mg / chlorine ion This is carried out by using a plating bath (A) containing 1 and performing an electrolytic treatment at a current density lower than the limit current density of the bath. It is preferable that the surface to be bonded of the copper foil be subjected to pickling and degreasing in advance.

【0019】このめっき浴(A)の各金属イオン源は水
溶性の金属塩から選ばれ用いられる。好適な浴組成は次
のような範囲から選択することが好ましいが、特に限定
するものではない。 (1)銅イオン濃度;5〜25g/l(銅イオン源−硫
酸銅5水和物) (2−1)タングステンイオン濃度;0.006〜11
g/l(タングステンイオン源−タングステン酸ナトリ
ウム2水和物) (2−2)モリブデンイオン濃度;0.2〜8g/l
(モリブデンイオン源−モリブデン酸ナトリウム2水和
物) (2−3)タングステンイオン及びモリブデンイオンの
合計濃度;0.006〜11g/l (3−1)ニッケルイオン濃度;2〜22g/l(ニッ
ケルイオン源−硫酸ニッケル6水和物) (3−2)コバルトイオン濃度;2〜21g/l(コバ
ルトイオン源−硫酸コバルト7水和物) (3−3)鉄イオン濃度;3〜28g/l(鉄イオン源
−硫酸第1鉄7水和物) (3−4)亜鉛イオン濃度;3〜29g/l(亜鉛イオ
ン源−硫酸亜鉛7水和物) (3−5)ニッケルイオン、コバルトイオン、鉄イオン
及び亜鉛イオンの合計濃度;2〜30g/l (4)塩素イオン濃度;1〜100mg/l(塩素イオ
ン源−塩酸、塩化ナトリウム) 塩素イオン濃度が1mg/l未満であると複合金属層上
に銅からなる粗化層を設けたとき、表面粗さが大きくな
りエッチングファクター(Ef)が低下する傾向にあ
る。100mg/lを超えると塩素イオンの効果が過剰
になり銅からなる粗化層の表面粗さが小さくなり、樹脂
基材に対するアンカー効果が小さくなり接着強度が低下
する傾向にある。塩素イオン濃度の好ましい範囲は2〜
85mg/lである。
Each metal ion source of the plating bath (A) is selected from water-soluble metal salts and used. A preferred bath composition is preferably selected from the following ranges, but is not particularly limited. (1) Copper ion concentration: 5 to 25 g / l (copper ion source-copper sulfate pentahydrate) (2-1) Tungsten ion concentration: 0.006 to 11
g / l (tungsten ion source-sodium tungstate dihydrate) (2-2) Molybdenum ion concentration: 0.2 to 8 g / l
(Molybdenum ion source-sodium molybdate dihydrate) (2-3) Total concentration of tungsten ion and molybdenum ion; 0.006 to 11 g / l (3-1) Nickel ion concentration; 2 to 22 g / l (nickel (3-2) Cobalt ion concentration; 2 to 21 g / l (Cobalt ion source-cobalt sulfate heptahydrate) (3-3) Iron ion concentration; 3 to 28 g / l (Iron ion source-ferrous sulfate heptahydrate) (3-4) zinc ion concentration: 3 to 29 g / l (zinc ion source-zinc sulfate heptahydrate) (3-5) nickel ion, cobalt ion , Total concentration of iron ions and zinc ions; 2 to 30 g / l (4) chloride ion concentration; 1 to 100 mg / l (chloride ion source-hydrochloric acid, sodium chloride) When the chloride ion concentration is less than 1 mg / l When provided with the roughened layer made of copper if a metal layer, the etching factor becomes large surface roughness (Ef) tends to decrease. If it exceeds 100 mg / l, the effect of chlorine ions becomes excessive, the surface roughness of the roughened layer made of copper becomes small, the anchor effect on the resin base material becomes small, and the adhesive strength tends to decrease. The preferred range of the chloride ion concentration is 2 to
85 mg / l.

【0020】複合金属層を形成する好適な電解条件は、
めっき浴(A)の限界電流密度未満であればよく、概ね
次のような範囲から選択することが好ましい。 電流密度:1〜10A/dm2、電解処理時間:1〜3
0秒、浴温度:10〜60℃ 電流密度が1A/dm2未満であると、例えば、硫酸酸
性銅めっき浴を用いて粗化処理された銅からなる粗化層
の表面粗さも大きくなり、エッチングファクター(E
f)が低下して微細配線作製が困難になる傾向にある。
10A/dm2を超えると銅からなる粗化層の表面粗さ
が小さくなり、アンカー効果が減少し、接着強度が低下
する傾向にある。
The preferred electrolysis conditions for forming the composite metal layer are as follows:
What is necessary is just to be less than the limiting current density of the plating bath (A), and it is preferable to select generally from the following ranges. Current density: 1 to 10 A / dm 2 , electrolytic treatment time: 1 to 3
0 seconds, bath temperature: 10 to 60 ° C. If the current density is less than 1 A / dm 2 , for example, the surface roughness of a roughened layer made of copper roughened using a sulfuric acid acidic copper plating bath also increases, Etching factor (E
f) tends to decrease, making it difficult to produce fine wiring.
If it exceeds 10 A / dm 2 , the surface roughness of the roughened layer made of copper tends to be small, the anchor effect tends to decrease, and the adhesive strength tends to decrease.

【0021】めっき浴(A)のpHは1.5〜5.0の
範囲から選択されることが好ましい。pHが1.5より
低い場合、複合金属層中のタングステン及びモリブデン
から選ばれる1種以上の金属の付着量及び、ニッケル、
コバルト、鉄及び亜鉛から選ばれる少なくとも1種以上
の金属の付着量が好適な範囲でなくなり、めっき法によ
りコブ状銅を形成してもコブ状銅は銅生箔の凹部まで形
成されず、凸部に集中して形成される傾向がある。ま
た、pHが5.0より高い場合、タングステンイオン及
びモリブデンイオンから選ばれる1種以上の金属イオン
の溶解時間が著しく遅くなり、生産性が悪化する傾向が
ある。より好ましいpHは2.0〜4.0の範囲であ
る。
The pH of the plating bath (A) is preferably selected from the range of 1.5 to 5.0. When the pH is lower than 1.5, the amount of one or more metals selected from tungsten and molybdenum in the composite metal layer and nickel,
Coating amount of at least one or more metals selected from cobalt, iron and zinc is not in a suitable range, and even if copper-like copper is formed by plating, copper-like copper is not formed up to the concave portion of copper raw foil, It tends to be formed concentrated on the part. When the pH is higher than 5.0, the dissolution time of one or more metal ions selected from the group consisting of tungsten ions and molybdenum ions becomes extremely slow, and the productivity tends to deteriorate. A more preferred pH is in the range from 2.0 to 4.0.

【0022】複合金属層の形成により、銅箔の被接着面
に微細粒が発生するがこのまま或は該層上をコガシめっ
き又はカブセめっきにより銅で被覆しただけでは十分な
接着強度は得られない傾向がある。そこで該層上にコガ
シめっき及びカブセめっきを併用して全体に均一なコブ
状銅を形成させることで銅からなる粗化層を形成し、接
着強度の向上を図る。
Due to the formation of the composite metal layer, fine particles are generated on the surface to be bonded of the copper foil, but sufficient adhesion strength cannot be obtained as it is or only by coating the layer with copper by kogashi plating or kabuse plating. Tend. Therefore, a rough layer made of copper is formed by forming a uniform bump-shaped copper on the entire layer by using a combination of kogashi plating and fogging plating to improve the adhesive strength.

【0023】すなわち、上記の条件で得られた銅箔を水
洗し、得られた複合金属層上に、銅イオンを含有するめ
っき浴(B)を用いて浴の限界電流密度以上の電流密度
で電解処理するコガシめっきにより樹枝状銅電着層を形
成し、更に浴の限界電流密度未満の電流密度で電解処理
するカブセめっきによりコブ状銅を形成することにより
銅からなる粗化層を設ける。
That is, the copper foil obtained under the above conditions is washed with water, and the plating current (B) containing copper ions is applied to the obtained composite metal layer at a current density higher than the limiting current density of the bath. A dendritic copper electrodeposited layer is formed by kogashi plating for electrolytic treatment, and a roughened layer made of copper is formed by forming knotted copper by electrolytic plating at a current density lower than the limit current density of the bath.

【0024】銅からなる粗化層の銅の付着量は30,0
00〜300,000μg/dm2であることが好まし
い。30,000μg/dm2未満であるとコブ状銅が
小さく十分な接着強度は得られない傾向がある。30
0,000μg/dm2を超えると接着強度は得られる
が、製造原価が増大するので好ましくない。より好まし
い付着量は100,000〜200,000μg/dm
2である。銅からなる粗化層の形成はコガシめっき−カ
ブセめっきの工程を複数回繰り返して行うこともでき
る。
The amount of copper deposited on the roughened layer made of copper is 30,0.
It is preferably from 00 to 300,000 μg / dm 2 . If it is less than 30,000 μg / dm 2 , the copper bump is small and sufficient adhesive strength tends not to be obtained. 30
If it exceeds 000 μg / dm 2 , the adhesive strength can be obtained, but the production cost is undesirably increased. A more preferable adhesion amount is 100,000 to 200,000 μg / dm.
2 The formation of the roughened layer made of copper can also be performed by repeating the steps of kogashi plating and kabuse plating a plurality of times.

【0025】銅からなる粗化層の形成は、例えば一般的
な硫酸酸性硫酸銅浴を用いた場合、次のような浴組成及
び電解条件の範囲から選択することが好ましいが、特に
限定するものではない。 銅イオン源−硫酸銅5水和物:20〜300g/l(好
ましい銅イオン濃度5〜76g/l) 硫酸:10〜200g/l 電流密度:コガシめっき(限界電流密度以上);10〜
200A/dm2、カブセめっき(限界電流密度未
満);1〜20A/dm2 電解処理時間:コガシめっき;1〜10秒、カブセめっ
き;40〜100秒 浴温度:20〜60℃ 銅からなる粗化層を形成した銅箔は、必要に応じて、通
常の銅箔に設けられるクロメート層、亜鉛層、銅亜鉛合
金層、亜鉛合金層、ニッケル−モリブデン−コバルト
層、インジウム−亜鉛層などの防錆処理層やシランカッ
プリング剤処理層、フェノール樹脂、エポキシ樹脂、ポ
リイミド樹脂等の接着樹脂層を設けて用いることが好ま
しい。これらの層を設けた銅箔は、微細配線用銅箔とし
て樹脂基材と加熱加圧積層してプリント配線板用の銅張
積層板として使用される。
The formation of the roughened layer made of copper is preferably selected from the following ranges of bath composition and electrolysis conditions when a general sulfuric acid-acidic copper sulfate bath is used. is not. Copper ion source-copper sulfate pentahydrate: 20 to 300 g / l (preferable copper ion concentration: 5 to 76 g / l) Sulfuric acid: 10 to 200 g / l Current density: kogashi plating (more than critical current density);
200 A / dm 2 , kabushi plating (less than the limit current density); 1 to 20 A / dm 2 electrolytic treatment time: kogashi plating; 1 to 10 seconds, kabuse plating; 40 to 100 seconds bath temperature: 20 to 60 ° C. If necessary, the copper foil on which the oxide layer is formed may be provided with a protective layer such as a chromate layer, a zinc layer, a copper-zinc alloy layer, a zinc alloy layer, a nickel-molybdenum-cobalt layer, and an indium-zinc layer provided on a normal copper foil. It is preferable to provide a rust treatment layer, a silane coupling agent treatment layer, and an adhesive resin layer such as a phenol resin, an epoxy resin, and a polyimide resin. The copper foil provided with these layers is heat-pressed and laminated as a copper foil for fine wiring with a resin substrate and used as a copper-clad laminate for a printed wiring board.

【0026】[0026]

【実施例】以下、本発明を実施例及び比較例によって更
に具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0027】実施例1 (1)厚さ12μmの電解銅箔(粗面側表面粗さRz
1.5μm、JIS B0601に準拠して測定)を1
0重量%硫酸溶液で60秒間酸洗処理した。
Example 1 (1) Electrodeposited copper foil of 12 μm thickness (roughness side surface roughness Rz
1.5 μm, measured according to JIS B0601)
The substrate was pickled with a 0% by weight sulfuric acid solution for 60 seconds.

【0028】(2)この銅箔を水洗し、硫酸銅5水和物
50g/l、モリブデン酸ナトリウム2水和物2g/
l、硫酸ニッケル6水和物50g/l及び塩素イオン
(塩酸を使用、以下同じ)20mg/lからなるめっき
浴を、pH2.5、浴温度30℃に調整しためっき浴を
用いて、前記銅箔の粗面側(被接着面)を電流密度3A
/dm2で8秒間電解処理して銅箔の被接着面側に銅、
モリブデン及びニッケルを含む複合金属層を形成した。
複合金属層の各金属量をICP(誘導結合プラズマ発
光)分析装置で定量したところ、銅の付着量は7,90
0μg/dm2、モリブデンの付着量は110μg/d
2、ニッケルの付着量は15μg/dm2であった。処
理後の処理面の表面粗さはRz1.5μmであった。
(2) The copper foil was washed with water, and copper sulfate pentahydrate 50 g / l and sodium molybdate dihydrate 2 g /
a plating bath consisting of 50 g / l of nickel sulfate hexahydrate and 20 mg / l of chloride ions (using hydrochloric acid, the same applies hereinafter), using a plating bath adjusted to pH 2.5 and a bath temperature of 30 ° C. Current density 3A on the rough side of the foil (the surface to be bonded)
/ Dm 2 for 8 seconds and copper on the adhered surface side of copper foil,
A composite metal layer containing molybdenum and nickel was formed.
When the amount of each metal in the composite metal layer was determined by an ICP (inductively coupled plasma emission) analyzer, the amount of adhered copper was 7,90.
0 μg / dm 2 , molybdenum adhesion amount is 110 μg / d
m 2 and the attached amount of nickel were 15 μg / dm 2 . The surface roughness of the treated surface after the treatment was Rz 1.5 μm.

【0029】(3)次に、この銅箔を水洗し、前記複合
金属層上に硫酸銅5水和物130g/l、硫酸100g
/l、浴温度30℃に調整しためっき浴を用いて、電
流密度30A/dm2で3秒間電解処理(限界電流密度
以上)し、電流密度5A/dm2で80秒間電解処理
(限界電流密度未満)を施し、銅からなる粗化層を形成
した。銅からなる粗化層の銅の付着量は150,000
μg/dm2、表面粗さはRz2.2μmであった。得
られた粗化処理された電解銅箔は銅生箔の全体に均一な
コブ状銅の形成が観察された。
(3) Next, the copper foil was washed with water, and 130 g / l of copper sulfate pentahydrate and 100 g of sulfuric acid were placed on the composite metal layer.
/ L, electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds (limit current density or higher) using a plating bath adjusted to a bath temperature of 30 ° C., and electrolytic treatment at a current density of 5 A / dm 2 for 80 seconds (limit current density ) To form a roughened layer made of copper. The amount of copper deposited on the roughened layer made of copper is 150,000.
μg / dm 2 , and the surface roughness was Rz 2.2 μm. In the obtained roughened electrolytic copper foil, formation of a uniform bumpy copper was observed over the entire copper raw foil.

【0030】(4)次にこの銅箔を水洗し、重クロム酸
ナトリウム2水和物3.5g/l、pH4.2、浴温度
30℃に調整した水溶液中で、電流密度0.7A/dm
2で2.7秒間電解処理を施し、防錆層を形成した。
(4) Next, the copper foil was washed with water and subjected to a current density of 0.7 A / A in an aqueous solution adjusted to 3.5 g / l of sodium dichromate dihydrate, pH 4.2, and a bath temperature of 30 ° C. dm
Electrolysis treatment was performed for 2.7 seconds at 2 to form a rustproof layer.

【0031】(5)更に、この銅箔を水洗し、3−グリ
シドキシプロピルトリメトキシシラン0.1重量%の水
溶液に10秒間浸漬後、直ちに80℃で乾燥しシランカ
ップリング剤処理層を形成した。
(5) Further, the copper foil was washed with water, immersed in an aqueous solution containing 0.1% by weight of 3-glycidoxypropyltrimethoxysilane for 10 seconds, and immediately dried at 80 ° C. to form a silane coupling agent-treated layer. Formed.

【0032】(6)引き続いて、FR−5相当ガラス・
エポキシ樹脂含浸基材と前記銅箔の被接着面をプレス圧
力3.8MPa、プレス温度168℃、プレス時間90
分で積層して銅張積層板とし、JIS C 6481に
準拠し、基材と銅箔との間の接着強度を室温下で測定
(銅箔幅1mm)した。結果を表1に示した。
(6) Subsequently, FR-5 equivalent glass
A pressure of 3.8 MPa, a press temperature of 168 ° C., and a press time of 90 apply to the surface to be bonded between the epoxy resin-impregnated base material and the copper foil.
The adhesive strength between the substrate and the copper foil was measured at room temperature (copper foil width 1 mm) in accordance with JIS C 6481. The results are shown in Table 1.

【0033】(7)前記(6)の銅張積層板を用いて、
エッチングにより回路幅50μm、回路間50μmの微
細配線を作製した。この微細配線のトップ幅、ボトム幅
を金属顕微鏡により測定して、前記した式に基づいてE
fの値を算出した。結果を表1に示した。
(7) Using the copper-clad laminate of (6) above,
Fine wiring having a circuit width of 50 μm and a space between circuits of 50 μm was produced by etching. The top width and the bottom width of the fine wiring were measured with a metallographic microscope, and E was calculated based on the above equation.
The value of f was calculated. The results are shown in Table 1.

【0034】実施例2 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、硫酸銅5水和物50g/l、モリ
ブデン酸ナトリウム2水和物2g/l、硫酸コバルト7
水和物30g/l、硫酸第1鉄7水和物30g/l及び
塩素イオン40mg/lからなるめっき浴を、pH2.
0、浴温度30℃に調整しためっき浴を用いて、前記銅
箔の粗面側(被接着面)を電流密度3A/dm2で8秒
間電解処理して銅箔の被接着面側に銅、モリブデン、コ
バルト及び鉄を含む複合金属層を形成した。複合金属層
の各金属量をICP(誘導結合プラズマ発光)分析装置
で定量したところ、銅の付着量は7,900μg/dm
2、モリブデンの付着量は60μg/dm2、コバルトの
付着量は12μg/dm2、鉄の付着量は11μg/d
2であった。処理後の処理面の表面粗さはRz1.5
μmであった。次に、実施例1と同様に銅からなる粗化
層を形成した。この粗化層の銅の付着量は150,00
0μg/dm2、表面粗さはRz2.3μmであった。
得られた粗化処理された電解銅箔は銅生箔の全体に均一
なコブ状銅の形成が観察された。
Example 2 After the same pickling and water washing as in Example 1 was performed using the same electrolytic copper foil as in Example 1, copper sulfate pentahydrate 50 g / l and sodium molybdate dihydrate were used. 2 g / l, cobalt sulfate 7
A plating bath consisting of 30 g / l of hydrate, 30 g / l of ferrous sulfate heptahydrate and 40 mg / l of chloride ions was treated at pH 2.
0, using a plating bath adjusted to a bath temperature of 30 ° C., the rough surface side (adhered surface) of the copper foil is subjected to electrolytic treatment at a current density of 3 A / dm 2 for 8 seconds, and copper is applied to the adhered surface side of the copper foil. , A composite metal layer containing molybdenum, cobalt and iron. When the amount of each metal in the composite metal layer was determined by an ICP (inductively coupled plasma emission) analyzer, the amount of copper deposited was 7,900 μg / dm.
2 , the amount of molybdenum is 60 μg / dm 2 , the amount of cobalt is 12 μg / dm 2 , and the amount of iron is 11 μg / d
m 2 . The surface roughness of the treated surface after the treatment is Rz 1.5
μm. Next, a roughened layer made of copper was formed in the same manner as in Example 1. The amount of copper deposited on the roughened layer was 150,000
0 μg / dm 2 , and the surface roughness was Rz 2.3 μm.
In the obtained roughened electrolytic copper foil, formation of a uniform bumpy copper was observed over the entire copper raw foil.

【0035】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After performing the treatments (4) and (5) of Example 1, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0036】実施例3 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、硫酸銅5水和物50g/l、モリ
ブデン酸ナトリウム2水和物2g/l、硫酸亜鉛7水和
物50g/l及び塩素イオン5mg/lからなるめっき
浴を、pH2.5、浴温度30℃に調整しためっき浴を
用いて、前記銅箔の粗面側(被接着面)を電流密度4A
/dm2で6秒間電解処理して銅箔の被接着面側に銅、
モリブデン及び亜鉛を含む複合金属層を形成した。複合
金属層の各金属量をICP(誘導結合プラズマ発光)分
析装置で定量したところ、銅の付着量7,900μg/
dm2、モリブデンの付着量は130μg/dm2、亜鉛
の付着量は20μg/dm 2であった。処理後の処理面
の表面粗さはRz1.5μmであった。次に実施例1と
同様に銅からなる粗化層を形成した。この粗化層の銅の
付着量は150,000μg/dm2、表面粗さはRz
2.5μmであった。得られた粗化処理された電解銅箔
は銅生箔の全体に均一なコブ状銅の形成が観察された。
Example 3 The same acid as in Example 1 was prepared using the same electrolytic copper foil as in Example 1.
After washing and water washing, copper sulfate pentahydrate 50 g / l,
Sodium butyrate dihydrate 2g / l, zinc sulfate heptahydrate
Consisting of 50g / l of material and 5mg / l of chloride ion
The plating bath was adjusted to pH 2.5 and bath temperature 30 ° C.
The copper foil has a current density of 4 A on the rough surface side (adhered surface).
/ DmTwoElectrolytic treatment for 6 seconds, copper on the adhered surface side of the copper foil,
A composite metal layer containing molybdenum and zinc was formed. composite
The amount of each metal in the metal layer is determined by ICP (inductively coupled plasma emission).
The amount of copper deposited was 7,900 μg /
dmTwoAnd the amount of molybdenum attached is 130 μg / dm.Two,zinc
20 μg / dm TwoMet. Treated surface after treatment
Had a surface roughness Rz of 1.5 μm. Next, with Example 1
Similarly, a roughened layer made of copper was formed. This roughened layer of copper
Adhered amount is 150,000 μg / dmTwo, Surface roughness is Rz
It was 2.5 μm. The obtained roughened electrolytic copper foil
The formation of a uniform bump-like copper was observed over the entire copper raw foil.

【0037】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After performing the treatments (4) and (5) of Example 1, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0038】実施例4 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、硫酸銅5水和物50g/l、タン
グステン酸ナトリウム2水和物2g/l、硫酸ニッケル
6水和物50g/l及び塩素イオン85mg/lからな
るめっき浴を、pH3.0、浴温度30℃に調整しため
っき浴を用いて、前記銅箔の粗面側(被接着面)を電流
密度4A/dm2で6秒間電解処理して銅箔の被接着面
側に銅、タングステン及びニッケルを含む複合金属層を
形成した。複合金属層の各金属量をICP(誘導結合プ
ラズマ発光)分析装置で定量したところ、銅の付着量は
7,900μg/dm2、タングステンの付着量は20
μg/dm2、ニッケルの付着量は14μg/dm2であ
った。処理後の処理面の表面粗さはRz1.5μmであ
った。次に、実施例1と同様に銅からなる粗化層を形成
した。この粗化層の銅の付着量は150,000μg/
dm2、表面粗さはRz2.1μmであった。得られた
粗化処理された電解銅箔は銅生箔の全体に均一なコブ状
銅の形成が観察された。
Example 4 After the same pickling and water washing as in Example 1 was performed using the same electrolytic copper foil as in Example 1, copper sulfate pentahydrate 50 g / l and sodium tungstate dihydrate were used. A plating bath composed of 2 g / l, nickel sulfate hexahydrate 50 g / l, and chloride ion 85 mg / l was adjusted to a pH of 3.0 and a bath temperature of 30 ° C. by using a plating bath adjusted to a rough surface side of the copper foil ( The surface to be bonded was subjected to electrolytic treatment at a current density of 4 A / dm 2 for 6 seconds to form a composite metal layer containing copper, tungsten and nickel on the surface to be bonded of the copper foil. When the amount of each metal in the composite metal layer was quantified using an ICP (inductively coupled plasma emission) analyzer, the amount of copper deposited was 7,900 μg / dm 2 and the amount of tungsten deposited was 20.
μg / dm 2, the adhesion amount of nickel was 14 [mu] g / dm 2. The surface roughness of the treated surface after the treatment was Rz 1.5 μm. Next, a roughened layer made of copper was formed in the same manner as in Example 1. The amount of copper deposited on the roughened layer was 150,000 μg /
dm 2 , and surface roughness Rz2.1 μm. In the obtained roughened electrolytic copper foil, formation of a uniform bumpy copper was observed over the entire copper raw foil.

【0039】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After the treatments (4) and (5) of Example 1 were further performed, the adhesive strength was measured as in (6) of Example 1, and the Ef value was measured as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0040】実施例5 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、硫酸銅5水和物50g/l、タン
グステン酸ナトリウム2水和物10g/l、硫酸コバル
ト7水和物30g/l、硫酸第1鉄7水和物30g/l
及び塩素イオン2mg/lからなるめっき浴を、pH
2.0、浴温度30℃に調整しためっき浴を用いて、前
記銅箔の粗面側(被接着面)を電流密度2A/dm2
8秒間電解処理して銅箔の被接着面側に銅、タングステ
ン、コバルト及び鉄を含む複合金属層を形成した。複合
金属層の各金属量をICP(誘導結合プラズマ発光)分
析装置で定量したところ、銅の付着量は3,900μg
/dm2、タングステンの付着量は80μg/dm2、コ
バルトの付着量は10μg/dm2、鉄の付着量は13
μg/dm2であった。処理後の処理面の表面粗さはR
z1.5μmであった。次に、実施例1と同様に銅から
なる粗化層を形成した。表面粗さはRz3.0μmであ
った。得られた粗化処理された電解銅箔は銅生箔の全体
に均一なコブ状銅の形成が観察された。
Example 5 Using the same electrolytic copper foil as in Example 1, washing with acid and water as in Example 1, copper sulfate pentahydrate 50 g / l, sodium tungstate dihydrate 10 g / l, cobalt sulfate heptahydrate 30 g / l, ferrous sulfate heptahydrate 30 g / l
Bath containing 2 mg / l of chlorine ion and pH
Using a plating bath adjusted to 2.0 and a bath temperature of 30 ° C., the rough side (the surface to be bonded) of the copper foil is subjected to electrolytic treatment at a current density of 2 A / dm 2 for 8 seconds, and the surface to be bonded of the copper foil. Then, a composite metal layer containing copper, tungsten, cobalt and iron was formed. When the amount of each metal in the composite metal layer was determined by an ICP (inductively coupled plasma emission) analyzer, the amount of copper deposited was 3,900 μg.
/ Dm 2 , the adhesion amount of tungsten is 80 μg / dm 2 , the adhesion amount of cobalt is 10 μg / dm 2 , and the adhesion amount of iron is 13
μg / dm 2 . The surface roughness of the treated surface after the treatment is R
z was 1.5 μm. Next, a roughened layer made of copper was formed in the same manner as in Example 1. The surface roughness was Rz 3.0 μm. In the obtained roughened electrolytic copper foil, formation of a uniform bumpy copper was observed over the entire copper raw foil.

【0041】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After performing the treatments (4) and (5) of Example 1, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0042】実施例6 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、硫酸銅5水和物50g/l、タン
グステン酸ナトリウム2水和物1g/l、モリブデン酸
ナトリウム2水和物2g/l、硫酸亜鉛7水和物50g
/l及び塩素イオン10mg/lからなるめっき浴を、
pH2.5、浴温度30℃に調整しためっき浴を用い
て、前記銅箔の粗面側(被接着面)を電流密度3A/d
2で8秒間電解処理して銅箔の被接着面側に銅、タン
グステン、モリブデン及び亜鉛を含む複合金属層を形成
した。複合金属層の各金属量をICP(誘導結合プラズ
マ発光)分析装置で定量したところ、銅の付着量は7,
900μg/dm2、タングステンの付着量は40μg
/dm2、モリブデンの付着量は100μg/dm2、亜
鉛の付着量は28μg/dm2であった。処理後の処理
面の表面粗さはRz1.5μmであった。次に実施例1
と同様に銅からなる粗化層を形成した。表面粗さはRz
2.3μmであった。得られた粗化処理された電解銅箔
は銅生箔の全体に均一なコブ状銅の形成が観察された。
Example 6 After the same pickling and water washing as in Example 1 was performed using the same electrolytic copper foil as in Example 1, copper sulfate pentahydrate 50 g / l and sodium tungstate dihydrate were used. 1 g / l, sodium molybdate dihydrate 2 g / l, zinc sulfate heptahydrate 50 g
/ L and a plating bath consisting of 10 mg / l of chloride ions,
Using a plating bath adjusted to pH 2.5 and a bath temperature of 30 ° C., a current density of 3 A / d was applied to the rough surface side (adhered surface) of the copper foil.
An electrolytic treatment was performed for 8 seconds at m 2 to form a composite metal layer containing copper, tungsten, molybdenum, and zinc on the surface to be bonded of the copper foil. The amount of each metal in the composite metal layer was quantified by an ICP (inductively coupled plasma emission) analyzer.
900 μg / dm 2 , tungsten adhesion 40 μg
/ Dm 2, the adhesion amount of molybdenum 100μg / dm 2, the adhesion amount of the zinc was 28μg / dm 2. The surface roughness of the treated surface after the treatment was Rz 1.5 μm. Next, Example 1
A roughened layer made of copper was formed in the same manner as described above. Surface roughness is Rz
2.3 μm. In the obtained roughened electrolytic copper foil, formation of a uniform bumpy copper was observed over the entire copper raw foil.

【0043】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After the treatments (4) and (5) of Example 1 were further performed, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0044】実施例7 厚さ18μmの圧延銅箔(表面粗さRz1.0μm)を
実施例1と同様に酸洗及び水洗し、実施例4と同様なめ
っき浴を用いて、電流密度4A/dm2で6秒間電解処
理して銅箔の被接着面側に銅、タングステン及びニッケ
ルを含む複合金属層を形成した。複合金属層の銅の付着
量は7,900μg/dm2、タングステンの付着量は
20μg/dm2、ニッケルの付着量は14μg/dm2
であった。処理後の処理面の表面粗さはRz1.0μm
であった。次に実施例1と同様に銅からなる粗化層を形
成した。表面粗さはRz1.5μmであった。
Example 7 A rolled copper foil having a thickness of 18 μm (surface roughness Rz 1.0 μm) was pickled and washed with water in the same manner as in Example 1, and a current density of 4 A / By performing an electrolytic treatment at dm 2 for 6 seconds, a composite metal layer containing copper, tungsten and nickel was formed on the surface to be bonded of the copper foil. Adhesion amount of copper in the composite metal layer 7,900μg / dm 2, the adhesion amount of tungsten 20μg / dm 2, the adhesion amount of nickel 14 [mu] g / dm 2
Met. The surface roughness of the treated surface after the treatment is Rz 1.0 μm
Met. Next, a roughened layer made of copper was formed in the same manner as in Example 1. The surface roughness was Rz 1.5 μm.

【0045】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値を算出した。結果を
表1に示した。
After performing the treatments (4) and (5) of Example 1, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculated. The results are shown in Table 1.

【0046】比較例1 実施例1において(2)の複合金属層を形成するめっき
浴に塩素イオンを含有させなかったこと以外は、実施例
1と同様の処理をして得られた銅箔の粗面側表面粗さを
測定したところRz2.3μmであった。また、得られ
た銅箔を用い、実施例1の(6)と同様に接着強度の測
定及び実施例1の(7)と同様にEf値の算出を行なっ
た。結果を表1に示した。
Comparative Example 1 A copper foil obtained by performing the same treatment as in Example 1 except that the plating bath for forming the composite metal layer (2) in Example 1 did not contain chlorine ions. It was Rz 2.3 micrometers when the rough surface side surface roughness was measured. Using the obtained copper foil, the measurement of the adhesive strength was performed in the same manner as in (6) of Example 1, and the Ef value was calculated in the same manner as in (7) of Example 1. The results are shown in Table 1.

【0047】比較例2 実施例4において、複合金属層を形成するめっき浴の塩
素イオン濃度が150mg/lであったこと以外は、実
施例4と同様の処理をして得られた銅箔の粗面側表面粗
さを測定したところRz2.0μmであった。また、得
られた銅箔を用い、実施例1の(6)と同様に接着強度
の測定及び実施例1の(7)と同様にEf値の算出を行
なった。結果を表1に示した。
Comparative Example 2 A copper foil obtained by performing the same treatment as in Example 4 except that the plating solution forming the composite metal layer had a chloride ion concentration of 150 mg / l. When the roughness on the rough surface side was measured, it was Rz 2.0 μm. Using the obtained copper foil, the measurement of the adhesive strength was performed in the same manner as in (6) of Example 1, and the Ef value was calculated in the same manner as in (7) of Example 1. The results are shown in Table 1.

【0048】比較例3 実施例1と同様の銅箔を用いて実施例1の(1)及び
(2)の処理を行った後、この銅箔を水洗し、硫酸銅5
水和物130g/l、硫酸100g/l、浴温度30℃
に調整しためっき浴を用いて、電流密度30A/dm2
で3秒間電解処理(限界電流密度以上)を施し樹枝状銅
層(コガシめっき層)を形成した。樹枝状銅層の銅の付
着量は18,000μg/dm2、銅箔の粗面側表面粗
さはRz2.2μmであった。
COMPARATIVE EXAMPLE 3 After the treatments (1) and (2) of Example 1 were performed using the same copper foil as in Example 1, the copper foil was washed with water and copper sulfate 5
Hydrate 130 g / l, sulfuric acid 100 g / l, bath temperature 30 ° C
Using a plating bath adjusted to a current density of 30 A / dm 2
For 3 seconds to form a dendritic copper layer (kogashi plating layer). The amount of copper deposited on the dendritic copper layer was 18,000 μg / dm 2 , and the surface roughness of the copper foil on the rough side was Rz 2.2 μm.

【0049】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定を
した。結果を表1に示す。また、実施例1の(7)と同
様に微細回路を作製したところ、回路間に多数の残銅が
認められEf値の算出は不可能であった。
After the treatments (4) and (5) of Example 1 were performed, the adhesive strength was measured in the same manner as in Example 1 (6). Table 1 shows the results. Further, when a fine circuit was manufactured in the same manner as in (7) of Example 1, a large amount of residual copper was observed between the circuits, and it was impossible to calculate the Ef value.

【0050】比較例4 実施例1と同様の銅箔を用いて実施例1の(1)及び
(2)の処理を行った後、この銅箔を水洗し、硫酸銅5
水和物130g/l、硫酸100g/l、浴温度30℃
に調整しためっき浴を用いて、電流密度5A/dm2
80秒間電解処理(限界電流密度未満)を施し平滑銅層
(カブセめっき層)を形成した。平滑銅層の銅の付着量
は132,000μg/dm2、銅箔の粗面側表面粗さ
はRz2.0μmであった。
Comparative Example 4 After the treatments (1) and (2) of Example 1 were carried out using the same copper foil as in Example 1, the copper foil was washed with water and copper sulfate 5
Hydrate 130 g / l, sulfuric acid 100 g / l, bath temperature 30 ° C
An electrolytic treatment (less than the limit current density) was performed at a current density of 5 A / dm 2 for 80 seconds using the plating bath adjusted to form a smooth copper layer (Kabse plating layer). The amount of copper adhering to the smooth copper layer was 132,000 μg / dm 2 , and the surface roughness of the copper foil on the rough side was Rz 2.0 μm.

【0051】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値の算出を行なった。
結果を表1に示した。
After the treatments (4) and (5) of Example 1 were further performed, the measurement of the adhesive strength was performed in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculations were made.
The results are shown in Table 1.

【0052】比較例5 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、複合金属層を形成することなく硫
酸銅5水和物130g/l、硫酸100g/l、浴温度
30℃のめっき浴を用いて、前記銅箔の粗面側(被接着
面)に電流密度30A/dm2で3秒間電解処理(限
界電流密度以上)し、電流密度5A/dm2で80秒
間電解処理(限界電流密度未満)を施し、銅からなる粗
化層を形成した。銅からなる粗化層の銅の付着量は15
0,000μg/dm2、銅箔の粗面側表面粗さはRz
4.5μmであった。
COMPARATIVE EXAMPLE 5 Using the same electrolytic copper foil as in Example 1, the same acid washing and water washing as in Example 1 was performed, and copper sulfate pentahydrate 130 g / l without forming a composite metal layer. Using a plating bath of 100 g / l sulfuric acid and a bath temperature of 30 ° C., the copper foil was subjected to electrolytic treatment (above the limit current density) at a current density of 30 A / dm 2 for 3 seconds on the rough side (the surface to be bonded) of the copper foil. An electrolytic treatment (less than the limit current density) was performed at a density of 5 A / dm 2 for 80 seconds to form a roughened layer made of copper. The amount of copper deposited on the roughened layer made of copper is 15
0.00 μg / dm 2 , the surface roughness of the copper foil on the rough side is Rz
It was 4.5 μm.

【0053】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値の算出を行なった。
結果を表1に示した。
After performing the treatments (4) and (5) in Example 1, the adhesive strength was measured in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculations were made.
The results are shown in Table 1.

【0054】比較例6 実施例7と同様の圧延銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、複合金属層を形成することなく硫
酸銅5水和物130g/l、硫酸100g/l、浴温度
30℃に調整しためっき浴を用いて、前記銅箔の被接着
面側に電流密度30A/dm2で3秒間電解処理(限
界電流密度以上)し、電流密度5A/dm2で80秒
間電解処理(限界電流密度未満)を施し、銅からなる粗
化層を形成した。銅からなる粗化層の銅の付着量は15
0,000μg/dm2、銅箔の粗面側表面粗さはRz
4.0μmであった。
Comparative Example 6 After the same pickling and water washing as in Example 1 was performed using the same rolled copper foil as in Example 7, 130 g / l of copper sulfate pentahydrate was formed without forming a composite metal layer. Using a plating bath adjusted to 100 g / l sulfuric acid and a bath temperature of 30 ° C., the copper foil to be bonded was subjected to an electrolytic treatment at a current density of 30 A / dm 2 for 3 seconds (above the limit current density) at a current density of 5 A. / Dm 2 for 80 seconds (less than the limit current density) to form a roughened layer made of copper. The amount of copper deposited on the roughened layer made of copper is 15
0.00 μg / dm 2 , the surface roughness of the copper foil on the rough side is Rz
It was 4.0 μm.

【0055】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値の算出を行なった。
結果を表1に示した。
After performing the treatments (4) and (5) of Example 1, the measurement of the adhesive strength was performed in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculations were made.
The results are shown in Table 1.

【0056】比較例7 実施例1と同様の電解銅箔を用いて実施例1と同様の酸
洗、水洗を行った後、複合金属層を形成することなく
硫酸銅5水和物100g/l、硫酸120g/l、タン
グステン酸ナトリウム2水和物0.6g/l及び硫酸第
1鉄7水和物15g/l、浴温度35℃のめっき浴を用
いて、前記銅箔の粗面側(被接着面)に電流密度40A
/dm2で3.5秒間電解処理(限界電流密度以上)
し、次いで硫酸銅5水和物250g/l、硫酸100
g/l、浴温度50℃のめっき浴を用いて、電流密度5
A/dm2で80秒間電解処理(限界電流密度未満)を
施し、タングステン及び鉄を含有する銅粗化層を形成し
た。銅箔の粗面側表面粗さはRz3.8μmであった。
COMPARATIVE EXAMPLE 7 Using the same electrolytic copper foil as in Example 1, the same pickling and water washing as in Example 1 was carried out, and copper sulfate pentahydrate 100 g / l without forming a composite metal layer. 120 g / l sulfuric acid, 0.6 g / l sodium tungstate dihydrate and 15 g / l ferrous sulfate heptahydrate using a plating bath having a bath temperature of 35 ° C. Current density 40A on the surface to be bonded)
/ Dm 2 for 3.5 seconds (more than critical current density)
Then, copper sulfate pentahydrate 250 g / l, sulfuric acid 100
g / l, a plating temperature of 50 ° C. and a current density of 5
An electrolytic treatment (less than the limit current density) was performed at A / dm 2 for 80 seconds to form a roughened copper layer containing tungsten and iron. The surface roughness of the copper foil on the rough side was Rz 3.8 μm.

【0057】更に実施例1の(4)及び(5)の処理を
行った後、実施例1の(6)と同様に接着強度の測定及
び実施例1の(7)と同様にEf値の算出を行なった。
結果を表1に示した。
After the treatments (4) and (5) of Example 1 were further performed, the measurement of the adhesive strength was performed in the same manner as in (6) of Example 1, and the Ef value was measured in the same manner as in (7) of Example 1. Calculations were made.
The results are shown in Table 1.

【0058】[0058]

【表1】 [Table 1]

【0059】実施例1〜7により得られた微細配線用銅
箔は、粗化処理面側の表面粗さがRz3.0μm以下と
小さく、接着強度は1.0kN/m以上を保持してい
る。また、Ef値は同レベルの接着強度をもつ比較例に
比べて高い値を示し、形成された微細配線パターンは良
好な形状をしていた。尚、実施例では基材側に銅粒子の
残存は認められなかったが、比較例3、5及び6では銅
粒子の残存が認められた。
The copper foil for fine wiring obtained in Examples 1 to 7 has a small surface roughness Rz of 3.0 μm or less on the roughened surface side and maintains an adhesive strength of 1.0 kN / m or more. . In addition, the Ef value was higher than that of the comparative example having the same level of adhesive strength, and the formed fine wiring pattern had a good shape. In the examples, no copper particles remained on the substrate side, but in Comparative Examples 3, 5, and 6, copper particles remained.

【0060】また、本発明の微細配線用銅箔を用いて積
層成形した銅張積層板は、高密度配線を有するプリント
配線板の製造に好適である。
The copper-clad laminate formed by lamination using the copper foil for fine wiring of the present invention is suitable for producing a printed wiring board having high-density wiring.

【0061】[0061]

【発明の効果】本発明の方法によれば、樹脂基材との接
着強度を実用強度に保ちつつ、エッチング特性が良好な
微細配線用銅箔を製造することができる。従って、本発
明の方法によって得られる銅箔を用いて各種銅張積層板
を作成し、プリント回路を形成することにより、微細配
線回路を提供することができる。
According to the method of the present invention, a copper foil for fine wiring with good etching characteristics can be produced while maintaining the practical bonding strength with the resin substrate. Accordingly, a fine wiring circuit can be provided by forming various copper-clad laminates using the copper foil obtained by the method of the present invention and forming a printed circuit.

【図面の簡単な説明】[Brief description of the drawings]

【図1】エッチングファクターを説明するための回路銅
箔の模式的断面図。
FIG. 1 is a schematic cross-sectional view of a circuit copper foil for explaining an etching factor.

【符号の説明】[Explanation of symbols]

A 回路銅箔の断面 B 電気絶縁性基材 WT 回路銅箔のトップ幅 WB 回路銅箔のボトム幅 H 回路銅箔の厚さ A Cross section of circuit copper foil B Electrically insulating base material WT Top width of circuit copper foil WB Bottom width of circuit copper foil H Thickness of circuit copper foil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木橋 敦睦 茨城県下館市下江連1226番地 日本電解株 式会社下館工場内 Fターム(参考) 4K024 AA03 AA09 AA14 AB03 BA09 BB09 BC02 CA01 CA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Yagihashi 1226 Shimoedashiri, Shimodate City, Ibaraki Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅箔を陰極として、銅箔の被接着面に、
(1)銅イオン、(2)タングステン及びモリブデンか
ら選ばれる1種以上の金属の金属イオン、(3)ニッケ
ル、コバルト、鉄及び亜鉛から選ばれる少なくとも1種
以上の金属の金属イオン及び(4)塩素イオン1〜10
0mg/lを含有するめっき浴(A)を用いて浴の限界
電流密度未満の電流密度で電解処理することにより、
(I)銅、(II)タングステン及びモリブデンから選
ばれる少なくとも1種以上の金属及び(III)ニッケ
ル、コバルト、鉄及び亜鉛から選ばれる少なくとも1種
以上の金属からなる複合金属層を設け、次いでこの複合
金属層上に銅イオンを含有するめっき浴(B)を用い
て、浴の限界電流密度以上の電流密度で電解処理して、
樹枝状銅電着層を形成し、更に浴の限界電流密度未満の
電流密度で電解処理してコブ状銅を形成することにより
銅からなる粗化層を設けることを特徴とする微細配線用
銅箔の製造方法。
Claims 1. A copper foil is used as a cathode, and on a surface to be bonded of the copper foil,
(1) copper ion, (2) metal ion of at least one metal selected from tungsten and molybdenum, (3) metal ion of at least one metal selected from nickel, cobalt, iron and zinc, and (4) Chloride ion 1-10
By performing electrolysis using a plating bath (A) containing 0 mg / l at a current density lower than the limiting current density of the bath,
(I) providing a composite metal layer comprising at least one or more metals selected from copper, (II) tungsten and molybdenum and (III) at least one or more metals selected from nickel, cobalt, iron and zinc; Using a plating bath (B) containing copper ions on the composite metal layer, electrolytic treatment at a current density higher than the limit current density of the bath,
Forming a dendritic copper electrodeposition layer, and further performing an electrolytic treatment at a current density less than the limit current density of the bath to form a bumpy copper, thereby providing a roughened layer made of copper; Method of manufacturing foil.
【請求項2】 めっき浴(A)が、銅イオン5〜25g
/l、タングステンイオン及びモリブデンイオンを合計
で0.006〜11g/l、ニッケルイオン、コバルト
イオン、鉄イオン及び亜鉛イオンを合計で2〜30g/
l、塩素イオン1〜100mg/lを含有し、pHが
1.5〜5.0であり、めっき浴(B)が、銅イオン5
〜76g/lを含有する請求項1記載の方法。
2. A plating bath (A) containing 5 to 25 g of copper ions.
/ L, a total of 0.006 to 11 g / l of tungsten ion and molybdenum ion, and a total of 2 to 30 g / l of nickel ion, cobalt ion, iron ion and zinc ion.
l, containing 1 to 100 mg / l of chloride ions, having a pH of 1.5 to 5.0, and a plating bath (B) containing 5
The method of claim 1 containing from about -76 g / l.
JP2001279234A 2000-09-18 2001-09-14 Manufacturing method of copper foil for fine wiring Expired - Lifetime JP3429290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279234A JP3429290B2 (en) 2000-09-18 2001-09-14 Manufacturing method of copper foil for fine wiring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-281635 2000-09-18
JP2000281635 2000-09-18
JP2001279234A JP3429290B2 (en) 2000-09-18 2001-09-14 Manufacturing method of copper foil for fine wiring

Publications (2)

Publication Number Publication Date
JP2002161394A true JP2002161394A (en) 2002-06-04
JP3429290B2 JP3429290B2 (en) 2003-07-22

Family

ID=26600108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279234A Expired - Lifetime JP3429290B2 (en) 2000-09-18 2001-09-14 Manufacturing method of copper foil for fine wiring

Country Status (1)

Country Link
JP (1) JP3429290B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219379A (en) * 2004-02-06 2005-08-18 Furukawa Circuit Foil Kk Composite material for substrates and circuit board using it
JP2007216688A (en) * 2002-07-19 2007-08-30 Ube Ind Ltd Copper clad laminated sheet and its manufacturing method
JP2009083498A (en) * 2002-07-19 2009-04-23 Ube Ind Ltd Copper clad laminated sheet and its manufacturing method
JP2010013738A (en) * 2004-02-06 2010-01-21 Furukawa Electric Co Ltd:The Surface treated copper foil and method of producing the same
JP2013096003A (en) * 2011-11-04 2013-05-20 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
JP2014201778A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Copper foil with carrier
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
CN113981494A (en) * 2021-12-10 2022-01-28 铜陵市华创新材料有限公司 Surface treatment process for reducing peeling strength heat loss rate of electrolytic copper foil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216688A (en) * 2002-07-19 2007-08-30 Ube Ind Ltd Copper clad laminated sheet and its manufacturing method
JP2009083498A (en) * 2002-07-19 2009-04-23 Ube Ind Ltd Copper clad laminated sheet and its manufacturing method
JP2005219379A (en) * 2004-02-06 2005-08-18 Furukawa Circuit Foil Kk Composite material for substrates and circuit board using it
JP2010013738A (en) * 2004-02-06 2010-01-21 Furukawa Electric Co Ltd:The Surface treated copper foil and method of producing the same
JP4615226B2 (en) * 2004-02-06 2011-01-19 古河電気工業株式会社 Composite material for substrate and circuit board using the same
JP2013096003A (en) * 2011-11-04 2013-05-20 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
JP2014201777A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Carrier-provided copper foil
JP2014201778A (en) * 2013-04-02 2014-10-27 Jx日鉱日石金属株式会社 Copper foil with carrier
WO2015108191A1 (en) * 2014-01-17 2015-07-23 Jx日鉱日石金属株式会社 Surface-treated copper foil, copper foil with carrier, printed wiring board, copper-clad laminate, laminate and method for producing printed wiring board
JP2015172250A (en) * 2015-05-11 2015-10-01 Jx日鉱日石金属株式会社 Surface-treated copper foil, carrier-provided copper foil, printed wiring board, print circuit board, copper clad laminate sheet and method of producing printed wiring board
CN113981494A (en) * 2021-12-10 2022-01-28 铜陵市华创新材料有限公司 Surface treatment process for reducing peeling strength heat loss rate of electrolytic copper foil

Also Published As

Publication number Publication date
JP3429290B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
KR102230999B1 (en) Surface-treated copper foil and copper clad laminate manufactured using the same
JP3476264B2 (en) Copper foil for printed circuit inner layer and method of manufacturing the same
TW201002165A (en) Copper foil for printed circuit board and copper clad laminate plate for printed circuit board
JP6514635B2 (en) Copper foil with carrier, copper-clad laminate using it, printed wiring board, electronic device, and method of manufacturing printed wiring board
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
KR100460369B1 (en) Method of producing copper foil for fine wiring
TW201039702A (en) Copper foil for printed wiring board and method for producing same
JP2005161840A (en) Ultra-thin copper foil with carrier and printed circuit
TW202020233A (en) Surface-treated copper foil, carrier-attached copper foil, copper-clad laminate, and printed wiring board
JP2010180454A (en) Surface-treated copper foil, method for manufacturing the same and copper-clad laminate
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
JP2001301087A (en) Copper foil reinforced in low profile bonding
JP3429290B2 (en) Manufacturing method of copper foil for fine wiring
JP4612978B2 (en) Composite copper foil and method for producing the same
JP3949871B2 (en) Roughening copper foil and method for producing the same
JPH08222857A (en) Copper foil and high-density multilayered printed circuit board using the foil for its internal-layer circuit
TW200604356A (en) Method of manufacturing surface-treated copper foil for PCB having fine-circuit pattern and surface-treated copper foil thereof
JPH11340595A (en) Copper foil for printed circuit board and copper foil attached with resin
JP2019081913A (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP7421208B2 (en) Surface treated copper foil and its manufacturing method
JP4698957B2 (en) Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface
JP2002069691A (en) Method for manufacturing copper foil for printed circuit board
JP4330979B2 (en) Surface treatment electrolytic copper foil
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
JP3768619B2 (en) Copper foil for printed wiring boards

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3429290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150516

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150516

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term