JP4330979B2 - Surface treatment electrolytic copper foil - Google Patents

Surface treatment electrolytic copper foil Download PDF

Info

Publication number
JP4330979B2
JP4330979B2 JP2003383264A JP2003383264A JP4330979B2 JP 4330979 B2 JP4330979 B2 JP 4330979B2 JP 2003383264 A JP2003383264 A JP 2003383264A JP 2003383264 A JP2003383264 A JP 2003383264A JP 4330979 B2 JP4330979 B2 JP 4330979B2
Authority
JP
Japan
Prior art keywords
copper foil
surface roughness
side during
roughened
during production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003383264A
Other languages
Japanese (ja)
Other versions
JP2005150265A (en
Inventor
正人 高見
勝 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2003383264A priority Critical patent/JP4330979B2/en
Publication of JP2005150265A publication Critical patent/JP2005150265A/en
Application granted granted Critical
Publication of JP4330979B2 publication Critical patent/JP4330979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は電解銅箔に関するものであり、特に詳しくはプリント配線板用銅箔に関するものであって、銅箔の粗化処理した面の表面粗さが小さく、かつ適用樹脂に対し接着力が十分な銅箔に関するものである。   The present invention relates to an electrolytic copper foil, and more particularly to a copper foil for a printed wiring board, the surface roughness of the copper foil roughened surface is small, and the adhesive strength to the applied resin is sufficient. It relates to a copper foil.

銅箔はプリント配線板用途において広く用いられており、技術的には銅メッキによる回路形成法のセミアディティブ法やフルアディティブ法の検討も進んでいるが、今なお、銅箔を使用し不要部分をエッチング除去して回路を形成するサブトラクティブ法が主流であり、導電性必須材料となっている。セミアディティブ法、フルアディティブ法においても銅箔粗面を利用したり、極薄銅箔を使用しメッキで回路を形成後クイックエッチングをする場合もあり、銅箔の用途は広範囲にある。   Copper foil is widely used in printed wiring board applications, and technically, the semi-additive method and the full additive method of circuit formation by copper plating are also being studied, but it is still unnecessary to use copper foil. A subtractive method in which a circuit is formed by etching away the metal is the mainstream, and is an essential conductive material. In the semi-additive method and the full additive method, the rough surface of the copper foil may be used, or an ultrathin copper foil may be used for quick etching after forming a circuit by plating.

プリント配線板は各種ビルドアップ法をはじめ、近年増加してきたフレキシブルプリント配線板など、高密度化、高信頼性やさらなる小型軽量化が進んでおり、そのため複雑で且つ多様化してきている。そこで、構成材料の一つである銅箔についても同様に厳しい品質要求が課せられて来ている。   Printed wiring boards are becoming complex and diversified due to increasing density, high reliability, and further reduction in size and weight, such as various kinds of build-up methods and recently increased flexible printed wiring boards. Therefore, strict quality requirements are also imposed on copper foil, which is one of the constituent materials.

プリント配線板製造では、通常リジッド板の場合、まず銅箔の製造時電解液側の面(粗面)を合成樹脂含浸基材と合わせて積層し、プレスにより加熱圧着して銅張積層板を得る。一般によく使用されるガラスエポキシ基材では170 〜190 ℃の温度で1〜2時間のプレスにより銅張積層板が製造される。   In the production of printed wiring boards, in the case of a normal rigid board, first, the surface (rough surface) on the electrolyte side at the time of copper foil production is laminated with a synthetic resin impregnated base material, and heat-pressed with a press to form a copper-clad laminate. obtain. In general, a glass epoxy base material often used is produced by pressing a copper clad laminate at a temperature of 170 to 190 ° C. for 1 to 2 hours.

プリント配線板用銅箔としては一般的には片側が粗面、片側が光沢面である電解銅箔が多く使用されており、銅の電解液から陰極となるドラム表面に銅を電解析出させ連続的に巻き取ることにより未処理銅箔と呼ばれる原箔を製造する。片側が光沢となるのはドラムの表面に銅を析出させて製造するが、そのドラム面は研磨により光沢のある面となっており、そのレプリカとなるためであり、その表面粗さは小さい。   As copper foil for printed wiring boards, generally, electrolytic copper foil with a rough surface on one side and a glossy surface on one side is often used, and copper is electrolytically deposited on the drum surface that serves as the cathode from the copper electrolyte. The raw foil called untreated copper foil is manufactured by continuously winding up. One side is glossy because it is produced by depositing copper on the surface of the drum, but the drum surface is glossy by grinding and becomes a replica, and its surface roughness is small.

通常の銅箔では製造時電解液側は銅の電解析出結晶がドラム面に対し、垂直方向に成長するため微細ピラミッド形状を代表とする粗面形状形成となり、通常はこの製造時電解液側の面の表面粗さは大きく、表裏で違う表面粗さを持つことで圧延銅箔とは異なる特徴を持つ。   In normal copper foil, the electrolytic solution side of the copper foil on the manufacturing side grows in a vertical direction with respect to the drum surface, so that a rough surface shape represented by a fine pyramid shape is formed. The surface roughness of the surface is large, and it has different characteristics from the rolled copper foil by having different surface roughness on the front and back sides.

次いで、このままでは半製品状態であるため、一般的には、製造時電解液側の面を酸洗し、樹脂との接着力を確保する粗化処理を行い、さらにその接着性における耐熱、耐薬品などの特性やエッチング特性などを向上、安定化させる処理を行い、完成される。
これらの処理についてはさまざまな技術が開発、提案され、高機能性表面となっている。
Next, since it is in a semi-finished product state as it is, generally, the surface on the electrolyte side at the time of production is pickled, a roughening treatment is performed to ensure the adhesive force with the resin, and further, the heat resistance and resistance to the adhesiveness are further improved. The process is completed by improving and stabilizing chemicals and etching characteristics.
Various techniques have been developed and proposed for these treatments, resulting in a highly functional surface.

最近のプリント配線板の高密度化においては、例えば薄物プリント配線板やビルドアップ工法のプリント配線板では絶縁層となる樹脂層が極めて薄くなっているため、接着する銅箔面(製造時電解液側の面)の表面粗さが大きい場合、層間絶縁性に問題が生じる。   In the recent increase in the density of printed wiring boards, for example, in thin printed wiring boards and build-up method printed wiring boards, the resin layer serving as an insulating layer is extremely thin. When the surface roughness of the side surface is large, a problem occurs in interlayer insulation.

また、インピーダンスコントロールの厳格な基板において、絶縁層間厚さが50〜60μm 以下のように狭い場合、銅箔表面の凹凸の変動の影響を受けるようになり問題がある。
また、ファインライン化により、銅箔の表面粗さが小さくないとライン間の絶縁信頼性を保証できないなどの理由により製造時電解液側の面は低プロファイル化が望まれてきている。
Further, in a substrate with strict impedance control, when the insulating interlayer thickness is as narrow as 50 to 60 μm or less, there arises a problem because it is affected by the unevenness of the copper foil surface.
In addition, by making fine lines, it is desired that the surface on the electrolyte side during production be made low in profile because the insulation reliability between lines cannot be guaranteed unless the surface roughness of the copper foil is small.

しかし、接着力が十分でないと製造工程中や製品となった後での銅箔回路の剥がれや浮き等、デラミネーションの問題が生じてくるので、両者を満足する表面処理が最も好ましいが、互いに相反する事であるので優れた方法が要求されている。   However, if the adhesive strength is not sufficient, delamination problems such as peeling and floating of the copper foil circuit will occur during the manufacturing process or after becoming a product, so surface treatment that satisfies both is most preferable, Since it is a conflict, an excellent method is required.

ここで通常、上記のように電解銅箔の製造時電解液側の面を粗化処理する方法は接着力強化のためとられて来た手法であるが、この場合、十分以上の接着力が確保されるが、もともと粗い表面形状を有する未処理銅箔の製造時電解液側の面を粗化処理するため、表面粗さが極めて大きくなっていた。
例えば18μm 銅箔では未処理銅箔の電解液側の面のRzが3〜5μm あり、粗化処理により、7 〜9μm に達していた。このような銅箔においては近年の超ファインパターンの回路には不適であり、層間絶縁性においても問題となる。
Here, the method of roughening the surface of the electrolytic solution side during the production of the electrolytic copper foil as described above is a technique that has been taken for the purpose of strengthening the adhesive strength. Although it is ensured, the surface roughness of the untreated copper foil having a rough surface shape is roughened because the surface on the electrolyte side is roughened during the production.
For example, in the case of 18 μm copper foil, the Rz of the surface of the untreated copper foil on the electrolyte side is 3 to 5 μm, and has reached 7 to 9 μm by the roughening treatment. Such a copper foil is unsuitable for a circuit of an ultrafine pattern in recent years, and also causes a problem in interlayer insulation.

そこで未処理銅箔の表面粗さの大きい製造時電解液側の面でなく、製造時陰極接触側の面を粗化処理してプリント配線板に適用するという方法が特許文献1や特許文献2のように提案され、特に米国市場では実用化されてきた。しかし製造時電解液側の面の表面粗さが大きく、その原箔凹凸のためにやはり50μm より狭いライン又はピッチのファインパターンを形成させるにはレジストと銅箔表面の界面の凹凸が大きいため問題があり、ドライフィルムとの密着性も凹凸のために低下するなどの問題があった。   Therefore, Patent Document 1 and Patent Document 2 apply a method of roughening the surface on the cathode contact side during production, not the surface on the production electrolyte side where the surface roughness of the untreated copper foil is large, to the printed wiring board. And has been put to practical use especially in the US market. However, the surface roughness on the electrolyte side during production is large, and the unevenness of the interface between the resist and copper foil surface is too large to form fine patterns with lines or pitches narrower than 50 μm due to the unevenness of the original foil. There is a problem that the adhesion to the dry film is also lowered due to the unevenness.

また、特許文献2に記載されているように、このようなタイプの銅箔の製造時電解液側の面の凹凸を抑えるために銅張積層板とした後、エッチング等の化学的研磨やバフ等の物理的研磨を施して表面粗さを小さくするなどの方法もあるが、煩雑な工程が増加し、不利な方法であった。   In addition, as described in Patent Document 2, a copper clad laminate is used to suppress unevenness on the surface on the electrolyte side during the manufacture of such a type of copper foil, and then chemical polishing such as etching or buffing is performed. Although there is a method of reducing the surface roughness by performing physical polishing such as the above, it is a disadvantageous method due to an increase in complicated steps.

また、特許文献3のように電解浴、電解条件の改良により製造時電解液側の面が極めて低いロープロファイルの銅箔が開発されている。しかし、この場合、粗化処理することにより、Rzが1.0 〜2.3 μm のものが得られるが、逆に表面粗さが小さすぎるため接着力が低く、特殊用途以外実用的ではなかった。   Further, as disclosed in Patent Document 3, a low-profile copper foil having an extremely low surface on the electrolyte side during production has been developed by improving the electrolytic bath and electrolysis conditions. However, in this case, a roughening treatment gives a Rz of 1.0 to 2.3 μm, but conversely, the surface roughness is too small, so that the adhesive strength is low and it is not practical except for special applications.

また、圧延銅箔はその製造工程から、その表面は両面とも非常に表面粗さが小さく、Rz0.4 〜1.5 μm 程度に仕上がっており、基本的にファインパターンには適している。しかし、元々電解銅箔よりも製造コストがかかり、さらに1000mmを越えるような広幅の製品は極めて難しい。また、薄い箔ほど電解銅箔と異なり、圧延製造工程が増加しピンホールも発生しやすく、非常に割高で、ファインパターンで必要な薄い箔への移行がある中で厳しい課題となっている。   Also, rolled copper foil has a very small surface roughness from the manufacturing process and has a surface roughness of Rz 0.4 to 1.5 μm, which is basically suitable for fine patterns. However, it originally costs more than electrolytic copper foil, and it is extremely difficult to produce products with a width exceeding 1000 mm. Also, unlike electrolytic copper foil, the thinner the foil, the more the rolling manufacturing process increases and pinholes are more likely to occur.

一方、電解銅箔はむしろ薄い箔の方が電解時間が少なくなるようにさらにコスト的に有利である。
なお、本件での表面粗さRzとはJIS B 0601-1994 にある十点平均粗さを示している。
特表平8−511654号公報 特許第2762386号公報 特開2002−322586号公報 特願2003−100647号公報
On the other hand, as for the electrolytic copper foil, the thin foil is more advantageous in terms of cost so that the electrolysis time is reduced.
In addition, the surface roughness Rz in this case indicates the ten-point average roughness in JIS B 0601-1994.
Japanese National Patent Publication No. 8-511654 Japanese Patent No. 2762386 JP 2002-322586 A Japanese Patent Application No. 2003-1000064

本発明の解決しようとする課題は、上記従来技術にはない適度な接着力と超ファインパターン回路に対応する表面粗さの極めて小さい電解銅箔であり、高密度プリント配線板用電解銅箔を提供することである。   The problem to be solved by the present invention is an electrolytic copper foil with an extremely small surface roughness corresponding to an ultra-fine pattern circuit, which has an appropriate adhesive strength and is not found in the above prior art, and an electrolytic copper foil for a high-density printed wiring board. Is to provide.

本発明は、このような従来の問題点を解決することを目的としてなされたもので、未処理銅箔の製造時電解液側の面が製造時陰極接触側の面より表面粗さが小さい電解銅箔において、その製造時陰極接触側の面を粗化処理したことを特徴とする表面処理電解銅箔である。   The present invention has been made for the purpose of solving such a conventional problem, and the electrolytic solution side surface of the untreated copper foil is smaller in surface roughness than the surface of the cathode contact side during manufacture. In the copper foil, the surface-treated electrolytic copper foil is characterized by roughening the surface on the cathode contact side during production.

また、未処理銅箔が、その製造時電解液側の面の表面粗さRzが0.0 〜 2.0μm 、製造時陰極接触側の面の表面粗さRzが1.5 〜3.0μm であることを特徴とし、製造時陰極接触側の面を粗化処理した面の表面粗さRzが 2.0〜4.5μm、粗化処理しない面の表面粗さRzが 0.0〜2.0 μm であることを特徴とする表面処理電解銅箔である。   The untreated copper foil is characterized in that the surface roughness Rz of the surface on the electrolyte side during production is 0.0 to 2.0 μm and the surface roughness Rz of the surface on the cathode contact side during production is 1.5 to 3.0 μm. The surface treatment electrolysis is characterized in that the surface roughness Rz of the surface roughened on the cathode contact side during production is 2.0 to 4.5 μm, and the surface roughness Rz of the surface not roughened is 0.0 to 2.0 μm. Copper foil.

本発明では上記のとおり製造時電解液側が製造時陰極接触側より表面粗さが小さい電解銅箔を使用し、例えば、特許文献3や特許文献4のような未処理銅箔を使用する。その製造時電解液側の面の表面粗さRzはおよそ0.0 〜2.0 μm であり、数値の小さいものでは鏡面か鏡面に近い。一方、その反対の面、つまり、製造時陰極接触側の面は通常銅箔と同じで、ドラムの研磨痕跡によりRz1.5 〜3.0 μm ほどでむしろ比較的表面が粗い。   In the present invention, as described above, an electrolytic copper foil having a smaller surface roughness than that on the cathode contact side during production is used, for example, an untreated copper foil such as Patent Document 3 or Patent Document 4 is used. The surface roughness Rz of the surface on the electrolyte side at the time of manufacture is about 0.0 to 2.0 μm, and a small numerical value is a mirror surface or close to a mirror surface. On the other hand, the opposite surface, that is, the surface on the cathode contact side during production, is usually the same as the copper foil, and Rz1.5 to 3.0 μm is rather rough due to the polishing trace of the drum.

このような未処理銅箔の製造時電解液側の面を粗化処理した場合、非常に表面粗さの小さく、均一な面が得られるが、接着力が極めて低いため実用的ではなかった。そこでその反対の面、つまり、製造時陰極接触側の面を粗化処理することにより、Rz2.0 〜4.5μm 、特に好ましくは2.5 〜4.0μm の表面処理銅箔を得る。   When the surface on the electrolyte side during the production of such an untreated copper foil is roughened, a uniform surface can be obtained with a very small surface roughness, but it is not practical because the adhesive strength is extremely low. Accordingly, the opposite surface, that is, the surface on the cathode contact side during production is roughened to obtain a surface-treated copper foil having a Rz of 2.0 to 4.5 μm, particularly preferably of 2.5 to 4.0 μm.

なお、陰極ドラム表面は一般的にはチタンやステンレス、クロムなどが使用されるが、電解銅箔の製造をしていくうちに、ドラムが電解液や発生酸素ガスによって徐々に腐食を受けたり、ドラムへの微細異物等の付着や、ドラムの表面酸化被膜の厚さが増大することで均一な銅電着が阻害されるため、定期的に研磨を行なう。この研磨はナイロン不織布などに酸化アルミニウム、シリコンカーバイト等の研磨砥粒を均一に接着含浸させた研磨バフにより行われる。しかし、本発明においては研磨方法や表面仕上げの方法は特に限定しない。   The surface of the cathode drum is generally made of titanium, stainless steel, chrome, etc., but as the electrolytic copper foil is manufactured, the drum is gradually corroded by the electrolyte and generated oxygen gas, Polishing is regularly performed because adhesion of fine foreign matters to the drum and an increase in the thickness of the surface oxide film on the drum impede uniform copper electrodeposition. This polishing is performed by a polishing buff obtained by uniformly bonding and impregnating polishing abrasive grains such as aluminum oxide and silicon carbide into a nylon nonwoven fabric. However, the polishing method and the surface finishing method are not particularly limited in the present invention.

また、製造時電解液側の面の粗さRz 2.0〜4.0μm クラスの中粗度ロープロファイル原箔を使用することも考えられるが、製造時電解液側の面の形状、一定の表面粗さのコントロールが難しく、むしろ、研磨によるドラムの表面形状や製造時陰極接触側面の面の表面微細粗化処理を利用する本発明の方が均一な粗化処理面を得やすい。例えばドラムの表面を適当な番手のバフを使用したり、回転数や押し圧力を変化させ、研磨することでその表面粗さを制御できるし、また陰極であるドラム表面を電解研磨や陽極酸化、さらに微細に粗化処理することも応用例として可能である。   Also, it is conceivable to use a medium-roughness low-profile raw foil with a surface roughness Rz 2.0 to 4.0 μm class at the time of production, but the shape of the surface at the time of production, a certain surface roughness However, it is easier to obtain a uniform roughened surface by the present invention using the surface shape of the surface of the drum by polishing or the surface fine roughening of the side surface of the cathode contact surface during production. For example, the surface of the drum can be controlled by buffing an appropriate count buff, or by changing the number of revolutions or pressing pressure and polishing the surface, and the surface of the drum drum can be electropolished or anodized, Further, it is possible as an application example to finely roughen the surface.

このような方法で粗さRzが1.5 〜3.0 μm 程度の陰極であるドラムの表面、すなわち、銅箔の陰極接触側の表面を得る。この面は樹脂基材と接着させる側となるが、接着力を確保するために粗化処理を行なう。ここで、Rz 2.0μm 以上でないと接着力が低く、4.5 μm 以下でないと絶縁層の薄いプリント板に不適であるし、ファインパターンを形成することができなくなる。
また、そのためには未処理銅箔の段階で製造時陰極接触側の面はRz1.5 〜3.0μm の範囲が必要となる。
By such a method, the surface of the drum which is a cathode having a roughness Rz of about 1.5 to 3.0 μm, that is, the surface on the cathode contact side of the copper foil is obtained. Although this surface is the side to be bonded to the resin base material, a roughening treatment is performed in order to secure an adhesive force. Here, if Rz is not 2.0 μm or more, the adhesive strength is low, and if it is not 4.5 μm or less, it is unsuitable for a printed board having a thin insulating layer, and a fine pattern cannot be formed.
For this purpose, the surface on the cathode contact side during production at the stage of the untreated copper foil needs to be in the range of Rz 1.5 to 3.0 μm.

一方、粗化しない面はRz0.0 〜2.0μm のままで表面粗さの極めて小さい面となっており、レジストとの界面の凹凸が小さく、超ファインパターンを形成しやすい。特に20〜30μm のファインラインでは2〜3μm の凹凸があっても回路幅がそれにより狭くあるいは広くなるなど不均一になりやすく、インピーダンスコントロール的にもよくない。従って、Rzは0.0 〜2.0 μm が望ましく、さらには0.0 〜1.5μm が望ましい。   On the other hand, the surface that is not roughened is a surface having a very small surface roughness while maintaining Rz 0.0 to 2.0 μm, and the unevenness at the interface with the resist is small, so that an ultrafine pattern can be easily formed. In particular, in a fine line of 20 to 30 μm, even if there are irregularities of 2 to 3 μm, the circuit width tends to become narrow or wide due to this, and the impedance control is not good. Therefore, Rz is preferably 0.0 to 2.0 μm, more preferably 0.0 to 1.5 μm.

以上のような範囲から、ロープロファイルでありながら低すぎることはなく、適度な接着力を持ち、実用的な接着強度を保持できる。たとえば一般によく使用されるFR−4樹脂基材において、接着条件にもよるが、18μm 銅箔で引き剥がし強さが 1.1〜1.3kN/m であり、高くはないが十分な接着強度を得られる。     From the above range, it is not too low although it is a low profile, has an appropriate adhesive strength, and can maintain a practical adhesive strength. For example, in a commonly used FR-4 resin base material, depending on the bonding conditions, the peel strength is 1.1 to 1.3 kN / m with 18 μm copper foil, and although not high, sufficient adhesive strength can be obtained. .

本発明の銅箔の粗化処理方法を具体的に記すと、例えば上記特許文献4にある銅箔を使用し、まず最初に酸洗浄し表面酸化物や汚れを除去する。その後、製造時陰極接触側の面に粗化処理を行う。この処理液としては例えば硫酸、硫酸銅水溶液からなる水溶液中で陰極電解することにより、まず突起状又は樹枝状析出銅を形成する。硫酸銅(五水塩)としては20〜60g/l 、硫酸は50〜200g/l、処理時間は 2〜60秒、浴温度は10〜50℃が良い。電流密度は 5 〜100A/dm2で、電気量として20〜200 クーロン/dm2が適当であり、さらに詳しくは60〜130 クーロン/dm2が好適である。 The copper foil roughening method of the present invention will be specifically described. For example, the copper foil disclosed in Patent Document 4 is used, and first, acid cleaning is performed to remove surface oxides and dirt. Thereafter, a roughening treatment is performed on the surface on the cathode contact side during production. As this treatment liquid, for example, by performing cathodic electrolysis in an aqueous solution made of sulfuric acid or an aqueous solution of copper sulfate, first, bump-like or dendritic precipitated copper is formed. Copper sulfate (pentahydrate) is preferably 20-60 g / l, sulfuric acid 50-200 g / l, treatment time 2-60 seconds, and bath temperature 10-50 ° C. The current density is 5 to 100 A / dm 2 , and 20 to 200 coulomb / dm 2 is appropriate as the amount of electricity, and more specifically 60 to 130 coulomb / dm 2 is more suitable.

この処理の後、その突起状又は樹枝状析出物上に銅又は銅合金を被覆するが、例えば、同様の硫酸ー硫酸銅水溶液にて硫酸銅(五水塩)150 〜300g/l、硫酸50〜200g/lにおいて、電流密度は低く、150 〜500 クーロン/dm2の電気量でめっき手法により、粗化処理面の固着性を向上する。
以上のような突起状又は樹枝状析出物、次いで被覆めっきという方法ではなく別の公知の固着性がある樹枝状銅を析出させる方法でもよい。
以上により粗化処理面が完成される。
After this treatment, the protrusions or dendritic precipitates are coated with copper or a copper alloy. For example, copper sulfate (pentahydrate) 150 to 300 g / l, sulfuric acid 50 The current density is low at ˜200 g / l, and the adhesion of the roughened surface is improved by a plating method with an electric quantity of 150 to 500 coulomb / dm 2 .
Instead of the above-described protrusion-like or dendritic precipitate, and then the method of coating plating, another known method of depositing dendritic copper having adhesiveness may be used.
Thus, the roughened surface is completed.

本発明の粗化処理を施した銅箔は、次いで防錆処理(耐熱性付与、耐薬品性付与の処理)を行うが、その前に例えば特公平2-24037号公報や特公平8-19550号公報等のCo-Mo,W やCu-Zn のバリアー層、さらに別の公知のバリアー層を形成させ、耐熱性を強化させても良い。   The copper foil subjected to the roughening treatment of the present invention is then subjected to rust prevention treatment (treatment for imparting heat resistance and chemical resistance), but before that, for example, Japanese Patent Publication No. 2-24037 and Japanese Patent Publication No. 8-19550 A Co-Mo, W or Cu-Zn barrier layer as disclosed in Japanese Patent Publication No. Gazette, etc., or another known barrier layer may be formed to enhance heat resistance.

防錆処理には、クロメート処理やベンゾトリアゾールを代表とする有機防錆処理、また、シランカップリング剤処理などがあり、単一に又は組み合わせて行うこともできる。クロメート処理には重クロム酸イオンを含む水溶液を使用し、酸性でもアルカリ性でも良く、浸漬処理又は陰極電解処理を行う。   Rust prevention treatment includes chromate treatment, organic rust prevention treatment typified by benzotriazole, silane coupling agent treatment, and the like, which can be performed singly or in combination. The chromate treatment uses an aqueous solution containing dichromate ions, which may be acidic or alkaline, and is subjected to immersion treatment or cathodic electrolysis treatment.

薬品としては三酸化クロム、重クロム酸カリウム、重クロム酸ナトリウム等を使用する。ベンゾトリアゾール類の有機防錆にはメチルベンゾトリアゾール、アミノベンゾトリアゾール、ベンゾトリアゾール等があり、水溶液として浸漬処理又はスプレー処理などにより施す。シランカップリング剤にはエポキシ基、アミノ基、メチルカプト基、ビニル基を持つもの等多種あるが、樹脂との適応性のあるものを使用すれば良く、水溶液として、浸漬処理又はスプレー処理などにより施す。
以上の処理によりプリント配線板用銅箔が完成する。
As the chemical, chromium trioxide, potassium dichromate, sodium dichromate, etc. are used. Examples of organic rust prevention for benzotriazoles include methylbenzotriazole, aminobenzotriazole, and benzotriazole, which are applied as an aqueous solution by dipping or spraying. There are various types of silane coupling agents such as those having epoxy groups, amino groups, methylcapto groups, and vinyl groups, but those that are compatible with the resin may be used, and they are applied as an aqueous solution by dipping or spraying. .
The copper foil for printed wiring boards is completed by the above process.

以上、本発明の電解銅箔には、次の様な効果がある。
(1)樹脂基材と接着する側の粗化処理面の表面粗さRzが2.0 〜4.5 μm でロープロ
ファイルであって、接着力が十分であり、ファインパターンや絶縁層の極めて薄
い多層板など、高密度のプリント配線板に適合する。
(2)樹脂基材との接着後、外側の面となる製造時電解液側の表面粗さRzは 0.0 〜
2.0 μm でレジストとの界面の凹凸が小さく、ファインパターンを形成するのに 極めて適切な表面形状を持つ。
(3)この銅箔を得る方法は実工程において、導入が非常に容易であり、量産製造可能
である。
As described above, the electrolytic copper foil of the present invention has the following effects.
(1) A multi-layer board with a low profile with a surface roughness Rz of 2.0 to 4.5 μm on the side to be bonded to the resin base material, sufficient adhesive strength, and a very thin fine pattern or insulating layer Suitable for high-density printed wiring boards.
(2) The surface roughness Rz on the electrolyte side during production, which becomes the outer surface after bonding with the resin base material, is 0.0 to
At 2.0 μm, the unevenness at the interface with the resist is small, and the surface shape is extremely suitable for forming fine patterns.
(3) The method for obtaining this copper foil is very easy to introduce in the actual process and can be mass-produced.

本発明の表面処理方法によって得られた銅箔は銅張積層板に適用され、プリント配線板として使用される。
以下、本発明の実施例を銅張積層板に適用した場合の特性について述べる。
The copper foil obtained by the surface treatment method of the present invention is applied to a copper clad laminate and used as a printed wiring board.
Hereinafter, characteristics when the embodiment of the present invention is applied to a copper clad laminate will be described.

製造時電解液側の面の表面粗さRzが 1.0μm 、製造時陰極接触側の面の表面粗さRzが1.9 μmの、厚さが18μm である未処理電解銅箔を用意し、この銅箔の製造時陰極接触側の面を
(A)浴 CuSO4 ・5H2O 50 g/l
H2SO4 100 g/l
温度 40 ℃
の浴中において、40A /dm2 、2.5 秒間陰極電解し、水洗後
(B)浴 CuSO4 ・5 H2O 200 g/l
H2SO4 100 g/l
温度 40 ℃
の浴中において、 5 A /dm2 、80秒間陰極電解し、水洗した。
An untreated electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz of the surface on the electrolyte side during manufacture of 1.0 μm, a surface roughness Rz of the surface on the cathode contact side during manufacture of 1.9 μm and a thickness of 18 μm is prepared. (A) Bath CuSO4 · 5H2O 50 g / l
H2SO4 100 g / l
Temperature 40 ° C
In a bath of 40A / dm 2 , cathodic electrolysis for 2.5 seconds, and then washed with water (B) bath CuSO4 · 5 H2O 200 g / l
H2SO4 100 g / l
40 ℃
In the bath, 5 A / dm 2 , cathodic electrolysis for 80 seconds, and washed with water.

続いて、(C)浴 Na2Cr2O7 ・2H2O 3 g/l
NaOH 10 g/l
の浴中において 0.5A/dm2 、5 秒間陰極電解し、水洗後、乾燥させた。
この表面処理銅箔の粗化処理面の表面粗さRzは3.9 μm であった。
Then, (C) bath Na2Cr2O7 ・ 2H2O 3 g / l
NaOH 10 g / l
Was subjected to cathodic electrolysis at 0.5 A / dm @ 2 for 5 seconds, washed with water and dried.
The surface roughness Rz of the roughened surface of this surface-treated copper foil was 3.9 μm.

また、この銅箔の粗化処理面を被着面としてFR−4グレードのガラスエポキシ樹脂含浸基材に 3.9MPa の圧力、170 ℃、60分間の条件でプレスし成型した。この銅箔の引き剥がし強さは1.20kN/mであった。
引き剥がし強さは、JIS C 6481-1996 に準拠した。
Further, the roughened surface of the copper foil was used as an adherend surface, and pressed and molded on a FR-4 grade glass epoxy resin-impregnated base material under a pressure of 3.9 MPa and 170 ° C. for 60 minutes. The peel strength of this copper foil was 1.20 kN / m.
The peel strength was based on JIS C 6481-1996.

製造時電解液側の面の表面粗さRzが 0.6μm 、製造時陰極接触側の面の表面粗さRzが 1.7μm の、厚さが18μm の未処理電解銅箔を用意し、この銅箔の製造時陰極接触側の面を実施例1において (A)浴の代わりに
(D)浴 CuSO4 ・5H2O 50 g/l
H2SO4 100 g/l
Ti(SO4)2 24% 溶液 8.4 ml/l (Ti4+ : 0.55g/l)
Na2WO4 ・2H2O 0.036 g/l (W6+ : 0.02g/l)
温度 40 ℃
の浴を用いた以外は全て実施例1と同じ方法で処理した。
この表面処理銅箔の粗化処理面の表面粗さRzは3.3 μm であった。
Prepare an untreated electrolytic copper foil with a thickness of 18 μm and a surface roughness Rz of the surface on the electrolyte side during production of 0.6 μm, a surface roughness Rz of the surface on the cathode contact side during production of 1.7 μm and a thickness of 18 μm. In Example 1, the surface on the cathode contact side in the production of (A) instead of the bath (D) bath CuSO4 · 5H2O 50 g / l
H2SO4 100 g / l
Ti (SO4) 2 24% solution 8.4 ml / l (Ti4 +: 0.55g / l)
Na2WO4 ・ 2H2O 0.036 g / l (W6 +: 0.02 g / l)
40 ℃
All the treatments were carried out in the same manner as in Example 1, except that the baths were used.
The surface roughness Rz of the roughened surface of this surface-treated copper foil was 3.3 μm.

また、この銅箔の粗化処理面を被着面としてFR−4グレードのガラスエポキシ樹脂含浸基材に積層し、実施例1と同じ条件でプレスし成型した。この銅箔の引き剥がし強さは 1.18 kN/mであった。   Further, the roughened surface of the copper foil was laminated on an FR-4 grade glass epoxy resin-impregnated base material as the adherend surface, and pressed and molded under the same conditions as in Example 1. The peel strength of this copper foil was 1.18 kN / m.

製造時電解液側の面の表面粗さRzが 1.4μm 、製造時陰極接触側の面の表面粗さRzが 2.0μm の、厚さが18μm の未処理電解銅箔を用意し、この銅箔の製造時陰極接触側の面を全て実施例1と同じ方法で処理した。
この表面処理銅箔の粗化処理面の表面粗さRzは4.1 μm であった。
An untreated electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz of the surface on the electrolyte side at the time of manufacture of 1.4 μm and a surface roughness Rz of the surface on the cathode contact side of the manufacturing of 2.0 μm is prepared. The surface on the cathode contact side during the production of was treated in the same manner as in Example 1.
The surface roughness Rz of the roughened surface of this surface-treated copper foil was 4.1 μm.

また、この銅箔の粗化処理面を被着面としてFR−4グレードのガラスエポキシ樹脂含浸基材に積層し、実施例1と同じ条件でプレスし成型した。この銅箔の引き剥がし強さは 1. 20 kN/m であった。   Further, the roughened surface of the copper foil was laminated on an FR-4 grade glass epoxy resin-impregnated base material as the adherend surface, and pressed and molded under the same conditions as in Example 1. The peel strength of this copper foil was 1.20 kN / m.

比較例1Comparative Example 1

実施例1 において、未処理銅箔の製造時電解液側の面を同じ方法で表面処理を行なった。この表面処理銅箔の粗化処理面の表面粗さRzは 1.9μm であった。
また、この銅箔の粗化処理面を被着面としてFR−4グレードのガラスエポキシ樹脂含浸基材に積層し、実施例1と同じ条件でプレスし成型した。この銅箔の引き剥がし強さは 0.93 kN/mであった。すなわち 1.0 kN/m 以上無く、JIS C 6484の規格を満足せず、実用的ではなかった。
In Example 1, the surface of the electrolyte solution side during the production of the untreated copper foil was surface-treated by the same method. The surface roughness Rz of the roughened surface of this surface-treated copper foil was 1.9 μm.
Further, the roughened surface of the copper foil was laminated on an FR-4 grade glass epoxy resin-impregnated base material as the adherend surface, and pressed and molded under the same conditions as in Example 1. The peel strength of this copper foil was 0.93 kN / m. That is, it was not more than 1.0 kN / m, did not satisfy the JIS C 6484 standard, and was not practical.

比較例2Comparative Example 2

実施例1において、製造時電解液側の面の表面粗さRzが 3.8μm 、製造時陰極接触側の面の表面粗さ Rz が2.0 μm の、厚さが18μm の未処理電解銅箔を用意し、この銅箔の製造時電解液側の面を処理した以外、全て実施例1と同じ方法で処理した。
この銅箔の粗化処理面の表面粗さを測定したところRz 8.0μm であった。
In Example 1, an untreated electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz of 3.8 μm on the surface on the electrolyte side during production, a surface roughness Rz of 2.0 μm on the surface on the cathode contact side during production is prepared. And all were processed by the same method as Example 1 except having processed the field by the side of electrolyte solution at the time of manufacture of this copper foil.
When the surface roughness of the roughened surface of this copper foil was measured, it was Rz 8.0 μm.

また、この銅箔の粗化処理面を被着面としてFR−4グレードのガラスエポキシ樹脂含浸基材に積層し、実施例1と同じ条件でプレスし成型した。
この銅箔の引き剥がし強さは 1.50 kN/m であった。引き剥がし強度は実用的であるが、粗化処理面の表面粗さがRz8.0 μm もあり凹凸が大きく、ファインパターン用として不適であった。
Further, the roughened surface of the copper foil was laminated on an FR-4 grade glass epoxy resin-impregnated base material as the adherend surface, and pressed and molded under the same conditions as in Example 1.
The peel strength of this copper foil was 1.50 kN / m. The peel strength was practical, but the surface roughness of the roughened surface was Rz 8.0 μm and the irregularities were large, making it unsuitable for fine patterns.

本発明の銅箔は一般両面板、多層板、フレキシブルプリント配線板、高周波用プリント配線板などのプリント配線板以外でも、片側の表面粗さが極めて小さい面と反対側の適度な粗化処理面が要求される銅箔を利用する技術分野についても有効と考えられる。   The copper foil of the present invention is an appropriate roughened surface on the opposite side to the surface with extremely small surface roughness on one side, other than printed wiring boards such as general double-sided boards, multilayer boards, flexible printed wiring boards, and high-frequency printed wiring boards. It is also considered effective in the technical field that uses copper foil that is required.

Claims (3)

未処理銅箔の製造時電解液側の面が製造時陰極接触側の面より表面粗さが小さい電解銅箔において、その製造時陰極接触側の面を粗化処理したことを特徴とする表面処理電解銅箔。 A surface characterized by roughening the surface of the cathode contact side during production in an electrolytic copper foil having a surface roughness smaller than that of the surface of the cathode contact side during production of the untreated copper foil. Processed electrolytic copper foil. 未処理銅箔が、その製造時電解液側の面の表面粗さRzが0.0〜2.0μm、製造時陰極接触側の面の表面粗さRzが1.5 〜3.0μmであることを特徴とする請求項1に記載の表面処理電解銅箔。 The untreated copper foil is characterized in that the surface roughness Rz of the surface on the electrolyte side during production is 0.0 to 2.0 μm, and the surface roughness Rz of the surface on the cathode contact side during production is 1.5 to 3.0 μm. Item 2. The surface-treated electrolytic copper foil according to Item 1. 製造時陰極接触側の面を粗化処理した面の表面粗さRzが 2.0〜4.5μm、粗化処理しない面の表面粗さRzが 0.0〜2.0μmであることを特徴とする請求項1に記載の表面処理電解銅箔。 2. The surface roughness Rz of the surface roughened on the cathode contact side during production is 2.0 to 4.5 [mu] m, and the surface roughness Rz of the surface not roughened is 0.0 to 2.0 [mu] m. The surface-treated electrolytic copper foil as described.
JP2003383264A 2003-11-13 2003-11-13 Surface treatment electrolytic copper foil Expired - Fee Related JP4330979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003383264A JP4330979B2 (en) 2003-11-13 2003-11-13 Surface treatment electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383264A JP4330979B2 (en) 2003-11-13 2003-11-13 Surface treatment electrolytic copper foil

Publications (2)

Publication Number Publication Date
JP2005150265A JP2005150265A (en) 2005-06-09
JP4330979B2 true JP4330979B2 (en) 2009-09-16

Family

ID=34692031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383264A Expired - Fee Related JP4330979B2 (en) 2003-11-13 2003-11-13 Surface treatment electrolytic copper foil

Country Status (1)

Country Link
JP (1) JP4330979B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181506B2 (en) * 2006-03-27 2013-04-10 ヤマハ株式会社 String for musical instrument and method of manufacturing the same
KR100992959B1 (en) 2008-01-25 2010-11-08 엘에스엠트론 주식회사 A High Flexuous Copper Foil And Method For Producing The Same
WO2018138989A1 (en) 2017-01-25 2018-08-02 日立金属株式会社 Metallic foil manufacturing method and cathode for manufacturing metallic foil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762386B2 (en) * 1993-03-19 1998-06-04 三井金属鉱業株式会社 Copper-clad laminates and printed wiring boards
JP3660628B2 (en) * 1995-09-22 2005-06-15 古河サーキットフォイル株式会社 Electrolytic copper foil for fine pattern and manufacturing method thereof
JP3313277B2 (en) * 1995-09-22 2002-08-12 古河サーキットフォイル株式会社 Electrodeposited copper foil for fine pattern and its manufacturing method
JPH09272994A (en) * 1996-04-05 1997-10-21 Furukawa Electric Co Ltd:The Electrolytic copper foil for fine pattern
US6322904B1 (en) * 1996-06-17 2001-11-27 Mitsui Mining & Smelting Co., Ltd. Copper foil for printed circuit boards

Also Published As

Publication number Publication date
JP2005150265A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP6219034B2 (en) Copper foil and manufacturing method thereof, copper foil with carrier and manufacturing method thereof, printed wiring board, multilayer printed wiring board
KR100547513B1 (en) Electrolyte copper foil having carrier foil,manufacturing method thereof, and layered plate using the electrolyte copper foil having carrier foil
WO2017179416A1 (en) Treated surface copper foil, copper foil with carrier as well as methods for manufacturing copper-clad laminate and printed circuit board using same
JP3670186B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP2000269637A (en) Copper foil for high-density ultrafine wiring board
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP3295308B2 (en) Electrolytic copper foil
JP7453154B2 (en) Surface treated copper foil, copper foil with carrier, copper clad laminates and printed wiring boards
WO2001045475A1 (en) Surface-treated copper foil and method for manufacturing the surface-treated copper foil
KR20010075616A (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
JP2001301087A (en) Copper foil reinforced in low profile bonding
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
EP0790332A1 (en) A non-cyanide brass plating bath and a method of making metallic foil having a brass layer using the non-cyanide brass plating bath
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP4429539B2 (en) Electrolytic copper foil for fine pattern
JPH10341066A (en) Copper foil for printed circuit and copper foil with resin adhesive for printed circuit and copper-clad lamination board for printed circuit using it
JP4217778B2 (en) Conductive substrate with resistance layer, circuit board with resistance layer, and resistance circuit wiring board
JP2003094553A (en) Composite copper foil and manufacturing method therefor
JP3429290B2 (en) Manufacturing method of copper foil for fine wiring
JP4330979B2 (en) Surface treatment electrolytic copper foil
JP3363155B2 (en) Copper foil for printed circuit manufacturing and its manufacturing method.
JP4698957B2 (en) Electrolytic copper foil and electrolytic polishing method for electrolytic copper foil glossy surface
JP2631061B2 (en) Copper foil for printed circuit and method of manufacturing the same
JP4083927B2 (en) Copper foil surface treatment method
JP3342479B2 (en) Copper foil surface treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090617

R150 Certificate of patent or registration of utility model

Ref document number: 4330979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees